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Transcriptome variation in human tissues 
revealed by long-read sequencing

Dafni A. Glinos1,2,15 ✉, Garrett Garborcauskas3,15 ✉, Paul Hoffman1, Nava Ehsan4, Lihua Jiang5, 
Alper Gokden1, Xiaoguang Dai6, François Aguet7, Kathleen L. Brown1,8, Kiran Garimella7, 
Tera Bowers7, Maura Costello7, Kristin Ardlie7, Ruiqi Jian5, Nathan R. Tucker9,10, 
Patrick T. Ellinor10, Eoghan D. Harrington6, Hua Tang5, Michael Snyder5, Sissel Juul6, 
Pejman Mohammadi4,11, Daniel G. MacArthur3,12,13, Tuuli Lappalainen1,2,14,16 ✉ & 
Beryl B. Cummings3,16 ✉

Regulation of transcript structure generates transcript diversity and plays an 
important role in human disease1–7. The advent of long-read sequencing technologies 
offers the opportunity to study the role of genetic variation in transcript structure8–16. 
In this Article, we present a large human long-read RNA-seq dataset using the Oxford 
Nanopore Technologies platform from 88 samples from Genotype-Tissue Expression 
(GTEx) tissues and cell lines, complementing the GTEx resource. We identified just 
over 70,000 novel transcripts for annotated genes, and validated the protein 
expression of 10% of novel transcripts. We developed a new computational package, 
LORALS, to analyse the genetic effects of rare and common variants on the 
transcriptome by allele-specific analysis of long reads. We characterized 
allele-specific expression and transcript structure events, providing new insights into 
the specific transcript alterations caused by common and rare genetic variants and 
highlighting the resolution gained from long-read data. We were able to perturb the 
transcript structure upon knockdown of PTBP1, an RNA binding protein that mediates 
splicing, thereby finding genetic regulatory effects that are modified by the cellular 
environment. Finally, we used this dataset to enhance variant interpretation and study 
rare variants leading to aberrant splicing patterns.

Variation in transcript structure by RNA splicing and differences in the 
5′ and 3′ untranslated regions (UTRs) is a key feature of gene regulation1. 
Disruption of transcript structure has a major role in human disease, 
with genetic variants associated with changes in splicing enriched in 
genome-wide associations for common diseases2–4 and implicated in 
many severe Mendelian diseases5–7. Common genetic variants affecting 
transcript structure can be mapped by transcript ratio quantitative trait 
locus (trQTL) and and splicing quantitative trait locus (sQTL) analyses 
that have further shown that genetic variants affecting gene expres-
sion levels and splicing tend to be distinct17–19. An orthogonal method 
to analyse genetic regulatory effects, allele-specific expression (ASE) 
analysis, has proven to be a highly sensitive method for studying rare 
genetic variants in cis20–22. However, the application of these approaches 
to short-read data relies on proxies for the full transcript structure and 
quantification, which are often inaccurate23–27. Furthermore, most 
metrics have focused on alternative splicing, leaving the role of UTRs 
obscure despite their critical role in disease being demonstrated, 

with recent progress28–30. Long-read RNA-sequencing technologies8,9 
have now reached a mature stage, having already been used to study 
transcript structures10,11 and novel transcripts12–14, as well as for early 
allele-specific analyses15,16. Allele-specific transcript structure (ASTS) 
analysis, enabled by long-read transcriptome data, could therefore 
provide important information on how rare and common variants 
affect transcript structure and disease risk.

Overview of dataset
Altogether, complementary DNA from 90 samples from 56 donors and 
4 K562 cell line samples were sequenced on the MinION and GridION 
Oxford Nanopore Technologies (ONT) platforms. Fibroblast cell lines 
were used to test the platform and to assess the direct-cDNA versus 
PCR-cDNA RNA-seq protocols (Extended Data Fig. 1a–c). As the primary 
purpose of this study was to study allelic events, which require high 
coverage, we prioritized depth and sequenced the remaining samples 
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using the PCR-cDNA protocol, which does not require high RNA input 
and is preferred given the precious GTEx tissue samples. To evaluate 
the messenger RNA isolation protocol, we used the K562 cell lines (Sup-
plementary Methods). The 90 GTEx samples included the following. 
(1) Assessment of replicability by five samples sequenced in dupli-
cate and five samples in triplicate. Replicability was high (Spearman 
ρ  = 0.86–0.95; Extended Data Fig. 1d), leading us to merge the samples 
to increase depth. (2) The main dataset for analysis of transcriptome 
variation across tissues, consisting of 1–5 donors from 14 tissues.  
(3) Analysis of the effects of transcript perturbation by comparison 
of five GTEx fibroblast cell lines with and without PTBP1 RNA binding 
protein (RBP) knockdown. Data were produced across two research 
centres (Supplementary Methods; Suppl. Table 1). All the GTEx sam-
ples had Illumina TruSeq short-read RNA-seq data and 85 samples  
(51 donors) had whole-genome sequencing (WGS) data made available 
by the GTEx Consortium4.

Principal component analysis (PCA) and hierarchical clustering of 
samples based on transcript expression correlation showed tissue 
clustering (Fig. 1a,b and Extended Data Fig. 1e), similar to the GTEx 
consortium analysis of short-read RNA-seq data4. Gene and transcript 
quantifications from long-read data were highly concordant with those 
from Illumina RNA-seq (median R2 = 0.75 for genes and R2 = 0.57 for 
transcripts; Fig. 1c and Extended Data Fig. 2a). Genes and transcripts 
with low correlation were enriched for lower expression in ONT data, 
higher complexity genes and transcripts with multiple exons (Extended 
Data Fig. 2b–d). We manually checked the read coverage of some of the 
genes that displayed low correlation, such as PRELID1, which is better 
captured by ONT, and ARSB, which displays 3′ bias (Fig. 1d). Overall, 
longer transcripts displayed higher 3′ bias, as assessed using only the 
mitochondrial transcripts14 (Methods; Fig. 1e), and tissue-specific pat-
terns were observed, such as shorter MT-ND5 in brain tissue and greater 
variability in cultured cell lines (Extended Data Fig. 3).

Discovery of novel transcripts
We used FLAIR31 to quantify transcripts and identify novel ones, defined 
as transcripts with intron chains not matching with any transcript in 
GENCODE (v.26) (Methods). We found 93,718 transcripts across 21,067 
genes (Supplementary Table 2), of which 77% were novel (Extended Data 
Fig. 4a–c). In most cases we quantified one, often already annotated, 
transcript for a gene, whereas more novel transcripts were discovered in 
genes with a high number of annotated transcripts (Fig. 2a). Of the novel 
transcripts, 47,678 shared at least one splice junction with annotated 
transcripts and 21,620 had intron retention. In fact, 87% of all intron 
retention events were novel (Fig. 2b), which suggests the presence 
of pre-mRNA despite carrying out a poly(A) enrichment step. On the 
other hand, only 37% of exon skipping events were novel, suggesting 
they are better represented in the existing annotations (Fig. 2b). We 
compared our findings with the 33,984 transcripts defined by Work-
man et al.14 based on GM12878 cell lines using ONT direct and cDNA 
RNA-sequencing, which matched 13.1% of our transcripts, 3,604 of 
which were novel. Similarly, we compared our findings to the CHESS 
project, which identified 116,156 novel transcripts using short-read 
RNA-seq from multiple tissues, matching 32.6% of our transcripts, 
10,630 of which were novel (Extended Data Fig. 4d and Supplementary 
Table 3). Despite differences in the tissue samples, sequencing method 
and parameters used to identify novel transcripts, these provide further 
evidence to support the identified transcripts.

We validated our novel transcripts by using proteome mass spec-
trometry data of 32 GTEx samples32. For most tissues a similar number 
of samples using long-read RNA-seq and proteomics were assayed, 
apart from brain tissue, for which in addition the subregions between 
the two assays did not match (Suppl. Table 4). We limited this analysis to 
33,251 transcripts (63% of which were novel) expressed at ≥5 transcripts 
per million (TPM) in a sample per tissue and tested for matches in the 

predicted amino-acid chain. Across tissues, 2,575 novel transcripts were 
validated and increasing the RNA abundance threshold did not affect 
this number (Extended Data Fig. 5a–c and Supplementary Table 3). 
When compared with annotated alternative transcription events, 
higher validation was observed for novel alternative 5′ UTR and skipped 
exons, and both annotated and novel intron retention events showed 
low validation rates that were not different from each other (Fig. 2c and 
Extended Data Fig. 5d). This depletion could be partially explained by 
nonsense-mediated decay or other post-transcriptional events deplet-
ing the protein products rather than the poor quality of the transcript 
annotations. Alternative 3′ and 5′ splicing showed higher validation in 
annotated transcripts, suggesting that these types of events annotated 
by long reads might be due to technical limitations. For 608 genes we 
validated more than one transcript (1,304 total), with 823 transcripts 
being novel, often detecting tissue-specific protein transcript valida-
tion (Supplementary Table 5 and Extended Data Fig. 5e).

Novel transcripts resulted in clearer clustering of samples by tis-
sue based on transcript expression correlations and PCA (Extended 
Data Fig. 6a,b), indicating that novel transcripts capture tissue- 
specific expression patterns. We therefore examined the gene and 
transcript expression across nine tissues with at least five samples.  
Highly expressed (>1 TPM) novel transcripts were tissue specific, with 
31.5% expressed in a single tissue (Fig. 2d and Extended Data Fig. 6c). 
This may explain their absence in existing annotations and highlights 
the potential for characterizing tissue-specific gene expression and 
regulation with long-read transcript analysis. We found thousands 
of transcripts exclusively expressed in a single tissue or having dif-
ferent transcript ratios across all nine tissues (Extended Data Fig. 7).  
The tissues with the highest ratio of tissue-specific transcripts were 
the cerebellar hemisphere, liver and fibroblasts (8% of all differentially 
expressed transcripts), in agreement with previous observations of 
high transcript diversity33,34.

Allele-specific analysis
Allele-specific analysis captures cis-regulatory genetic effects on expres-
sion and transcript structure17. The expression of a gene or a transcript is 
quantified for each haplotype of a sample, separated on the basis of the 
allele at a heterozygous site. Sixty-four of the long-read RNA-seq samples 
also had phased whole genome sequencing information from GTEx4, 
which allowed us to carry out allelic analysis. To address local alignment 
biases caused by sequencing errors adjacent to the variant sites of inter-
est, we developed an alignment pipeline in which two haplotype-specific 
references are created for each donor (Extended Data Fig. 8). To perform 
ASE and ASTS analysis, in which we test the relative usage of a transcript 
in relation to the other transcripts of the same gene (Fig. 3a), we devel-
oped a new software package, LORALS (long-read allelic analysis). In 
addition to adopting mappability and genotyping error filters previ-
ously developed for short-read data35, we introduced flags addressing 
the higher error rate of long-read data (Methods; Extended Data Fig. 9). 
We performed power calculations using simulated data to test how read 
counts, number of transcripts and effect size affect ASTS detection 
power (Methods; Extended Data Fig. 10a).

Having established and optimized our pipeline, we performed the 
analysis using the FLAIR-aligned transcripts. Per sample, an average of 
8.9% of genes analysed for ASE and 7.7% of genes analysed for ASTS had 
a statistically significant event, with the discovery being proportional to 
the library size. To maximize power for generalizable insights, we ana-
lysed all ASE (3,437 significant out of 36,077 across 6,680 unique genes) 
and ASTS events (331 significant out of 3,858 across 1,207 unique genes) 
combined across samples (Extended Data Fig. 10b). For 77% of genes 
analysed for ASTS we quantified and tested the counts of 2 transcripts 
per gene, whereas the remaining ranged between 3 and 14 (Extended 
Data Fig. 10c). Per tissue, 71% of the genes were tested for ASTS in a 
single donor (Extended Data Fig. 10d). Within the remaining 29%, there 
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were 47 genes that consistently displayed ASTS across donors within 
a tissue (Supplementary Table 6). Most of these had over two highly 
expressed transcripts (Binomial test P = 3.2 × 10−4), suggesting that 
they can withstand variability.

Comparing the long-read ASE events to the ones reported for 
short-read GTEx v.8 data35, we observed moderate concordance when 
looking at the P values in short-read data using the long-read signifi-
cant ASE events (π1 = 0.23) and vice versa (π1 = 0.41) (Extended Data 
Fig. 11a). Of the 341 events that were significant in both datasets, 83% 
had the same direction of effect, with the opposite direction mostly 
observed in fibroblast cell lines that were passaged since Illumina 
sequencing was carried out (Extended Data Fig. 11b–e). Differences 
were explained by low read depth and some variants being filtered out 
in one of the datasets (Extended Data Fig. 11f); for example, 445 vari-
ants with significant ASE in long-read data were filtered in short-read 
data owing to the mapping bias flag. Next, we sought to establish that 
ASE and ASTS recapitulate genetic regulatory effects of expression 

quantitative trait locus (eQTL) and sQTL mapped by GTEx4. Individu-
als who are heterozygous for a QTL lead variant are expected to show 
increased allelic imbalance compared with those who are homozygous, 
and such significant enrichments were observed in the data (Fig. 3b).

Classification of alternative transcript structure (AltTS) changes 
enables better understanding of the nature of the ASTS events, and 
thus genetic variants affecting transcript structure. When considering 
each AltTS event alone, the most common was exon skipping, followed 
by alternative 3′ splice sites and 3′ UTR events that were enriched for 
significant ASTS (Extended Data Fig. 12a). To support this, we found 
that variants located in the 3′ end were more likely to lead to significant 
ASTS events, compared to 5′ end variants (chi-squared P = 2.46 × 10−4; 
Extended Data Fig. 12b). We then examined the combination of two types 
of AltTS events per gene (Fig. 3c). We observed that certain AltTS events 
co-occurred more commonly in genes with significant ASTS, compared 
to all events. For example, the combination of mutually exclusive exons 
with exon skipping (binomial test P = 2.05 × 10−8). On the other hand, 

0

1,000

2,000

3,000

0

1,000

2,000

3,000

0

1,000

2,000

3,000

FP
M

400 800 1,200 1,600

B
rain

cereb
ellar hem

isp
here

M
uscle

Lung

0

30

60

90

120

0

30

60

90

120

0

30

60

90

120

2,0004,0006,000
Distance from ARSB start (bp)

ONT
Illumina

c d

Distance from PRELID1 start (bp)

Tissue

0

0.2

0.4

0.6

0.8

1.0

Adipose: subcutaneous
Brain: Anterior cingulate cortex (BA24)
Brain: caudate (basal ganglia)
Brain: cerebellar hemisphere
Brain: frontal cortex (BA9)
Brain: putamen (basal ganglia)
Breast: mammary tissue
Cells: cultured �broblasts
Heart: atrial appendage
Heart: left ventricle
Liver
Lung
Muscle: skeletal
Pancreas

a b

Gene Transcript

e

–100

0

100

–100 0 100

PC1: 25.63% variance

P
C

2:
 1

8.
31

%
 v

ar
ia

nc
e

0

1

2

3

4

5

0 1 2 3 4 5

O
N

T 
lo

g 10
 T

P
M

200 400 600
Count

0

1

2

3

4

5

0 1 2 3 4 5
Illumina log10 TPM

500

1,000

1,500

2,000

0.5

1.0

1.5

500 1,000 1,500 2,000

Expected length

M
ed

ia
n 

fr
ac

tio
n

of
 fu

ll 
le

ng
th

ATP8/ATP6
CO1

CO2

CO3 CYB

ND1

ND2

ND3

ND4L/ND4

ND5

ND6

Fig. 1 | Overview and quality control of the dataset. a, PCA of samples with 
replicates merged, without K562 cell lines and without PTBP1 knockdown 
samples, based on GENCODE transcript expression (>3 TPM in more than five 
samples). b, Hierarchical clustering of samples based on correlation of 
transcript expression (as in a), using Euclidean distance. c, Example of gene and 
transcript expression correlation between Illumina and ONT in the muscle 
tissue of GTEX-1LVA9. d, Two examples of genes displaying low correlation 
between ONT and Illumina. PRELID1 was better captured by ONT than Illumina, 

whereas ARSB had 3′ bias when assayed by ONT. They are shown across three 
different tissues and all protein-coding transcripts are plotted below. FPM, 
fragments per million. e, Relationship between the expected transcript read 
length and the fraction of observed nanopore poly(A) RNA reads over the 
expected full length. Labels are for mitochondrial genes without the MT prefix. 
The transcript median was calculated per sample, and the median across all 
samples is plotted (n = 90). Error bars represent standard deviation.



356 | Nature | Vol 608 | 11 August 2022

Article

there were combinations that were depleted from significant ASTS 
events, notably the combination of alternative 3′ UTR with any other 
event. This highlights the distinct effect of alternative UTR regions within 
the significant ASTS genes, missed in most sQTL mapping approaches.

To better understand the relationship between genetic effects on 
expression and transcript structure, we compared the ASE and ASTS 
events. We found that 222 of the 880 significant ASE genes displayed 
significant nominal P values in ASTS (π1 = 0.15). This proportion was larger 
when looking at significant ASTS, for which we found that 176 of the 330 
genes displayed significant nominal P values in ASE (π1 = 0.46; Fig. 3d). 
This indicates that changes in transcript structure are often accompanied 
by changes in transcript levels, but less often the other way around. When 
repeating this analysis stratified by AltTS events, we observed that an 
exception to this were ASTS events caused by alternative 3′ ends, for which 
an equal proportion of events were ASE and ASTS (Fig. 3d).

On the basis of these observations, we examined sQTL-significant genes 
in ASE, for which we observed a difference between heterozygous and 
homozygous individuals (Fisher’s exact test P = 1.81 × 10−5). When looking 
at eQTLs, we also observed that more heterozygous donors had significant 
ASTS compared to homozygous (Fisher’s exact test P = 1.56 × 10−4; Fig. 3b), 
indicating that genetically induced expression differences manifest in 
ASTS. To test the origin of this, we stratified the events by AltTS events. We 
observed that the sQTLs were mostly manifesting in differences in exon 
skipping (34.2%; Fig. 3e), as expected, whereas eQTLs were manifesting 

not only in total expression differences but also in transcript structure 
changes of the 5′ end of a gene (33.3%; Fig. 3e). Differences in the 5′ end 
of a gene are therefore driving the capture of eQTLs in ASTS data, which 
would be normally missed by sQTL mapping.

This breakdown of events allows us to revisit existing sQTLs and find 
examples in which ASTS data enable a better understanding of the 
exact molecular events associated with the genetic variant, potentially 
contributing to diseases and traits (Methods; Supplementary Table 7). 
DUSP13, for example, is a gene specifically expressed in muscle, and 
has three sQTL intron excision phenotypes colocalizing with a single 
locus associated with body fat percentage4. Multiple transcripts arise 
from this gene, but in both donors displaying ASTS we observed that 
the transcript ENST00000372700 lacking four middle exons was more 
highly expressed from the risk allele (Extended Data Fig. 12c). As further 
validation, GTEx short-read transcript ratios recapitulated this pattern 
(Extended Data Fig. 12d). We were therefore able to pinpoint to the 
exact events leading to differences in transcript expression from the 
two alleles and potentially predisposing to high body fat percentage.

To test how ASTS captures changes in the effects of cis-regulatory vari-
ants due to perturbation of the splicing machinery of the cell, we knocked 
down PTBP1 RBP in five GTEx fibroblast cell lines. PTBP1 mediates exon 
skipping in pre-mRNAs and is involved in the 3′-end processing of mRNA. 
We therefore expected to see a disturbance of transcript expression as 
well as ASTS patterns for some genes upon small interfering RNA (siRNA) 
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knockdown. Indeed, we found 3,061 differentially expressed genes, 70% 
of which were validated with short-read data, and 4,220 differentially 
expressed transcripts (Extended Data Fig. 13a,b). Exon exclusion and 
longer alternative 3′ UTR events were enriched in transcripts significantly 
upregulated in PTBP1 knockdown samples (Extended Data Fig. 13c).

We then compared allelic events in the knockdown and control sam-
ples (Methods and Extended Data Fig. 14a). We observed different 
transcript processing events between the two conditions, indicating 
that heterozygous genetic variants driving the ASTS in control sam-
ples lose their effect in the absence of PTBP1 (Extended Data Fig. 14b).  
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To increase our power, we re-sequenced the same samples on the  
PromethION platform, resulting in a minimum of 22 million reads per 
sample. We re-identified allelic imbalance for 87% of the ASE events 
and 58% of the ASTS events (Extended Data Fig. 14c). We observed an 
enrichment of condition-specific events in ASTS compared with ASE 
(Fisher’s exact test P = 2.89 × 10−10; Extended Data Fig. 14d), consistent 
with the fact that PTBP1 affects splicing and not gene expression at the 
allelic level. The control samples were enriched for ASTS with 3′ end dif-
ferences combined with alternative 5′ splice sites, whereas alternative 
5′ splice sites combined with exon skipping or intron retention were 
enriched in knockdown-specific ASTS (Fig. 3f).

We hypothesized that condition-specific ASTS events upon RBP 
knockdown might reflect different regulation modes to those that are 
shared. We expect those to be driven by heterozygous variants within 
RBP sites detectable in eCLIP peaks36 (Supplementary Table 8). We 
focused on the genes with at least one heterozygous variant falling in an 
eCLIP site (82% of ASTS genes), and tested whether specific RBPs were 
differentially enriched near significant ASTS genes that were specific 
to a condition or shared. PTBP1 sites harbouring heterozygous variants 
were depleted from ASTS events shared between the two conditions 
(P = 0.0087; Fig. 3g), in agreement with the expectation that these 
events are driven by PTBP1 independent processes. We discovered 
35 condition-specific ASTS events with PTBP1 eCLIP peaks, equally 
distributed between the control and the knockdown. For example, in 
SLC1A5, a donor has a heterozygous site within a PTB1 eCLIP site and 
ASTS that is attenuated upon PTPB1 knockdown (Fig. 3h and Extended 
Data Fig. 14e). These analyses are consistent with a model in which 
changes in the cellular environment altering splicing regulation can 
affect the molecular function of genetic variants.

Rare variant interpretation
Finally, we evaluated the potential to better interpret rare variants 
with novel transcript annotations and ASTS data from long reads. 
We complemented the GENCODE v.26 annotation with an additional 
73,599 transcripts, and re-annotated genetic variants from GTEx 
WGS data using VEP37 (Methods). The most severe consequence for a  
variant changed for 0.75% of all variants (Extended Data Fig. 15a), 
16,435 of which were coding (3.27% of coding variants). We used com-
bined annotation-dependent depletion (CADD) scores as a proxy 
for the path ogenicity of a variant and as further support for validity 
of the re-classifications. We observed that variants reassigned to a 
more severe consequence had on average a higher CADD score than 
those that retained the same annotation (Fig. 4a and Supplementary 
Table 9). An exception to this were variants previously annotated as 
non-coding transcript exons and reassigned as coding but assigned a 
lower CADD score, suggesting that some of the novel transcripts we 
identify might not be coding. The higher CADD scores for variants 
reassigned as pathogenic provides independent evidence that our 
novel transcripts detect real biology and functional variants that may 
have been missed before. We therefore re-annotated ClinVar variants, 
resulting in the reassignment of 9,582 variants (1.23%). We observed 
that variants with uncertain benign or pathogenic clinical significance 
and no assertion criteria were reassigned at the highest rate (4% and 
3.1%), whereas pathogenic variants with higher reviewer support were 
reassigned at the lowest rates (Extended Data Fig. 15b). This provides an 
explanation for the conflicting reports of these variants and a potential 
pathogenic mechanism.

Long-read allelic data provide the opportunity to observe rare vari-
ants disrupting transcriptional regulation. GTEx has previously defined 
individuals that are extreme ASE, expression and splicing outliers, and 
shown that they are enriched for having rare genetic variants in the 
gene’s vicinity22,38. Although our sample size is insufficient for analo-
gous analysis of ASTS outliers, we tested the presence of rare (minor 
allele frequency (MAF) < 0.01) heterozygous variants within a 10 kb 

window of each ASTS gene. Across all samples, missense variants were 
enriched for being in significant ASTS genes compared to all genes 
measured for ASTS (Extended Data Fig. 15c,d). This indicates that ASTS 
can capture rare variant effects on transcript structure. In addition, 
we observed that significant ASTS genes were enriched within splic-
ing outliers (Extended Data Fig. 15e). Finally, we searched for specific 
examples in which a rare variant is probably causing ASTS in our data 
(Supplementary Table 10). Out of eleven genes for which an individual 
has a rare heterozygous variant, is a splicing outlier as defined by GTEx 
and has significant ASTS, we highlight two examples: PPA2 has two intron 
variants chr4:105409456:G:A and chr4:105449015:G:A (MAF = 5.97 × 10−4 
and 9.55 × 10−3, respectively), with the alternative allele having higher 
expression levels of transcript ENST00000348706 and lower expression 
of ENST00000341695 (Fig. 4b) and NDUFS4 (Extended Data Fig. 15e,f).
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Discussion
In this study, we present a large dataset of long-read RNA-seq, using 
material derived from cell lines and human tissues collected by the GTEx 
project. We identified 71,735 novel transcripts, which is high compared 
to other long-read studies12–14 probably because of our large sample size 
and tissue diversity, consistent with the high number of tissue-specific 
novel transcripts discovered. Supported by a high validation rate of the 
novel transcripts in high-throughput mass spectrometry proteome 
data32, our data make an important contribution to human transcript 
annotations. Expanding long-read studies to further tissues and cell 
types, coupled with more extensive validation efforts, will enable a 
better understanding of the regulatory mechanisms of the different 
types of transcript changes12, the functionally distinct protein isoforms 
that different transcripts can give rise to39 and the improved variant 
annotation, as demonstrated by our analysis.

Long reads provide the ability to map allelic effects over transcripts, 
instead of just expression40, thus providing the opportunity to analyse 
cis effects of genetic variants on transcripts. We developed LORALS, 
a toolkit for allelic analysis specific to long reads, considering vari-
ous biases inherent to the technology. It is tuneable and applicable 
to any long-read data, improving on previous work in this field14,15. 
We observed that the majority of ASTS events coincided with ASE, 
indicating that genetic effects on transcript usage rarely happen by 
reciprocally flipped transcript expression, but are typically accompa-
nied by a change in the total expression levels, which could happen, 
for example, by altered stability of specific transcripts41. However, the 
widespread co-occurrence of ASTS with ASE and eQTLs manifesting as 
ASTS are seemingly at odds with multiple QTL mapping studies that 
have established that expression and splicing are affected by distinct 
regulatory variants and processes3,4,17. The ability to distinguish the 
exact alternative transcript structure events in ASTS data allowed us to 
discover allele-specific 5′ differences as the cause of eQTLs manifesting 
in transcript structure changes, whereas expression and splicing are 
indeed highly independent. Given that promoter differences greatly 
affect gene expression levels and that most sQTL mapping methods do 
not capture the variation in UTRs, this explains both the low overlap 
between causal variants of sQTLs and eQTLs and the overlap of ASTS 
with ASE and eQTLs.

These results reinforce the emerging understanding29 of the impor-
tance of analysing the transcriptome not at the level of genes or impre-
cisely defined splicing, but rather with a detailed characterization of 
specific transcripts, their changes and combinations. These insights 
are readily captured by long reads. Given the role of genetic variants 
affecting transcript structure in disease risk2–4,42–44, we anticipate that a 
high-resolution characterization of the transcriptome with long-read 
data will be an important approach for the discovery of regulatory 
mechanisms of disease-associated variants.
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Methods

Fibroblasts cell culture and PTBP1 siRNA transfection
Fibroblast cell lines derived from skin samples from the lower leg and 
biobanked as part of the GTEx Consortium were cultured in DMEM 
media supplemented with 10% FBS and 1% penicillin/streptomycin 
(Corning). Transfections were performed 24 h after initial seeding 
of 500,000 cells in 10 cm dishes. Transfection mixtures were pre-
pared with 6 µg per dish of siRNA pools (Dharmacon SO-2720501G, 
SO-2703775G), Lipofectamine 2000 (Thermo Fisher) and Opti-MEM 
reduced serum media (Corning) according to proprietary guidelines. 
Mixtures were added to cell cultures containing reduced volumes of 
5 ml DMEM media for 6 h before increasing volumes to 10 ml with fresh 
media. Cells were harvested 96 h after transfection.

SDS–PAGE and western blotting
Protein was extracted by boiling 75,000 cells at 95 °C for 5 min in 100 µl 
2× Laemmli Sample Buffer (Bio-Rad) and 2-mercaptoethanol (5%) as 
a reducing agent. SDS–PAGE was run on 10% Mini-PROTEAN TGX gels 
(Bio-Rad) in Tris/glycine/10%SDS buffer. Proteins were transferred onto 
nitrocellulose membranes. Then 5% non-fat milk was used for blocking. 
Primary antibodies from mouse for PTBP1 (used in 1:4,000 dilution; 
Thermo Fisher Scientific) and rabbit for GAPDH (used in 1:10,000 dilu-
tion; Cell Signaling Technology) were incubated overnight at 4 °C. Sec-
ondary antibodies (LI-COR IRDye; donkey anti-mouse IgG polyclonal 
antibody (800CW; size 100 µg) and donkey anti-rabbit IgG polyclonal 
antibody (680RD; size 100 µg) were incubated for 1 h at room tem-
perature. Membranes were imaged on the Li-cor Odyssey CLx system.

Generation of long-read RNA-seq data
Generally following the manufacturer’s instructions, the protocol 
detailed in the Supplementary Methods was used.

Sequencing and base-calling
Libraries were prepared with 300 ng of input total RNA using the Illu-
mina TruSeq kit and sequenced on the NextSeq 550 platform. Sequenc-
ing of mRNA samples was performed on the GridION X5 and MinION 
platform (Oxford Nanopore Technologies) for 48 h. To basecall the 
raw data we used ONT’s Guppy tool (v.3.2.4).

Genome and transcriptome alignments
We used minimap2 v.2.11 (ref. 45) to align the reads to the GRCh38 human 
genome reference using -ax splice -uf -k14 –secondary=no parameters. 
We also aligned to the GENCODE v.26 transcriptome using -ax map-ont 
parameters. We used NanoPlot46 to calculate alignment statistics. We 
obtained a median of 6,343,016 raw reads per sample, of which on average 
80% (s.d. 16%) aligned to the genome (Extended Data Fig. 1a). The median 
read length was 709 base pairs (bp) and 789 bp for raw and aligned reads, 
respectively (Extended Data Fig. 1b). We observed a higher median read 
length in samples sequenced using the direct-cDNA ONT protocol when 
compared to the PCR-cDNA protocol (t-test P = 0.022), at the expense of 
lower read depth (t-test P = 6.45 × 10−3) (Extended Data Fig. 1c).

We used the method outlined in Workman et al.28 to calculate 3′ bias in 
our data, which only focuses on reads assigned to transcripts encoded 
in the mitochondrial genome. The reasoning for using mitochondrial 
transcripts was that they are abundant across all tissues, are single exon 
and have variable lengths. We limited our analysis to reads that aligned 
within a 50 nucleotide window of the 3′ end of the gene. We calculated 
the median proportion of full-length reads per sample, and across all 
samples, along with standard deviations.

All read pile-up plots were made using wiggleplotr47.

Transcript detection and characterization
We defined transcripts using FLAIR v.1.4 (ref. 31). Four heart left ventri-
cle samples from patients with cardiovascular disease were included 

for the novel transcript calling (phs001539.v1.p1). We used the sam-
ples that had been aligned to the genome and applied FLAIR-correct 
to correct misaligned splice sites using GENCODE v.26 annotations. 
We merged all samples and ran FLAIR-collapse per chromosome to 
generate a first-pass transcript set by grouping reads on their splice 
junction chains and only keeping transcripts supported by at least ten 
reads. We only kept reads with transcription start sites that fell within 
promoter regions defined by taking a window 10 bp upstream and 
50 bp downstream of the gene start site based on the GENCODE v.26 
build and that spanned  at least 80% of the transcript with  at least 25 
nucleotide coverage into the first and last exon. Reads that passed these 
filters were then re-aligned to the first-pass transcript set, retaining 
alignments with mapping quality score (MAPQ) > 10.

We further filtered our transcript discovery set using TransDecoder 
software (https://github.com/TransDecoder/TransDecoder/) to 
remove transcripts with no open reading frames (ORFs). We integrated 
Pfam and Blast databases in this search, using the default parameters, to 
select the ORFs with the most functional coding potential. We removed 
transcripts for which all ORF were marked as being partial 3′ and 5′. 
We further limited our discovery to transcripts encoding at least 100 
amino acid long transcripts. This step decreased the number of novel 
transcripts from 159,882 to 93,718.

Transcripts were compared to GENCODE v.26, Workman et al. 
flair-called transcripts28 and CHESS transcripts48 using gffcompare49. 
Transcripts with exact intron chain-match were marked as annotated, 
whereas all others were marked as novel.

Transcript quantification
We used flair quantify31 to quantify transcripts from all samples for 
which reads had been aligned with (1) GENCODE v.26 and (2) the newly 
identified transcripts. Reads were normalized using TPM normaliza-
tion and were filtered for transcripts expressed at least five TPM in at 
least three samples before clustering analysis. Similarly, for the com-
parison between ONT and Illumina, reads were normalized using TPM 
normalization, filtered for protein-coding genes and limited to those 
with expression higher than one  TPM in both Illumina and ONT. Lowly 
correlated genes were defined by residual analysis of the Spearman 
correlations (Extended Data Fig. 3).

Alternative transcript structure events definition
We used SUPPA (v.2.3)50 to define alternative 3′ splicing (A3), 5′ splicing 
(A5), first exon (AF), last exon (AL), intron retention (RI), exon skip-
ping (SE) and mutually exclusive exons (MX). We supplemented these 
annotations with alternative UTR regions, which for the purposes of 
this study were assumed to be the last exons. We used a window size of 
ten nucleotides around splice sites to allow for error.

Protein validation of highly expressed transcripts
For the tissues assayed in the GTEx proteomics database32 (heart, brain, 
liver, lung, muscle, pancreas and breast), we identified the transcripts 
expressed at higher than 5  TPM per sample. We used the output peptide 
fasta file from TransDecoder analysis to get the amino-acid sequence 
for each of the maintained transcripts. In total, 33,251 transcripts 
were maintained. To optimize our search space, we grouped together 
brain samples from different regions and heart samples from differ-
ent regions.

Raw files from the GTEx proteomics study32 were first converted to 
mzXML files and submitted to the Trans-Proteomic Pipeline (http://
tools.proteomecenter.org/wiki/index.php?title=Software:TPP) for 
database search. The Comet search engine was used for the database51. 
The mass tolerance of precursor ions was set to 10 ppm and fragment 
ions was set to 1.0 atomic mass unit (amu). Up to two missed cleavages 
were allowed for trypsin digestion. Methionine oxidation was set to 
variable modification. Cysteine carbamidomethylation and peptide 
N-terminal and lysine tandem mass tag modifications were set to be 
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static modifications. After searches, peptides were filtered and scored 
by the PeptideProphet algorithm and proteins were scored afterwards 
using ProteinProphet52. Protein probability greater than 0.99 and 
group_sibling_id of ‘a’, which marks the protein containing the largest 
number of total peptides, were used for the confident identification 
of the transcript.

Differential transcript expression and transcript usage
We used the nine tissues with at least five samples (brain cerebellar 
hemisphere, frontal cortex and putamen, cultured fibroblasts, atrial 
appendage and left ventricle from the heart, liver, lung and muscle). 
Differential expression was performed with DEseq2 (ref. 53) pairwise 
using the Wald method and across all samples using the likelihood ratio 
test. We used replicates using the function collapseReplicates. We used 
a cut-off for statistical significance at false detection rate (FDR) = 0.05. 
Differential transcript usage was performed with DRIMSeq54. Only the 
replicate with the highest read coverage was maintained in the analysis. 
All analysis was done in a pairwise manner, with a cut-off for statistical 
significance at FDR = 0.05.

Differential gene and transcript expression analysis between the 
control and PTBP1 knockdown samples were performed in the same 
way as above. For differential gene expression we used quantifications 
made based on the GENCODE gene annotation, as each gene’s differen-
tial gene expression status was validated using the Illumina RNA-seq 
protocol on the same samples. For transcript differential expression 
we used the FLAIR transcripts.

Allele-specific analysis
Alignment strategy. We used the bcftools package to filter for only 
heterozygous variants per donor. We complemented the WGS and 
short-read RNA-seq phasing by long-read RNA-seq read phasing with 
HAPCUT2 (ref. 55), run using all available RNA-seq libraries per subject. 
The haplotype phasing had been informed by the short-read RNA-seq 
data and we further switched the phase of a median of 0.05% of the 
heterozygous variants using the long-read data.

We generated a reference genome per haplotype of each donor and 
re-aligned the reads to each of the two references using the same param-
eters as described above. For each read, we retrieved the two MAPQ 
scores, and if different kept the one with the highest score; the ties were 
randomly chosen between the two references. This approach led to a 
difference in alignment for on average 4.8% (Extended Data Figs. 8c,9c) 
of the reads containing a heterozygous variant. We examined the first 
position of each aligned read to better understand the source of the high 
reference bias observed. Most reads (98.4%) aligned to the exact same 
location, which suggests that the reference bias was mediated by local 
misalignment within the read, probably stemming from insertions/ 
deletions adjacent to the variant of interest (Extended Data Figs. 8d,9d). 
A small proportion of reads (1.2%) did not align when using the person-
alized reference genomes. Therefore, our mapping approach allows 
most long reads to reliably be assigned to a haplotype.

Data acquisition. Single-nucleotide polymorphism level allele-specific 
data was generated using software developed specifically for long-read 
data (LORALS). We flagged multi-mappability sites, so sites that were 
part of the blacklist regions from ENCODE and monoallelic sites as 
determined by GTEx. Regions with multi-mapping reads were con-
structed using the alignability track from UCSC Genome Browser using 
a threshold of 0.1, meaning that a 100k-mer aligning to that site aligns to 
at least five other locations in the genome with up to two mismatches. 
Monoallelic sites were defined across all their tissue for each sample, 
by testing whether there are no more reads supporting two alleles than 
would be expected from sequencing noise alone, indicating potential 
genotyping errors (FDR < 1%).

We introduced two ONT-specific flags, namely, the ratio of reference 
and alternative allele containing reads to the total read number for a 

site, which we set to greater than 80%, and the number of reads con-
taining indels within a 10 bp window of the heterozygous variant. This 
filter was determined by counting the number of base pairs that were 
matched within the window and requiring at least eight of them to not 
be INDELs. If, at the site, the proportion of indel containing reads was 
greater than 80%, then it was flagged. In addition, the reads that con-
tained over eight INDELs within the window were filtered out. Finally, 
only variants that were covered by at least 20 reads were kept.

After filtering the flagged sites, we maintained a median of 77% (s.d. 
4%) of the sites per sample, with the most stringent filter being the ratio 
of indel containing reads, which removed 22% of the sites (s.d. 4%). For 
the variant sites that passed these filters we checked to which transcript 
each read was assigned. We then created haplotype tables per gene 
across all of its transcripts. These tables were filtered for genes that 
had at least two transcripts, for which each transcript had at least 10 
reads and the total expression of a gene was greater than 36 reads.  
In the case when multiple variants associated with a gene, the one with 
the highest total coverage was selected for the analysis.

We compared the reference ratios per gene and transcript across 
the samples for which we had either data from more than one tissue 
or which were sequenced in duplicates or triplicates. We observed 
a higher Spearman correlation for samples from the same tissue 
(median R2 = 0.72 for ASE and R2 = 0.96 for ASTS) compared to sam-
ples from different tissues (median R2 = 0.65 for ASE and R2 = 0.83 
for ASTS). We therefore merged the duplicate samples to increase 
our read depth.

Statistical analysis, simulations and power analysis. Allele-specific 
analysis was based on the framework outlined in refs. 40,56. For a given 
gene and biallelic variant, we define allelic expressions e0, and e1 as 
the sum of all transcripts produced from a gene located on the same 
chromosome copy as each allele. We define log aFC as the expres-
sion originating from the alternative allele versus the reference allele 
(equation (1)) and the reference ratio as the proportion of the reads 
originating from the reference allele over the total number of reads 
(equation (2)):

e
e

log aFC = log2 (1)
1

0

e
e e

Reference ratio =
+ (2)
0

0 1

To test for statistically significant allele-specific analysis, a binomial 
test was used to determine whether it was significantly different from 
the expected value of 0.5. Binomial test P values were corrected for 
multiple hypothesis testing using the Benjamini–Hochberg procedure 
(FDR < 5%).

When testing for allele-specific transcript structure, we performed 
power analysis to estimate the fraction of the cases in which the distri-
bution of transcript expression produced from the gene on the haplo-
types were significantly different. Let eh

t
j

i  be the allele-specific dosage 
for the transcript (ti) from haplotype hj. We denote ph

t
j

i  as the allelic 
expression fraction of the transcript ti, where p∑ = 1 × = 1i

t
h
t

j

i . The depend-
ence of the two distributions eh

t( )
1
 and eh

t( )
2
 is determined by the chi-squared 

test (x 2). P values are corrected for multiple hypothesis testing using 
the Benjamini–Hochberg procedure (FDR < 5%).

The read counts, number of transcripts for each gene and the log aFC 
(ref. 16) are the factors that affect the power of the statistical test. Regard-
ing the aFC factor, the maximum power happens at log aFC equal to 
zero, indicating equal expression in both haplotypes. Thus, for our 
analysis we assume that log aFC is zero and statistical power is estimated 
to determine the dependency of ASTS analysis on the total coverage 
and transcript counts to detect the effect of a given size. The effect size 
is given by Cohen’s w, defined as57
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w
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This is applied on a m2 ×  (where m is the number of transcripts) con-
tingency table from ph

t( )
1
 and ph

t( )
2
, where N is the total count table, which 

in this case is 2. To give an idea of how the change in transcript ratios 
affects the magnitude of the effect size, the ph

t( )
1

 and ph
t( )

2
 pairs are pre-

sented in Supplemetnary Table 12 for w = 0.3 (interpreted as medium 
effect size).

Data simulations. To perform the power estimation, the simulated 
allelic expressions eh

t( )
1
 and eh

t( )
2
 were produced from a multinomial dis-

tribution of two normalized random vectors ph
t( )

1
 and ph

t
2

( ) that specify 
the effect size of interest. The significant difference of eh

t
1

( ) and eh
t
2

( ) was 
determined by the chi-squared test (nominal P < 0.01). Power estima-
tion based on simulated transcript count data for a set of read counts 
and the number of transcripts for the effect sizes of 0.1 (small effect), 
0.3 (medium effect) and 0.5 (large effect) was calculated. The effect 
size is rounded for one digit. In order to detect ASTS with an effect size 
of 0.5 with 60% power, assuming aFC = 0, the total read coverage of 36 
was required. For an effect size of 0.3, at least 100 reads were needed. 
For the detection of smaller effect sizes, we were underpowered, for 
even up to 500 reads. These simulations informed our power to detect 
events of different effect sizes (Extended Data Fig. 10a).

Comparison across datasets
When comparing the significant results derived from different methods 
or datasets, we used the π1 statistic, setting lambda between 0 and 0.8 
in increments of 0.001 (http://github.com/jdstorey/qvalue). For all π1 
calculations we only used genes that could be captured in both data-
sets. Comparison to GTEx ASE events obtained by Illumina were done 
using the single-nucleotide variant level read counts, annotated using 
the GENCODE annotations, for continuity. The datasets were merged 
and the variant with the highest read count across both methods was 
selected per gene across samples.

Colocalization analysis
We mined all colocalization results between GTEx sQTLs and 5,586 
GWAS traits4 and filtered for loci with regional colocalization prob-
ability (rcp) > 0.5 and removed the human leukocyte antigen (HLA) 
region. We then mapped each sQTL to its corresponding gene and 
overlapped that gene set with the significant ASTS genes per tissue. 
For the overlapping genes we verified that the lead sQTL used for colo-
calization was a heterozygous variant in the donor for which we had 
ASTS data. This strict filtering resulted in five genes SRP14, DUSP13, 
CD36, IFITM2 and ELP5.

Combinatorial allele-specific analysis in control and PTBP1 
knockdown samples
For each donor the control and the knockdown samples were processed 
together, and the most highly covered variants using both samples were 
selected per gene. Specific allelic events per condition were defined 
using an FDR threshold of 0.05.

We downloaded all eCLIP (bed narrowPeak) RNA protein binding data in 
GRCh38 (ref. 58). All peaks were overlapped with the heterozygous variants 
per donor using bedtools intersect59. Finally, the maintained peaks were 
annotated to the nearest gene using a 10 kb window around each gene.

Annotation of variant consequences
Annotation of protein-coding regions was generated by running Ensembl 
VEP (v.104) with the --most_severe flag on the GTEx v.8 release. We did 
two rounds of annotation, the first one using non-small RNA genes from 
the GENCODE v.26 GTF file and the second one by supplementing this 
annotation with newly identified FLAIR transcripts for these genes. We 

predicted the productivity of each transcript using flair predictPro-
ductivity.py (v.1.4)31 using only the longest ORF for each transcript. The 
frame of each transcript was corrected using genomeTools (v.1.6.1)60.

Transcripts were first annotated based on the gene biotypes. 
Transcripts originating from protein-coding genes were classified 
as ‘protein-coding’ if both a start and a stop codon were found, 
‘nonsense-mediated-decay’ if a premature termination codon was 
found, ‘processed transcript’ if there was no start codon and ‘non-
stop decay’ if there was a start but no stop codon. Novel transcripts 
without a conclusive coding sequence frame found had their bio-
type revised. Novel transcripts marked as protein-coding, processed 
transcript, sense intronic, antisense or long intergenic non-coding 
RNA (lincRNA) with intron retention, had their biotype changed to 
‘retained intron’. Similarly, protein-coding and processed transcripts 
that came from the opposite strand were re-annotated as ‘antisense’, 
those that overlapped an intron as ‘sense-overlapping’ and those 
that were intergenic as ‘lincRNAs’. If none of these conditions were 
filled, protein-coding transcripts had their annotation changed to 
processed transcript. The gene coordinates were extended if one 
of the transcripts was found to be outside them. This led to 73,599 
transcripts being added.

CADD scores for all annotated variants were obtained using the v.1.5 
release61. We compared the CADD scores between the reassigned and 
the non-reassigned variants (down sampled to match the size of the 
total number of reassigned variants per consequence group). We then 
used a t-test to compare the means of the two groups.

Rare variant analysis
We extracted all heterozygous variants within a 10 kb window around each 
gene assessed for ASTS in a donor-specific manner. Variants were filtered 
for MAF < 0.01 and the worst consequence was maintained per variant. 
We found a median of four rare variants per gene. We observed that 50% 
of genes across all samples had at least one rare variant. We calculated 
enrichment using a binomial test, setting all variants as background.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw long-read data generated as part of this manuscript are available in 
the GTEx v.9 release under dbGAP accession number phs000424.v9 and 
on AnVIL at https://anvil.terra.bio/#workspaces/anvil-datastorage/
AnVIL_GTEx_V9_hg38. The GTF file of flair transcripts, along with the 
transcript-level overall and allelic expression quantifications from 
GENCODE v.26 and flair transcripts, are available on the GTEx portal 
(https://gtexportal.org/home/datasets). The GTEx WGS, Illumina 
short-read, the allelic analysis, eQTLs and sQTLs and enloc colocali-
zation files are all part of the GTEx v.8 release phs000424.v8. In addi-
tion, we used the transcript and gene counts available from https://
gtexportal.org/home/datasets. The GRCh38 human genome refer-
ence and GENCODE v.26 processed for GTEx were used in this analysis 
(https://console.cloud.google.com/storage/browser/gtex-resources). 
The CHESS and Workman transcript datasets were downloaded from 
GitHub (https://github.com/chess-genome/chess and https://github.
com/nanopore-wgs-consortium/NA12878). ENCODE eCLIP data was 
downloaded from https://www.encodeproject.org/.

Code availability
All original code used in the manuscript is released as part of a software 
package, https://github.com/LappalainenLab/lorals. General scripts 
are available at https://github.com/LappalainenLab/lorals_paper_code 
(https://doi.org/10.5281/zenodo.6529254). 
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Extended Data Fig. 1 | Quality control of the dataset. A) Number and B) 
median length of raw and aligned reads per sample. The diagonal lines 
correspond to intercept = 0. With the dashed black circle, we highlight the two 
samples sequenced using the direct-cDNA technology. C) Read number and 
read length in two fibroblast cell line samples (one of which was sequenced in 
replicate) that were sequenced using both the direct-cDNA and the PCR-cDNA 

protocol for 48 h. P values were calculated using a two-sided t-test. Error bars: 
standard deviation from the mean. D) Hierarchical clustering using Euclidean 
distance for replicate samples aligned to GENCODE for transcripts with 
expression above 3 TPM in at least 5 samples. E) Principal component analysis 
using all 88 samples aligned to GENCODE (v26) for transcripts with expression 
above 3 TPM in at least 5 samples.



Extended Data Fig. 2 | Comparison between ONT and Illumina gene 
expression. A) Correlation between the transcriptome of each sample 
quantified by ONT and by Illumina sequencing technologies. B) Normalized 
gene and transcript expression for high residual (|residual| > 1) genes and 

transcripts retrieved from the Spearman correlation analysis. C) 
Characteristics of genes and D) transcripts with high or low residuals  
with respect to gene/transcript length, number of transcripts per gene  
and number of exons per transcript.
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Extended Data Fig. 3 | Three prime bias analysis using mitochondrial reads. 
A) Observed versus expected read length for one sample sequenced using both 
direct (Spearman R2 = 0.3) and PCR cDNA (Spearman R2 = 0.26) protocols.  
The discrete clusters below the diagonal represent incorrect assignments to 
GENCODE isoforms (potential novel transcripts), and the diffuse shading 
represents fragmented RNA. Relationship between the expected transcript 
read length and the fraction of observed nanopore poly(A) RNA reads over the 
expected full length by sample for B) all samples and C) only fibroblasts. Labels 

are for mitochondrial genes without the MT prefix. The median was calculated 
per sample and error bars represent standard deviation. D) Median fraction of 
full-length per method by which RNA was isolated. E) Comparison of 
alternative transcription structure events found in highly expressed 
transcripts in the top and bottom 10% of samples ranked by 3′ bias. We 
observed no difference between the two deciles when using a two-sided 
proportionality test.



Extended Data Fig. 4 | FLAIR transcript characterisation. A) FLAIR 
transcripts comparison to GENCODE with respect to different genomic levels. 
The difference between intron chain and transcript is that the former only 
looks at matching the intron boundaries, therefore allowing variation in the 

UTR regions. B) Transcript length and C) number of exons per transcript 
classified by comparison to GENCODE. D) Number of overlapping transcripts 
between the ones identified in this paper and the ones released by a) CHESS and 
b) Workman.
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Extended Data Fig. 5 | Protein validation analysis of transcripts from 
matched tissues. A) Percentage of validated transcripts at the protein level 
using mass spectrometry for different TPM thresholds. Each point represents 
the mean across n = 7 assayed tissues and error bars represent the standard 
deviation. B) Mean expression per tissue with over one sample (lung, liver, 
heart, muscle and brain) of annotated and novel transcripts stratified by their 
validation status. The vertical line denotes the 5 TPM threshold used.  
C) Percentage of validated transcripts at the protein level using mass 

spectrometry per primary tissue. D) Proportion of the AltTS events validated 
per tissue. E) MLF1 is an example of a gene with multiple highly-expressed 
transcripts across both muscle and heart tissues with a different transcript 
validated in each tissue. A3: alternative 3′ splice site; A5: alternative 5′ splice 
site; AF: alternative first exon; AL: alternative last exon; A3UTR: alternative  
3′ end; A5UTR: alternative 5′ end; MX: mutually exclusive exons; RI: retained 
intron; SE: skipped exon.



Extended Data Fig. 6 | Transcript expression overview of novel and 
annotated transcripts. A) Hierarchical clustering using euclidean distance 
and B) principal component analysis for selected samples aligned to GENCODE 
for transcripts with expression above five TPM in at least three samples 

separated based on whether they are novel or not. C) Proportion of transcripts 
expressed at different TPM thresholds and classified based on how many 
tissues express the transcript in at least two samples. The total number of 
transcripts per group and threshold is included in the legend.
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Extended Data Fig. 7 | Differential transcript expression and usage 
between tissues. Heatmap of number of differentially A) upregulated 
transcripts and B) used transcripts (FDR ≤ 0.05) in pairwise comparison of 
tissues with at least five samples. In differential expression analysis we identify 
up- or down-regulated transcripts per pairwise comparison (asymmetrical 

heatmap) while in the differential transcript usage analysis there is no direction 
of effect (symmetrical heatmap). C) Number of differentially expressed or used 
transcripts that were specific to that tissue. D) Median gene expression across 
all transcripts that are specific to a tissue.



Extended Data Fig. 8 | LORALS pipeline development and aligning 
statistics. A) Pipeline for allele-specific analysis. Raw long-reads are first 
aligned to the genome using minimap2. This alignment is used to correct the 
phase of some of the heterozygous variants on the whole genome sequencing 
vcf. This new file is then used to generate personalized genome reference files 
against which the raw reads are again aligned using minimap2. The raw reads 
are also aligned to the transcriptome using minimap2. The VCF file along with 
the genome aligned reads and the transcriptome aligned reads are then fed 
into LORALS for allelic analysis. B) Percentage of switched haplotypes per 

donor informed by the long-read data. For this all samples from the same donor 
were merged to harmonize the files. C) Percentage of haplotype specific reads 
calculated as reads having a higher mapping score when using a personalized 
genome reference. D) Delta calculated as the difference in the start position of 
the aligned read between the genome aligned and the personalized genome 
aligned reads. Not shown are the reads that had Delta = 0. E) Reference ratio for 
the samples present in this study sequenced using Illumina technology and 
ONT technology aligned with two different approaches.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | LORALS pipeline allele specific analysis filter 
setting. A) Reference ratio and B) normalized reads counts across different 
Illumina and ONT flags for both of these sequencing technologies. Mapping 
bias: mapping bias in simulations; Low mappability: low-mappability regions 
(75-mer mappability < 1 based on 75mer alignments with up to two mismatches 
based on the pipeline for ENCODE tracks and available on the GTEx portal); 
Genotype warning: no more reads supporting two alleles than would be 
expected from sequencing noise alone, indicating potential genotyping errors 
(FDR < 1%); Blacklist: ENCODE blacklist. Multi-mapping: regions with multi-
mapping reads constructed using the alignability track from UCSC using a 
threshold of 0.1 (so that a 100kmer aligning to that site aligns to at least 5 other 
locations in the genome with up to 2 mismatches); Other allele warning: regions 

where the proportion of reference or alternative allele containing reads is 
lower than 0.8; High indel warning: sites where the proportion of non-indel 
containing is lower than 0.8. C) Reference ratios and normalised reads counts 
of all kept sites across Illumina and ONT sequencing technologies.  
D) Distribution of the high indel warning ratios and the other allele ratios across 
all samples. E) Proportion of genes with at least 20 overlapping reads flagged 
per filter. The proportion was calculated across all genes for each sample 
(n = 59). The center corresponds to the median, the lower and upper hinges 
correspond to the 25th and 75th percentiles and the whiskers extend from the 
hinge to the smallest/largest value no further than 1.5 * inter-quartile range 
from the hinge.
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Extended Data Fig. 10 | Allele specific analysis on all GTEx samples.  
A) Estimated power for different number of transcripts (2, 3 or 5) with respect 
to the coverage (x-axis) for effect sizes 0.1 (low), 0.3 (medium) and 0.5 (high), 
derived from simulated count data. B) Number of genes tested for 
allele-specific expression (ASE) and allele-specific transcript structure  
(ASTS) and number of significant genes. The diagonal indicates the median 
percentage of significant genes (9% and 9%, respectively). C) Number of 

transcripts per gene tested for ASTS. D) Number of genes with allelic data 
across donors per tissue for ASE and ASTS. E) Total number of genes calculated 
per sample (n = 59) at different levels of power. Outliers are hidden for ease of 
viewing. The center corresponds to the median, the lower and upper hinges 
correspond to the 25th and 75th percentiles and the whiskers extend from the 
hinge to the smallest/largest value no further than 1.5 * inter-quartile range 
from the hinge.



Extended Data Fig. 11 | Comparison of allele specific expression between 
ONT and Illumina. A) Proportion of significant ASE genes discovered using 
Illumina or ONT and replicated in the other method. π1 calculations are carried 
out up to P value = 0.5. B) Log allelic fold-change of Illumina and ONT of the 
shared ASE genes. C) Number of ASE events with opposite directions between 
ONT and Illumina per sample. Highlighted are the five fibroblast cell lines that 
were further cultured prior to sequencing, where 12/57 events were observed. 
RNA-seq read pile-ups for D) CCDC69 and E) ACSSL3 which have ASE in the 

opposite direction between the two methods. In red is shown the variant used 
to parse the reads between the two haplotypes. CCDC69 differences can be 
attributed to a depression in the Illumina read pile-ups while ACSSL3 can be 
attributed to the variant being in the 3′UTR, which is not well captured by 
Illumina reads. F) Venn diagram of the significant ASE genes discovered by 
Illumina and ONT. The LOG2 of total counts for each method is shown for each 
group of the Venn diagram.
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Extended Data Fig. 12 | Alternative transcript structure event annotation 
of allele specific events. A) Percentage of genes displaying a single alternative 
transcript structure event. P values were calculated using a two-sided binomial 
test. A3: alternative 3′ splice site; A5: alternative 5′ splice site; AF: alternative 
first exon; AL: alternative last exon; A3UTR: alternative 3′ end; A5UTR: 
alternative 5′ end; MX: mutually exclusive exons; RI: retained intron; SE: 

skipped exon. B) Average relative location of the heterozygous variant used for 
ASTS event, by grouping all the transcripts of an ASTS event together. C) Read 
pile-ups per transcript for the two donors displaying ASTS in DUSP13 gene.  
In the lower panel the transcript structure is shown, without details of the 
coding sequence. D) Transcript percentage for four of the five DUSP13 
annotated transcripts with high read coverage in the GTEx v8.



Extended Data Fig. 13 | Differential expression analysis between PTBP1-KD 
and control samples. A) Volcano plot from differential gene expression 
between control and samples with PTBP1 knockdown using ONT data. P values 
were calculated using the Wald test in DESeq2. B) Gene expression profile in 
PTBP1 and PTBP2 genes (PTBP2 under normal circumstances has its expression 

restricted to the brain). C) Proportion of different alternative transcript 
structure events in transcripts upregulated in the control or the PTBP1 
knockdown samples. P values were calculated using a two-sided 
proportionality test.
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Extended Data Fig. 14 | Allele specific analysis of PTBP1-KD and control 
samples. A) Correlation between the control and the PTBP1 knockdown 
samples in the reference ratio of gene expression and transcript structure.  
B) Changes in ASTS by PTPB1 knockdown, as assayed by gridION, with the heatmap 
showing the co-occurrence of alternative transcript structure events that are 
observed at least once per each event (or a single time for the diagonal) in a given 
gene. Color corresponds to the log2 ratio of the number of events found in the 

control over PTBP1 knockdown (KD) samples. C) Number of significant ASE and 
ASTS genes found by gridION categorized based on their status in the 
PromethION data from the same samples. D) Proportion of genes displaying 
allele-specific patterns specifically in either control or PTBP1 knockdown 
samples. E) SLC1A5 gene transcript read pile-ups which display significant ASTS 
only in the control sample only. The arrow indicates the location of the PTBP1 
eCLIP site which contains a heterozygous variant in that donor.



Extended Data Fig. 15 | See next page for caption.
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Extended Data Fig. 15 | Variant interpretation through novel transcripts 
and allele-specific transcript structure analysis. A) Number of variants per 
variant effect predictor (VEP) category using GENCODE v26 protein-coding 
genes with or without novel FLAIR transcripts. B) CADD score distribution of 
variants that were reassigned to a more severe consequence when the 
GENCODE gene annotations were complemented with the novel FLAIR 
transcripts, compared to variants that retained their annotation (down 
sampled to a similar size). P values from two-sided t-test. The center 
corresponds to the median, the lower and upper hinges correspond to the 25th 
and 75th percentiles and the whiskers extend from the hinge to the smallest/
largest value no further than 1.5 * inter-quartile range from the hinge. C) 
Percentage of variants per clinical significance category that get reassigned 

when supplementing the gene annotation with the novel transcripts. The 
numbers above the bars correspond to the number of re-assigned variants.  
D) Number of rare variants per ASTS gene (10kb window around gene).  
E) Proportion of rare heterozygous variants per annotation in significant  
ASTS events. As a background all ASTS events were used, and P values were 
calculated using a two-sided binomial testing. F) Enrichment of the significant 
ASTS genes within splicing outliers. As a background all ASTS genes were used 
and P values were calculated using a two-sided binomial test. G) NDUFS4 as an 
example of a gene with a rare heterozygous variant in a sample that is a GTEx 
splicing outlier and has significant ASTS, with read pileups and grey arrows 
indicating the rare variants. Log normalised transcript counts per allele are 
plotted per transcript, with the REF:ALT ratios marked for each.
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