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Regulation of transcript structure generates transcript diversity and plays an
important role in human disease'”. The advent of long-read sequencing technologies
offers the opportunity to study the role of genetic variation in transcript structure® ¢,
Inthis Article, we present alarge human long-read RNA-seq dataset using the Oxford
Nanopore Technologies platform from 88 samples from Genotype-Tissue Expression
(GTEx) tissues and cell lines, complementing the GTEx resource. We identified just
over 70,000 novel transcripts for annotated genes, and validated the protein
expression of 10% of novel transcripts. We developed a new computational package,
LORALS, to analyse the genetic effects of rare and common variants on the
transcriptome by allele-specific analysis of long reads. We characterized
allele-specific expression and transcript structure events, providing new insights into
the specific transcript alterations caused by common and rare genetic variants and
highlighting the resolution gained from long-read data. We were able to perturb the
transcript structure upon knockdown of PTBP1, an RNA binding protein that mediates
splicing, thereby finding genetic regulatory effects that are modified by the cellular
environment. Finally, we used this dataset to enhance variant interpretation and study

rare variants leading to aberrant splicing patterns.

Variationin transcript structure by RNA splicing and differencesinthe
5’and 3’ untranslated regions (UTRs) is akey feature of gene regulation’.
Disruption of transcript structure has a major role in human disease,
with genetic variants associated with changes in splicing enriched in
genome-wide associations for common diseases** and implicated in
many severe Mendelian diseases®”. Common genetic variants affecting
transcript structure can be mapped by transcript ratio quantitative trait
locus (trQTL) and and splicing quantitative trait locus (sQTL) analyses
that have further shown that genetic variants affecting gene expres-
sionlevels and splicing tend to be distinct” %, An orthogonal method
to analyse genetic regulatory effects, allele-specific expression (ASE)
analysis, has proven to be a highly sensitive method for studying rare
genetic variantsin cis?® 2. However, the application of these approaches
toshort-read datarelies on proxies for the full transcript structure and
quantification, which are often inaccurate”?. Furthermore, most
metrics have focused on alternative splicing, leaving the role of UTRs
obscure despite their critical role in disease being demonstrated,

with recent progress?®>°, Long-read RNA-sequencing technologies®’
have now reached a mature stage, having already been used to study
transcript structures'®" and novel transcripts>™, as well as for early
allele-specific analyses™*. Allele-specific transcript structure (ASTS)
analysis, enabled by long-read transcriptome data, could therefore
provide important information on how rare and common variants
affect transcript structure and disease risk.

Overview of dataset

Altogether, complementary DNA from 90 samples from 56 donors and
4 K562 cell line samples were sequenced on the MinlON and GridION
Oxford Nanopore Technologies (ONT) platforms. Fibroblast cell lines
were used to test the platform and to assess the direct-cDNA versus
PCR-cDNA RNA-seq protocols (Extended Data Fig.1a-c). As the primary
purpose of this study was to study allelic events, which require high
coverage, we prioritized depth and sequenced the remaining samples
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using the PCR-cDNA protocol, which does not require high RNAinput
and is preferred given the precious GTEx tissue samples. To evaluate
the messenger RNAisolation protocol, we used the K562 cell lines (Sup-
plementary Methods). The 90 GTEx samples included the following.
(1) Assessment of replicability by five samples sequenced in dupli-
cate and five samples in triplicate. Replicability was high (Spearman
p =0.86-0.95; Extended DataFig. 1d), leading us to merge the samples
to increase depth. (2) The main dataset for analysis of transcriptome
variation across tissues, consisting of 1-5 donors from 14 tissues.
(3) Analysis of the effects of transcript perturbation by comparison
of five GTEx fibroblast cell lines with and without PTBP1RNA binding
protein (RBP) knockdown. Data were produced across two research
centres (Supplementary Methods; Suppl. Table 1). All the GTEx sam-
ples had lllumina TruSeq short-read RNA-seq data and 85 samples
(51donors) had whole-genome sequencing (WGS) data made available
by the GTEx Consortium®*.

Principal component analysis (PCA) and hierarchical clustering of
samples based on transcript expression correlation showed tissue
clustering (Fig. 1a,b and Extended Data Fig. 1e), similar to the GTEx
consortium analysis of short-read RNA-seq data*. Gene and transcript
quantifications from long-read datawere highly concordant with those
from Illumina RNA-seq (median R?>= 0.75 for genes and R?= 0.57 for
transcripts; Fig. 1c and Extended Data Fig. 2a). Genes and transcripts
with low correlation were enriched for lower expression in ONT data,
higher complexity genes and transcripts with multiple exons (Extended
DataFig.2b-d). We manually checked the read coverage of some of the
genes that displayed low correlation, such as PRELID1, which is better
captured by ONT, and ARSB, which displays 3’ bias (Fig. 1d). Overall,
longer transcripts displayed higher 3’ bias, as assessed using only the
mitochondrial transcripts™ (Methods; Fig. 1e), and tissue-specific pat-
ternswere observed, suchas shorter MT-NDSinbrain tissue and greater
variability in cultured cell lines (Extended Data Fig. 3).

Discovery of novel transcripts

We used FLAIR* to quantify transcripts and identify novel ones, defined
as transcripts with intron chains not matching with any transcriptin
GENCODE (v.26) (Methods). We found 93,718 transcripts across 21,067
genes (Supplementary Table 2), of which 77% were novel (Extended Data
Fig. 4a-c). In most cases we quantified one, often already annotated,
transcript for agene, whereas more novel transcripts were discoveredin
genes with a high number of annotated transcripts (Fig. 2a). Of the novel
transcripts, 47,678 shared at least one splice junction with annotated
transcripts and 21,620 had intron retention. In fact, 87% of all intron
retention events were novel (Fig. 2b), which suggests the presence
of pre-mRNA despite carrying out a poly(A) enrichment step. On the
other hand, only 37% of exon skipping events were novel, suggesting
they are better represented in the existing annotations (Fig. 2b). We
compared our findings with the 33,984 transcripts defined by Work-
man et al."* based on GM12878 cell lines using ONT direct and cDNA
RNA-sequencing, which matched 13.1% of our transcripts, 3,604 of
which were novel. Similarly, we compared our findings to the CHESS
project, which identified 116,156 novel transcripts using short-read
RNA-seq from multiple tissues, matching 32.6% of our transcripts,
10,630 of which were novel (Extended Data Fig. 4d and Supplementary
Table 3). Despite differencesin the tissue samples, sequencing method
and parameters used to identify novel transcripts, these provide further
evidence to support the identified transcripts.

We validated our novel transcripts by using proteome mass spec-
trometry data of 32 GTEx samples. For most tissues a similar number
of samples using long-read RNA-seq and proteomics were assayed,
apart from brain tissue, for whichin addition the subregions between
the two assays did not match (Suppl. Table 4). We limited this analysis to
33,251 transcripts (63% of which were novel) expressed at >5 transcripts
per million (TPM) inasample per tissue and tested for matchesin the

354 | Nature | Vol 608 | 11 August 2022

predicted amino-acid chain. Across tissues, 2,575 novel transcripts were
validated and increasing the RNA abundance threshold did not affect
this number (Extended Data Fig. 5a-c and Supplementary Table 3).
When compared with annotated alternative transcription events,
higher validation was observed for novel alternative 5 UTR and skipped
exons, and both annotated and novel intron retention events showed
low validationrates that were not different from each other (Fig.2cand
Extended DataFig.5d). This depletion could be partially explained by
nonsense-mediated decay or other post-transcriptional events deplet-
ing the protein products rather than the poor quality of the transcript
annotations. Alternative 3’and 5’ splicing showed higher validationin
annotated transcripts, suggesting that these types of events annotated
by long reads might be due to technical limitations. For 608 genes we
validated more than one transcript (1,304 total), with 823 transcripts
being novel, often detecting tissue-specific protein transcript valida-
tion (Supplementary Table 5 and Extended Data Fig. Se).

Novel transcripts resulted in clearer clustering of samples by tis-
sue based on transcript expression correlations and PCA (Extended
Data Fig. 6a,b), indicating that novel transcripts capture tissue-
specific expression patterns. We therefore examined the gene and
transcript expression across nine tissues with at least five samples.
Highly expressed (>1 TPM) novel transcripts were tissue specific, with
31.5% expressed in a single tissue (Fig. 2d and Extended Data Fig. 6c).
This may explain their absence in existing annotations and highlights
the potential for characterizing tissue-specific gene expression and
regulation with long-read transcript analysis. We found thousands
of transcripts exclusively expressed in a single tissue or having dif-
ferent transcript ratios across all nine tissues (Extended Data Fig. 7).
The tissues with the highest ratio of tissue-specific transcripts were
the cerebellar hemisphere, liver and fibroblasts (8% of all differentially
expressed transcripts), in agreement with previous observations of
high transcript diversity*>*,

Allele-specific analysis

Allele-specific analysis captures cis-regulatory genetic effects on expres-
sionand transcriptstructure”. The expression of agene oratranscriptis
quantified for each haplotype of asample, separated on the basis of the
allele ataheterozygoussite. Sixty-four of the long-read RNA-seq samples
also had phased whole genome sequencing information from GTEx*,
whichallowed us to carry outallelicanalysis. To address local alignment
biases caused by sequencing errors adjacent to the variant sites of inter-
est, wedeveloped analignment pipeline in which two haplotype-specific
references are created for each donor (Extended DataFig. 8). To perform
ASE and ASTS analysis, in which we test the relative usage of atranscript
inrelation to the other transcripts of the same gene (Fig. 3a), we devel-
oped anew software package, LORALS (long-read allelic analysis). In
addition to adopting mappability and genotyping error filters previ-
ously developed for short-read data®, we introduced flags addressing
the higher error rate of long-read data (Methods; Extended Data Fig. 9).
We performed power calculations using simulated datato test how read
counts, number of transcripts and effect size affect ASTS detection
power (Methods; Extended Data Fig. 10a).

Having established and optimized our pipeline, we performed the
analysis using the FLAIR-aligned transcripts. Per sample, an average of
8.9% of genes analysed for ASE and 7.7% of genes analysed for ASTS had
astatistically significant event, with the discovery being proportional to
thelibrary size. To maximize power for generalizable insights, we ana-
lysed all ASE (3,437 significant out of 36,077 across 6,680 unique genes)
and ASTS events (331significant out of 3,858 across 1,207 unique genes)
combined across samples (Extended Data Fig. 10b). For 77% of genes
analysed for ASTS we quantified and tested the counts of 2 transcripts
per gene, whereas the remaining ranged between 3 and 14 (Extended
Data Fig. 10c). Per tissue, 71% of the genes were tested for ASTSina
single donor (Extended Data Fig.10d). Within the remaining 29%, there
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Fig.1|Overview and quality control of the dataset.a, PCA of samples with
replicates merged, without K562 cell lines and without PTBP1knockdown
samples, based on GENCODE transcript expression (>3 TPMin more than five
samples). b, Hierarchical clustering of samples based on correlation of
transcript expression (asina), using Euclidean distance. ¢, Example of gene and
transcriptexpression correlation between Illuminaand ONT in the muscle
tissue of GTEX-1LVA9.d, Two examples of genes displaying low correlation
between ONT and Illumina. PRELIDI was better captured by ONT thanIllumina,

were 47 genes that consistently displayed ASTS across donors within
atissue (Supplementary Table 6). Most of these had over two highly
expressed transcripts (Binomial test P=3.2 x 107*), suggesting that
they can withstand variability.

Comparing the long-read ASE events to the ones reported for
short-read GTEx v.8 data®, we observed moderate concordance when
looking at the P values in short-read data using the long-read signifi-
cant ASE events (111 = 0.23) and vice versa (rt1 = 0.41) (Extended Data
Fig.11a). Of the 341 events that were significant in both datasets, 83%
had the same direction of effect, with the opposite direction mostly
observed in fibroblast cell lines that were passaged since Illumina
sequencing was carried out (Extended Data Fig. 11b-e). Differences
were explained by low read depth and some variants being filtered out
in one of the datasets (Extended Data Fig. 11f); for example, 445 vari-
ants with significant ASE in long-read data were filtered in short-read
dataowingto the mapping bias flag. Next, we sought to establish that
ASE and ASTS recapitulate genetic regulatory effects of expression

Distance from PRELID1 start (bp)

Distance from ARSB start (bp)

whereas ARSBhad 3’ biaswhen assayed by ONT. They are shown across three
different tissues and all protein-coding transcripts are plotted below. FPM,
fragments per million. e, Relationship between the expected transcript read
length and the fraction of observed nanopore poly(A) RNAreads over the
expected fulllength. Labels are for mitochondrial genes without the MT prefix.
Thetranscript median was calculated per sample, and the medianacross all
samplesis plotted (n=90). Error barsrepresent standard deviation.

quantitative trait locus (eQTL) and sQTL mapped by GTEx*. Individu-
als who are heterozygous for a QTL lead variant are expected to show
increased allelicimbalance compared with those who arehomozygous,
and such significant enrichments were observed in the data (Fig. 3b).

Classification of alternative transcript structure (AItTS) changes
enables better understanding of the nature of the ASTS events, and
thus genetic variants affecting transcript structure. When considering
each AltTS event alone, the most common was exon skipping, followed
by alternative 3’ splice sites and 3’ UTR events that were enriched for
significant ASTS (Extended Data Fig. 12a). To support this, we found
that variants located in the 3’ end were more likely to lead to significant
ASTS events, compared to 5’ end variants (chi-squared P=2.46 x10™%;
Extended DataFig.12b). We then examined the combination of two types
of AltTS events per gene (Fig.3c). We observed that certain AIt TS events
co-occurred more commonly in genes with significant ASTS, compared
toallevents. Forexample, the combination of mutually exclusive exons
with exon skipping (binomial test P=2.05 x 1078). On the other hand,
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compared to GENCODEv.26.c¢, Proportionof the AltTS events validated at the
proteinlevel by mass spectrometry per novel or annotated. Enrichment was
calculated using atwo-sided proportionality test.d, Number of transcripts

there were combinations that were depleted from significant ASTS
events, notably the combination of alternative 3’ UTR with any other
event. This highlights the distinct effect of alternative UTR regions within
the significant ASTS genes, missed in most SQTL mapping approaches.

To better understand the relationship between genetic effects on
expression and transcript structure, we compared the ASE and ASTS
events. We found that 222 of the 880 significant ASE genes displayed
significant nominal Pvaluesin ASTS (1t1 = 0.15). This proportion was larger
whenlooking at significant ASTS, for which we found that176 of the 330
genes displayed significant nominal P values in ASE (111 = 0.46; Fig. 3d).
Thisindicates that changesintranscript structure are often accompanied
by changesintranscriptlevels, but less often the other way around. When
repeating this analysis stratified by AltTS events, we observed that an
exceptiontothis were ASTS events caused by alternative 3’ ends, for which
anequal proportion of events were ASE and ASTS (Fig. 3d).

Onthebasis of these observations, we examined sQTL-significant genes
in ASE, for which we observed a difference between heterozygous and
homozygousindividuals (Fisher’'sexact test P=1.81x107°). When looking
ateQTLs, wealsoobserved that more heterozygous donors had significant
ASTS compared to homozygous (Fisher’s exact test P=1.56 x 10™*; Fig.3b),
indicating that genetically induced expression differences manifest in
ASTS. Totest the origin of this, we stratified the events by Alt TS events. We
observed that the sQTLs were mostly manifesting in differences in exon
skipping (34.2%; Fig. 3e), as expected, whereas eQTLs were manifesting
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not only in total expression differences but also in transcript structure
changes of the 5" end of a gene (33.3%; Fig. 3e). Differences in the 5’ end
ofageneare therefore driving the capture of eQTLs in ASTS data, which
would be normally missed by sQTL mapping.

This breakdown of events allows us to revisit existing sQTLs and find
examples in which ASTS data enable a better understanding of the
exactmolecular events associated with the genetic variant, potentially
contributing to diseases and traits (Methods; Supplementary Table 7).
DUSP13, for example, is a gene specifically expressed in muscle, and
has three sQTL intron excision phenotypes colocalizing with a single
locus associated with body fat percentage*. Multiple transcripts arise
from this gene, butin both donors displaying ASTS we observed that
the transcript ENST00000372700 lacking four middle exons was more
highly expressed fromtherisk allele (Extended Data Fig.12c). As further
validation, GTEx short-read transcript ratios recapitulated this pattern
(Extended Data Fig. 12d). We were therefore able to pinpoint to the
exact events leading to differences in transcript expression from the
two alleles and potentially predisposing to high body fat percentage.

Totest how ASTS captures changes in the effects of cis-regulatory vari-
antsdueto perturbation of the splicing machinery of the cell, we knocked
downPTBP1RBPinfive GTEx fibroblast cell lines. PTBP1 mediates exon
skippingin pre-mRNAs andisinvolved inthe 3’-end processing of mRNA.
We therefore expected to see a disturbance of transcript expression as
wellas ASTS patterns for some genes upon smallinterfering RNA (siRNA)
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knockdown. Indeed, we found 3,061 differentially expressed genes, 70%
of which were validated with short-read data, and 4,220 differentially
expressed transcripts (Extended Data Fig. 13a,b). Exon exclusion and
longer alternative 3’ UTR events were enriched in transcripts significantly
upregulated in PTBP1knockdown samples (Extended Data Fig.13c).

whetheratleast 50% of the differencesin transcript can be assigned to that
AltTS event. Pvalues fromtwo-sided Fisher’s exact test. Underlined are the
events with the lowest Pvalues foreQTLs and sQTLs. f, Changesin ASTS by
PTPB1knockdown, with the heatmap showing the co-occurrence of alternative
transcriptstructure events thatare observed atleast once per each event
(orasingle time for the diagonal) inagiven gene. Colour corresponds to the
log, ratio of the number of events found in the control (CTRL) over PTBP1
knockdown (KD) samples. g, Percentage of eCLIP sites near genes tested for
ASTS, annotated using a10 kb window. Genes stratified into shared or
conditionspecificbased onthe overlap between controland PTBP1
knockdown. Marked are sets of peaks with P < 0.05 using a two-sided binomial
test.h, Example of agene, SLCIAS, where transcript read counts display
significant ASTS only in the PTBP1knockdown sample. REF, reference

allele; ALT, alternative allele; R:A, ratio of reads containing reference over
alternative allele.

We then comparedallelic eventsin the knockdown and control sam-
ples (Methods and Extended Data Fig. 14a). We observed different
transcript processing events between the two conditions, indicating
that heterozygous genetic variants driving the ASTS in control sam-
pleslosetheir effect in the absence of PTBP1 (Extended Data Fig. 14b).
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To increase our power, we re-sequenced the same samples on the
PromethION platform, resulting in aminimum of 22 million reads per
sample. We re-identified allelic imbalance for 87% of the ASE events
and 58% of the ASTS events (Extended Data Fig. 14c). We observed an
enrichment of condition-specific events in ASTS compared with ASE
(Fisher’s exact test P=2.89 x 107°; Extended Data Fig. 14d), consistent
with the fact that PTBP1affects splicingand not gene expressionatthe
alleliclevel. The control samples were enriched for ASTS with 3’ end dif*-
ferences combined with alternative 5’ splice sites, whereas alternative
5" splice sites combined with exon skipping or intron retention were
enriched in knockdown-specific ASTS (Fig. 3f).

We hypothesized that condition-specific ASTS events upon RBP
knockdown might reflect different regulation modes to those that are
shared. We expect those to be driven by heterozygous variants within
RBP sites detectable in eCLIP peaks (Supplementary Table 8). We
focused onthe genes with atleast one heterozygous variant fallinginan
eCLIPsite (82% of ASTS genes), and tested whether specific RBPs were
differentially enriched near significant ASTS genes that were specific
toacondition orshared. PTBP1sites harbouring heterozygous variants
were depleted from ASTS events shared between the two conditions
(P=0.0087; Fig. 3g), in agreement with the expectation that these
events are driven by PTBP1 independent processes. We discovered
35 condition-specific ASTS events with PTBP1 eCLIP peaks, equally
distributed between the control and the knockdown. For example, in
SLCIAS, adonor has a heterozygous site within a PTB1 eCLIP site and
ASTSthatisattenuated upon PTPB1 knockdown (Fig.3hand Extended
DataFig. 14e). These analyses are consistent with a model in which
changes in the cellular environment altering splicing regulation can
affect the molecular function of genetic variants.

Rare variantinterpretation

Finally, we evaluated the potential to better interpret rare variants
with novel transcript annotations and ASTS data from long reads.
We complemented the GENCODE v.26 annotation with an additional
73,599 transcripts, and re-annotated genetic variants from GTEx
WGS data using VEP* (Methods). The most severe consequence for a
variant changed for 0.75% of all variants (Extended Data Fig. 15a),
16,435 of which were coding (3.27% of coding variants). We used com-
bined annotation-dependent depletion (CADD) scores as a proxy
for the pathogenicity of a variant and as further support for validity
of the re-classifications. We observed that variants reassigned to a
more severe consequence had on average a higher CADD score than
those that retained the same annotation (Fig. 4a and Supplementary
Table 9). An exception to this were variants previously annotated as
non-coding transcript exons and reassigned as coding but assigned a
lower CADD score, suggesting that some of the novel transcripts we
identify might not be coding. The higher CADD scores for variants
reassigned as pathogenic provides independent evidence that our
novel transcripts detect real biology and functional variants that may
have been missed before. We therefore re-annotated ClinVar variants,
resulting in the reassignment of 9,582 variants (1.23%). We observed
that variants with uncertain benign or pathogenic clinical significance
and no assertion criteria were reassigned at the highest rate (4% and
3.1%), whereas pathogenic variants with higher reviewer support were
reassigned at the lowest rates (Extended DataFig.15b). This providesan
explanation for the conflicting reports of these variants and a potential
pathogenic mechanism.

Long-read allelic data provide the opportunity to observe rare vari-
antsdisrupting transcriptional regulation. GTEx has previously defined
individualsthat are extreme ASE, expression and splicing outliers, and
shown that they are enriched for having rare genetic variants in the
gene’s vicinity?*8, Although our sample size is insufficient for analo-
gous analysis of ASTS outliers, we tested the presence of rare (minor
allele frequency (MAF) < 0.01) heterozygous variants within a10 kb

358 | Nature | Vol 608 | 11 August 2022

Downstream gene
Upstream gene
Intron
nc-Transcript exon
3’ UTR

5" UTR
Synonymous [e]
Stop retained
Splice region .
Missense

Start lost

Stop lost

Stop gained
Splice donor

O 0000
00000
0o O>0O0
SOO0
000

Reassigned VEP consequence
o
o

00 e
000 o
00 O 0090
foe]

oo <

o

° 000

Missense

Splice region
Synonymous
Coding sequence
5 UTR

3’ UTR
nnc-Transcript exon
Intron

Upstream gene
Downstream gene
Intergenic

Previous VEP consequence

Number of variants P < 0.01 ACADD

1 o No

e 10
® 100 < Yes
@ 1,000

@ 10,000

-5 0 5 10

b ﬁgg ENST00000341695

100
50

Q
200
150 ENST00000348706

100
50

0
200
150
100

50 Allele

Novel transcript 1

FPM

0
200
150 { Novel transcript 2 . REF

100 ALT
50

0
200
150 { Novel transcript 3

100 log,

50 transcript counts
0 0 2 4 6 8 RA
S 4 o L 0 o — 21
e e oo 0.42
e m o o oo ey 4.33
- - . 0.91

e e m m m aas m aay 0.36

500 1,000
Distance from PPA2 start (bp)

Fig.4|Variantinterpretation through novel transcripts and ASTS analysis.
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varianteffect predictor.b, PPA2is anexample of agene witharare heterozygous
variantinasample thatisa GTExsplicing outlier and has significant ASTS, with
read pile-ups, and grey arrows indicating the rare variants.

window of each ASTS gene. Across all samples, missense variants were
enriched for being in significant ASTS genes compared to all genes
measured for ASTS (Extended Data Fig.15c,d). This indicates that ASTS
can capture rare variant effects on transcript structure. In addition,
we observed that significant ASTS genes were enriched within splic-
ing outliers (Extended Data Fig. 15e). Finally, we searched for specific
examples in which arare variant is probably causing ASTS in our data
(Supplementary Table 10). Out of eleven genes for which anindividual
hasarare heterozygous variant, isasplicing outlier as defined by GTEx
and hassignificant ASTS, we highlight two examples: PPA2 has two intron
variants chr4:105409456:G:A and chr4:105449015:G:A (MAF =5.97 x10™*
and 9.55 x 1073, respectively), with the alternative allele having higher
expression levels of transcript ENSTO0000348706 and lower expression
of ENST00000341695 (Fig. 4b) and NDUFS4 (Extended Data Fig.15e,f).



Discussion

In this study, we present a large dataset of long-read RNA-seq, using
material derived from cell lines and humantissues collected by the GTEx
project. Weidentified 71,735 novel transcripts, which is high compared
tootherlong-read studies™ ™ probably because of our large sample size
and tissue diversity, consistent with the high number of tissue-specific
novel transcripts discovered. Supported by a high validationrate of the
novel transcripts in high-throughput mass spectrometry proteome
data®, our datamake an important contribution to human transcript
annotations. Expanding long-read studies to further tissues and cell
types, coupled with more extensive validation efforts, will enable a
better understanding of the regulatory mechanisms of the different
types of transcript changes', the functionally distinct proteinisoforms
that different transcripts can give rise to* and the improved variant
annotation, as demonstrated by our analysis.

Longreads provide the ability to map allelic effects over transcripts,
instead of just expression*?, thus providing the opportunity to analyse
cis effects of genetic variants on transcripts. We developed LORALS,
atoolkit for allelic analysis specific to long reads, considering vari-
ous biases inherent to the technology. It is tuneable and applicable
to any long-read data, improving on previous work in this field*'.
We observed that the majority of ASTS events coincided with ASE,
indicating that genetic effects on transcript usage rarely happen by
reciprocally flipped transcript expression, but are typically accompa-
nied by a change in the total expression levels, which could happen,
forexample, by altered stability of specific transcripts*. However, the
widespread co-occurrence of ASTS with ASE and eQTLs manifesting as
ASTS are seemingly at odds with multiple QTL mapping studies that
have established that expression and splicing are affected by distinct
regulatory variants and processes**". The ability to distinguish the
exactalternative transcript structure eventsin ASTS data allowed us to
discover allele-specific 5’ differences as the cause of eQTLs manifesting
in transcript structure changes, whereas expression and splicing are
indeed highly independent. Given that promoter differences greatly
affect gene expression levels and that most sQTL mapping methods do
not capture the variation in UTRs, this explains both the low overlap
between causal variants of sQTLs and eQTLs and the overlap of ASTS
with ASE and eQTLs.

These results reinforce the emerging understanding® of the impor-
tance of analysing the transcriptome not at the level of genes orimpre-
cisely defined splicing, but rather with a detailed characterization of
specific transcripts, their changes and combinations. These insights
arereadily captured by long reads. Given the role of genetic variants
affecting transcript structure in disease risk* ***** we anticipate thata
high-resolution characterization of the transcriptome with long-read
data will be an important approach for the discovery of regulatory
mechanisms of disease-associated variants.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41586-022-05035-y.

1. Park, E., Pan, Z., Zhang, Z., Lin, L. & Xing, Y. The expanding landscape of alternative
splicing variation in human populations. Am. J. Hum. Genet. 102, 11-26 (2018).

2. Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to
enhance discovery from GWAS. PLoS Genet. 6, 1000888 (2010).

3. Li, Y.l.etal. RNA splicing is a primary link between genetic variation and disease. Science
352, 600-604 (2016).

4.  GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human
tissues. Science 369, 1318-1330 (2020).

5. Cummings, B. B. et al. Improving genetic diagnosis in Mendelian disease with
transcriptome sequencing. Sci. Transl. Med. 9, eaal5209 (2017).

6. Kremer, L. S. et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat.
Commun. 8,15824 (2017).

7. Gonorazky, H. D. et al. Expanding the boundaries of RNA sequencing as a diagnostic tool
for rare Mendelian disease. Am. J. Hum. Genet. 104, 466-483 (2019).

8.  Sedlazeck, F. J., Lee, H., Darby, C. A. & Schatz, M. C. Piercing the dark matter: bioinformatics
of long-range sequencing and mapping. Nat. Rev. Genet. 19, 329-346 (2018).

9. Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data
analysis. Genome Biol. 21, 30 (2020).

10. Oikonomopoulos, S., Wang, Y. C., Djambazian, H., Badescu, D. & Ragoussis, J.
Benchmarking of the Oxford Nanopore MinlON sequencing for quantitative and
qualitative assessment of cDNA populations. Sci Rep. 6, 31602 (2016).

1. Weirather, J. L. et al. Comprehensive comparison of Pacific Biosciences and Oxford
Nanopore Technologies and their applications to transcriptome analysis. FIOOORes. 6,
100 (2017).

12.  Anvar, S. Y. et al. Full-length mRNA sequencing uncovers a widespread coupling between
transcription initiation and mRNA processing. Genome Biol. 19, 46 (2018).

13. Tardaguila, M. et al. SQANTI: extensive characterization of long-read transcript
sequences for quality control in full-length transcriptome identification and
quantification. Genome Res. 28, 396-411(2018).

14.  Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome.
Nat. Methods 16, 1297-1305 (2019).

15.  Tilgner, H., Grubert, F., Sharon, D. & Snyder, M. P. Defining a personal, allele-specific, and
single-molecule long-read transcriptome. Proc. Natl. Acad. Sci. USA 111, 9869-9874 (2014).

16. Tilgner, H. et al. Comprehensive transcriptome analysis using synthetic long-read
sequencing reveals molecular co-association of distant splicing events. Nat. Biotechnol.
33, 736-742(2015).

17.  Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional
variation in humans. Nature 501, 506 (2013).

18. Battle, A. et al. Characterizing the genetic basis of transcriptome diversity through
RNA-sequencing of 922 individuals. Genome Res. 24, 14-24 (2014).

19. Li, Y.l. etal. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet.
50, 151-158 (2018).

20. Rivas, M. A. et al. Human genomics. Effect of predicted protein-truncating genetic
variants on the human transcriptome. Science 348, 666-669 (2015).

21.  Smith, D. et al. A rare IL33 loss-of-function mutation reduces blood eosinophil counts and
protects from asthma. PLoS Genet. 13, €1006659 (2017).

22.  Mohammadi, P. et al. Genetic regulatory variation in populations informs transcriptome
analysis in rare disease. Science 366, 351-356 (2019).

23. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat.
Biotechnol. 28, 511-515 (2010).

24. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or
without a reference genome. BMC Bioinform. 12, 323 (2011).

25. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Erratum: near-optimal probabilistic
RNA-seq quantification. Nat. Biotechnol. 34, 888 (2016).

26. Teng, M. et al. A benchmark for RNA-seq quantification pipelines. Genome Biol. 17, 74
(2016).

27. Patro, R., Duggal, G., Love, M. ., Irizarry, R. A. & Kingsford, C. Salmon provides fast and
bias-aware quantification of transcript expression. Nat. Methods 14, 417-419 (2017).

28. Pai, A. A. et alWidespread shortening of 3'untranslated regions and increased exon
inclusion are evolutionarily conserved features of innate immune responses to infection
PLoS Genet. 12, e1006338 (2016).

29. Alasoo, K. et al. Genetic effects on promoter usage are highly context-specific and
contribute to complex traits. eLife 8, e41673 (2019).

30. Mittleman, B. E. et al. Alternative polyadenylation mediates genetic regulation of gene
expression. eLife 9, 57492 (2020).

31. Tang, A.D. et al. Full-length transcript characterization of SF3B1 mutation in chronic
lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11,1438
(2020).

32. Jiang, L. et al. A quantitative proteome map of the human body. Cell 183, 269-283.e19 (2020).

33. Yeo, G., Holste, D., Kreiman, G. & Burge, C. B. Variation in alternative splicing across
human tissues. Genome Biol. 5, R74 (2004).

34. Reyes, A. & Huber, W. Alternative start and termination sites of transcription drive most
transcript isoform differences across human tissues. Nucleic Acids Res. 46, 582-592 (2018).

35. Castel, S.E. et al. A vast resource of allelic expression data spanning human tissues.
Genome Biol. 21, 234 (2020).

36. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding
proteins. Nature 583, 711-719 (2020).

37.  McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17,122 (2016).

38. Ferraro, N. M. et al. Transcriptomic signatures across human tissues identify functional
rare genetic variation. Science 369, eaaz5900 (2020).

39. Yang, X. et al. Widespread expansion of protein interaction capabilities by alternative
splicing. Cell 164, 805-817 (2016).

40. Castel, S.E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best
practices for data processing in allelic expression analysis. Genome Biol. 16, 195 (2015).

41.  Sibley, C.R. et al. Recursive splicing in long vertebrate genes. Nature 521, 371-375 (2015).

42. Scotti, M. M. & Swanson, M. S. RNA mis-splicing in disease. Nat. Rev. Genet. 17, 19-32
(2016).

43. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia,
and bipolar disorder. Science 362, eaat8127 (2018).

44. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEX) pilot
analysis: multitissue gene regulation in humans. Science 348, 648-660 (2015).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2022

Nature | Vol 608 | 11 August2022 | 359


https://doi.org/10.1038/s41586-022-05035-y

Article

Methods

Fibroblasts cell culture and PTBP1siRNA transfection

Fibroblast cell lines derived from skin samples from the lower leg and
biobanked as part of the GTEx Consortium were cultured in DMEM
media supplemented with 10% FBS and 1% penicillin/streptomycin
(Corning). Transfections were performed 24 h after initial seeding
0of 500,000 cells in 10 cm dishes. Transfection mixtures were pre-
pared with 6 pg per dish of siRNA pools (Dharmacon SO-2720501G,
S0-2703775G), Lipofectamine 2000 (Thermo Fisher) and Opti-MEM
reduced serum media (Corning) according to proprietary guidelines.
Mixtures were added to cell cultures containing reduced volumes of
5 mIDMEM mediafor 6 hbefore increasing volumes to10 ml with fresh
media. Cells were harvested 96 h after transfection.

SDS-PAGE and western blotting

Protein was extracted by boiling 75,000 cells at 95 °C for 5 minin 100 pl
2x Laemmli Sample Buffer (Bio-Rad) and 2-mercaptoethanol (5%) as
areducing agent. SDS-PAGE was run on 10% Mini-PROTEAN TGX gels
(Bio-Rad) in Tris/glycine/10%SDS buffer. Proteins were transferred onto
nitrocellulose membranes. Then 5% non-fat milk was used for blocking.
Primary antibodies from mouse for PTBP1 (used in 1:4,000 dilution;
ThermoFisher Scientific) and rabbit for GAPDH (used in1:10,000 dilu-
tion; Cell Signaling Technology) were incubated overnight at 4 °C. Sec-
ondary antibodies (LI-COR IRDye; donkey anti-mouse IgG polyclonal
antibody (800CW; size 100 pg) and donkey anti-rabbit IgG polyclonal
antibody (680RD; size 100 pg) were incubated for 1 h at room tem-
perature. Membranes wereimaged on the Li-cor Odyssey CLx system.

Generation oflong-read RNA-seq data
Generally following the manufacturer’s instructions, the protocol
detailed in the Supplementary Methods was used.

Sequencing and base-calling

Libraries were prepared with 300 ng of input total RNA using the Illu-
mina TruSeqkit and sequenced onthe NextSeq 550 platform. Sequenc-
ing of mMRNA samples was performed on the GridION X5 and MinION
platform (Oxford Nanopore Technologies) for 48 h. To basecall the
raw data we used ONT’s Guppy tool (v.3.2.4).

Genome and transcriptome alignments

We used minimap2v.2.11 (ref. **) to align the reads to the GRCh38 human
genome reference using -ax splice -uf-k14 -secondary=no parameters.
We also aligned to the GENCODE v.26 transcriptome using -ax map-ont
parameters. We used NanoPlot*¢ to calculate alignment statistics. We
obtainedamedian of 6,343,016 raw reads per sample, of which onaverage
80% (s.d.16%) aligned to the genome (Extended Data Fig.1a). Themedian
read length was 709 base pairs (bp) and 789 bp for raw and aligned reads,
respectively (Extended DataFig. 1b). We observed a higher medianread
lengthinsamples sequenced using the direct-cDNA ONT protocol when
compared tothe PCR-cDNA protocol (¢-test P=0.022), at the expense of
lower read depth (¢-test P= 6.45 x107%) (Extended Data Fig. 1c).

We used the method outlined in Workman et al.?® to calculate 3’ biasin
our data, which only focuses on reads assigned to transcripts encoded
inthe mitochondrial genome. The reasoning for using mitochondrial
transcripts was that they are abundant across all tissues, are single exon
and have variable lengths. We limited our analysis to reads that aligned
withina 50 nucleotide window of the 3’ end of the gene. We calculated
the median proportion of full-length reads per sample, and across all
samples, along with standard deviations.

All read pile-up plots were made using wiggleplotr’.

Transcript detection and characterization
We defined transcripts using FLAIR v.1.4 (ref.?'). Four heart left ventri-
cle samples from patients with cardiovascular disease were included

for the novel transcript calling (phs001539.v1.p1). We used the sam-
ples that had been aligned to the genome and applied FLAIR-correct
to correct misaligned splice sites using GENCODE v.26 annotations.
We merged all samples and ran FLAIR-collapse per chromosome to
generate a first-pass transcript set by grouping reads on their splice
junctionchains and only keeping transcripts supported by atleast ten
reads. We only kept reads with transcription start sites that fell within
promoter regions defined by taking a window 10 bp upstream and
50 bp downstream of the gene start site based on the GENCODE v.26
build and that spanned at least 80% of the transcript with atleast 25
nucleotide coverageinto the firstand last exon. Reads that passed these
filters were then re-aligned to the first-pass transcript set, retaining
alignments with mapping quality score (MAPQ) > 10.

We further filtered our transcript discovery set using TransDecoder
software (https://github.com/TransDecoder/TransDecoder/) to
remove transcripts with no open reading frames (ORFs). We integrated
Pfamand Blast databasesin this search, using the default parameters, to
select the ORFs with the most functional coding potential. We removed
transcripts for which all ORF were marked as being partial 3’ and 5.
We further limited our discovery to transcripts encoding at least 100
amino acid long transcripts. This step decreased the number of novel
transcripts from 159,882 t0 93,718.

Transcripts were compared to GENCODE v.26, Workman et al.
flair-called transcripts® and CHESS transcripts*® using gffcompare®.
Transcripts withexactintron chain-match were marked as annotated,
whereas all others were marked as novel.

Transcript quantification

We used flair quantify® to quantify transcripts from all samples for
whichreads had been aligned with (1) GENCODE v.26 and (2) the newly
identified transcripts. Reads were normalized using TPM normaliza-
tion and were filtered for transcripts expressed at least five TPM in at
least three samples before clustering analysis. Similarly, for the com-
parison between ONT and Illumina, reads were normalized using TPM
normalization, filtered for protein-coding genes and limited to those
with expression higher than one TPMinbothIlluminaand ONT. Lowly
correlated genes were defined by residual analysis of the Spearman
correlations (Extended Data Fig. 3).

Alternative transcript structure events definition

We used SUPPA (v.2.3)*° to define alternative 3 splicing (A3), 5’ splicing
(A5), first exon (AF), last exon (AL), intron retention (RI), exon skip-
ping (SE) and mutually exclusive exons (MX). We supplemented these
annotations with alternative UTR regions, which for the purposes of
this study were assumed to be the last exons. We used awindow size of
ten nucleotides around splice sites to allow for error.

Protein validation of highly expressed transcripts

For the tissues assayed in the GTEx proteomics database® (heart, brain,
liver, lung, muscle, pancreas and breast), we identified the transcripts
expressed at higher than 5 TPM per sample. We used the output peptide
fasta file from TransDecoder analysis to get the amino-acid sequence
for each of the maintained transcripts. In total, 33,251 transcripts
were maintained. To optimize our search space, we grouped together
brain samples from different regions and heart samples from differ-
entregions.

Raw files from the GTEx proteomics study? were first converted to
mzXML files and submitted to the Trans-Proteomic Pipeline (http://
tools.proteomecenter.org/wiki/index.php?title=Software:TPP) for
database search. The Comet search engine was used for the database®’.
The mass tolerance of precursor ions was set to 10 ppm and fragment
ions was set to 1.0 atomic mass unit (amu). Up to two missed cleavages
were allowed for trypsin digestion. Methionine oxidation was set to
variable modification. Cysteine carbamidomethylation and peptide
N-terminal and lysine tandem mass tag modifications were set to be
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static modifications. After searches, peptides were filtered and scored
by the PeptideProphet algorithm and proteins were scored afterwards
using ProteinProphet®. Protein probability greater than 0.99 and
group_sibling_id of ‘a’, which marks the protein containing the largest
number of total peptides, were used for the confident identification
of the transcript.

Differential transcript expression and transcript usage

We used the nine tissues with at least five samples (brain cerebellar
hemisphere, frontal cortex and putamen, cultured fibroblasts, atrial
appendage and left ventricle from the heart, liver, lung and muscle).
Differential expression was performed with DEseq2 (ref. ) pairwise
using the Wald method and across all samples using the likelihood ratio
test. We used replicates using the function collapseReplicates. We used
acut-offfor statistical significance at false detection rate (FDR) = 0.05.
Differential transcript usage was performed with DRIMSeq**. Only the
replicate with the highest read coverage was maintained in the analysis.
Allanalysis was done ina pairwise manner, with a cut-off for statistical
significance at FDR = 0.05.

Differential gene and transcript expression analysis between the
control and PTBP1 knockdown samples were performed in the same
way as above. For differential gene expression we used quantifications
made based onthe GENCODE gene annotation, as each gene’s differen-
tial gene expression status was validated using the Illumina RNA-seq
protocol on the same samples. For transcript differential expression
we used the FLAIR transcripts.

Allele-specific analysis

Alignment strategy. We used the bcftools package to filter for only
heterozygous variants per donor. We complemented the WGS and
short-read RNA-seq phasing by long-read RNA-seq read phasing with
HAPCUT2 (ref. %), run using all available RNA-seq libraries per subject.
The haplotype phasing had beeninformed by the short-read RNA-seq
data and we further switched the phase of a median of 0.05% of the
heterozygous variants using the long-read data.

We generated areference genome per haplotype of each donor and
re-aligned thereadsto each of the two references using the same param-
eters as described above. For each read, we retrieved the two MAPQ
scores, and if different kept the one with the highest score; the ties were
randomly chosen between the two references. This approachled to a
differencein alignment for on average 4.8% (Extended Data Figs. 8c,9¢c)
ofthereads containing a heterozygous variant. We examined the first
position of each aligned read tobetter understand the source of the high
reference bias observed. Most reads (98.4%) aligned to the exact same
location, which suggests that the reference bias was mediated by local
misalignment within the read, probably stemming from insertions/
deletions adjacentto the variant of interest (Extended Data Figs. 8d,9d).
Asmall proportion of reads (1.2%) did not align when using the person-
alized reference genomes. Therefore, our mapping approach allows
most long reads to reliably be assigned to a haplotype.

Data acquisition. Single-nucleotide polymorphism level allele-specific
datawas generated using software developed specifically for long-read
data (LORALS). We flagged multi-mappability sites, so sites that were
part of the blacklist regions from ENCODE and monoallelic sites as
determined by GTEx. Regions with multi-mapping reads were con-
structed using the alignability track from UCSC Genome Browser using
athreshold of 0.1, meaning that a100k-mer aligning to that site aligns to
atleast five other locations in the genome with up to two mismatches.
Monoallelic sites were defined across all their tissue for each sample,
by testingwhether there are no more reads supporting two alleles than
would be expected from sequencing noise alone, indicating potential
genotyping errors (FDR <1%).

We introduced two ONT-specific flags, namely, the ratio of reference
and alternative allele containing reads to the total read number for a

site, which we set to greater than 80%, and the number of reads con-
taining indels withinal0 bp window of the heterozygous variant. This
filter was determined by counting the number of base pairs that were
matched withinthe window and requiring at least eight of them to not
be INDELs. If, at the site, the proportion of indel containing reads was
greater than 80%, then it was flagged. In addition, the reads that con-
tained over eight INDELs within the window were filtered out. Finally,
only variants that were covered by at least 20 reads were kept.

Afterfiltering the flagged sites, we maintained amedian of 77% (s.d.
4%) of the sites per sample, with the most stringent filter being the ratio
ofindel containing reads, which removed 22% of the sites (s.d. 4%). For
the variant sites that passed these filters we checked to which transcript
each read was assigned. We then created haplotype tables per gene
across all of its transcripts. These tables were filtered for genes that
had at least two transcripts, for which each transcript had at least 10
reads and the total expression of a gene was greater than 36 reads.
Inthe case when multiple variants associated with a gene, the one with
the highest total coverage was selected for the analysis.

We compared the reference ratios per gene and transcript across
the samples for which we had either data from more than one tissue
or which were sequenced in duplicates or triplicates. We observed
a higher Spearman correlation for samples from the same tissue
(median R*=0.72 for ASE and R?>=0.96 for ASTS) compared to sam-
ples from different tissues (median R?= 0.65 for ASE and R>=0.83
for ASTS). We therefore merged the duplicate samples to increase
our read depth.

Statistical analysis, simulations and power analysis. Allele-specific
analysis was based on the framework outlined in refs. **%¢, For a given
gene and biallelic variant, we define allelic expressions e,, and e, as
the sum of all transcripts produced from a gene located on the same
chromosome copy as each allele. We define log aFC as the expres-
sion originating from the alternative allele versus the reference allele
(equation (1)) and the reference ratio as the proportion of the reads
originating from the reference allele over the total number of reads
(equation (2)):

log aFC= logzﬁ 1)
€

€o

Reference ratio =

(2)

Totest for statistically significant allele-specific analysis, a binomial
test was used to determine whether it was significantly different from
the expected value of 0.5. Binomial test P values were corrected for
multiple hypothesis testing using the Benjamini-Hochberg procedure
(FDR < 5%).

When testing for allele-specific transcript structure, we performed
power analysis to estimate the fraction of the cases in which the distri-
bution of transcript expression produced fromthegene onthe haplo-
types were significantly different. Let eh be the allele- specnﬂc dosage
for the transcript (¢;) from haplotype h We denote ph as the allelic
expressionfraction ofthe transcriptt¢, where Z =1xphi =1.The depend-
enceofthetwodistributions e(‘)and e‘“ls determined by the chi-squared
test (x2). Pvalues are corrected for multlple hypothesis testing using
the Benjamini-Hochberg procedure (FDR < 5%).

Theread counts, number of transcripts for each gene and thelog aFC
(ref.’®) are the factors that affect the power of the statistical test. Regard-
ing the aFC factor, the maximum power happens at log aFC equal to
zero, indicating equal expression in both haplotypes. Thus, for our
analysis we assume thatlog aFCis zero and statistical power is estimated
to determine the dependency of ASTS analysis on the total coverage
and transcript counts to detect the effect of agiven size. The effect size
is given by Cohen’s w, defined as*’
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w= N (3)
Thisisapplied ona2 x m(where misthe number of transcripts) con-
tingency table from p“)and p;f) where Nis the total count table, which
in this case is 2. To givé an idea of how the change in transcript ratios
affects the magnitude of the effect size, the p(t) and p;f) pairs are pre-
sented in Supplemetnary Table 12 forw = 0.3 (mterpreted asmedium
effectsize).

Data simulations. To perform the power estimation, the simulated
allelic expressions e(” and e(‘) were produced from a multinomial dis-
tribution of two norn11ahzed random vectors p(“ and p(” that specify
the effect size of interest. The significant difference ofe(” ande{was
determined by the chi-squared test (nominal P < 0.01). Power estima-
tion based on simulated transcript count data for a set of read counts
and the number of transcripts for the effect sizes of 0.1 (small effect),
0.3 (medium effect) and 0.5 (large effect) was calculated. The effect
sizeisrounded foronedigit. Inorder to detect ASTS with an effect size
of 0.5with 60% power, assuming aFC = 0, the total read coverage of 36
was required. For an effect size of 0.3, at least 100 reads were needed.
For the detection of smaller effect sizes, we were underpowered, for
evenupto 500 reads. These simulations informed our power to detect
events of different effect sizes (Extended Data Fig. 10a).

Comparison across datasets

When comparing the significant results derived from different methods
or datasets, we used the Tl statistic, setting lambdabetween 0 and 0.8
inincrements of 0.001 (http://github.com/jdstorey/qvalue). For all 1
calculations we only used genes that could be captured in both data-
sets. Comparisonto GTEx ASE events obtained by Illumina were done
using the single-nucleotide variant level read counts, annotated using
the GENCODE annotations, for continuity. The datasets were merged
and the variant with the highest read count across both methods was
selected per gene across samples.

Colocalization analysis

We mined all colocalization results between GTEx sQTLs and 5,586
GWAS traits* and filtered for loci with regional colocalization prob-
ability (rcp) > 0.5 and removed the human leukocyte antigen (HLA)
region. We then mapped each sQTL to its corresponding gene and
overlapped that gene set with the significant ASTS genes per tissue.
For the overlapping genes we verified that the lead sQTL used for colo-
calization was a heterozygous variant in the donor for which we had
ASTS data. This strict filtering resulted in five genes SRP14, DUSP13,
CD36, IFITM2 and ELPS.

Combinatorial allele-specific analysis in control and PTBP1
knockdown samples

Foreach donor the control and the knockdown samples were processed
together, and the most highly covered variants using both samples were
selected per gene. Specific allelic events per condition were defined
using an FDR threshold of 0.05.

We downloaded all eCLIP (bed narrowPeak) RNA protein binding datain
GRCh38 (ref. %®). All peaks were overlapped with the heterozygous variants
per donor using bedtoolsintersect®. Finally, the maintained peaks were
annotated to the nearest gene using a10 kb window around each gene.

Annotation of variant consequences

Annotation of protein-coding regions was generated by running Ensembl
VEP (v.104) with the --most_severe flag on the GTEx v.8 release. We did
two rounds of annotation, the first one using non-smallRNA genes from
the GENCODE v.26 GTF file and the second one by supplementing this
annotation with newly identified FLAIR transcripts for these genes. We

predicted the productivity of each transcript using flair predictPro-
ductivity.py (v.1.4)* using only the longest ORF for each transcript. The
frame of each transcript was corrected using genomeTools (v.1.6.1)%°.

Transcripts were first annotated based on the gene biotypes.
Transcripts originating from protein-coding genes were classified
as ‘protein-coding’ if both a start and a stop codon were found,
‘nonsense-mediated-decay’ if a premature termination codon was
found, ‘processed transcript’ if there was no start codon and ‘non-
stop decay’ if there was a start but no stop codon. Novel transcripts
without a conclusive coding sequence frame found had their bio-
typerevised. Novel transcripts marked as protein-coding, processed
transcript, sense intronic, antisense or long intergenic non-coding
RNA (lincRNA) with intron retention, had their biotype changed to
‘retained intron’. Similarly, protein-coding and processed transcripts
that came from the opposite strand were re-annotated as ‘antisense’,
those that overlapped an intron as ‘sense-overlapping’ and those
that were intergenic as ‘lincRNASs’. If none of these conditions were
filled, protein-coding transcripts had their annotation changed to
processed transcript. The gene coordinates were extended if one
of the transcripts was found to be outside them. This led to 73,599
transcripts being added.

CADD scores for allannotated variants were obtained using the v.1.5
release®’. We compared the CADD scores between the reassigned and
the non-reassigned variants (down sampled to match the size of the
total number of reassigned variants per consequence group). We then
used a t-test to compare the means of the two groups.

Rare variant analysis

Weextracted all heterozygous variants withinal0 kb window around each
geneassessed for ASTS inadonor-specific manner. Variants were filtered
for MAF < 0.01and the worst consequence was maintained per variant.
We found a median of four rare variants per gene. We observed that 50%
of genes across all samples had at least one rare variant. We calculated
enrichment using abinomial test, setting all variants as background.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Rawlong-read datagenerated as part of this manuscript are availablein
the GTEx v.9release under dbGAP accession number phs000424.v9 and
on AnVIL at https://anvil.terra.bio/#workspaces/anvil-datastorage/
AnVIL_GTEx_V9_hg38.The GTF file of flair transcripts, along with the
transcript-level overall and allelic expression quantifications from
GENCODE v.26 and flair transcripts, are available on the GTEx portal
(https://gtexportal.org/home/datasets). The GTEx WGS, lllumina
short-read, the allelic analysis, eQTLs and sQTLs and enloc colocali-
zationfiles are all part of the GTEx v.8 release phs000424.v8. In addi-
tion, we used the transcript and gene counts available from https://
gtexportal.org/home/datasets. The GRCh38 human genome refer-
enceand GENCODE v.26 processed for GTEx were used in this analysis
(https://console.cloud.google.com/storage/browser/gtex-resources).
The CHESS and Workman transcript datasets were downloaded from
GitHub (https://github.com/chess-genome/chess and https://github.
com/nanopore-wgs-consortium/NA12878). ENCODE eCLIP data was
downloaded from https://www.encodeproject.org/.

Code availability

Alloriginal code used in the manuscriptis released as part of asoftware
package, https://github.com/LappalainenLab/lorals. General scripts
areavailable at https://github.com/LappalainenLab/lorals_paper_code
(https://doi.org/10.5281/zen0d0.6529254).
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Extended DataFig. 9| LORALS pipeline allele specific analysis filter
setting. A) Reference ratio and B) normalized reads counts across different
Illuminaand ONT flags for both of these sequencing technologies. Mapping
bias: mapping biasin simulations; Low mappability: low-mappability regions
(75-mer mappability <1based on 75mer alignments with up to two mismatches
based onthe pipeline for ENCODE tracks and available on the GTEx portal);
Genotype warning: no morereads supporting two alleles than would be
expected fromsequencing noise alone, indicating potential genotypingerrors
(FDR <1%); Blacklist: ENCODE blacklist. Multi-mapping: regions with multi-
mappingreads constructed using the alignability track from UCSC using a
threshold of 0.1(so thata100kmer aligning to that site aligns to at least Sother
locationsinthe genome with up to2 mismatches); Other allele warning: regions

where the proportion of reference or alternative allele containing reads is
lower than 0.8; High indel warning: sites where the proportion of non-indel
containing is lower than 0.8. C) Reference ratios and normalised reads counts
ofallkeptsitesacross llluminaand ONT sequencing technologies.

D) Distribution of the highindel warning ratios and the other allele ratios across
allsamples. E) Proportion of genes with at least 20 overlapping reads flagged
per filter. The proportion was calculated across allgenes for each sample
(n=59). The center corresponds to the median, the lower and upper hinges
correspond to the 25thand 75th percentiles and the whiskers extend from the
hinge to the smallest/largest value no further than1.5*inter-quartile range
fromthe hinge.
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Extended DataFig.10|Allelespecific analysis on all GTEx samples.

A) Estimated power for different number of transcripts (2,3 or 5) with respect
tothe coverage (x-axis) for effect sizes 0.1 (low), 0.3 (medium) and 0.5 (high),
derived from simulated count data. B) Number of genes tested for
allele-specific expression (ASE) and allele-specific transcript structure
(ASTS) and number of significant genes. The diagonal indicates the median
percentage of significant genes (9% and 9%, respectively). C) Number of

transcripts per gene tested for ASTS. D) Number of genes with allelic data
across donors per tissue for ASEand ASTS. E) Total number of genes calculated
persample (n=59) at differentlevels of power. Outliers are hidden for ease of
viewing. The center corresponds to the median, the lower and upper hinges
correspond to the 25thand 75th percentiles and the whiskers extend from the
hinge to the smallest/largest value no further than1.5*inter-quartile range
fromthe hinge.



ONT sig. ASE (FDR < 0.05) lllumina sig. ASE (FDR < 0.05)
64 M _
22 14
9 O 4 o 8
5 £
> " < ACSL3.9." ‘
2 61 Z o N
) s %
(m] D F‘
2 - ) \
) | 3 = K . CCDC69
M pil=023 p1=0.41 41
01 oq O . | .
000 025 050 075 100 000 025 050 075 1.00 4 0 4
. ONT aFC
c lllumina ASE p-value ONT ASE p-value
D CCDC69 E Acssis
e i 800 i
750 lllumina lllumina
g=== Cultured fibroblasts 500 400
—
— 250 200
- =
= o O 800
L
— 750 ONT ONT
o 600
500 400
—
= {111 ——
—] 0 o MI_Mhm
—
—] I EHHHHHHHH EHEHHHHHHHHHH
L=
0 5 3000 2000 1000 2000 4000 6000
# opposite ASE events Distance from region start (bp)
per sample
ene filtered due to dept ene filtered due to dept
F Gene filtered d depth Gene filtered d depth
or one of the flags Shared or one of the flags
600 1 2004
4004 40 150 1
100 1
200 1 20 50
€ 04 : : : - 04 y y : .= 0% . - : :
8 4 6 8 10 12 4 6 4 6 8 10 12
o Gene significant only in llumina Gene significant only in ONT
250 1 600 A
2004 5,244
150 4 400 4
100 1 |
1 1640 |
04 : - - : 04 - : : :
4 6 8 10 12 4 6 8 10 12
LOG2 Total counts llumina [l ONT LOG2 Total counts
Extended DataFig.11|Comparison of allele specific expressionbetween oppositedirection between the two methods. Inredis shown the variant used
ONT and Illumina. A) Proportion of significant ASE genes discovered using to parsethereads between the two haplotypes. CCDC69 differences canbe
Illuminaor ONT and replicated in the other method. ml calculations are carried attributed toadepressioninthellluminaread pile-ups while ACSSL3canbe
outup toPvalue=0.5.B) Logallelic fold-change of [lluminaand ONT of the attributed to the variantbeinginthe 3’UTR, whichis not well captured by
shared ASE genes. C) Number of ASE events with opposite directions between Illuminareads.F) Venndiagram of the significant ASE genes discovered by
ONT andIllumina per sample. Highlighted are the five fibroblast cell lines that [lluminaand ONT. The LOG2 of total counts for each method is shown for each
were further cultured prior to sequencing, where12/57 events were observed. group of the Venndiagram.

RNA-seq read pile-ups for D) CCDC69 and E) ACSSL3which have ASE in the



Article

A B
[ FoR <005
—_ p=0.11 [ FDR>0.05
2 0 a 1500
%40_ . significant
(%)
= € 1000
< 30 g
o |p=0.008 8
E" -5
£ 204 =1.4x10"
2 500
2 0.6
2 101 - p=0.042
(0]
5 -L_ _m
° O 0] .
o | T T
A3UTR ASUTR  MX RI SE | TSS 20%40%60%80%TES |
upstream downstream
C Proportional variant location
200 | ENST00000479884 28 ENST00000479884
100 40
pl——r—r—mmr— e B—armmnm s
~ 200 ENST00000394707 ~ [aV) f850 TO0000: [ Y
[T T 24 I/ A
8 0 S 4f
< 200 ENST00000372702 c gO ENST00000372702
= = 40
100 | ———
et | o = 3 [0 IR
'8 200 ENST00000372700 L gO ENST00000372700
& 100 3] — -
L T L el — —| — %) [ [
8 200 ENST00000308475 8 g§ ENST00000308475
0 ——rmn M 5 HH H
200 Novel transcript 1 gO Novel transcript 1
100 - —~
0 L . R A - T 1) ranscript counts
intron Tintron 2,3 mlr%nﬂnlr(in 23 o N » © RA
eV m— — — 1.06
— " 134
S — 1.03
e 043
— 211
— 179
2000 1500 1000 500 Allele MREFHIALT 2000 1500 1000 500 Allele MREFHIALT

Distance from region start (bp)

Extended DataFig.12| Alternative transcript structure event annotation
of allelespecificevents. A) Percentage of genes displaying asingle alternative
transcriptstructure event. Pvalues were calculated using a two-sided binomial
test.A3: alternative 3’ splicesite; AS: alternative 5’ splice site; AF: alternative

firstexon; AL: alternative last exon; A3UTR: alternative 3’end; ASUTR:
alternative 5’ end; MX: mutually exclusive exons; RI: retained intron; SE:

Distance from region start (bp)

D

Isoform percentage

40
30
20

N
o

40
30
20

ENST00000479884

b4

-
o0l0 1o 111

ENST00000394707

v

—_—
00 1l0 i1

ENST00000372700

144

00 110 11

ENST00000308475

b

010 110 11
Genotype at chr10:75094806

skipped exon. B) Average relative location of the heterozygous variant used for
ASTS event, by groupingall the transcripts of an ASTS event together. C) Read
pile-ups per transcript for the two donors displaying ASTS in DUSP13 gene.
Inthe lower panel the transcript structure is shown, without details of the

coding sequence. D) Transcript percentage for four of the five DUSP13
annotated transcripts with highread coverageinthe GTEx v8.



A not significant
o e |FCI>2o0rFDR<0.05
90 ¢ |FCl>2and FDR <0.05

S .

[ J
© ¢ “ e gene also significant in
T 604 Ay a o illumina
% ‘ ° A ontonly

~ °
3 .,
— 301 co
{
0 o [ ]
-6 -3 0 6
LOG: fold—change

B C

upregulated in: [ CTRL [l PTBP1KD

= PTBP1 PTBP2 | Donor
S FC =-2.55 FC=4.24
8 300 - e QEG5
S | Q44
© 100 ¥ S478
o & S958
R 301 WY7C
g 10 <
S
Z 1 1 1 1
z 2 & €
[ — [ —
O o O
m m
[ =
o o

RI - ‘ 5.87x108
MX 4 l 0.0236
A5UTR 4 l 4.7x10¢
A3UTR - I- 3.59x10¢
AL 4 0.0532
AF - l 2.69x10%
as | 4.36x10*
A3 - . 0.232

o-

20

40

Extended DataFig.13 | Differential expression analysis between PTBP1-KD
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proportionality test.
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Extended DataFig.14 | Allele specific analysis of PTBP1-KD and control
samples. A) Correlation between the control and the PTBP1knockdown
samplesinthereferenceratio of gene expressionand transcriptstructure.

B) Changes in ASTS by PTPB1knockdown, asassayed by gridION, withthe heatmap
showing the co-occurrence of alternative transcript structure events that are
observed atleastonce pereachevent (or asingle time for the diagonal) inagiven
gene. Color correspondsto thelog, ratio of the number of events found in the

control over PTBP1knockdown (KD) samples. C) Number of significant ASE and
ASTS genes found by gridION categorized based on their statusinthe
PromethlON data from the same samples. D) Proportion of genes displaying
allele-specific patterns specifically in either control or PTBP1knockdown
samples.E) SLCIAS gene transcript read pile-ups which display significant ASTS
onlyinthe controlsample only. The arrow indicates the location of the PTBP1
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Extended DataFig.15|Variantinterpretation through novel transcripts
and allele-specific transcript structure analysis. A) Number of variants per
variant effect predictor (VEP) category using GENCODE v26 protein-coding
genes withor without novel FLAIR transcripts. B) CADD score distribution of
variants that were reassigned to amore severe consequence when the
GENCODE gene annotations were complemented with the novel FLAIR
transcripts, compared to variants that retained their annotation (down
sampled to asimilarsize). Pvalues from two-sided t-test. The center
corresponds to the median, the lower and upper hinges correspond to the 25th
and 75th percentiles and the whiskers extend from the hinge to the smallest/
largest value no further than1.5*inter-quartile range from the hinge. C)
Percentage of variants per clinical significance category that get reassigned

when supplementing the gene annotation with the novel transcripts. The
numbers above the bars correspond to the number of re-assigned variants.

D) Number of rare variants per ASTS gene (10kb window around gene).

E) Proportion of rare heterozygous variants per annotation in significant
ASTS events. Asabackground all ASTS events were used, and Pvalues were
calculated using atwo-sided binomial testing. F) Enrichment of the significant
ASTS genes within splicing outliers. Asabackground all ASTS genes were used
and Pvalues were calculated using atwo-sided binomial test. G) NDUFS4 as an
example of agenewith arare heterozygous variantinasample thatisa GTEx
splicing outlier and has significant ASTS, with read pileups and grey arrows
indicating the rare variants. Log normalised transcript counts per allele are
plotted per transcript, with the REF:ALT ratios marked for each.
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e genomeTools (v1.6.1) for correcting open reading frame
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* SUPPA (v2.3) for annotating alternative transcript structure events
* Trans-Proteomic Pipeline (TPP) (http://tools.proteomecenter.org/wiki/index.php?title=Software:TPP) for database search
* PeptideProphet for peptide filtering and scoring
e beftools (v1.9) for processing vcf files
* HAPCUT2 for vcf phasing
e Ensembl VEP (version 104) for variant annotation
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Data analysis « wiggleplotr for read pile-up plots (https://github.com/kauralasoo/wiggleplotr)
« gvalue for pil analysis (http://github.com/jdstorey/qvalue)
* DEseq? for differential gene expression
* DRIMSeq for differential transcript usage
o gffcompare for GTF file comparisons
* LORALS for allelic analysis (https://lappalainenlab.github.io/lorals/index.html)
« Script repository used in this paper (https://github.com/LappalainenLab/lorals_paper_code) (https://doi.org/10.5281/zenodo.6529254)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Raw long read data generated as part of this manuscript are available in the GTEx v9 release under dbGAP accession number phs000424.v9 and on AnVIL at https://
anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_GTEx_V9_hg38. The GTF file of flair transcripts, along with the transcript-level overall and allelic expression
quantifications from GENCODE v26 and flair transcripts are available on the GTEx portal (https://gtexportal.org/home/datasets). The GTEx WGS, lllumina short-read,
the allelic analysis, eQTLs and sQTLs and enloc colocalization files which are all part of the GTEx v8 release phs000424.v8. Additionally, we used the transcript and
gene counts available on (https://gtexportal.org/home/datasets). The GRCh38 human genome reference and GENCODEV26 processed for GTEx were used in this
analysis (https://console.cloud.google.com/storage/browser/gtex-resources). The CHESS and Workman transcript datasets were downloaded from GitHub (https://
github.com/chess-genome/chess and https://github.com/nanopore-wgs-consortium/NA12878). ENCODE eCLIP data was downloaded from https://
www.encodeproject.org/.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size In total 90 samples were sequenced. For differential analysis a minimum of five samples per group is recommended, which is what we had.
Data exclusions A single sample was excluded from this study (sample-id GTEX-T5JC-0011-R10A-SM-2TT23), because it had less than 50,000 reads.

Replication Assessment of replicability was carried out by sequencing five samples in duplicate and five samples in triplicate. All replicates showed high
concordance. Additionally, 10 samples were sequenced on both the GridlION and PromethION platforms.

Randomization  Randomization is not applicable in this study.

Blinding Blinding is not applicable in this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq

|Z Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
Human research participants
|:| Clinical data
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Antibodies
Antibodies used Primary antibodies from mouse for PTBP1 (used in 1:4,000 dilution; # 32-4800 Thermo Fisher Scientific) and rabbit for GAPDH (used
in 1:10,000 dilution; #2118 Cell Signaling Technology). Secondary antibodies (LI-COR IRDye; donkey anti-mouse 1gG polyclonal
antibody (800CW; Size=100 pg) and donkey anti-rabbit 1gG polyclonal antibody (680RD; Size=100 pg)
Validation All antibodies were validated by the manufacturer. In addition, we validated them using western blot.

Eukaryotic cell lines

Policy information about cell lines
Cell line source(s) Human cultured fibroblast lines from GTEx donors (donors GTEX-OIZI, GTEX-OXRL, GTEX-PSDG, GTEX-R55E, GTEX-RWS6,
GTEX-WFG7, GTEX-QEGS, GTEX-QV44, GTEX-S4Z8, GTEX-S95S, GTEX-WY7C); K562 cell line. Cell lines were created as part of
the GTEx project from GTEx donors. Available through the biobank located as www.gtexportal.org
Authentication House generated cell-lines as part of the GTEX project.
Mycoplasma contamination All cell lines were tested negative for mycoplasma contamination.
Commonly misidentified lines  No

(See ICLAC register)

Human research participants

Policy information about studies involving human research participants

Population characteristics Data from 90 samples from 56 donors from the GTEx project and 4 K562 cell line samples. All the GTEx samples had lllumina
TruSeq short-read RNA-seq data and 85 samples (51 donors) had whole genome sequencing data made available by the GTEx
Consortium. The median age was 54 (+- 13years) with both male and female human donors included.

Recruitment N/A

Ethics oversight All human subjects were deceased. IRB and/or ORSP determination for each recruitment and biospecimen collection site is
described on pg. 312 and in Table 1, Carithers et al. (2015). DOI: 10.1089/bio.2015.0032

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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