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Chromosomalinstability (CIN) results in the accumulation of large-scale losses, gains

and rearrangements of DNA'. The broad genomic complexity caused by CIN is a
hallmark of cancer?; however, there is no systematic framework to measure different
types of CINand their effect on clinical phenotypes pan-cancer. Here we evaluate the
extent, diversity and origin of CIN across 7,880 tumours representing 33 cancer types.
We present acompendium of 17 copy number signatures that characterize specific
types of CIN, with putative aetiologies supported by multiple independent data
sources. The signatures predict drug response and identify new drug targets. Our
framework refines the understanding of impaired homologous recombination, which
is one of the most therapeutically targetable types of CIN. Our results illuminate a
fundamental structure underlying genomic complexity in human cancers and
provide aresource to guide future CIN research.

CIN has complex consequences, including loss or amplification of
driver genes, focal rearrangements, extrachromosomal DNA, micro-
nuclei formation and activation of innate immune signalling’. This
leads to associations with disease stage, metastasis, poor prognosis
and therapeutic resistance®. The causes of CIN are also diverse and
include mitoticerrors, replication stress, homologous recombination
deficiency (HRD), telomere crisis and breakage fusion bridge cycles,
among others™,

Because of the diversity of these causes and consequences, CIN is
generally used as an umbrella term. Measures of CIN either divide
tumours into broad categories of high or low CIN?, are restricted to
asingle aetiology such as HRD®, are limited to a particular genomic
feature such as whole-chromosome-arm changes’, or can only be
quantified in specific cancer types®’. As a result, there is no system-
aticframework to comprehensively characterize the diversity, extent
and origins of CIN pan-cancer, or to define how different types of CIN
withinatumour relate to clinical phenotypes. Here we present a robust
analysis framework to quantitatively measure different types of CIN
across cancer types.

Deconstructing CIN

We derived 7,880 high-quality absolute copy number profiles across
33 tumour types using single-nucleotide polymorphism (SNP) array
data from The Cancer Genome Atlas (TCGA) (Extended Data Fig. 1a).
Extending our previously developed framework for quantifying signa-
tures of CIN in ovarian cancer®, we determined that 6,335 of the 7,880
samples (80%) had detectable CIN and were suitable for pan-cancer

detection of copy number signatures (Extended Data Fig. 1b). This
estimate was consistent with previous pan-cancer estimates of CIN*®
(Extended DataFig.1c-e).

Using these 6,335 genome-wide copy number profiles, we computed
distributions of five fundamental copy number features previously
demonstrated to encode patterns of copy number changes that rep-
resent different underlying causes of CIN® (Extended Data Fig. 2a and
Supplementary Methods). These features included: the copy number
change between a segment and the neighbouring segment; segment
length; breakpoint count per 10 Mb; breakpoint count per chromo-
some arm; and length of chains of oscillating copy number states. Only
segments that deviated from anormal, diploid state were considered
for the segment size and changepoint features. We did not include a
feature representing the copy number of a segment to avoid redun-
dantsignatures thatencode the same aetiology across different ploidy
backgrounds.

We applied mixture modelling to define distinct components for
each cohort-wide feature distribution, identifying a total of 43 mixture
components across the 5 features (Extended Data Fig. 2b, c and Sup-
plementary Methods). Conceptually, these components represent
the basic building blocks for defining CIN processes. We used these
mixture components to encode each tumour genome by probabilisti-
cally assigning copy number events to these components, resultingin
26,335 x 43 dimensional matrix. We then applied a Bayesianimplemen-
tation of non-negative matrix factorization to identify copy number
signatures (Extended Data Figs. 2d and 3a, b). We first used the com-
plete matrix and found 10 pan-cancer copy number signatures, then
used subsets of the matrix representing individual cancer types with
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Fig.1|Study overview. This schematic summarizes our robust analysis
framework, which uses copy number to derive pan-cancer copy number
signatures and provide insights. Onthe left and rightare lists of the datasets

atleast 100 samples, and found an additional 7 signatures (Extended
Data Fig. 3b-e and Supplementary Methods). We merged both sets
of signatures and computed their activities using linear combination
decompositiontoyield apan-cancer compendium of 17 copy number
signatures and their activities in tumours across the 33 cancer types
(Extended Data Figs. 3f, g and 4 and Supplementary Figs.1and 2).

We validated this approach by correctly identifying signatures in a
collection of simulated cancer genomes with copy number changes
caused by five well-studied mutational processes (Supplementary
Figs.3-6 and Supplementary Methods). We used a second simulation
study to derive signature-specific activity thresholds, to test the stabil-
ity of signature definitions and to test the stability of signature activities
(Methods, Extended Data Fig. 5 and Supplementary Fig. 7). We then
tested therobustness of our approachacross different high-throughput
technologies comparing signature definitions and activities across five
platforms: SNP 6.0 without matched normal, whole-genome sequenc-
ing (WGS) downsampled to SNP 6.0 positions, WGS downsampled to
shallow WGS, on-target whole-exome sequencing (WES) and off-target
WES. Quantification of signature activity was robust across all plat-
forms. Signature identification was possible across the WGS platforms
but performance deteriorated for WES (Extended Data Fig. 6).

Putative causes underlying each signature

Todetermine the putative causes underlying each of the 17 signatures
(named CX1to CX17), we developed adataintegration framework and
assigned a confidence score to each signature aetiology based on the
quality and extent of supporting data (Extended DataFig. 7). To propose
putative aetiologies, we used the patterns of copy number change
encoded by the signature (Extended DataFig. 4, Supplementary Figs. 8
and 9 and Methods) and signature associations with known cancer driver
mutations (Extended Data Fig. 8a and Supplementary Figs. 10-17).
We used these driver gene associations as markers for putative path-
waysinvolved inthe aetiologies and assumed the same pathway deregu-
lation for samples where no driver gene was mutated (similar to how
BRCAnessis defined in the absence of BRCAI or BRCA2 mutation™). In

used tosupport the signature aetiologies and insights. CCLE, Cancer Cell Line
Encyclopedia; DBS, doublet-base substitution; ecDNA, extrachromosomal
DNA; RS, rearrangement signature.

many cases, the signature pattern was already suggestive of a mecha-
nism (for example, whole-chromosome missegregation). Once a puta-
tive cause was proposed, we sought additional supporting data (Fig.1,
Extended Data Figs. 8 and 9 and Supplementary Methods) including:
data from two additional patient cohorts and their clinical metadata
(approximately 1,900 patients from the Pan-Cancer Analysis of Whole
Genomes (PCAWG) project and approximately 400 patients from the
International Cancer Genome Consortium (ICGC) project); five types
of mutational signatures (single-base substitution (SBS), insertion—
deletion (ID), doublet base substitutions, ovarian copy number and
rearrangement); 14 molecular features (somatic point mutations, gene
expression, cell cycle score, aneuploidy score, whole-chromosome
copy number aberrations (CNAs), tandem duplications, loss of het-
erozygosity, chromothripsis, kataegis, whole-genome duplication
status, telomere length and elongation machinery activity, extrachro-
mosomal DNA and centrosome amplification score (CA20)), and 11
DNA repair-specific features (germline BRCA1/2 mutations, BRCAI and
RADS1Chypermethylation data, HRDetect response, HRD score (Myr-
iad myChoice), TP53inactivation score, telomeric imbalances score,
large-scale state transition score, loss of heterozygosity score, DNA
repair proficiency score, protein expression score for 23 DNA-damage
repair genes and PCAWG structural variants with associated micro-
homologies). Here we provide a synthesis of the data supporting the
putative aetiologies (summarized in Fig. 2).

Mitotic signatures

CX1, CX6 and CX14 all encoded patterns related to whole-arm or
whole-chromosome changes and significantly correlated with direct
counts of whole-chromosome changes (Supplementary Fig. 18). This
suggested putative causes resulting in chromosome missegregation
during mitosis. In agreement with this hypothesis, CX14 had signifi-
cantly higher activity in tumours with inactivating mutations in C/C;
CX1with mutations in CIC*?, VHL" and PBRMI1 (ref.™); and CX6 with
mutations in CULI (ref. ) and RACI (ref. ) (Extended Data Fig. 8a).
Each ofthe three signatures correlated with downregulation of telom-
erase activity (Supplementary Fig.19b), with CX1also being negatively
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Fig.2|Proposed aetiologies and prevalence of copy number signatures.
Asummary of the pan-cancer frequency, proposed aetiology (where possible),
aetiology confidence rating, pattern of copy number change and distribution
across cancer typesis provided for each signature. Signatures are labelled on
thebasis of pan-cancer prevalence, with signature CX1having the highest
pan-cancer frequency. Confidence measures for each signature aetiology are
indicated by astar rating. The heatmap shows the signature frequency for each
ofthe33 cancer types. NHEJ, non-homologous end joining; IHR, impaired
homologous recombination; ACC, adrenocortical carcinoma; BLCA, bladder
urothelial carcinoma; BRCA, breastinvasive carcinoma; CESC, cervical
squamous cell carcinomaand endocervicaladenocarcinoma; CHOL,
cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid
neoplasm diffuse large B-cell lymphoma; ESCA, oesophageal carcinoma;

correlated with telomere length (Supplementary Fig.19a) and associ-
ated with alack of TERC and TERT amplification and expression (Sup-
plementary Fig.19c-e, and 20). Therefore, telomere shortening may
have a key role in the mechanisms underlying these signatures*. CX1
positively correlated with the ‘clock-like’ SBS1 signature, suggesting
that these errors might also be mediated via a natural ageing process
such as age-related telomere attrition* (Extended Data Fig. 8 and
Supplementary Fig. 21).

Signatures ofimpaired homologous recombination

CX2,CX3and CX5allexhibited patterns that had previously been shown
to associate with impaired homologous recombination (IHR): CX2
showed a pattern of short-to-medium-sized, oscillating changes asso-
ciated with tandem duplications”; CX5 showed medium-sized events
associated with tandem duplication; and CX3 showed long-sized,
single-copy changes with associated loss of heterozygosity'®*
(Extended Data Fig. 4 and Supplementary Figs. 18 and 22). All three
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GBM, glioblastoma multiforme; HNSC, head and neck squamous cell
carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell
carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid
leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma;
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO,
mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic
adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD,
prostateadenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma;
SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT,
testicular germ cell tumours; THCA, thyroid carcinoma; THYM, thymoma;
UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma;
UVM, uveal melanoma.

signatures were observed at significantly higher levelsin tumours with
somatic BRCAI mutation, independently of each other (Extended Data
Figs. 8a and 9a and Supplementary Table 12). This suggested varying
roles for disruption of HR as underlying causes". Several lines of evi-
dencesupported thelink between these signatures and HR:increased
CX2, CX3 and CXS5 activity across germline-mutated BRCAI carriers
(and BRCA2 carriers for CX3); higher activity in cases with methylated
RADSIC (except CX5)? (Extended DataFig. 9a); correlation with tandem
duplication scores” (Supplementary Fig. 22), rearrangement signatures
1,3and 5 (ref.?) (Supplementary Fig. 23), SBS3 signature and ID6 (Sup-
plementary Fig. 21), centrosome amplificationscore” (Supplementary
Fig. 24), and ovarian copy number signatures 3 and 7 (ref. 8) (Supple-
mentary Fig. 25); association with loss of heterozygosity', chromoth-
ripsis? (except CX3) and kataegis**(Supplementary Fig.18); increased
utilization of theta-mediated end joining and single-strand annealing
backup repair pathways visible as microhomologies at breakpoints"
(Supplementary Fig. 26); as well as correlation with seven HRD metrics®



Fig.3|Signatures asbiomarkers for drugresponse and discovery of novel
drugtargets. a, Aschematic showing how response biomarkers and novel
drugtargets were found by correlating signature activities with gene
essentiality determined by CRISPR-Cas9 or RNAiscreens, and with response to
drug perturbations measured as the area under the dose response curve,
across 297 celllines. The Venn diagram shows the overlap of significant
correlations for each of the signature to target gene associations. The colour of
thecirclesinthe Venn diagram matches the schematic above, and the shaded
areasindicate whichresultsrelatetoband c.b, Asummary of the significant
associations between copy number signatures and drug response to 44
therapies. Eachsignature ontherightislinked to atherapy ontheleftifthe

(Extended DataFig. 9d). The strength of these associations increased
from CX2 to CXS5 and to CX3. This suggested an increasing spectrum
of CIN complexity associated with disruptions in HR-mediated repair.
Indeed, CX2 appears to be only associated with disruption of HR,
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signatureis predictive of response to CRISPR and/or RNAi perturbationofa
targetgene, and treatment with atherapy that targets that gene. HDAC,
histone deacetylase; PR, progesterone receptor; sGC, soluble guanylate
cyclase.c, Asummary of the significant associations between copy number
signatures and target gene perturbation. Each signature on theleftislinked to
atarget gene ontherightifthe signatureis predictive of response to CRISPR
and RNAi perturbation ofthe target gene. The listed targets were filtered for
druggability according to their structure or by ligand-based approaches
(n=104) and their previous known association with CIN (n =49).ROS, reactive
oxygen species; IHR, impaired homologous recombination.

whereas CX5and CX3 have associations thatindicate the involvement
of replication stress (via amplification and overexpression of MAPK1
(ref. %), PPP2RIA% and U2AFI (ref.?®)). The larger copy number changes
observed for CX5and CX3 suggest faster cell cycling and breaks carried
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Fig.4 |Predicting platinum sensitivity using IHR signatures. a, A proposed
model ofincreasing CIN complexity for IHR signatures based on the signature
aetiologies. b, Results for each IHR signature after training a Cox proportional
hazards modelto predict overall survival across 545 ovarian cancers treated
with platinum-based chemotherapy. Hazard ratios, their 95% confidence
interval and Wald test significance arereported. The dashed lineindicatesa
hazardratio of 1. ¢, A schematic of the clinical classifier built on CX3 and CX2
activities of ovarian cancer samples with germline BRCAI mutations. d, Results
of survival analyses after applying the classifier from c to assign patientsinto
predicted sensitive (plus symbol) or predicted resistant (minus symbol)

through to mitosis™, which was supported by strong correlation with
cellcyclescores (Extended DataFig. 9b) and increased CNAs estimated
to occur during mitosis (Supplementary Fig. 27 and Supplementary
Methods). Further associations were observed for CX3, including mis-
sense mutations in ERCC2 (ref.?’) and downregulation of key nucleotide
excisionrepair (NER) genes suggesting defectsin NER (Extended Data
Fig. 9c and Supplementary Fig. 28), as well as TP53 mutation suggest-
ing impaired damage sensing® (Extended Data Fig. 8a). These CX3
associations are reminiscent of what has been termed BRCAness or
HRD". However, CX5, and especially CX2, appear to represent a more
moderate impairment of HR. Therefore, we use the term IHR for the
aetiology underlying all three signatures rather than HRD.

Whole-genome duplication signature

CX4 encompassed aunique pattern of copy number change with neigh-
bouring segments separated by two copy changes (Extended DataFig.4),
apatterncommonly used to define the presence ofawhole-genome dupli-
cation (WGD) event®. CX4 was also associated with whole-chromosome
changes (Extended DataFig. 8b), afeature commonly observedin tetra-
ploid cells due to increased mitotic errors®. The specific cause of WGD
(endoreduplication, errorsin cytokinesis or cell fusion®) was not evident
fromour data; however, this signature had high activity in tumours with
PIK3R2, AKTI and MAPK1 mutations, suggesting that tolerance to WGD
may be mediated by PI3K-AKT activation*** (Extended Data Fig. 8a).

Signature ofimpaired non-homologous end joining

CX10 displayed a pattern of clustered and oscillating copy number
changes (Extended Data Fig. 4). Its activity was significantly higher in
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groups. Eachrow displaysresults for each of the four cancer cohorts fromthe
TCGA and PCAWG projects. Differencesin median survival areindicated by the
arrow, with Pvalues fromalog-rank test appearing below (Kaplan-Meier
survival analysis). Hazard ratios and their 95% confidence interval of the
predicted sensitive group compared to the predicted resistant group are
obtained from Cox proportional hazards models correcting for stage and

age of patients. The Pvaluerepresents the corresponding Wald test. AU,
Australian Project at the ICGC/PCAWG consortium; OV, ovarian cancer; ESAD,
oesophageal cancer; UK, British project at the ICGC/PCAWG consortium.

tumours with inactivating mutations in FBXW7 and correlated with
FBXW7-mutant-mediated tandem duplication class 1/2 (Extended Data
Fig.8and Supplementary Fig.22), suggesting impaired non-homologous
endjoining'”* as a putative cause. A significantincrease in the propor-
tion of breakpoints with microhomologies in samples with this signa-
ture was indicative of alack of blunt-end joining, whichis a hallmark of
non-homologous end joining (Supplementary Fig. 29a).

Signatures of amplification

CX8, CX9, CX11 and CX13 encoded patterns of low-level, mid-level,
mid-level and high-level amplifications, respectively (Extended Data
Fig.4).Higher activity of CX8in the context of amplification and overex-
pression of U2AFI (ref.?®) and MAPKI (ref. %), and for CX9 ERBB3 (ref.%)
(Extended DataFig. 8), suggested replication stress as a putative cause.
Allfour signatures were associated withincreased cell cycle score (Sup-
plementary Fig.30), reinforcing replication stress as a causal factor. In
addition, CX8, CX9 and CX13 were associated with APOBEC mutagenesis
(SBS2 and/or SBS13 signatures; Supplementary Fig. 21a), and CX9 and
CXI11 were associated with ID signatures 1and 2 (ref. *) (Supplemen-
tary Fig. 21). CX9 copy number changes were not part of oscillating
chains; however, the remaining amplification signatures were. CX13
was strongly associated with extrachromosomal DNA circularization
and amplification events (Supplementary Fig. 31); however, the specific
mechanism causing the extrachromosomal DNA was not evident.

Unknown aetiologies
CX7,CX12, CX15, CX16 and CX17 did not have patterns of copy num-
ber change or associations clearly indicative of a putative cause



(Extended Data Figs. 4 and 8a). Therefore, these signatures currently
have unknown aetiologies.

Cross-signature observations

Many covariates demonstrated associations with multiple signatures.
Chromothripsis was linked with seven different signatures (Extended
DataFig. 8), suggesting that many potential aetiologies underpin these
complex rearrangements. Replication stress was associated with eight
signatures, highlighting it as a major source of CIN (Fig. 2). Different
signatures showed a bias for occurrence before WGD (CX1, CX2, CX7
and CX15) or after WGD (CX3, CX5, CX6, CX8, CX9, CX13 and CX17),
demonstrating the importance of WGD events in modulating CIN
(Extended Data Fig. 8b and Supplementary Fig. 18e, ). Finally, signa-
tures of APOBEC mutagenesis and kataegis were associated with six
signatures, highlighting these as acommon feature of CIN* (Extended
Data Fig. 8b and Supplementary Figs. 18 and 21).

Drugresponse prediction and drug target identification

The putative signature aetiologies implicated canonical cancer path-
ways as some of the major drivers of CIN. Many of these pathways have
beenthefocus oftargeted therapy development. Therefore, given that
our signatures can be readily measured in tumours from patients, we
explored their utility for therapy response prediction and drug target
identification. We integrated data from 297 cancer cell lines, includ-
ing copy number profiling, genome-wide clustered regularly inter-
spaced short palindromic repeat (CRISPR-Cas9) knockout screens,
genome-wide RNA interference (RNAi) screens and the profiling rela-
tive inhibition simultaneously in mixtures (PRISM) drug repurposing
screen (Supplementary Methods). We assessed correlations between
signature activities, gene essentiality and sensitivity to drug perturba-
tion of the gene (Fig. 3a).

Weidentified 40 genes where copy number signature activity was sig-
nificantly correlated withboth geneticand drug perturbation of the target
(Fig. 3b and Supplementary Table 56). Among these, several revealed
promising new therapeutic avenues for targeting CIN. CX4 (associated
with PI3K-AKT activation) was correlated with response toinhibition of
CCND1viaarcyriaflavin-A, which may indicate atherapeutic strategy for
reversing tolerance to WGD*°. CX5, asignature of IHR, predicted response
toolaparib viainhibition of PARPI. Given that this signature was also cor-
related with RNAi knockdown of PARPI, this may represent abiomarker
that is specific to the inhibition of regular protein function rather than
PARP trapping*. CX9 (associated withreplication stress) was correlated
with response to multiple kinase inhibitors targeting genes involved in
major mitogenic pathways (EGFR,JAKI, MET, PRKCA and PIK3CA), suggest-
ing that a multikinase inhibitor approach may be suitable for targeting
replication stress. Correlation of CX13 (also associated with replication
stress) with response to inhibition of CDK4 may potentially represent
abiomarker-led approach for improving CDK4/6 inhibitor-mediated
tumour sensitization toimmune checkpoint blockade®.

Copy number signature correlations with gene essentiality scores from
both CRISPR and RNAi perturbation screensidentified 104 target genes
with druggable structures that currently have no targeted therapies
in the clinic (Supplementary Table 57). These represent putative syn-
theticlethal drugtargets, 49 of which had evidence of being implicated
in CIN-related mechanisms (Fig. 3c). Anumber of these show promising
links between the signature aetiology and potential consequence of tar-
getinhibition. CX1activity was correlated with perturbation of ACTL6A
(involved in the SWI/SNF complex) and TERFI (involved in telomere
maintenance), both of which are required for faithful chromosome
segregation during mitosis**®. The combined dysregulation of mitosis
and telomere elongation machinery associated with CX1suggests that
inhibiting either one of these genes might be a promising therapeutic
strategy by creating syntheticlethality. Indeed, inhibition of both genes
has been previously suggested to induce cell lethality by generating
excessive CIN*. CX9 was correlated with perturbation of BUBIB, aspindle

assembly checkpoint generecentlyidentified as therapeutically relevant
in CIN-high cells measured via WGD status* and an aneuploidy score’.
This association with CX9 suggests that the spindle assembly check-
pointmay havea crucial roleintolerating mid-level amplifications, and
reducing levels of BUB1B may induce excessive and catastrophic chro-
mosome missegregation*®. Finally, CX11, which was strongly associated
with CDK4 amplification, was correlated with inhibition of GNL2, which
in turnimpedes the formation of the cyclin D1-CDK4 complex®.

Predicting platinum sensitivity

The aetiologies of the three IHR signatures suggested a model of
increasing CIN complexity (Fig.4aand Extended DataFig.9).IHR alone
gives rise to CX2, asignature of small copy number changesindicative
oftandem duplication. IHR plus replication stress leads to CX5, which
involveslarger CNAs. Finally, IHR plus replication stress, impaired dam-
age sensing and impaired NER gives rise to CX3 with the largest CNAs
that are strongly associated with loss of heterozygosity. Our results
did not reveal whether the different levels of complexity developed
inastepwise manner or by independent processes.

Disruption of both HR" and NER*® have been shown to confer sensitiv-
ity to platinum-based chemotherapy. Given that only CX3 was associ-
ated with disruption of NER, we hypothesized that the IHR signatures
may demonstrate differing abilities to predict platinum sensitivity. As
patients with ovarian cancer are routinely treated with platinum-based
chemotherapy, we tested the ability of all three signatures to predict
overall survival, and hence platinum sensitivity, using a Cox propor-
tional hazards model (Fig. 4b and Supplementary Fig. 32). CX2 showed
no association with platinum sensitivity, CX5 was predictive of resist-
ance and CX3 was predictive of sensitivity.

Given that these IHR signatures were able to dissect platinum
response, we further hypothesized that they could be used in
combination to provide better predictors of platinum sensitivity.
As CX2 was not predictive, we used it as a baseline for capturing
non-predictive IHR-related genomic changes, and required that the
predictive CX3 activity exceed it to potentially confer sensitivity. This
resultedin asimple classification rule: ‘if CX3 activity is greater than
CX2 activity, then predict sensitivity’ (Fig. 4c). This interpretable
classifier was able to distinguish significant overall survival sepa-
ration across cohorts of BRCAI germline mutant ovarian cancers,
ovarian cancers from the TCGA cohort, an independent validation
cohort and an oesophageal cancer cohort (also routinely treated
with platinum-based chemotherapy) (Fig. 4d, Extended Data Fig. 10
and Supplementary Figs. 33-36). Other classifiers using all three IHR
signatures, including more complex machine learning methods, did
not outperform this decision rule (Supplementary Fig. 37). Further-
more, this simple classifier had comparable performance to more
complex state-of-the-art HRD predictors, which rely on additional
databeyond copy number, applied to cohorts of ovarian, oesopha-
geal and breast cancers (Extended Data Fig.10c, d). By applying this
classifier to the whole TCGA ovarian cohort, we estimate that 27% of
ovarian tumours might be platinum sensitive. Applying the classifier
pan-cancer, we estimate that 8% of all tumours might be sensitive.

Discussion

Here we present arobust analysis framework for CINin human cancers
built on a pan-cancer analysis across 33 cancer types. This resource
advances the field in two ways: it untangles CIN according to charac-
teristic genomic patterns and underlying causes, and defines copy
number signatures as new biomarkers to quantitatively measure dif-
ferent types of CIN. Our approach complements previous landscape
studies of the genetic consequences of CIN*’, which generally focused
onrecurrent somatic copy number events atindividual loci. By contrast,
copy number signatures®® uncover mechanistic biases in the patterns
of alterations across all chromosomes.
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In its current form, the signature methodology cannot account
for selection pressures on CNAs. For single-nucleotide variant sig-
natures, passenger mutations provide strong signals for detection.
However, for CNAs, the distinction between driver and passenger
mutationsis less clear. For example, large homozygous deletions are
likely to be subject to strong negative selection, whereas other CNAs
canbesubject to strong positive selection. This has implications for
the ability to detect signatures of CIN. Those processes that gener-
ate CNAs under positive selection will be easier to detect than those
that generate CNAs under negative selection. Quantitatively, the
relationship between signature detection and selection is not yet well
understood and will depend on genomic background. For example,
negative selection will be weaker in whole-genome duplicated sam-
ples (approximately 50% of tumours) and in tumours that have lost
their ability to sense DNA damage (for example, via TP53 mutation).

To maximize sample size, we used SNP 6.0 technology data from
the TCGA collection. This technology is well established for copy num-
ber analysis, but has lower resolution than WGS. As further WGS data
become available, there will be an opportunity to refine our signatures
andincrease their resolution. In their current form, we have demonstrated
thatthesignatures are widely applicable across technologies, including
inexpensive assays such as shallow WGS that can be easily applied ina clini-
cal setting to formalin-fixed tumour material*. However, it isimportant
tonote that the bulk-DNA samples that we analysed do not show dynam-
ics of CIN, and future workis needed to extend our approach tomultiple
samples or single cells from the same patient to show how patterns of CIN
change over time. Further workis also required to quantify copy number
signature activity at specificgenomicloci, as our method currently only
supports signature quantification at awhole-genome level.

The17 copy number signatures and their putative aetiologies provide
avaluableresource for furthering our understanding of CIN. For exam-
ple, CX1represents the most prevalent type of CIN across tumours:
chromosome missegregation. Aetiology analysis of CX1 pointed at mul-
tiple different mitotic defects giving rise to this signature. This suggests
that, despite diversity in the potential causes of mitotic defects, these
allresult in the same change in genome structure’. These missegrega-
tion events typically resultin large copy number changes, potentially
disrupting the function of many genes; however, our signature analysis
reveals that these changes only represent, on average, 4% of the total
number of copy number changes observedin atumour (Supplementary
Fig.38). By contrast, CX2 accounts for 23% of the copy number changes
observedinatumour. This highlights the power of our compendium of
signatures to quantify and disentangle the causes and functional effect
that different types of CIN have on tumour genomes. Our results also
highlight the potential of our signatures to improve the treatment of
patients with extreme CIN tumours. Platinum-based chemotherapy is
currently considered abroad-spectrum cytotoxic chemotherapy and
isroutinely used to treat cancers with extreme CIN. However, here we
showed that platinum response can be robustly dissected using differ-
entsignatures of IHR. By developing the IHR signaturesinto acompan-
ion diagnostic assay, platinum-based therapies could potentially be
administered in a more targeted manner, allowing resistant patients
to avoid their toxic side effects, and healthcare systems to reduce the
cost burden of ineffectual treatment. Similarly for other signatures,
ouranalysis of drug response across cell lines reinforces their potential
to be developed into companion diagnostics for improved patient
stratification during clinical trials.

The signature compendium presented hereis animportantresource
toguide futurestudiesinto a deeper understanding of the origins and
diversity of CIN and how to therapeutically target different types of CIN.
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Extended DataFig.1| Workflow of samplefilteringand detectable
chromosomalinstability (ACIN). a, REMARK diagram showing flow of
samples through the study. b, For each copy number feature of the previous
ovariansignatures: a histogram of number of events per sample that could not
beassigned toanovarian copy number signature on the TCGA ovarian cohort.
Red dotted lineindicates the quantile 0.95. ¢, Scatterplot of cancer types
comparingour estimate of detectable CIN (Supplementary Methods) to

Detectable CIN (dCIN)

estimates reportedin the Mitelman database. d,e, Boxplots comparing our
estimate of detectable CIN with aneuploidy score and four CNA-specific
metrics. Boxesrepresent theinterquartile range (IQR) with the medianasa
boldedline. The whiskers extend to the largest/smallest value no further than
1.5*IQR from the hinge. Outliers beyond the end of the whiskers are marked
individually as points. Results of two-sided Welch’s t-test shown on top of the
boxplots.
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catalogue.
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Extended DataFig. 3 | Schematic of the signature compendium
identification. a, From the complete input matrix 10 pan-cancer signatures
wereidentified. b, For the 20 cancer types with over 100 samples each, 128
cancer-type enriched signatures (CTES) were identified. c, AIlCTES were
removed that had a cosine similarity over 0.74 with any pan-cancer signature.
d, Fromthe groups of CTES that had cosine similarities over 0.74 to each other,
thesignature with activitiesinthe largest number of samples was takenasa
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representative signature. e, We performed non-negative least squares on each
pair of pan-cancer specific signatures to each CTES. For any combination which
showed areconstructionerror below 0.1, this CTES was removed. f, The sets of
10 pan-cancer and 7 CTES were joined to a compendium of 17 signatures.

g, Usinglinear combination decomposition, the signature activities were
calculated for the 6,335 TCGA samples.
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Extended DataFig.5|Monte Carlo simulationresults for determining
signature-specific noise thresholds. a, Each plot (1 per signature) shows the
interquartile range of sample signature activities after the introduction of
noise in the copy number features using aMonte Carlo simulation. Samples are
ordered by their observed signature activity (red line). b, Schematic showing
how we fitted a Gaussian distribution to the simulated values of all samples

withan observed signature activity of O (red line). The horizontal black line
represents the quantile 0.95 of the fitted Gaussian and forms the basis of our
signature specific noise threshold, where values below this line are not
distinguishable from O. ¢, Plot of the signature-specific thresholds for the 17
copy number signatures.
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a) Flowchart of identifying a putative cause based on mutated genes
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Extended DataFig.7 | Workflow for determining signature aetiology and
confidencerating. a, Flowchart showing how an associationbetweena
mutated gene and signature activity was used to derive a hypothesis fora
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b) Star rating of confidence in putative cause
Mutated gene(s)
associated with signature?

Yes | No
I
Orthogonal
data available?
Yes | No
[ |
Hypothesis about No association

putative cause derived available for
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¢) Example three star rating for CX3
Pattern of  Segment size is indicative of large-scale state transitions, a
change genomic hallmark of HRD (Popova et al., 2012).

One copy change suggests both loss-of-heterozygosity
events and tandem duplications.

Mutated BRCA1, BRCA2 Impaired homologous
genes recombination
PIK3R2, MYC1 Replication stress
*YON DRPoRIA MAPKA
TP53 Impaired DNA damage
sensing
ERCC2 Impaired nucleotide
excision repair (NER)
Orthogonal Tandem duplication classes Hallmarks of homologous
data 1,1/2,2 recombination deficiency
. (HRD)
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Ovarian CNA signatures 3, 7
Loss-of-heterozygosity
Seven other HRD metrics

Improvement in PFl and OS Platinum-sensitivity
for ovarian cancer patients

Star rating of confidence in putative cause

No association available for hypothesis on
putative cause.

bie Hypothesis about putative cause derived from
associations with orthogonal data only.

PAQie Established knowledge about putative cause
based on mutated genes.

QAP Established knowledge about putative cause
based on mutated genes plus orthogonal data
and/or pattern of change.

putative aetiology. b, Flowchart representing the decision making process
leading to the assignment of a 3-star rating confidence score. ¢, Example of the
star rating process for CX3.
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a) Distinct impaired HR signatures and known HRD-inducing mutations
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interquartile range (IQR) with the medianasabolded line. The whiskers extend
tothelargest/smallest value no further than1.5*IQR from the hinge. Outliers
beyondthe end of the whiskers are marked individually as points. Significance
tested with two-sided Welch’s t-test between WT BRCA1/2 and each of the
categories and corrected for multiple testing by using Benjamini-Hochberg
method. Statistically significant comparisons are shown to the right of the
boxplots with stars denoting significance (q < 0.05) and arrows denoting the
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Myriad myChoice based onthe HRD score). Improvements in median survival
tested by log-rank test (Kaplan-Meier survival analysis), with the minus symbol
representing the predicted resistant group and the plus symbol the predicted
sensitive group. Hazard ratios, their 95% confidenceinterval, and Wald test
significance of the predicted sensitive group compared to the predicted
resistantgroup are obtained from Cox proportional hazards models
correcting for stage and age of patients, except for HRDetect where tumour
stage was omitted as the models did not convergeifincluded. The number and
proportion of patients predicted to be sensitive (with HRD) and resistant
(without HRD) by each classifier are listed on the right.

Extended DataFig.10 | Performance of classifiers for predicting platinum
sensitivity. a, Kaplan-Meier estimator showing the overall survival
probabilities of TCGA ovarian cancer patients splitinto two groups using our
CX3/CX2classifier. b, Hazard ratios and their 95% confidence interval obtained
froma Cox proportional hazards model trained on our CX3/CX2 classification
predicting overall survival of TCGA ovarian cancer patients. The model also
corrected for age and cancer stage of the patients. P-value represents the
significance of aWald test. ¢,d, Median survival and hazard ratios generated for
five cancer cohorts from the TCGA, PCAWG and ICGC projects using
predictions from three classifiers (our CX3/CX2 classifier, HRDetect and
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Software and code

Policy information about availability of computer code

Data collection  All software is open to the members of the public and accessible via github. The following links provide unrestricted access:

*Main repositories*

- Drews2022 CIN Compendium is the main github repository containing code to reproduce the figures, most results and most supplementary
tables: https://github.com/markowetzlab/Drews2022_CIN_Compendium

- CINSignatureQuantification covers the R package needed to quantify signature activities from copy number profiles. Also includes clinical
classifier: https://github.com/markowetzlab/CINSignatureQuantification

- CINSignatureDiscovery covers 1) how the signature compendium was obtained and 2) details how to identify de-novo signatures from copy
number profiles: https://github.com/markowetzlab/CINSignatureDiscovery

*Support repositories*

- ASCAT is the tool used to generate absolute copy number profiles from Affymetrix SNP6 arrays. The final copy number profiles can be
downloaded from the github repository: https://github.com/VanLoo-lab/ascat

- CIN Genome Simulation covers the simulation we used to validate the multi-feature approach: https://github.com/markowetzlab/
CINGenomeSimulation

- Drug target discovery and biomarker identification supports the results shown in Figure 3: https://github.com/macintyrelab/
CNSigs_DrugCorrelations

- Signature Interpretation Matrix details how the Interpretation matrix was obtained: https://github.com/macintyrelab/
Signaturelnterpretation

- Signature Interpretation Analysis supports all analyses performed using the Interpretation matrix: https://github.com/macintyrelab/
Signaturelnterpretation_analyses

- Cell line preparation details how the raw cell line data was processed to be used for the analyses covered in Figure 3: https://github.com/
markowetzlab/cell-line-signatures

- Bin size estimation details how the bin size was calculated that has been used to downsample the WGS to shallow WGS data: https://
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Data analysis

github.com/markowetzlab/swgs-binsize

For the majority of analyses the free statistical software R (v3.6.1) was used. The following packages were used:
broom.mixed 0.3.3
caret 6.0-83
cmprsk 2.2-10
coin 1.4-2
compositions 2.0-1
cowplot 1.0.0
data.table 1.12.8
DNAcopy 1.64.0
flexmix 2.3-15
ggExtra 0.9
ggplot2 3.1.1
ggrastr 0.2.3
ggrepel 0.8.2
ggthemes 4.2.0
ggstance 0.3.3
ggpubr 0.2.5
gridExtra 2.3
lemon 0.4.4

jtools 2.0.3

Isa 0.73.1

MASS 7.3_51.5
NMF 0.21.0
patchwork 1.0.0
PharmacoGx 1.17.1
Polychrome 1.3.1
RColorBrewer 1.1-2
reshape2 1.4.3
rstatix 0.7.0

scales 1.0.0
sfsmisc 1.1-7

sjPlot 2.8.9

stringr 1.4.0
survival 3.1-11
survminer 0.4.8
tidyverse 1.3.1
vcfR 1.12.0
viridisLite 0.3.0
YAPSA 1.12.0

SignatureAnalyzer written in Python (cloned on 15/03/19, link: https://github.com/broadinstitute/SignatureAnalyzer-GPU) was used for the
Signature discovery.

## Signature derivation

Copy number profiles and absolute copy numbers produced with Affymetric Power Tools (v2.11.2) and ASCAT (R package, v2.4)

Mixture modelling: Flexmix (R package, v2.3-15); Variational Bayes Gaussian Mixture Modeling in Python (coded according to Blei and Jordan,
Bayesian Anal., 2006)

Non-negative matrix factorisation: SignatureAnalyzer (Python script; Tan and Fevotte, IEEE Trans. Pattern Anal. Mach. Intell., 2013; Kim et al.
Nature Genetics, 2016; cloned from Github on 15/03/19)

Signature assignment: LCD function from YAPSA (R package available from Bioconductor, v1.12.0)

CNA estimation from signature activities: Im function from base R (v3.6.1)

## Signature robustness

ASCAT (R package, v2.4), ASCAT.sc (R package, unpublished)

Monte-Carlo simulation: code available in Github repository

Gaussian mixture modeling: Mclust function from mclust (R package, v5.4.6)

## Simulations of cancer genomes, SBS signatures, single-feature vs multi-feature approaches
NMF (R package, v0.21.0)
SigProfilerExtractor (Python, v1.1.4)

## Association with biological covariates AND drug response and drug target analysis

Z-score transformation: scale function from base R (v3.6.1)

Association of signature activities with whole-genome duplication: prop.test (Proportion test) and t.test (Welsh's t-test) function from base R
(v3.6.1)

Difference in distributions: t.test function from base R (v3.6.1)

Cosine correlations: cosine function from LSA (R package, v073.1)

Spearman and Kendall correlations: cor and cor.test functions from base R (v3.6.1)

Permutation test: code available in Github repository

Cosine permutation test: cosinePerm function from PharmacoGx (R package, v1.17.1)

Linear and robust linear regression: Im function from base R (v3.6.1), rlm from MASS (R package, v73._51.5)
Wald test for testing coefficients of robust linear regressions: f.robftest function from sfsmisc (R package, v.1.1-7)
Fisher's exact test for count data: fisher.test function from base R (v3.6.1)

Hierarchical clustering: hclust and dist functions from base R (v.3.6.1)
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p-value correction: p.adjust function from base R (v3.6.1) correcting for false discovery rate (Benjamini and Hochberg, J R Stast. Soc., 1995)

## Survival analysis
Univariate survival analysis (Kaplan-Meier estimates): survfit function from survival (R package, v.3.1-11)
Multivariate survival analysis (Cox proportional hazard models): coxph function from survival (R package, v.3.1-11)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All data used in this study were obtained from publicly available sources and are described in detail in Supplementary Table 1, section "Data and Code" in the
Supplementary Methods. Some raw data have restricted access (TCGA dbGaP Accession number: phs000178.v11.p8; ICGC EGA Accession number:
EGAS00001001692). Granting access to these is beyond the control of the authors. Access can be obtained by applying to the relevant Data Access Committees (see
below for details). The authors declare that all other data supporting the findings of this study, including the source data for all figures, are publicly available without
restrictions and also available from Supplement and the Github repositories.

## Restricted data

- TCGA SNP6 Affymetrix arrays and copy number profiles

Paper: Beroukhim et al. (Nature, 2010)

URL to data:

TCGA Research Network: https://www.cancer.gov/tcga

Raw data: https://portal.gdc.cancer.gov/legacy-archive/search/f

Copy number segments: https://portal.gdc.cancer.gov/repository

Data access:

Part controlled (CEL files, raw data): Study Accession number (dbGaP): phs000178.v11.p8

Part open (copy number segments, processed data): ASCAT Github repository: https://github.com/VanLoo-lab/ascat/tree/master/ReleasedData

- PCAWG Copy number calls and Structural variants

Paper: Gerstung et al., Nature, 2020; Dentro et al., Cell, 2021

URL to data:

US TCGA portion of PCAWG: https://portal.gdc.cancer.gov/repository

ICGC portion of PCAWG: https://dcc.icgc.org/pcawg

Data access:

Controlled (raw data):

Study Accession numbers:

For US TCGA portion of the PCAWG data: Phs000178.v11.p8 (dbGaP) -> https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000178.v11.p8#restricted-access

For the ICGC portion of the PCAWG data: EGAS00001001692 (EGA) with an application to the ICGC-DACO -> https://daco.icgc.org/

## Databases
- The COSMIC database can be accessed with a free account without an application: https://cancer.sanger.ac.uk/cosmic

- The Reactome database is publicly accessible without an account: https://reactome.org/

- A snapshot of the Mitelman database can be accessed by the publicly available paper from Weaver and Cleveland: https://www.sciencedirect.com/science/article/
pii/S0955067406001554 ?via%3Dihub A file summarising the relevant table 1 in the paper is found in our Github repository: https://github.com/markowetzlab/
Drews2022_CIN_Compendium/blob/main/Section%201%20-%204%20Signature%20Discovery/input/external/WeaverCleveland2006_Tablel.txt

## Unrestricted public data

TCGA

- Affymetrix SNP6.0 arrays: Beroukhim et al. (Nature, 2010)

- Gene expression: COSMIC database (Tate et al., NAR, 2019)

- Somatic exon SNVs in TCGA: Ellrott et al. (Cell Systems, 2018)

- Clinical data: TCGA Research Network (https://www.cancer.gov/tcga)

- Germline and somatic BRCA1/2 status for OV and BRCA patients: Wang et al. (Nature Genetics, 2017); Maxwell et al. (Nature Communication, 2017)

- Promoter hypermethylation of RAD51C and BRCA1 in TCGA-OV samples: TCGA Research Network (Nature, 2011); Sample IDs obtained from corresponding author.
- Telomere length, TelomereSignatureScore, Genomic status and expression of TERT/TERC, TERRA expression, Alternative Telomere Lengthening (ATRX/DAXX):
Barthel et al. (Nature Genetics, 2017)

- Driver genes and annotations: Bailey et al. (Cell, 2018)

- Extrachromosomal DNA amplicons: Kim et al. (Nature Genetics, 2020)

- Tandem duplication identification and classification: Menghi et al., (Cancer Cell, 2018)

- HRD score, telomeric imbalance score, large-scale state transitions score, loss of heterozygosity score: Knijnenburg et al. (Cell Reports, 2018), Marquard et al.
(Biomarker Research, 2015)
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- Cell cycle score (CCS): Lundberg et al. (Oncogene, 2020)

PCAWG

- Clinical data: ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium (Nature, 2020) hosted on synapse.org (ID: syn10389158)
- SV breakpoints and copy number calls: Gerstung et al. (Nature, 2020); Dentro et al. (Cell, 2021)

- Structural variants and microhomologies: Li et al. (Nature, 2020)

- Chromothripsis data: ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium (Nature, 2020)

- Kataegis data: ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium (Nature, 2020)

- HRDetect predictions: Degasperi et al. (Nature Cancer, 2020)

- Exposures to SBS, DBS and ID signatures: COSMIC database (Tate et al., NAR, 2019)

- Exposures to Rearrangement signatures: Nik-Zainal et al. (Nature, 2016)

ICGC
- Breast cancer cohort plus clinical data: Nik-Zainal et al. (Nature, 2016)
- HRDetect predictions: Davies et al. (Nature Medicine, 2017)

Cell lines

- DepMap CRISPR screen: Meyers et al. (Nature Genetics, 2017)

- Broad institute cancer cell line encyclopedia (CCLE): Ghandi et al. (Nature, 2019)
- PRISM drug repurposing screen: Corsello et al. (bioRxiv, 2019)

- DEMETER2 RNAi screen: McFarland et al. (Nature Communications, 2018)

=)
Q
=i
(e
=
(D
=
0]
(Y4
(D
Q
=
@)
o
=
(D
o
©)
=
)
(e}
(2]
C
3
Q
=
A

SNP loci: 31 downloaded from GDC (https://api.gdc.cancer.gov/data/7f0d3ab9-8bef-4e3b-928a-6090caae885b)
Pathway data and annotations: Reactome (Fabregat, PLoS Comp Bio, 2018; Jassal, NAR, 2020)

QOvarian copy number signatures: Macintyre et al. (Nature Genetics, 2018)

## Public but unpublished data
The identifiers of the TCGA samples with RAD51C and BRCA1 promoter hypermethylation and TCGA-wide unweighted chromosome arm, whole-chromosome and

focal CNA scores were published but not part of their respective papers or supplement (TCGA Research Network, Nature, 2011; Davoli et al., Science, 2017). We
obtained the data from the corresponding authors and added them to the Supplementary Tables and the Github repositories.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The largest publicly accessible cancer cohort, the TCGA, was chosen as the main study cohort. From the initial 12,240 Affymetrix SNP6.0
arrays from 11,034 patients, of which 7,880 arrays for 7,880 patients (names "samples" from here on) fit the study design and passed
computational quality control.

All other data sets, including the PCAWG (1898 patients) and the ICGC Breast cancer cohort (560 patients), were included to validate the
findings on the TCGA cohort.

Data exclusions  We also provide this information in the Methods section of the manuscript.

The initial set of arrays included 11,034 patients with 12,240 samples. First, we excluded noisy samples by filtering for the following three
criteria:

- Samples without an ASCAT solution (n = 99).

- Samples with ASCAT failures (n = 1,112). A purity equal to 100% generally indicates that ASCAT has identified a copy number profile from a
normal tissue and therefore only samples with purity < 100% were considered.

- Samples with purity < 40% (n = 2,199). Samples with a low purity were removed to avoid low quality absolute copy number estimates.
For the resulting 526 multisample patients with 1,255 samples, we identified a representative sample based on the following criteria:

- sample passed quality control;

- sample is from the primary tumour;

- had blood as normal control;

- if there were still multiple options at that point, one was chosen at random.
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Finally, the following three criteria were used for the exclusion of low quality arrays (n = 189):

- Tumour or normal MAPD < 0.75: The median of absolute pairwise differences between adjacent probes (MAPD) is a per-microarray estimate
of the variance, similar to the standard deviation or the interquartile range36. Filtering for the MAPD removed noisy samples.

- Tumour and normal MAPD < 0.4 and fraction homozygous segments < 0.1: Occasionally tumour samples are matched with the wrong




germline sample. This results in a high fraction of homozygous segments. The above thresholds removed these samples.

- Differences between logR and BAF segments < 250: We identified and removed 67 samples from 17 cancer types with extreme noise in logR
values, which manifested as a large-scale wave pattern which could not be captured by the median of absolute pairwise differences between
adjacent probes (MAPD). The corresponding B-allele frequencies (BAF) values did not show this wave pattern and generally appeared
consistent. These samples were identified by having more than 250 segments difference between their logR and BAF segmentations.

All filters combined resulted in 7,880 high-quality copy number profiles across 33 cancer types (Extended Data Fig. 1a).

Afterwards, we developed a method to identify patients with detectable chromosomal instability which excluded another 1,545 samples,
resulting in the final study cohort of 6,335 samples.

Replication The signatures were produced from 6,335 samples from 33 cancer types with detectable chromosomal instability. To our knowledge there is
no other pan-cancer SNP6.0 cohort available with a similar sample composition.

We validated our approach by simulating cancer genomes shaped by five well-studied mutational processes (Supplementary Figs. 3-6,
Methods). In a second simulation study we derived signature-specific activity thresholds, tested the stability of signature definitions, and the
stability of signature activities (Methods, Extended Data Fig. 5, Supplementary Fig. 7). We then tested the robustness of our approach across
different high-throughput technologies using 478 samples profiled by both TCGA (SNP 6.0 and whole exome sequencing, WES) and PCAWG
(whole genome sequencing, WGS). We compared signature definitions and activities across five platforms: SNP 6.0 without matched normal,
WGS downsampled to SNP 6.0 positions, WGS downsampled to shallow WGS, on-target WES and off-target WES. Quantifying the activity of
our signatures was robust across all platforms. Re-deriving the signatures was possible across WGS platforms but performance deteriorated
for WES (Extended Data Fig. 6).

Randomization | No randomisation was performed - this was a descriptive study, not an experimental study.

Blinding No blinding was undertaken - this was a descriptive study, not an experimental study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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