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A pan-cancer compendium of chromosomal 
instability

Ruben M. Drews1, Barbara Hernando2, Maxime Tarabichi3,4, Kerstin Haase3,5, Tom Lesluyes3, 
Philip S. Smith1, Lena Morrill Gavarró1, Dominique-Laurent Couturier1,6, Lydia Liu3,7, 
Michael Schneider1, James D. Brenton1,8,9, Peter Van Loo3, Geoff Macintyre1,2,10 ✉ & 
Florian Markowetz1,10 ✉

Chromosomal instability (CIN) results in the accumulation of large-scale losses, gains 
and rearrangements of DNA1. The broad genomic complexity caused by CIN is a 
hallmark of cancer2; however, there is no systematic framework to measure different 
types of CIN and their effect on clinical phenotypes pan-cancer. Here we evaluate the 
extent, diversity and origin of CIN across 7,880 tumours representing 33 cancer types. 
We present a compendium of 17 copy number signatures that characterize specific 
types of CIN, with putative aetiologies supported by multiple independent data 
sources. The signatures predict drug response and identify new drug targets. Our 
framework refines the understanding of impaired homologous recombination, which 
is one of the most therapeutically targetable types of CIN. Our results illuminate a 
fundamental structure underlying genomic complexity in human cancers and 
provide a resource to guide future CIN research.

CIN has complex consequences, including loss or amplification of 
driver genes, focal rearrangements, extrachromosomal DNA, micro-
nuclei formation and activation of innate immune signalling1. This 
leads to associations with disease stage, metastasis, poor prognosis 
and therapeutic resistance3. The causes of CIN are also diverse and 
include mitotic errors, replication stress, homologous recombination 
deficiency (HRD), telomere crisis and breakage fusion bridge cycles, 
among others1,4.

Because of the diversity of these causes and consequences, CIN is 
generally used as an umbrella term. Measures of CIN either divide 
tumours into broad categories of high or low CIN5, are restricted to 
a single aetiology such as HRD6, are limited to a particular genomic 
feature such as whole-chromosome-arm changes7, or can only be 
quantified in specific cancer types8,9. As a result, there is no system-
atic framework to comprehensively characterize the diversity, extent 
and origins of CIN pan-cancer, or to define how different types of CIN 
within a tumour relate to clinical phenotypes. Here we present a robust 
analysis framework to quantitatively measure different types of CIN 
across cancer types.

Deconstructing CIN
We derived 7,880 high-quality absolute copy number profiles across 
33 tumour types using single-nucleotide polymorphism (SNP) array 
data from The Cancer Genome Atlas (TCGA) (Extended Data Fig. 1a). 
Extending our previously developed framework for quantifying signa-
tures of CIN in ovarian cancer8, we determined that 6,335 of the 7,880 
samples (80%) had detectable CIN and were suitable for pan-cancer 

detection of copy number signatures (Extended Data Fig. 1b). This 
estimate was consistent with previous pan-cancer estimates of CIN10 
(Extended Data Fig. 1c–e).

Using these 6,335 genome-wide copy number profiles, we computed 
distributions of five fundamental copy number features previously 
demonstrated to encode patterns of copy number changes that rep-
resent different underlying causes of CIN8 (Extended Data Fig. 2a and 
Supplementary Methods). These features included: the copy number 
change between a segment and the neighbouring segment; segment 
length; breakpoint count per 10 Mb; breakpoint count per chromo-
some arm; and length of chains of oscillating copy number states. Only 
segments that deviated from a normal, diploid state were considered 
for the segment size and changepoint features. We did not include a 
feature representing the copy number of a segment to avoid redun-
dant signatures that encode the same aetiology across different ploidy 
backgrounds.

We applied mixture modelling to define distinct components for 
each cohort-wide feature distribution, identifying a total of 43 mixture 
components across the 5 features (Extended Data Fig. 2b, c and Sup-
plementary Methods). Conceptually, these components represent 
the basic building blocks for defining CIN processes. We used these 
mixture components to encode each tumour genome by probabilisti-
cally assigning copy number events to these components, resulting in 
a 6,335 × 43 dimensional matrix. We then applied a Bayesian implemen-
tation of non-negative matrix factorization to identify copy number 
signatures (Extended Data Figs. 2d and 3a, b). We first used the com-
plete matrix and found 10 pan-cancer copy number signatures, then 
used subsets of the matrix representing individual cancer types with 
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at least 100 samples, and found an additional 7 signatures (Extended 
Data Fig. 3b–e and Supplementary Methods). We merged both sets 
of signatures and computed their activities using linear combination 
decomposition to yield a pan-cancer compendium of 17 copy number 
signatures and their activities in tumours across the 33 cancer types 
(Extended Data Figs. 3f, g and 4 and Supplementary Figs. 1 and 2).

We validated this approach by correctly identifying signatures in a 
collection of simulated cancer genomes with copy number changes 
caused by five well-studied mutational processes (Supplementary 
Figs. 3–6 and Supplementary Methods). We used a second simulation 
study to derive signature-specific activity thresholds, to test the stabil-
ity of signature definitions and to test the stability of signature activities 
(Methods, Extended Data Fig. 5 and Supplementary Fig. 7). We then 
tested the robustness of our approach across different high-throughput 
technologies comparing signature definitions and activities across five 
platforms: SNP 6.0 without matched normal, whole-genome sequenc-
ing (WGS) downsampled to SNP 6.0 positions, WGS downsampled to 
shallow WGS, on-target whole-exome sequencing (WES) and off-target 
WES. Quantification of signature activity was robust across all plat-
forms. Signature identification was possible across the WGS platforms 
but performance deteriorated for WES (Extended Data Fig. 6).

Putative causes underlying each signature
To determine the putative causes underlying each of the 17 signatures 
(named CX1 to CX17), we developed a data integration framework and 
assigned a confidence score to each signature aetiology based on the 
quality and extent of supporting data (Extended Data Fig. 7). To propose 
putative aetiologies, we used the patterns of copy number change 
encoded by the signature (Extended Data Fig. 4, Supplementary Figs. 8 
and 9 and Methods) and signature associations with known cancer driver 
mutations (Extended Data Fig. 8a and Supplementary Figs. 10–17).  
We used these driver gene associations as markers for putative path-
ways involved in the aetiologies and assumed the same pathway deregu-
lation for samples where no driver gene was mutated (similar to how 
BRCAness is defined in the absence of BRCA1 or BRCA2 mutation11). In 

many cases, the signature pattern was already suggestive of a mecha-
nism (for example, whole-chromosome missegregation). Once a puta-
tive cause was proposed, we sought additional supporting data (Fig. 1, 
Extended Data Figs. 8 and 9 and Supplementary Methods) including: 
data from two additional patient cohorts and their clinical metadata 
(approximately 1,900 patients from the Pan-Cancer Analysis of Whole 
Genomes (PCAWG) project and approximately 400 patients from the 
International Cancer Genome Consortium (ICGC) project); five types 
of mutational signatures (single-base substitution (SBS), insertion–
deletion (ID), doublet base substitutions, ovarian copy number and 
rearrangement); 14 molecular features (somatic point mutations, gene 
expression, cell cycle score, aneuploidy score, whole-chromosome 
copy number aberrations (CNAs), tandem duplications, loss of het-
erozygosity, chromothripsis, kataegis, whole-genome duplication 
status, telomere length and elongation machinery activity, extrachro-
mosomal DNA and centrosome amplification score (CA20)), and 11 
DNA repair-specific features (germline BRCA1/2 mutations, BRCA1 and 
RAD51C hypermethylation data, HRDetect response, HRD score (Myr-
iad myChoice), TP53 inactivation score, telomeric imbalances score, 
large-scale state transition score, loss of heterozygosity score, DNA 
repair proficiency score, protein expression score for 23 DNA-damage 
repair genes and PCAWG structural variants with associated micro-
homologies). Here we provide a synthesis of the data supporting the 
putative aetiologies (summarized in Fig. 2).

Mitotic signatures
CX1, CX6 and CX14 all encoded patterns related to whole-arm or 
whole-chromosome changes and significantly correlated with direct 
counts of whole-chromosome changes (Supplementary Fig. 18). This 
suggested putative causes resulting in chromosome missegregation 
during mitosis. In agreement with this hypothesis, CX14 had signifi-
cantly higher activity in tumours with inactivating mutations in CIC12; 
CX1 with mutations in CIC12, VHL13 and PBRM1 (ref. 14); and CX6 with 
mutations in CUL1 (ref. 15) and RAC1 (ref. 16) (Extended Data Fig. 8a). 
Each of the three signatures correlated with downregulation of telom-
erase activity (Supplementary Fig. 19b), with CX1 also being negatively 
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Fig. 1 | Study overview. This schematic summarizes our robust analysis 
framework, which uses copy number to derive pan-cancer copy number 
signatures and provide insights. On the left and right are lists of the datasets 

used to support the signature aetiologies and insights. CCLE, Cancer Cell Line 
Encyclopedia; DBS, doublet-base substitution; ecDNA, extrachromosomal 
DNA; RS, rearrangement signature.
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correlated with telomere length (Supplementary Fig. 19a) and associ-
ated with a lack of TERC and TERT amplification and expression (Sup-
plementary Fig. 19c–e, and 20). Therefore, telomere shortening may 
have a key role in the mechanisms underlying these signatures4. CX1 
positively correlated with the ‘clock-like’ SBS1 signature, suggesting 
that these errors might also be mediated via a natural ageing process 
such as age-related telomere attrition4 (Extended Data Fig. 8 and  
Supplementary Fig. 21).

Signatures of impaired homologous recombination
CX2, CX3 and CX5 all exhibited patterns that had previously been shown 
to associate with impaired homologous recombination (IHR): CX2 
showed a pattern of short-to-medium-sized, oscillating changes asso-
ciated with tandem duplications17; CX5 showed medium-sized events 
associated with tandem duplication17; and CX3 showed long-sized, 
single-copy changes with associated loss of heterozygosity18,19 
(Extended Data Fig. 4 and Supplementary Figs. 18 and 22). All three 

signatures were observed at significantly higher levels in tumours with 
somatic BRCA1 mutation, independently of each other (Extended Data 
Figs. 8a and 9a and Supplementary Table 12). This suggested varying 
roles for disruption of HR as underlying causes11. Several lines of evi-
dence supported the link between these signatures and HR: increased 
CX2, CX3 and CX5 activity across germline-mutated BRCA1 carriers 
(and BRCA2 carriers for CX3); higher activity in cases with methylated 
RAD51C (except CX5)20 (Extended Data Fig. 9a); correlation with tandem 
duplication scores17 (Supplementary Fig. 22), rearrangement signatures 
1, 3 and 5 (ref. 21) (Supplementary Fig. 23), SBS3 signature and ID6 (Sup-
plementary Fig. 21), centrosome amplification score22 (Supplementary 
Fig. 24), and ovarian copy number signatures 3 and 7 (ref. 8) (Supple-
mentary Fig. 25); association with loss of heterozygosity18, chromoth-
ripsis23 (except CX3) and kataegis24(Supplementary Fig. 18); increased 
utilization of theta-mediated end joining and single-strand annealing 
backup repair pathways visible as microhomologies at breakpoints11 
(Supplementary Fig. 26); as well as correlation with seven HRD metrics25 
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(Extended Data Fig. 9d). The strength of these associations increased 
from CX2 to CX5 and to CX3. This suggested an increasing spectrum 
of CIN complexity associated with disruptions in HR-mediated repair. 
Indeed, CX2 appears to be only associated with disruption of HR, 

whereas CX5 and CX3 have associations that indicate the involvement 
of replication stress (via amplification and overexpression of MAPK1 
(ref. 26), PPP2R1A27 and U2AF1 (ref. 28)). The larger copy number changes 
observed for CX5 and CX3 suggest faster cell cycling and breaks carried 
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through to mitosis11, which was supported by strong correlation with 
cell cycle scores (Extended Data Fig. 9b) and increased CNAs estimated 
to occur during mitosis (Supplementary Fig. 27 and Supplementary 
Methods). Further associations were observed for CX3, including mis-
sense mutations in ERCC2 (ref. 29) and downregulation of key nucleotide 
excision repair (NER) genes suggesting defects in NER (Extended Data 
Fig. 9c and Supplementary Fig. 28), as well as TP53 mutation suggest-
ing impaired damage sensing30 (Extended Data Fig. 8a). These CX3 
associations are reminiscent of what has been termed BRCAness or 
HRD11. However, CX5, and especially CX2, appear to represent a more 
moderate impairment of HR. Therefore, we use the term IHR for the 
aetiology underlying all three signatures rather than HRD.

Whole-genome duplication signature
CX4 encompassed a unique pattern of copy number change with neigh-
bouring segments separated by two copy changes (Extended Data Fig. 4), 
a pattern commonly used to define the presence of a whole-genome dupli-
cation (WGD) event31. CX4 was also associated with whole-chromosome 
changes (Extended Data Fig. 8b), a feature commonly observed in tetra-
ploid cells due to increased mitotic errors32. The specific cause of WGD 
(endoreduplication, errors in cytokinesis or cell fusion33) was not evident 
from our data; however, this signature had high activity in tumours with 
PIK3R2, AKT1 and MAPK1 mutations, suggesting that tolerance to WGD 
may be mediated by PI3K–AKT activation34,35 (Extended Data Fig. 8a).

Signature of impaired non-homologous end joining
CX10 displayed a pattern of clustered and oscillating copy number 
changes (Extended Data Fig. 4). Its activity was significantly higher in 

tumours with inactivating mutations in FBXW7 and correlated with 
FBXW7-mutant-mediated tandem duplication class 1/2 (Extended Data 
Fig. 8 and Supplementary Fig. 22), suggesting impaired non-homologous 
end joining17,36 as a putative cause. A significant increase in the propor-
tion of breakpoints with microhomologies in samples with this signa-
ture was indicative of a lack of blunt-end joining, which is a hallmark of 
non-homologous end joining (Supplementary Fig. 29a).

Signatures of amplification
CX8, CX9, CX11 and CX13 encoded patterns of low-level, mid-level, 
mid-level and high-level amplifications, respectively (Extended Data 
Fig. 4). Higher activity of CX8 in the context of amplification and overex-
pression of U2AF1 (ref. 28) and MAPK1 (ref. 26), and for CX9 ERBB3 (ref. 37) 
(Extended Data Fig. 8), suggested replication stress as a putative cause. 
All four signatures were associated with increased cell cycle score (Sup-
plementary Fig. 30), reinforcing replication stress as a causal factor. In 
addition, CX8, CX9 and CX13 were associated with APOBEC mutagenesis 
(SBS2 and/or SBS13 signatures; Supplementary Fig. 21a), and CX9 and 
CX11 were associated with ID signatures 1 and 2 (ref. 38) (Supplemen-
tary Fig. 21). CX9 copy number changes were not part of oscillating 
chains; however, the remaining amplification signatures were. CX13 
was strongly associated with extrachromosomal DNA circularization 
and amplification events (Supplementary Fig. 31); however, the specific 
mechanism causing the extrachromosomal DNA was not evident.

Unknown aetiologies
CX7, CX12, CX15, CX16 and CX17 did not have patterns of copy num-
ber change or associations clearly indicative of a putative cause 
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(Extended Data Figs. 4 and 8a). Therefore, these signatures currently 
have unknown aetiologies.

Cross-signature observations
Many covariates demonstrated associations with multiple signatures. 
Chromothripsis was linked with seven different signatures (Extended 
Data Fig. 8), suggesting that many potential aetiologies underpin these 
complex rearrangements. Replication stress was associated with eight 
signatures, highlighting it as a major source of CIN (Fig. 2). Different 
signatures showed a bias for occurrence before WGD (CX1, CX2, CX7 
and CX15) or after WGD (CX3, CX5, CX6, CX8, CX9, CX13 and CX17), 
demonstrating the importance of WGD events in modulating CIN 
(Extended Data Fig. 8b and Supplementary Fig. 18e, f). Finally, signa-
tures of APOBEC mutagenesis and kataegis were associated with six 
signatures, highlighting these as a common feature of CIN39 (Extended 
Data Fig. 8b and Supplementary Figs. 18 and 21).

Drug response prediction and drug target identification
The putative signature aetiologies implicated canonical cancer path-
ways as some of the major drivers of CIN. Many of these pathways have 
been the focus of targeted therapy development. Therefore, given that 
our signatures can be readily measured in tumours from patients, we 
explored their utility for therapy response prediction and drug target 
identification. We integrated data from 297 cancer cell lines, includ-
ing copy number profiling, genome-wide clustered regularly inter-
spaced short palindromic repeat (CRISPR–Cas9) knockout screens, 
genome-wide RNA interference (RNAi) screens and the profiling rela-
tive inhibition simultaneously in mixtures (PRISM) drug repurposing 
screen (Supplementary Methods). We assessed correlations between 
signature activities, gene essentiality and sensitivity to drug perturba-
tion of the gene (Fig. 3a).

We identified 40 genes where copy number signature activity was sig-
nificantly correlated with both genetic and drug perturbation of the target 
(Fig. 3b and Supplementary Table 56). Among these, several revealed 
promising new therapeutic avenues for targeting CIN. CX4 (associated 
with PI3K–AKT activation) was correlated with response to inhibition of 
CCND1 via arcyriaflavin-A, which may indicate a therapeutic strategy for 
reversing tolerance to WGD40. CX5, a signature of IHR, predicted response 
to olaparib via inhibition of PARP1. Given that this signature was also cor-
related with RNAi knockdown of PARP1, this may represent a biomarker 
that is specific to the inhibition of regular protein function rather than 
PARP trapping41. CX9 (associated with replication stress) was correlated 
with response to multiple kinase inhibitors targeting genes involved in 
major mitogenic pathways (EGFR, JAK1, MET, PRKCA and PIK3CA), suggest-
ing that a multikinase inhibitor approach may be suitable for targeting 
replication stress. Correlation of CX13 (also associated with replication 
stress) with response to inhibition of CDK4 may potentially represent 
a biomarker-led approach for improving CDK4/6 inhibitor-mediated 
tumour sensitization to immune checkpoint blockade42.

Copy number signature correlations with gene essentiality scores from 
both CRISPR and RNAi perturbation screens identified 104 target genes 
with druggable structures that currently have no targeted therapies 
in the clinic (Supplementary Table 57). These represent putative syn-
thetic lethal drug targets, 49 of which had evidence of being implicated 
in CIN-related mechanisms (Fig. 3c). A number of these show promising 
links between the signature aetiology and potential consequence of tar-
get inhibition. CX1 activity was correlated with perturbation of ACTL6A 
(involved in the SWI/SNF complex) and TERF1 (involved in telomere 
maintenance), both of which are required for faithful chromosome 
segregation during mitosis4,43. The combined dysregulation of mitosis 
and telomere elongation machinery associated with CX1 suggests that 
inhibiting either one of these genes might be a promising therapeutic 
strategy by creating synthetic lethality. Indeed, inhibition of both genes 
has been previously suggested to induce cell lethality by generating 
excessive CIN44. CX9 was correlated with perturbation of BUB1B, a spindle 

assembly checkpoint gene recently identified as therapeutically relevant 
in CIN-high cells measured via WGD status45 and an aneuploidy score7. 
This association with CX9 suggests that the spindle assembly check-
point may have a crucial role in tolerating mid-level amplifications, and 
reducing levels of BUB1B may induce excessive and catastrophic chro-
mosome missegregation46. Finally, CX11, which was strongly associated 
with CDK4 amplification, was correlated with inhibition of GNL2, which 
in turn impedes the formation of the cyclin D1–CDK4 complex47.

Predicting platinum sensitivity
The aetiologies of the three IHR signatures suggested a model of 
increasing CIN complexity (Fig. 4a and Extended Data Fig. 9). IHR alone 
gives rise to CX2, a signature of small copy number changes indicative 
of tandem duplication. IHR plus replication stress leads to CX5, which 
involves larger CNAs. Finally, IHR plus replication stress, impaired dam-
age sensing and impaired NER gives rise to CX3 with the largest CNAs 
that are strongly associated with loss of heterozygosity. Our results 
did not reveal whether the different levels of complexity developed 
in a stepwise manner or by independent processes.

Disruption of both HR11 and NER48 have been shown to confer sensitiv-
ity to platinum-based chemotherapy. Given that only CX3 was associ-
ated with disruption of NER, we hypothesized that the IHR signatures 
may demonstrate differing abilities to predict platinum sensitivity. As 
patients with ovarian cancer are routinely treated with platinum-based 
chemotherapy, we tested the ability of all three signatures to predict 
overall survival, and hence platinum sensitivity, using a Cox propor-
tional hazards model (Fig. 4b and Supplementary Fig. 32). CX2 showed 
no association with platinum sensitivity, CX5 was predictive of resist-
ance and CX3 was predictive of sensitivity.

Given that these IHR signatures were able to dissect platinum 
response, we further hypothesized that they could be used in 
combination to provide better predictors of platinum sensitivity. 
As CX2 was not predictive, we used it as a baseline for capturing 
non-predictive IHR-related genomic changes, and required that the 
predictive CX3 activity exceed it to potentially confer sensitivity. This 
resulted in a simple classification rule: ‘if CX3 activity is greater than 
CX2 activity, then predict sensitivity’ (Fig. 4c). This interpretable 
classifier was able to distinguish significant overall survival sepa-
ration across cohorts of BRCA1 germline mutant ovarian cancers, 
ovarian cancers from the TCGA cohort, an independent validation 
cohort and an oesophageal cancer cohort (also routinely treated 
with platinum-based chemotherapy) (Fig. 4d, Extended Data Fig. 10 
and Supplementary Figs. 33–36). Other classifiers using all three IHR 
signatures, including more complex machine learning methods, did 
not outperform this decision rule (Supplementary Fig. 37). Further-
more, this simple classifier had comparable performance to more 
complex state-of-the-art HRD predictors, which rely on additional 
data beyond copy number, applied to cohorts of ovarian, oesopha-
geal and breast cancers (Extended Data Fig. 10c, d). By applying this 
classifier to the whole TCGA ovarian cohort, we estimate that 27% of 
ovarian tumours might be platinum sensitive. Applying the classifier 
pan-cancer, we estimate that 8% of all tumours might be sensitive.

Discussion
Here we present a robust analysis framework for CIN in human cancers 
built on a pan-cancer analysis across 33 cancer types. This resource 
advances the field in two ways: it untangles CIN according to charac-
teristic genomic patterns and underlying causes, and defines copy 
number signatures as new biomarkers to quantitatively measure dif-
ferent types of CIN. Our approach complements previous landscape 
studies of the genetic consequences of CIN49, which generally focused 
on recurrent somatic copy number events at individual loci. By contrast, 
copy number signatures8,9 uncover mechanistic biases in the patterns 
of alterations across all chromosomes.
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In its current form, the signature methodology cannot account 

for selection pressures on CNAs. For single-nucleotide variant sig-
natures, passenger mutations provide strong signals for detection. 
However, for CNAs, the distinction between driver and passenger 
mutations is less clear. For example, large homozygous deletions are 
likely to be subject to strong negative selection, whereas other CNAs 
can be subject to strong positive selection. This has implications for 
the ability to detect signatures of CIN. Those processes that gener-
ate CNAs under positive selection will be easier to detect than those 
that generate CNAs under negative selection. Quantitatively, the 
relationship between signature detection and selection is not yet well 
understood and will depend on genomic background. For example, 
negative selection will be weaker in whole-genome duplicated sam-
ples (approximately 50% of tumours) and in tumours that have lost 
their ability to sense DNA damage (for example, via TP53 mutation).

To maximize sample size, we used SNP 6.0 technology data from 
the TCGA collection. This technology is well established for copy num-
ber analysis, but has lower resolution than WGS. As further WGS data 
become available, there will be an opportunity to refine our signatures 
and increase their resolution. In their current form, we have demonstrated 
that the signatures are widely applicable across technologies, including 
inexpensive assays such as shallow WGS that can be easily applied in a clini-
cal setting to formalin-fixed tumour material50. However, it is important 
to note that the bulk-DNA samples that we analysed do not show dynam-
ics of CIN, and future work is needed to extend our approach to multiple 
samples or single cells from the same patient to show how patterns of CIN 
change over time. Further work is also required to quantify copy number 
signature activity at specific genomic loci, as our method currently only 
supports signature quantification at a whole-genome level.

The 17 copy number signatures and their putative aetiologies provide 
a valuable resource for furthering our understanding of CIN. For exam-
ple, CX1 represents the most prevalent type of CIN across tumours: 
chromosome missegregation. Aetiology analysis of CX1 pointed at mul-
tiple different mitotic defects giving rise to this signature. This suggests 
that, despite diversity in the potential causes of mitotic defects, these 
all result in the same change in genome structure1. These missegrega-
tion events typically result in large copy number changes, potentially 
disrupting the function of many genes; however, our signature analysis 
reveals that these changes only represent, on average, 4% of the total 
number of copy number changes observed in a tumour (Supplementary 
Fig. 38). By contrast, CX2 accounts for 23% of the copy number changes 
observed in a tumour. This highlights the power of our compendium of 
signatures to quantify and disentangle the causes and functional effect 
that different types of CIN have on tumour genomes. Our results also 
highlight the potential of our signatures to improve the treatment of 
patients with extreme CIN tumours. Platinum-based chemotherapy is 
currently considered a broad-spectrum cytotoxic chemotherapy and 
is routinely used to treat cancers with extreme CIN. However, here we 
showed that platinum response can be robustly dissected using differ-
ent signatures of IHR. By developing the IHR signatures into a compan-
ion diagnostic assay, platinum-based therapies could potentially be 
administered in a more targeted manner, allowing resistant patients 
to avoid their toxic side effects, and healthcare systems to reduce the 
cost burden of ineffectual treatment. Similarly for other signatures, 
our analysis of drug response across cell lines reinforces their potential 
to be developed into companion diagnostics for improved patient 
stratification during clinical trials.

The signature compendium presented here is an important resource 
to guide future studies into a deeper understanding of the origins and 
diversity of CIN and how to therapeutically target different types of CIN.

Online content
Any methods, additional references, Nature Research reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
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Extended Data Fig. 1 | Workflow of sample filtering and detectable 
chromosomal instability (dCIN). a, REMARK diagram showing flow of 
samples through the study. b, For each copy number feature of the previous 
ovarian signatures: a histogram of number of events per sample that could not 
be assigned to an ovarian copy number signature on the TCGA ovarian cohort. 
Red dotted line indicates the quantile 0.95. c, Scatterplot of cancer types 
comparing our estimate of detectable CIN (Supplementary Methods) to 

estimates reported in the Mitelman database. d,e, Boxplots comparing our 
estimate of detectable CIN with aneuploidy score and four CNA-specific 
metrics. Boxes represent the interquartile range (IQR) with the median as a 
bolded line. The whiskers extend to the largest/smallest value no further than 
1.5 * IQR from the hinge. Outliers beyond the end of the whiskers are marked 
individually as points. Results of two-sided Welch’s t-test shown on top of the 
boxplots.
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Extended Data Fig. 2 | Overview of copy number features and signature 
identification. a, A schematic showing the 5 fundamental copy number 
features that were computed using 6,335 samples with detectable CIN (dCIN). 
Note, a feature capturing absolute copy number is not included in our method. 
b, A schematic showing how mixture modelling is used to split the 
genome-wide feature distributions into smaller components by either 
Variational Bayes Gaussian mixture models or Finite Poisson mixture models. 
The actual number of resulting components is listed below each feature 
distribution. These components represent basic building blocks of each 

feature distribution. c, An example of how the probability of a CNA belonging 
to a mixture component (posterior probability) is calculated and how these are 
summed. d, (Right) The resulting 43-dimensional feature vectors for each 
sample, after all posterior probabilities are summed for each component. 
(Left) A schematic of how the sum-of-posterior matrix for all 6,335 samples was 
split in two matrices by a Bayesian implementation of the non-negative matrix 
factorisation (NMF), resulting in a signature catalogue and an activity 
catalogue.
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Extended Data Fig. 3 | Schematic of the signature compendium 
identification. a, From the complete input matrix 10 pan-cancer signatures 
were identified. b, For the 20 cancer types with over 100 samples each, 128 
cancer-type enriched signatures (CTES) were identified. c, All CTES were 
removed that had a cosine similarity over 0.74 with any pan-cancer signature. 
d, From the groups of CTES that had cosine similarities over 0.74 to each other, 
the signature with activities in the largest number of samples was taken as a 

representative signature. e, We performed non-negative least squares on each 
pair of pan-cancer specific signatures to each CTES. For any combination which 
showed a reconstruction error below 0.1, this CTES was removed. f, The sets of 
10 pan-cancer and 7 CTES were joined to a compendium of 17 signatures.  
g, Using linear combination decomposition, the signature activities were 
calculated for the 6,335 TCGA samples.
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Extended Data Fig. 4 | Signature interpretation matrix. Displayed on the left 
are the five features, their mixture components and component means. The 
heatmap on the right shows the signature interpretation values, which 
combine information from the sum-of-posterior matrix, signature activity 

matrix and the signature definition matrix (Supplementary Methods). Only 
components that are positively correlated with signature activity levels are 
displayed. Interpretation values are normalised per feature and signature.



Extended Data Fig. 5 | Monte Carlo simulation results for determining 
signature-specific noise thresholds. a, Each plot (1 per signature) shows the 
interquartile range of sample signature activities after the introduction of 
noise in the copy number features using a Monte Carlo simulation. Samples are 
ordered by their observed signature activity (red line). b, Schematic showing 
how we fitted a Gaussian distribution to the simulated values of all samples 

with an observed signature activity of 0 (red line). The horizontal black line 
represents the quantile 0.95 of the fitted Gaussian and forms the basis of our 
signature specific noise threshold, where values below this line are not 
distinguishable from 0. c, Plot of the signature-specific thresholds for the 17 
copy number signatures.



Article

Extended Data Fig. 6 | Signature stability across different copy number 
profiling technologies. Across the same set of 478 tumours, we compared the 
SNP6-array based copy number profiles and signatures to copy number 
profiles and signatures derived using different copy number profiling 
technologies. The columns contain results for the different technologies and 
the rows contain results for comparison between copy number profiles (top), 

signature activities (middle) and signature definitions (bottom, limited to 
pan-cancer signatures). For each comparison we show results for a range of 
penalties for ASCAT’s piecewise constant fitting or ASCAT.sc’s circular binary 
segmentation. (*): For settings marked with a star it was not possible to derive 
solutions for K = 10, instead the optimal number of K was chosen (lower than 
K = 10).



Extended Data Fig. 7 | Workflow for determining signature aetiology and 
confidence rating. a, Flowchart showing how an association between a 
mutated gene and signature activity was used to derive a hypothesis for a 

putative aetiology. b, Flowchart representing the decision making process 
leading to the assignment of a 3-star rating confidence score. c, Example of the 
star rating process for CX3.
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Extended Data Fig. 8 | Summary of associations between signatures and 
other covariates. a, Main panel shows significant associations between copy 
number signatures and mutated genes. Gene annotations summarised in the 
panels below. Boxes with a red line indicate significant associations that were 
not considered when determining signature aetiologies as the significant 
enrichment was via amplification of the gene, which also resided in an ecDNA 

amplicon, which could be a consequence of the signature rather than a cause, 
potentially causing a spurious correlation with amplification signatures (CX8, 
CX9, CX11, CX13). b, Each row shows highly significant associations between 
signatures and different covariates. Unless otherwise specified, only positive 
correlations are shown.



Extended Data Fig. 9 | Impaired homologous recombination signatures 
and their associations. a, Boxplots summarise signature activities of different 
patient groups (rows) defined by their driver gene mutation status. Ovarian 
samples are coloured in dark green and breast in orange. Boxes represent the 
interquartile range (IQR) with the median as a bolded line. The whiskers extend 
to the largest/smallest value no further than 1.5 * IQR from the hinge. Outliers 
beyond the end of the whiskers are marked individually as points. Significance 
tested with two-sided Welch’s t-test between WT BRCA1/2 and each of the 
categories and corrected for multiple testing by using Benjamini-Hochberg 
method. Statistically significant comparisons are shown to the right of the 
boxplots with stars denoting significance (q < 0.05) and arrows denoting the 
two groups used for the statistical test. (BRCA1/2 = BRCA1 and BRCA2, WT = wild 
type; LOH = loss of heterozygosity). b, Boxplots (with same characteristics as in 

a) summarise the scaled signature activities of 5,466 TCGA samples split by 
low, medium and high cell cycle scores. The brackets and stars (q < 0.05) show 
where there was a significant increase from low to medium to high cell cycle 
groups tested with a Welch’s t-test and corrected for multiple testing with 
Benjamini-Hochberg method. c, Volcano plots showing the results of a 
correlation between signature activity and expression of genes involved in 
nucleotide excision repair (NER). Each dot represents a gene, coloured dots 
show significant correlations. d, Spearman correlation coefficient (y-axis) of 
correlation between signature activities and seven common metrics of HRD 
(listed at top). Individual coefficients are displayed for impaired homologous 
recombination (IHR) signatures and the distribution of coefficients from 
remaining signatures are represented by boxplots (with same characteristics 
as in a).
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Extended Data Fig. 10 | Performance of classifiers for predicting platinum 
sensitivity. a, Kaplan-Meier estimator showing the overall survival 
probabilities of TCGA ovarian cancer patients split into two groups using our 
CX3/CX2 classifier. b, Hazard ratios and their 95% confidence interval obtained 
from a Cox proportional hazards model trained on our CX3/CX2 classification 
predicting overall survival of TCGA ovarian cancer patients. The model also 
corrected for age and cancer stage of the patients. P-value represents the 
significance of a Wald test. c,d, Median survival and hazard ratios generated for 
five cancer cohorts from the TCGA, PCAWG and ICGC projects using 
predictions from three classifiers (our CX3/CX2 classifier, HRDetect and 

Myriad myChoice based on the HRD score). Improvements in median survival 
tested by log-rank test (Kaplan-Meier survival analysis), with the minus symbol 
representing the predicted resistant group and the plus symbol the predicted 
sensitive group. Hazard ratios, their 95% confidence interval, and Wald test 
significance of the predicted sensitive group compared to the predicted 
resistant group are obtained from Cox proportional hazards models 
correcting for stage and age of patients, except for HRDetect where tumour 
stage was omitted as the models did not converge if included. The number and 
proportion of patients predicted to be sensitive (with HRD) and resistant 
(without HRD) by each classifier are listed on the right.
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