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Deep whole-genome ctDNA chronology of 
treatment-resistant prostate cancer

Cameron Herberts1,12, Matti Annala1,2,12, Joonatan Sipola2,12, Sarah W. S. Ng1, Xinyi E. Chen1, 
Anssi Nurminen2, Olga V. Korhonen2, Aslı D. Munzur1, Kevin Beja1, Elena Schönlau1, 
Cecily Q. Bernales1, Elie Ritch1, Jack V. W. Bacon1, Nathan A. Lack1,3,4, Matti Nykter2, 
Rahul Aggarwal5,6, Eric J. Small5,6, Martin E. Gleave1, SU2C/PCF West Coast Prostate Cancer 
Dream Team*, David A. Quigley5,7,8, Felix Y. Feng5,6,7,9,13, Kim N. Chi1,10,13 & 
Alexander W. Wyatt1,11,13 ✉

Circulating tumour DNA (ctDNA) in blood plasma is an emerging tool for clinical 
cancer genotyping and longitudinal disease monitoring1. However, owing to past 
emphasis on targeted and low-resolution profiling approaches, our understanding of 
the distinct populations that comprise bulk ctDNA is incomplete2–12. Here we perform 
deep whole-genome sequencing of serial plasma and synchronous metastases in 
patients with aggressive prostate cancer. We comprehensively assess all classes of 
genomic alterations and show that ctDNA contains multiple dominant populations, 
the evolutionary histories of which frequently indicate whole-genome doubling and 
shifts in mutational processes. Although tissue and ctDNA showed concordant 
clonally expanded cancer driver alterations, most individual metastases contributed 
only a minor share of total ctDNA. By comparing serial ctDNA before and after clinical 
progression on potent inhibitors of the androgen receptor (AR) pathway, we reveal 
population restructuring converging solely on AR augmentation as the dominant 
genomic driver of acquired treatment resistance. Finally, we leverage nucleosome 
footprints in ctDNA to infer mRNA expression in synchronously biopsied metastases, 
including treatment-induced changes in AR transcription factor signalling activity. 
Our results provide insights into cancer biology and show that liquid biopsy can be 
used as a tool for comprehensive multi-omic discovery.

Cell-free DNA (cfDNA) is an emerging minimally invasive analyte across 
healthcare. In oncology, quantification and characterization of ctDNA 
in blood can inform early cancer diagnoses, select treatment, and moni-
tor for relapse1. However the full potential for ctDNA to reveal tumour 
evolution and mechanisms of acquired resistance remains unknown. 
Prerequisite understanding of the somatic populations captured by 
ctDNA, their relationship to synchronous metastatic tissue, and their 
temporal dynamics during treatment has not been decisively estab-
lished. Prior studies have focused on coding regions of known cancer 
genes, used shallow whole-genome sequencing (WGS), or only tracked 
the dynamics of individual mutations—all precluding high resolution 
of clonal architecture and unbiased analysis of putative resistance 
mechanisms2–12.

Nucleosome organization reflects transcription factor activity and 
gene expression. Intriguingly, nucleosome positioning can be inferred 
from cfDNA fragmentation patterns, which suggests that cfDNA may 

enable integrated genomic, transcriptomic and epigenomic profiling. 
However, the utility of cfDNA for phenotyping individual cancers is still 
unclear as previous studies lack deep clinical–genomic resolution and/
or have not examined synchronous metastatic tissue, which is scarcely 
available outside of rapid autopsy programs13–18. Comprehensive dis-
section of these ctDNA features necessitates deep WGS of serial clinical 
samples from living patients with a high ctDNA fraction, which we have 
performed herein.

Deep clinical ctDNA whole genomes
We performed deep WGS on 61 plasma cfDNA samples (median 
unique read depth: 187×) and 15 metastatic tissue biopsies (98×) 
from 33 patients with metastatic castration-resistant prostate cancer 
(mCRPC), as well as 9 additional cfDNA samples from 2 patients with 
metastatic neuroendocrine prostate cancer, 2 patients with metastatic 
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Fig. 1 | High-resolution ctDNA and metastatic tissue whole genomes.  
a, Study design. NEPC, neuroendocrine prostate cancer. b, Per-patient 
breakdown of plasma cfDNA and metastatic tissue samples. Rows indicate  
the ordinal timing of sequential collections. c, Plasma cancer fraction inferred 
by WGS correlates with previous estimates from deep targeted sequencing 
(73-gene panel). d, Per-sample overview of genomic information (main study 
cohort). The ‘non-integer copy number’ category only includes non-integer 
values of less than 4; signature weights are derived from bulk sequencing 

(signatures with weights less than 0.15 are grouped as ‘Other’). HRRd, 
homologous recombination repair defective; MMRd, mismatch repair 
defective; SNV, single-nucleotide variant. e, Comparison of evidence for 
subclonal copy number alterations detected in cfDNA (n = 58) versus tumour 
tissue (n = 15); samples that constituted admixtures of at least two major clonal 
populations with different WGD statuses were excluded. Representative 
examples of same-patient whole-genome tissue and cfDNA copy number 
profiles. LBD = ligand binding domain.
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bladder cancer and 5 control individuals with no detectable ctDNA 
(Fig. 1a,b and Supplementary Tables 1 and 2). All patients provided 
at least 1 cfDNA sample, and 21 patients provided multiple cfDNA 
samples that were collected serially at progression on different lines 
of therapy19,20. Thirteen metastatic tissue biopsies were collected 
on the same day as cfDNA20. The median ctDNA fraction based on 
genome-wide copy number states and heterozygous single-nucleotide 
polymorphism allele fractions (HSAF) was 47% (range: 17–82%) and 
correlated with prior deep targeted sequencing estimates6 (Pearson 
R = 0.82, P = 8.87 × 10−16) (Fig. 1c, Supplementary Methods and Sup-
plementary Tables 1 and 3). In total, 687,293 somatic mutations and 
16,200 structural rearrangements were identified across the 61 cfDNA 
and 15 tissue samples. The median ctDNA somatic mutation burden 
was 1.8 per Mb (range: 0.34–39.43) and was not correlated with ctDNA 
fraction (Pearson R = 0.008, P = 0.95), nor associated with collection 
time point (P = 0.18 by Mann–Whitney U test (MWU)), whole-genome 
duplication (WGD) (MWU P = 0.23) or polyclonality (MWU P = 0.07) 
(Fig. 1d and Extended Data Fig. 1a). Mitochondrial cfDNA was detected 
in all patients and had more variable fragment lengths compared to 
nuclear cfDNA (interquartile range: 108–248 bp versus 147–178 bp; 
MWU P < 0.001) and lacked mono- and di-nucleosomal peaks, consist-
ent with an absence of nucleosome-mediated fragmentation bias16 
(Extended Data Fig. 1b).

Molecular subtypes inferred from bulk ctDNA were representative 
of aggressive mCRPC20–22 (Fig. 1d and Extended Data Fig. 1a). Inactivat-
ing somatic alterations including structural rearrangements with an 
intronic or 5′-UTR breakpoint were common in tumour suppressors 
TP53 (73% of patients), PTEN (48%) and RB1 (18%) (Fig. 1d and Sup-
plementary Table 4). ETS fusions were identified in 49% of patients 
(Extended Data Fig. 1c). Deleterious DNA repair defects were identified 
in nine patients and associated with characteristic phenotypes. BRCA2 
defects (four patients) were linked to high chromosomal instability 
(including aneuploidy and an enrichment of structural variants) and sig-
natures of homologous recombination repair deficiency (deletions with 
flanking microhomology and base-substitution signatures), whereas 
the tumour with mismatch repair defects exhibited somatic hyper-
mutation and associated C>T base-substitution signatures23 (Fig. 1d 
and Extended Data Fig. 1d). CDK12 mutant tumours (four patients) 
were diploid, ETS fusion-negative and contained genome-wide tandem 
duplications24 (Supplementary Methods).

CtDNA copy number profiles frequently exhibited genomic regions 
whose copy number deviated from integer ploidies (accompanied by 
supportive shifts in HSAF), which suggests an admixture of multiple 
populations with distinct genomic copy number states. By contrast, 
metastatic tissue exhibited less subclonal copy number diversity, indi-
cating greater population homogeneity (Fig. 1e).

Distinct populations resolved from ctDNA
Intratumoral heterogeneity can drive treatment failure25. Resolving 
subclonal heterogeneity and historical patterns of evolution may lead 
to improved understanding of disease and mechanisms of acquired 
treatment resistance26. Given evidence for intra-sample heterogene-
ity, we sought to identify dominant somatic populations in our sam-
ples. Multidimensional clustering of mutation cancer cell fractions 
(CCFs) across temporally or spatially distinct samples can reveal clonal 
composition and evolutionary history26,27 (Fig. 2a). We developed a 
custom subclonal reconstruction procedure optimized for our data 
and applied it to our patient cohort. Comprehensive step-by-step meth-
odology, validation using orthogonal tools and in silico modelling 
(Supplementary Table 5), and raw data for all patients are provided in 
the Supplementary Methods. On average, 2.9 subclonal populations 
were detected per patient. Notably, the distinct genome-wide copy 
number landscapes of subclonal populations could be deduced in 
most patients (Supplementary Methods). Diversity in phylogenetic 

tree topology and molecular timing imply varied patterns of mCRPC 
evolution (Fig. 2b).

WGD can be associated with poor prognosis and distinct biological 
hallmarks, including potential therapeutic vulnerabilities28–30. Cancer 
cell population(s) with WGD were detected in 55% of patients and 55% 
of samples, including two patients with hexaploid and one patient 
with octaploid populations (Figs. 1d and 2b and Supplementary Meth-
ods). Chromosomal instability (primarily manifesting as deletions 
relative to expected ploidy after accounting for WGD) incrementally 
increased with the number of whole-genome doublings (median frac-
tion of genome altered: 37% (diploid), 78% (tetraploid), 94% (hexaploid 
or octaploid); Kruskal–Wallis P = 4.6 × 10−11). Whole-chromosome copy 
alterations relative to expected ploidy were also more common in WGD 
samples (MWU P = 3.68 × 10−7) (Fig. 2c–e). WGD was predominantly 
truncal, present in the most recent common ancestor of all identified 
cancer cell populations in 72% of patients with WGD (Fig. 2b), and con-
sistent with the similar frequency of WGD between cfDNA and tissue 
(56% versus 53%). By using the distinct mutant-allele copy numbers 
of pre- and post-WGD mutations, we estimated that on average 66% 
(range: 8–97%) of all truncal mutations preceded WGD. Of note, three 
patients had evidence for WGD occurring independently in two distinct 
subclonal lineages (Fig. 2b and Supplementary Information). Contem-
porary subclonal reconstruction methods assume that samples do not 
carry subclonal WGD status heterogeneity. Our data indicate that this 
assumption can be violated, particularly in ctDNA owing to increased 
subclonal heterogeneity26,28,31.

Subclones featured a lower predominance of the ageing-associated 
CG>TG mutation signature compared to the most recent common 
ancestor (median 8.4% versus 24.1%, MWU P = 1.0 × 10−5), and overall, the 
contribution of ageing-associated mutational processes monotonically 
decreased across phylogenetic epochs (ordered in time) (P = 0.003) 
(Fig. 2f). In patients with BRCA2 defects or mismatch repair deficiency 
(n = 4), the characteristic mutation signatures of these phenotypes 
were enriched in subclones compared to their truncal ancestor, which 
implies that subclone evolution continues to be shaped by truncal DNA 
repair dysfunctions23 (Fig. 2g and Supplementary Table 6).

AR alterations drive castration resistance, resulting in lethal disease32. 
Nearly all cfDNA samples in our cohort (95%) had some degree of AR 
alteration, including putative resistance mechanisms such as ligand- 
binding domain (LBD) missense mutations (18%), AR gene and/or 
upstream enhancer amplifications (48%) and LBD-truncating structural 
variants20,21,33–36 (7%) (Fig. 2h). The magnitude of AR gene and enhancer 
copy gain was highly variable between samples, ranging between 1–91 
copies (gene body) and 1–118 copies (enhancer). AR alteration diversity 
within individual samples suggests the presence of multiple subclones 
with different AR genotypes.

ctDNA contribution of individual metastases
A hypothetical (but unconfirmed) advantage of ctDNA over tissue 
biopsy is the potential to inform on inter-lesional heterogeneity. We 
sought to define the relationship between the somatic populations 
captured by a single metastatic tissue biopsy and time-matched ctDNA. 
Twelve out of thirteen patients with same-day metastatic tissue and 
ctDNA samples contained mutation clusters (from subclonal recon-
struction) that were truncal within the biopsied tissue but subclonal 
in ctDNA—the lowest CCF of these clusters in ctDNA corresponded 
to the contribution of the biopsied population to total ctDNA (Fig. 3a 
and Supplementary Information). In the remaining patient (DTB-205), 
all tissue-truncal mutations were also truncal in ctDNA, suggesting 
a contribution approaching 100%. The average ctDNA contribution 
of a biopsied metastatic tissue population was 19% (range 1–100%). 
This supports the hypothesis that ctDNA is derived from multiple 
metastases, each typically contributing a small proportion of total 
ctDNA.
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Recognizing that differences in clonal composition may affect 
genomic concordance between ctDNA and tissue, we compared muta-
tion and copy number landscapes between the 13 same-patient sample 
pairs (Fig. 3b–f). Of the mutations independently detected in tissue (n = 
89,554), 96.9% were redetected in cfDNA. Among mutations that were 
unique to either cfDNA (n = 1,420) or tissue (n = 2,748), but amenable to 
reciprocal redetection, only 7 were protein-truncating or established 
hotspots (Fig. 3c). This suggests that ctDNA can recapitulate the land-
scape of clonally expanded driver mutations, even when the fractional 
ctDNA contribution of individual lesions is small. Finally, 11 of 13 patients 
showed pervasive differences in copy number between time-matched 
cfDNA and tissue, consistent with evidence of differences in clonal 
composition. In patient DTB-119, the dominant cfDNA population was 
diploid, in contrast to a hexaploid tissue population (Fig. 3d). Despite 
broad differences in chromosomal copy number, mCRPC driver gene 
copy status was highly concordant between cfDNA and tissue, consist-
ent with previous data and implying early truncal fixation37 (Fig. 3b).

AR genotypes were generally concordant between matched cfDNA 
and tissue but occasionally exhibited contrasting amplicon structures, 
implying the presence of different tumour populations with indepen-
dently evolved AR amplifications (Figs. 3f and 2h and Extended Data 
Fig. 2a). Accordingly, the average absolute difference in copy number 
between cfDNA and tissue was greatest for chromosome X relative to 
other chromosomes, with the largest difference converging on the 
AR gene and enhancer (Fig. 3e). These data suggest that alterations in 
the AR locus are a critical substrate that drive clonal expansions in the 
context of AR-targeted therapy.

Serial ctDNA reveals treatment-driven selection for 
AR augmentation
Pre-treatment mCRPC contains a reservoir of heterogeneous AR altera-
tions35,36. Narrow targeted sequencing of serial ctDNA suggests that 
activating AR genotypes undergo selection by AR signalling inhibitors 
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and drive acquired resistance, but detailed genome-wide analyses to 
evaluate other putative resistance mechanisms have not been possible6.  
Therefore, we analysed 49 cfDNA samples that were collected at 
sequential clinical progressions from 21 patients with mCRPC who 
were undergoing treatment with AR signalling inhibitors (Fig. 1a,b). 
Across all 28 consecutive same-patient cfDNA pairs, the only highly 
recurrent changes in copy number, mutations or structural rearrange-
ments were at the AR locus (Fig. 4a–c and Supplementary Table 7). 
This observation was not driven by any single patient; rather, 62% of 
patients showed a significant temporal increase in AR gene body and/

or enhancer copy number, and/or LBD mutation switch (Fig. 4d and 
Supplementary Table 8). Whereas AR enhancer amplifications were 
primarily caused by tandem duplications, AR gene body amplification 
occurred through nested tandem duplications, inverted repeats, or a 
combination of both20,38 (Fig. 4c and Extended Data Fig. 2b). AR augmen-
tation frequently occurred in the context of broad population restruc-
turing, which was most pronounced in patients with deep treatment 
responses (Fig. 4e and Supplementary Information). Collectively, these 
results implicate the distinct AR genotypes of clones in driving their 
differential fitness under treatment and facilitating population shifts.
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enhancer and gene body. d, AR gene body and enhancer copy number in serial 
cfDNA samples from 21 patients. The estimated number of LBD mutant AR 
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copies are shown in black. e, Clonal population dynamics (inferred from 
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structures across consecutive cfDNA time points (gene body and enhancer are 
highlighted with colour).
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cfDNA fragmentation recapitulates cell phenotypes
Nucleosomes protect DNA during apoptosis, which results in distinct 
cfDNA fragmentation patterns that indicate cell-of-origin nucleosome 
occupancy13–18 (Extended Data Fig. 1b). We used orthogonal methods 
(that is, windowed-protection score (WPS) and relative read-depth 
depletion) to generate per-sample nucleosome occupancy maps from 
cfDNA and correlated results with whole-transcriptome sequencing of 
same-day metastatic tissue biopsy.

For 13 patients with same-day metastatic tissue and cfDNA biopsy, 
we used tissue mRNA expression to rank genes into patient-specific 
expression deciles and examined the aggregated cfDNA fragmenta-
tion profiles of each decile (Fig. 5a). Highly expressed genes showed 
features consistent with active transcription—including nucleosome 
depletion at transcriptional start sites (TSSs), strong +1 occupancy and 
well-ordered nucleosomes extending into the first exon13 (Fig. 5b,c and 
Extended Data Fig. 3a–c). The magnitude of TSS nucleosome depletion 
was strongly correlated with patient-matched tissue mRNA expression 
(Spearman R = 0.99, P < 0.001) (Fig. 5d). Notably, we observed similarly 
high correlations in contrasting the fragmentation profiles for 61 cfDNA 
samples in our cohort against the median RNA expression in 101 mCRPC 
metastatic tissue samples, even after omitting housekeeping genes and 
genes highly expressed in haematopoietic cells20 (the main contributor 
to non-tumour cfDNA) (Spearman R = 0.97, P < 0.001) (Fig. 5e). Finally, 
we observed localized changes in cfDNA fragment-length distribution 
across the TSS of actively transcribed genes39 (Extended Data Fig. 4a–c). 
Collectively, this shows that cfDNA nucleosome occupancy profiles in 
samples with high ctDNA fraction mirror global transcriptomic patterns 
in metastatic lesions.

Metastatic tissue mRNA expression was also strongly correlated 
with cfDNA nucleosome depletion at the first exon–intron junction15 
(Fig. 5d), although the magnitude of effect (relative to the TSS) was 
weaker and exhibited an association with first exon length (Fig. 5f). 
More broadly, highly expressed genes (including AR) showed system-
atically lower cfDNA sequencing coverage across the entire gene body 
relative to flanking regions (Fig. 5g and Extended Data Fig. 3d,e). This 
phenomenon was not observed in matched tissue and is consistent 
with cfDNA having decreased protection from degradation in regions 
of high RNA polymerase activity.

mCRPC can acquire resistance to AR inhibitors through a reduc-
tion in AR signalling dependency and the acquisition of a small-cell 
neuroendocrine phenotype40. This adaptive transformation cannot 
at present be inferred from DNA sequence profiling and is challenging 
to detect clinically, despite its implications for patient management. 
We measured cfDNA nucleosome occupancy at 3,224 prostate cancer 
AR-binding sites (ARBSs) to test the feasibility of using cfDNA to infer 
AR signalling activity in individual patients41,42. Most samples exhibited 
strong ARBS nucleosome depletion, which is suggestive of transcrip-
tion factor binding and persistent AR signalling (Fig. 5h). ARBS nucleo-
some depletion correlated with average AR gene (Spearman R = 0.24, 
P = 0.05) and enhancer (Spearman R = 0.26, P = 0.04) copy number, but 
not with time-matched prostate-specific antigen (PSA) level (Spearman 
R = 0.10, P = 0.48), which is confounded by tumour burden and can 
disassociate from AR activity in advanced disease43,44 (Extended Data 
Fig. 3f–h). We performed additional 175× WGS on cfDNA from patients 
with metastatic bladder cancer and histologically confirmed small-cell 
neuroendocrine prostate cancer (typically AR-negative or AR-low) and 
observed weaker ARBS nucleosome depletion (Fig. 5h).

One patient with three cfDNA collections during sequential AR inhi-
bition showed a temporal switch in clonal populations, marked by the 
emergence of visceral metastases and an RB1 splice-site mutation at 
clinical progression (potential indicators of neuroendocrine disease) 
(Fig. 5i,j). Notably, cfDNA nucleosome footprinting identified a com-
mensurate loss of AR signalling (Fig. 5j). This is—to our knowledge—
the first instance of leveraging cfDNA to observe dual genomic and 

transcriptomic evolution in a living patient who is developing resistance 
to treatment. Collectively, the signals we observed at TSS and ARBS 
suggest that cfDNA sequencing can help to identify clinically relevant 
differences in cancer phenotype.

Discussion
Here we have provided a deep WGS study of serial ctDNA and matched 
metastatic tissue. We show that samples with high ctDNA fractions 
permit dissection of metastatic cancer evolutionary histories, temporal  
subclonal dynamics, and the discovery of genomic and transcriptomic 
mechanisms of treatment resistance. This resolution was only previously  
achievable through invasive and repeated profiling of fresh tissue biop-
sies. Therefore, our work advances ctDNA profiling from an emerging 
tool for the detection of selected clinically actionable gene mutations, 
towards a modality for genome-scale discovery and deep clinical–bio-
logical insight in progressing metastatic cancers.

The populations that comprise ctDNA were typically complex and 
more heterogeneous than those found in bulk WGS of a synchronous 
metastasis (Figs. 1e and 2). We provide a comprehensive framework for 
robust subclonal reconstruction from serial ctDNA samples, leveraging 
allele-specific truncal copy number model fitting; mutation-based 
subclone quantification and phylogeny estimation (correcting for WGD 
and allelic status); and phylogeny-aware copy number deconvolution 
across samples. The accuracy of our clonal reconstruction framework 
is buttressed by multiple visualizations and in silico validations using 
simulated samples (Supplementary Information). In several instances, 
subclones within a patient contained distinct histories of WGD and 
aneuploidy—combinations that are challenging to resolve even with 
state-of-the-art tissue-profiling methodology26,28. Subclonal diversity 
may worsen disease prognosis by increasing opportunities for selec-
tion of resistant phenotypes25,45. Our results suggest that deep ctDNA 
WGS can be used in large cohorts of patients with high ctDNA fraction 
to determine the clinical relevance of metastatic tumour clonal com-
position and to understand how to exploit Darwinian evolutionary 
principles to improve cancer control. Notably, in several patients, a non-
dominant ancestral lineage that was present at baseline subsequently 
outcompeted daughter lineages at treatment progression through a 
selective sweep (Fig. 4e), which suggests that ancestral tumour line-
ages can retain clinical significance in late-stage disease when new 
treatments are initiated. We anticipate that the diminishing cost of 
WGS will enable higher sequencing depths (higher than 1,000×) in 
future studies, unlocking similar genome-wide clonal analysis in plasma 
samples with ctDNA fractions as low as 5%.

In almost all of the patients in our cohort, ctDNA was composed of mul-
tiple subclones with distinct genomic features, and each biopsied metas-
tasis contributed only a small fraction of total ctDNA (Fig. 3a,d). Most 
genomic alterations of established functional importance in prostate 
cancer (for example, in TP53 and PTEN) are early truncal events, and were 
consequently shared between subclones and between ctDNA and tis-
sue—this is corroborated by the relative homogeneity in driver gene alter-
ations between metastases in published mCRPC autopsy studies37,46,47.  
Nevertheless, reliance on a single tissue biopsy may provide an incom-
plete view of polyclonal mechanisms of treatment resistance (for 
example, AR alterations or BRCA2 reversion mutations), misclassify 
alterations as truncal features (for example, WGD) or underestimate 
disease subclonal complexity48. Future work will be needed to under-
stand how metastatic site (for example, bone versus soft tissue) and 
size relative to total tumour burden influence contribution to ctDNA, 
and whether emerging functional imaging techniques (for example, 
PSMA PET–CT (prostate-specific membrane antigen positron emis-
sion tomography combined with computed tomography) and [18F]
FDG–PET (PET with 18F-fluorodeoxyglucose)) can help select lesions 
that are likely to reflect clinically dominant disease49. Nevertheless, 
serial ctDNA samples with a high cancer fraction may offer superior 



206 | Nature | Vol 608 | 4 August 2022

Article

Fig. 5 | ctDNA nucleosome architecture of mCRPC. a, Evidence of nucleosome 
occupancy footprints in plasma cfDNA. Right, method for quantifying gene 
expression from TSS nucleosome depletion. b, The magnitude of cfDNA 
nucleosome depletion mirrors mRNA expression from patient-matched 
metastatic tissue whole-transcriptome sequencing at both the gene TSS (left) 
and the first exon–intron junction (right). Nucleosome depletion is shown using 
orthogonal methods (WPS and relative read-depth depletion). c, Per-sample 
cfDNA TSS nucleosome depletion stratified by patient-matched tissue mRNA 
expression. d, Spearman correlation of TSS and first exon–intron junction 
nucleosome depletion (in cfDNA) versus tissue gene expression percentile in 13 
patients with synchronous cfDNA–tissue samples. Each line is an individual 
sample. e, Spearman correlation of TSS nucleosome depletion (in cfDNA) versus 
tissue gene expression percentile in 61 cfDNA samples including those without 
matched tissue (leveraging publicly available mCRPC tissue transcriptome 
data). Results for all genes after excluding housekeeping and haematopoietic 

lineage genes are shown in different colours. f, Differential first exon–intron 
junction read-depth depletion by first exon length (long exons represent top 25% 
of all RefSeq MANE first exons; short exons represent bottom 25%) across n = 61 
cfDNA samples. g, Gene RNA expression correlates with gene body coverage 
depletion in cfDNA (n = 61) but not tissue (n = 16). h, Per-sample (row) cfDNA 
read-depth depletion at 3,224 ARBSs ordered by magnitude of nucleosome 
depletion. The AR copy number and presence of mutations are annotated on the 
left. Negative controls are shown at the bottom; ctDNA-positive mCRPC samples 
are shown at the top. i, Clonal population shifts in patient AE-180 across sequential 
progressions on enzalutamide and abiraterone. Population phylogeny shown on 
the right. j, Temporal decrease in AR signalling detected from average read- 
depth depletion around ARBS. The inset plot shows the temporal dynamics of 
lactate dehydrogenase (LDH; associated with liver metastases) and alkaline 
phosphatase (ALP) concentrations per upper-limit of normal (ULN), indicating 
changes in disease composition.
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resolution of treatment-associated dynamics compared to serial 
metastatic tissue biopsies (which are pragmatically unfeasible), as the 
latter cannot distinguish temporal and spatial heterogeneity except 
in lesions that exhibit complete tumour eradication and subsequent  
repopulation.

AR signalling inhibitors are a mainstay of prostate cancer treatment 
but resistance is inevitable19,43. With the AR gene and enhancer as sole 
exceptions, we found no regions that contained recurrent mutations, 
structural rearrangements, or copy number changes that were acquired 
at treatment progression on AR-targeted therapy (in serial ctDNA), 
nor any regions of recurrent difference between patient-matched 
ctDNA and metastatic tissue (Figs. 4b and 3e). This strongly implies 
that mCRPC evolution is continually shaped by AR genotype, reiterat-
ing the sustained need for new therapies that target AR signalling, and 
proposing a minimally invasive practical tool for detecting emerging 
genomic mechanisms of resistance. Clinical suppression of AR signal-
ling is essential for mCRPC management—all drugs are administered 
on a backbone of continuous androgen deprivation, and emerging 
standard-of-care and investigational agents (for example, 177Lu–PSMA-
617, AR protein degraders and AR N-terminal domain inhibitors) offer 
renewed strategies for exploiting dependence on AR signalling. This 
constant selective pressure underscores the importance of under-
standing nuanced variation in AR genomic resistance mechanisms and 
underlying (sub)clonal diversity. More broadly, genomic mediators 
of resistance to clinically active targeted therapies are likely coupled 
to the specific pathways under selective pressure, which implies that 
ctDNA can nominate distinct mechanisms of acquired resistance in 
other cancers and therapeutic contexts (for example, PI3K-pathway 
or PARP inhibition in prostate and breast cancer)48,50,51.

cfDNA fragmentomics to profile transcription factor binding activity 
may help gauge reliance on transcription factor signalling for therapy 
selection (for example, broad chemotherapies versus agents that 
exploit transcription factor signalling addiction, such as AR pathway 
inhibitors or oestrogen receptor degraders in prostate and breast 
cancers), and could help to identify early emergence of non-genomic 
resistance mechanisms, including neuroendocrine-like phenotypes 
in lung and other cancers where lineage plasticity can drive acquired 
resistance52. cfDNA footprinting at gene TSSs can recapitulate broad 
patterns of mRNA expression in metastatic tissue, suggesting that 
cfDNA may also enable RNA subtyping in cancers where clinical rel-
evance is established. Ultimately, we show that cfDNA sequencing 
enables parallel epigenomic and comprehensive genomic profiling, 
which could simplify workflows and conserve often-limited DNA yields. 
Targeted cfDNA assays that incorporate these biologically informative 
chromatin landmarks may circumvent the need for expensive deep WGS 
if profiling of TSSs or transcription factor binding sites is a primary 
goal, with the caveat that capacity for comprehensive dissection of 
other genomic information will be reduced15.

Highly expressed genes showed lower cfDNA sequencing coverage, 
possibly reflecting increased DNA vulnerability to apoptotic digestion 
owing to transcriptionally mediated nucleosome depletion (Fig. 5g and 
Extended Data Fig. 3d,e). Targeted panels for ctDNA genotyping—which 
are ubiquitous in research and rapidly entering clinical practice—may 
therefore underestimate true DNA copy number in highly expressed 
genes (including clinically relevant oncogenes like AR or ERBB2).

Our study has several limitations. First, samples were pre-selected 
for WGS on the basis of high ctDNA fraction from previous targeted 
sequencing. Mutation-based ctDNA fraction estimates from narrow 
targeted panels (in which WGD is often impossible to infer) may over-
estimate the ctDNA fraction of WGD tumours, potentially enriching 
our cohort for WGD53. The high frequency of WGD in our data is likely 
explained by both selection bias and genuine disease aggression, given 
the ubiquity of established clinico-genomic features that are indepen-
dently linked to unfavourable outcomes (for example, TP53 defects and 
high ctDNA fraction)21,36. Second, metastatic tissue biopsy location was 

influenced by surgical accessibility and patient safety, and biopsies may 
therefore not necessarily represent bulk disease. Finally, patients in our 
cohort have multiple compounding poor prognosis characteristics 
that confound assessment of potential clinical outcomes differences 
between groups (for example, WGD status).

Our study reveals that plasma ctDNA-based subclonal reconstruc-
tion is associated with a unique set of challenges and opportunities. 
Heightened subclonal diversity invalidates many simplifying assump-
tions on which contemporary subclonal reconstruction methods rely, 
and regionally varying sequencing depth due to cfDNA nucleosome 
footprints may pose a challenge for ultra-sensitive copy number analysis. 
Conversely, serial ctDNA sampling also presents new opportunities, 
as the increased data dimensionality allows resolution of previously 
ambiguous scenarios, such as distinguishing between a WGD and a 50% 
CCF subclone27 (Supplementary Information). Notably, the fractal nature 
of clonal evolution means that the level of detail in reconstructions from 
bulk sequencing can vary according to sampling characteristics (for 
example, sequencing depth, breadth or number of samples)54.

We have generated a large repository of deep ctDNA WGS data, 
including data on patient-matched white blood cells. These data are 
available to researchers and will provide a resource for further discovery 
work using ctDNA.
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Methods

Cohort
Patient samples were procured from two cohorts: (A) a recent 
prospective randomized phase II cross-over trial of abiraterone 
then enzalutamide (or reverse sequence) for first-line mCRPC 
(NCT02125357)19,36; or (B) the multi-centre Stand Up 2 Cancer–Pros-
tate Cancer Foundation-funded West Coast Dream Team project 
(NCT02432001)20. All patients had histologically diagnosed prostate 
cancer (any histological subtype) or unambiguous clinical evidence of 
advanced prostate cancer (B only) and metastatic castration-resistant 
disease (Prostate Cancer Working Group 2 criteria; cohort A) at the 
time of first metastatic tissue or liquid biopsy19,55. For cohort A, serial 
plasma cfDNA samples were collected pre-treatment and at sequen-
tial clinical progressions (defined as first occurrence of confirmed 
PSA progression, radiographic progression as assessed by CT scan 
(RECIST 1.1 criteria) and/or bone scan (PCWG2 criteria), unequivocal 
clinical disease progression or unacceptable toxicity). For cohort B, 
same-patient metastatic tissue biopsy and peripheral blood draws 
were collected either at mCRPC diagnosis or at clinical progression 
on systemic therapy7,20. Tissue was sourced from metastatic bone, 
soft tissue or organ lesions by image-guided core needle biopsy as 
previously described20.

All samples (including plasma cfDNA, metastatic tumour tissue 
and leukocyte DNA) were subjected to initial targeted sequencing 
using an established panel of 73 prostate-cancer-relevant genes and/
or whole-exome sequencing (WES)20,36. Initial sequencing enabled infer-
ence of prostate cancer driver gene genomics and ctDNA fraction (as 
a proportion of total cfDNA). Patients who provided at least two serial 
cfDNA samples (cohort A) or matched metastatic tissue and at least one 
cfDNA sample (cohort B) with at least one sample having cancer fraction 
of 30% or greater (cohorts A and B) were considered eligible for WGS 
(Fig. 1a). To maximize opportunity for subclonal reconstruction and 
deep genomic characterization, we prioritized patients with multiple 
high cancer fraction samples (from targeted sequencing). An additional 
five cohort A samples with less than 0.5% ctDNA from initial targeted 
sequencing were whole-genome-sequenced as negative controls. Four 
additional cfDNA samples from patients with metastatic urothelial car-
cinoma (n = 2) and metastatic histologically confirmed neuroendocrine 
prostate cancer (NEPC) (n = 2) were also whole-genome-sequenced as 
comparators; these supplementary samples were sourced from a pro-
vincial plasma cfDNA biobanking effort56. Samples that failed library 
generation or WGS were excluded. Sample inclusion and exclusion 
criteria were not pre-specified.

Approval for the collection and profiling of patient samples was 
granted by the University of British Columbia Research Ethics Board 
(cohort A) and the University of California San Francisco Institutional 
Review Board (cohort B). The study was conducted in accordance with 
the Declaration of Helsinki, and written informed consent was obtained 
from all patients before enrolment.

Blood and tissue collection, processing and DNA isolation
Whole blood was collected in 4 × 6-ml EDTA tubes or 2 × 9-ml Streck 
Cell-Free DNA BCT tubes. Samples collected in EDTA tubes were kept on 
ice or at 4 °C for a maximum of one hour, then centrifuged at 1,600 rpm 
for 10 min at 4 °C. Plasma was transferred to a new tube and spun for 
an additional 10 min at 1,600 rpm. Samples collected in Streck tubes 
were kept at room temperature and then centrifuged at 1,600g for 
15 min. Buffy coat was aliquoted and plasma was transferred to a new 
tube and spun for an additional 10 min at 5,000g.

Plasma aliquots were stored at −80 °C before DNA extraction. cfDNA 
was extracted from up to 6 ml of plasma using the Qiagen Circulating 
Nucleic Acid kit. We included a one-hour lysis incubation at 60 °C and 
cfDNA was eluted in 60 μl water. After extraction, cfDNA was quantified 
with the Qubit 2.0 Fluorometer and Qubit dsDNA HS Assay Kit, or the 

Quantus Fluorometer and QuantiFluor ONE dsDNA system. Buffy coat 
aliquots were stored at −80 °C before DNA extraction. White blood cell 
(WBC) DNA was extracted from the buffy coat fraction using the Qia-
gen DNeasy Blood and Tissue kit or Promega Maxwell RSC Blood DNA 
kit and Maxwell RSC system, as per the manufacturer’s instructions.

Library preparation and sequencing
Sequencing libraries were prepared from 10–25 ng of plasma DNA input 
per sample. WBC DNA was sheared into approximately 180-bp frag-
ments with a Covaris focused ultrasonicator or by enzymatic digestion 
prior to A-tailing, end repair, Illumina-compatible adapter ligation 
and PCR amplification. Library quantification was carried out with 
a NanoDrop spectrophotometer, and each library was run on an eth-
idium bromide gel to confirm success. Purified sample libraries were 
multiplexed into pools, diluted and sequenced in paired-end mode on 
Illumina X Ten instruments (V2.5 2×150 cycle kit).

Sequence alignment
Adapters in read 3′ ends were trimmed in paired-end mode using  
cutadapt v.1.11 with parameters -m 20 and -a/-A AGATCGGAAGAGC  
(ref. 57). Low-quality read tails (average base quality < 30) and low-quality 
bases (base quality < 20) were trimmed using the 'fasta trim by quality' 
and 'fasta mask by quality' subcommands of seqkit v.0.8. Reads were 
aligned against the hg38 reference genome using Bowtie v.2.3.0 with 
parameters --max-ins 1000 --score-min L,0,−0.6 (ref. 58). Duplicate frag-
ments were marked using samblaster v.0.1.24 with default parameters 
and were omitted from further analyses59. Per-base read coverages in 
target regions were quantified using bedtools v.2.25.0 (ref. 60). cfDNA 
and WBC sample identities were verified on the basis of concordant 
single-nucleotide polymorphism (SNP) genotype profiles (see Supple-
mentary Information, 'Validation of sample identities via SNP profile 
comparison').

Somatic and germline variant calling
We used Mutato v.0.7 (https://github.com/annalam/mutato) with 
arguments --alt-reads = 5 --alt-frac = 0.05 to generate a table of candi-
date single-nucleotide and indel variants, and their supporting read 
counts in all samples in the cohort. This table was post-processed 
using in-house scripts to identify somatic mutations and germline 
variants. Somatic mutations (base substitutions and indels) were called 
in cfDNA and tumour samples by searching for variants with eight or 
more supporting reads and a mutant allele fraction of 10% or higher. 
To remove germline SNPs, common sequencing or alignment errors 
and mutations of clonal haematopoietic origin, we required the mutant 
allele fraction to be at least 50× higher than the background error rate 
(that is, the average fraction of the mutant allele across all germline 
control samples, including 39 leukocyte samples and 5 non-cancerous 
cfDNA samples) and at least 10 times higher than the allele fraction 
in the patient’s matched WBC sample (with at least 10 reads covering 
the position). For base substitutions, the average mapping quality 
of mutation supporting reads was required to be at least 20, and the 
average distance of the mutant allele from the nearest read end was 
required to be at least 15 bases. Somatic mutation candidates with a 
population allele frequency of 0.5% or higher in the GNOMAD v.3.0 
database were discarded. Protein-truncating mutations in clinically 
relevant prostate cancer genes were manually scrutinized for errors 
using Integrated Genomics Viewer (IGV) and validated against previous 
whole-exome and/or targeted sequencing variant calls20,36. Protein-level 
consequences of variants were predicted using ANNOVAR (v.20191024) 
using ANNOVAR RefGene annotations downloaded on 18th August 2020 
(ref. 61). Mutational signatures were inferred using a Python implemen-
tation of DeconstructSigs v.1.47 and COSMIC mutational signatures 
(v.2). All single base-substitution signatures (SBSs) in the COSMIC v.2 
catalogue were used for signature inference in all analyses (that is, 
no signatures were excluded upfront). We used default parameters 

https://github.com/annalam/mutato
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for DeconstructSigs (which automatically disregards fitted signature 
weights below 6%)23,62. Microhomology counts were obtained using 
SigProfilerMatrixGenerator v.1.2.1 (ref. 63). Our mutation calling thresh-
olds were calibrated to achieve a false discovery rate of 1.0% based on 
analysis of a cancer-negative control plasma cfDNA sample sequenced 
to 202× WGS depth. Further validation against GATK Mutect2 mutation 
calls is provided in the Supplementary Information.

For Fig. 4d and Supplementary Table 8, which show AR mutations, 
we required only 3 mutant reads with a variant allele frequency higher 
than 1% and at least 15 times the background error rate. These relaxed 
thresholds were only used for visualization, not in calculations of muta-
tion frequencies and temporal changes within the cohort.

Rare and pathogenic germline variants were detected by searching 
for variants with an alternate allele fraction of at least 15%, and at least 8 
supporting reads. Germline variants with a population allele frequency 
of 0.5% or higher in the GNOMAD v.3.0 database were discarded. DNA 
damage repair gene variant pathogenicity was assessed using ClinVar 
annotations (downloaded on 6th July 2020)64 (Supplementary Infor-
mation).

Structural variant calling
Somatic structural rearrangements were identified in cfDNA and 
tumour samples using split-read methodology implemented in the 
Breakfast software v.0.5 (https://github.com/annalam/breakfast) with 
the --max-frag-len=1000 --anchor-len=30 options. A minimum of 5 
unique junction-spanning reads were required. We discarded rear-
rangements with two or more supporting reads in the patient-matched 
leukocyte sample or in any samples from other patients (as rearrange-
ment breakpoint positions are not recurrent between patients). Rear-
rangement breakpoints were annotated with adjacent Ensembl 84 
genes. Rearrangements with breakpoints adjacent to a list of 177 known 
human cancer genes were collected into a spreadsheet and investigated 
by aligning the junction sequence using UCSC BLAT.

Tissue–cfDNA mutation concordance
To compare the presence and absence of mutations across same-day 
metastatic tissue and cfDNA samples, we defined mutations as concord-
ant if they were independently detected in one sample and had at least 
one supporting mutant read in the other sample. Mutations were defined 
as discordant if they were independently detected in one sample and 
contained zero supporting reads in the other sample. However, variability 
in tumour content and sequencing depth can affect the sensitivity of 
mutation detection and result in false negative comparisons. To mitigate 
against potential false negatives, we only analysed variants amenable to 
reciprocal redetection. Specifically, mutations independently called in 
sample A were considered not amenable for detection in a paired sample 
B if the expected allele fraction MAFA × (FB/FA) was below 10%, where FB 
and FA were the tumour fractions of the B and A samples, respectively. In 
addition, if the probability of observing eight or more mutant reads in 
sample B (on the basis of a binomial distribution of observed read depth 
in B and expected allele fraction from sample A) was lower than 90%, the 
mutation was considered not amenable for detection6.

cfDNA nucleosome profiling
We applied a WPS to estimate nucleosome occupancy in cfDNA, 
modified from previously published methodologies13–16. In brief, the 
WPS is defined as the number of deduplicated cfDNA fragments that 
completely span a rolling 120-bp genomic window minus the num-
ber of cfDNA fragments partially overlapping the window (that is, 
containing an end-point within the interval). Only fragments of size 
121–375 bp were queried, and improperly paired reads and/or reads 
with a mapping quality of lower than 30 were discarded. The raw WPS 
was zero-centred by subtracting its 1-kb rolling median and smoothed 
using a Savitzky-Golay filter13. The WPS corresponding to genomic 
regions with low sequencing coverage (median depth of lower than 50× 

in overlapping 1,000-bp bins) was masked from downstream analyses. 
Because the unadjusted WPS is theoretically proportional to sequenc-
ing read depth, we controlled for local coverage variation (thereby 
correcting for local copy number status) by dividing the WPS by the 
median depth of each initial rolling 120-bp interval. Given that the WPS 
is an approximately continuous periodic sinusoid, we reasoned that 
the Fourier components of the WPS with a period >300 bp or <50 bp 
were unlikely to reflect underlying chromatin biology. For additional 
noise suppression, we excluded the corresponding frequency ranges 
using a Butterworth bandpass filter.

To quantify nucleosome occupancy at precisely positionally defined 
biological features (that is, transcription start (TSS) and terminus sites 
(TTS), intron–exon junctions), we aggregated the normalized WPS 
from a set of genes and/or samples centred at individual features of 
interest (±1.5 kb upstream/downstream) and oriented 5′ to 3′ (for cod-
ing regions). We used scipy.signal find_peaks to identify positions with 
a high probability of aggregated nucleosome occupancy, and then 
calculated the area under the curve (AUC) of the ±2 peaks upstream 
or downstream of the feature of interest. The AUC score captures the 
degree of positional homogeneity of nucleosomes adjacent to a given 
chromatin landmark (among cfDNA-shedding cells) (Fig. 5a). To miti-
gate against the variable quality of the WPS signal—as well as to provide 
orthogonal validation of the WPS/AUC metric—we also leveraged a 
read-depth-based approach to measure nucleosome occupancy, similar 
to previous work14,16. For a set of regions and/or samples, we calculated 
relative read-depth depletion by normalizing to flanking regions (±1.5kb 
upstream or downstream of the chromatin feature of interest).

To measure gene-wide nucleosome depletion, we calculated relative 
coverage log ratios for gene bodies by normalizing to flanking regions 
(200-kb flanking regions with a 20-kb gap between the gene and the 
flanks). Coverage log ratios were calculated relative to a pooled white 
blood cell control for both cfDNA and tissue samples.

The positional coordinates of ARBS were less well-defined compared 
to gene structural features (e.g. TSS). To examine nucleosome occu-
pancy at ARBS, we centred the WPS traces and read depth at the middle 
of each ARBS. Read-depth depletion was normalized using flanking 
tracts 1.5 kb upstream or downstream of the ARBS interval start or 
stop positions (rather than centre position). In our data, read-depth 
depletion appeared more informative for measuring ARBS nucleosome 
occupancy than WPS/AUC.

Evaluation of mitochondrial cfDNA
After initial alignment to the human reference genome using Bowtie 
v.2.3.0, we extracted reads mapping to the mitochondrial genome using 
SAMtools v.1.12 (htslib 1.12) (ref. 65). Nuclear DNA contains ancestral 
mitochondrial DNA (mtDNA) sequences (called nuclear mitochon-
drial DNA: NUMTs) that can result in read mismapping between the 
two genomic compartments. Therefore, to reduce the probability 
of NUMT contamination (that is, increase specificity for mtDNA), we 
separately realigned ChrM reads to both the nuclear and the mitochon-
drial reference genomes. We only preserved reads that realigned to the 
mitochondrial genome with a mapping quality of >35 and ≥10 higher 
than the mapping quality from nuclear DNA realignment. Picard 2.25.6 
CollectInsertSizes was used to obtain cfDNA fragment sizes.

Statistical analyses and data visualization
Statistical tests and data analyses were conducted in Python v.3.7 (using 
pandas v.0.25.0, numpy v.1.16.4, scipy v.1.6.2 and statsmodels v.0.12.2), 
Julia v.1.5.1 (HypothesisTests 0.10.9 and Distributions 0.25.53), and R 
v.3.6.1 (dplyr 1.0.7). Descriptive statistics were used and sample size 
was not formally pre-specified. All hypothesis tests were two-tailed and 
required a 5% significance threshold; correction for multiple hypothesis 
testing was not performed. Visualizations were generated using mat-
plotlib v.3.3.4 (Python) and ggplot 3.1.1 (R). All box plots are centred 
at the median and display interquartile ranges (IQRs) and minima and 

https://github.com/annalam/breakfast


maxima extending to 1.5× IQR (as per convention); all raw data points 
are directly superposed where possible. The human figure in Fig. 1a was 
obtained and modified from Wikimedia Commons (original authors: 
P. J. Lynch, medical illustrator and C. C. Jaffe, cardiologist) available 
under a Creative Commons Attribution 2.5 generic license: https://
en.wikipedia.org/wiki/File:Skeleton_whole_body_ant_lat_views.svg.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The human reference genome hg38 was downloaded from UCSC. For 
cfDNA nucleosome depletion analyses, we used exon and TSS coordi-
nates from the RefSeq Matched Annotation from NCBI and EMBL-EBI 
(MANE) database (genes not annotated in this database were omitted 
from analysis). Metastatic tissue RNA-sequencing data (cohort B) were 
obtained from previously published work (dbGaP study accession: 
phs001648.v2.p1)20. Gene sets representing housekeeping genes and 
highly expressed genes in haematopoietic lineages were derived from 
previously published work66 (Supplementary Tables 9 and 10). The 
3,224 ARBSs were from previous chromatin immunoprecipitation 
followed by sequencing of 13 primary prostate cancer tissue sam-
ples41,42 (Supplementary Table 9). All de-identified WGS data have been 
deposited in the European Genome-Phenome Archive (EGA) under the 
accession code EGAS00001005783, and are available for download 
by contacting the corresponding authors. All other data supporting 
the findings of this study (source data) are available within the Article 
(including its Supplementary Information and Supplementary Tables).

Code availability
Custom computer code that was used for analysis is available on GitHub 
at https://github.com/annalam/cfdna-wgs-manuscript-code.
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Extended Data Fig. 1 | Genomic features of ctDNA and metastatic tissue 
whole genomes. (a) Per-sample overview of genomic information (grouped by 
same-patient sample pairs). Figure content is otherwise identical to Fig. 1d.  
(b) Fragment-length distribution of plasma cell-free DNA (cfDNA) of nuclear (left) 
and mitochondrial (right) origin. (c) Structures of E26 transformation-specific 
(ETS) family oncogenic fusions detected in the cohort. Solid colours denote 

intragenic regions of fusion partner genes (including untranslated regions) and 
lighter hues represent flanking intergenic 5’ upstream or 3’ downstream regions. 
The intergenic region between SLC45A3 and ELK4 is shown in grey. (d) Box plots 
illustrating higher microhomology-containing deletion counts (deletion length 
3–5 bp with at least 2 bp of microhomology) (left) and structural variant counts 
(right) in samples with BRCA2 defects relative to wild-type (WT) samples.



Extended Data Fig. 2 | AR gene and enhancer amplification mechanisms and 
amplicon structure in cfDNA and metastatic tissue. (a) AR-neighbourhood 
copy number structure in same-day patient-matched cfDNA and metastatic 
tissue. Upper and lower plots display absolute copy number (i.e. corrected for 
tumour content) and uncorrected coverage log ratios, respectively. In this 
patient, the tissue sample shows a focal amplification of the AR enhancer region 
and a broad copy gain of the entire locus, whereas the cfDNA sample shows a 
more complex pattern of apparent nested copy gains. Despite these contrasting 
structures, the overall AR enhancer and gene body copy numbers are relatively 
similar (considering that the range of AR gene body absolute copy number 

across all samples was 1-91). (b) Absolute copy number across the AR gene and 
enhancer neighbourhood for three cfDNA samples and one tissue sample. 
Pileup of all per-sample structural arrangements shown below (indicating 
dominant mechanisms of copy amplification). Note evidence of local enhancer 
copy loss in patients, suggestive of enhanced cfDNA degradation owing to 
nucleosome depletion38. (c) Average copy number change at the AR locus across 
serial ctDNA collected during systemic treatment with AR signalling inhibitors. 
Structural variant breakpoints and tandem duplication events from all cfDNA 
and tissue samples (regardless of time point) are shown below, illustrating a 
convergence toward amplification of the AR gene and enhancer.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Expression-linked features and clinico-genomic 
correlates of nucleosome depletion. (a–b) Correlation between 
transcription terminus site (TTS) nucleosome depletion and metastatic tissue 
mRNA expression decile for 61 cfDNA samples in our cohort, measured using 
relative read-depth depletion and WPS area under the curve. (c) Aggregate 
spatial read-depth profile of 61 cfDNA samples centred at the TTS, stratified 
into gene subsets by mRNA expression decile. (d) Aggregate spatial coverage 
log ratio profile of 61 cfDNA samples centred at gene bodies, with traces 
stratified into gene subsets representing median metastatic tissue mRNA 
expression deciles. Coverage log ratios are calculated relative to a pooled white 
blood cell normal. Traces are normalized to flanking regions (50 kb at ±2 Mb 
from the gene start/end) and are smoothed using locally weighted smoothing. 
(e) Examples of spatial gene body coverage depletion in cfDNA (left) but not 

patient-matched metastatic tumour tissue (right) in highly expressed genes 
(top). Gene bodies (TSS to TTS) are shaded grey. (f) In silico reverse dilution 
experiment illustrating the effect of ctDNA fraction on nucleosome depletion 
as measured by area under the WPS (±2 peaks surrounding the TSS). Vertical 
axis shows aggregated TSS nucleosome depletion (in 61 cfDNA samples) at  
350 genes highly expressed in hematopoietic cells but lowly expressed in 
mCRPC tissue. Horizontal axis represents fraction of ctDNA sample sequencing 
coverage that has been randomly substituted for normal cfDNA not derived 
from prostate cancer (1 = complete substitution with healthy cfDNA).  
(g) Correlation between AR gene and enhancer copy number (horizontal axis) 
versus average read-depth depletion at ARBSs. (h) Correlation between time-
matched PSA (ng ml−1) and WGS ctDNA fraction estimates versus average ARBS 
read-depth depletion.
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Extended Data Fig. 4 | Joint analysis of plasma cfDNA fragment locations 
and lengths around the TSSs of high- and low-expressed genes. (a) cfDNA 
fragment density heat maps ('nucleograms') averaged across 63 mCRPC cfDNA 
samples in the cohort (left column), for four gene sets defined based on their 
expression quartile in mCRPC tissues. The middle column shows the same heat 
maps after eliminating interaction terms (i.e. outer product of the marginal 
distributions). In the right column heat maps, the interaction terms are isolated 
by subtracting the middle column heat maps from the left column heat maps. 

The analysis reveals enrichment of short cfDNA fragments at the TSS, and 
longer cfDNA fragments at immediate flanking regions. (b) Single gene 
nucleograms showing fragment localization and lengths near TSSs of four 
highly expressed genes (averaged across 63 mCRPC cfDNA samples). 
Nucleosome positions are well conserved and clearly visible, but the precise 
nucleosome localization pattern varies between genes. (c) cfDNA fragment 
length histograms within two 100 bp windows positioned relative to gene 
transcription start sites (TSS), grouped by gene expression level.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Software and code
Policy information about availability of computer code

Data collection No custom software was used to collect the data. Raw sequencing data was generated in-house or obtained from collaborators. Sample meta-
data was available in-house or provided by collaborators.

Data analysis All statistical tests and data analyses were conducted in Python 3.7 (using pandas 0.25.0, numpy 1.16.4, scipy 1.6.2, and statsmodels 0.12.2), 
Julia 1.5.1 (using HypothesisTests 0.10.9, and Distributions 0.25.53), and R 3.6.1 (using dplyr 1.0.7) languages. Visualizations were generated 
using matplotlib version 3.3.4 (Python) and ggplot 3.1.1 (R). The following bioinformatics/genomic analysis software was used: cutadapt-1.11, 
seqkit-0.8, Bowtie-2.3.0, BWA (versions 0.7.15-r1140 and 0.7.17), samblaster-0.1.24, bedtools-2.25.0, samtools 1.12 (htslib 1.12), Picard 
2.25.6, Mutato version 0.7, ANNOVAR (version 20191024), DeconstructSigs v1.47 (Python implementation available: https://github.com/
vanallenlab/deconstruct_sigs_py), SigProfilerMatrixGenerator v1.2.1, SigProfileExtractor 1.1.4, Picard 2.25.6, GATK Mutect2, ASCAT 2.5.2, 
Battenberg 2.2.9, Breakfast software version 0.5, GRIDSS2 2.10.0, PyClone 0.13.1, and PhyloWGS version 2018-11-05. 
 
All custom code is available at https://github.com/annalam/cfdna-wgs-manuscript-code. Comprehensive methodology including all software 
(and versions) used is annotated within the manuscript and our Supplementary Information document.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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The human reference genome hg38 was downloaded from UCSC. For cfDNA nucleosome depletion analyses, we used exon and TSS coordinates from the RefSeq 
Matched Annotation from NCBI and EMBL-EBI (MANE) database (genes not annotated in this database were omitted from analysis). Metastatic tissue RNA-Seq data 
(Cohort B) was obtained from previously published work (Quigley et al 2018; PMID: 30033370; dbGaP study accession: phs001648.v2.p1). Gene sets representing 
housekeeping genes and highly expressed genes in hematopoietic lineages were derived from previously published work (Eisenberg and Levanon 2013; PMID: 
23810203; Ulz et al. 2016; PMID: 27571261) (Supplementary Tables 9-10). 3224 AR binding sites (ARBS) were from prior chromatin immunoprecipitation followed 
by ChIP-sequencing of 13 primary prostate cancer tissue samples (Pomerantz et al. 2015; PMID: 26457646; Morova et al. 2020; PMID: 32047165) (Supplementary 
Table 11). 
 
All de-identified whole-genome sequencing data have been deposited in the European Genome-Phenome Archive (EGA) under the accession code 
EGAS00001005783, available for download by contacting the corresponding authors. All other data supporting the findings of this study (i.e. source data) are 
available within the article (including its Supplementary Information and Supplementary Tables).  
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was not predetermined for this retrospective exploratory study (no power calculations were performed). Select blood samples 
from the prospective clinical trial NCT02125357 were included, in addition to blood and patient-matched metastatic tissue samples from 
collaborators (via NCT02432001), so long as inclusion criteria were met (as specified in Methods) and the patient provided consent. We 
analyzed all possible samples within the constraints of: 1) the denominator of available patient/samples collected through these two clinical 
studies (NCT02125357 and NCT02432001), 2) our sample/patient eligibility criteria (detailed in our Methods), and 3) overall project funding. 
The exploratory and descriptive nature of our study and lack of pre-specified analyses means that target sample sizes were not possible; all 
statistical analyses are descriptive and effect sizes / p-values are reported as appropriate.

Data exclusions The only pre-specified inclusion criteria were those mandated as part of the original, previously-published, and publically-available clinical 
studies (NCT02125357 and NCT02432001) from which our samples were sourced. Any cohort-level exclusions in the context of this current 
study were based on our patient inclusion criteria (which was not pre-specified): only patients providing ≥2 serial cfDNA samples 
(NCT02125357) or matched metastatic tissue and ≥1 cfDNA samples (NCT02432001) with at least one sample with ≥30% cancer fraction 
(NCT02125357 and NCT02432001) were considered eligible for whole-genome sequencing (WGS). Patients with multiple high tumor fraction 
samples (≥30%) were prioritized for WGS. Samples that failed subsequent library generation or WGS were excluded from the final study 
cohort. 
 
When samples were excluded from sub-analyses, the rationale and denominators are clearly listed in the manuscript text and/or figure 
legend. Almost always this is due to categorical exclusion (e.g. an analysis quantifying the mutation rate in specifically in ctDNA samples would 
exclude tissue samples, etc.).

Replication All analyses are descriptive in nature. No in vitro experiments requiring technical or biological replicates were performed. Repeat sequencing 
of identical plasma or tissue DNA samples was not performed. All in silico analyses/experiments/models were either deterministic (not 
requiring replication) or had high convergence (i.e. negligibly small probability of inter-replicate variance that was empirically tested). Random 
seeds were used for all relevant analyses for reproducibility (documented in our online code repository).

Randomization This retrospective exploratory study did not involve any analyses requiring patient/sample randomization or controlling for participant 
covariates. All analyses were descriptive in nature, and all relevant samples were analyzed together (unless they were categorically irrelevant 
for the analysis at hand).

Blinding Blinding was not performed for this retrospective, descriptive, and exploratory study (with one exception). We did incorporate investigator 
blinding into one in silico experiment to validate our bespoke subclonal reconstruction models. Specifically, investigator A was required to use 
our subclonal reconstruction procedure to infer the cancer fractions and subclone CCF fractions of several in silico simulated NGS samples 
(with ground truth clonal composition determined by investigator B; investigator A was blinded to this information until after subclonal 
reconstruction was executed)
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Clinical data
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Methods
n/a Involved in the study
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Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The majority of participants were biologically male with metastatic castration-resistant prostate cancer of any histological 
variant. Two patients with metastatic bladder cancer were also included. Inclusion criteria (describing the population) are 
detailed in the methods.

Recruitment We retrospectively selected patients who had initially enrolled on a prospective clinical trial (NCT02125357) and a 
prospective tissue-sequencing effort (NCT02432001) and had voluntarily consented to provide samples for future research 
purposes. Additional samples (n=9) serving as secondary controls were obtained in context of a provincial blood and tissue 
biobank (all patients voluntarily consented to provide samples for research purposes).

Ethics oversight University of British Columbia Ethics Board; University of California San Francisco Institutional Review Board

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration No all-inclusive registration is available for this retrospective study. A subset of patients were enrolled in NCT02125357 and 
NCT02432001.

Study protocol Patient inclusion criteria for this retrospective study are specified in the Methods. Patients were required to have metastatic cancer 
(mainly metastatic castration-resistant prostate cancer, but two patients with metastatic bladder cancer were also included).

Data collection Patient samples were initially collected between 2013 and 2020 in the context of a prospective clinical trial (NCT02125357) or clinical 
study (NCT02432001). Additional samples (n=9) were collected as part of a provincial biobank program.

Outcomes Clinical outcomes were not reported in this manuscript nor incorporated into any quantitative analyses.
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