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[18F]Difluorocarbene for positron emission 
tomography

Jeroen B. I. Sap1,9, Claudio F. Meyer1,2,9, Joseph Ford1, Natan J. W. Straathof1, 
Alexander B. Dürr1, Mariah J. Lelos3, Stephen J. Paisey4, Tim A. Mollner1, Sandrine M. Hell1, 
Andrés A. Trabanco2, Christophe Genicot5, Christopher W. am Ende6, Robert S. Paton7, 
Matthew Tredwell4,8 & Véronique Gouverneur1 ✉

The advent of total-body positron emission tomography (PET) has vastly broadened 
the range of research and clinical applications of this powerful molecular imaging 
technology1. Such possibilities have accelerated progress in fluorine-18 (18F) 
radiochemistry with numerous methods available to 18F-label (hetero)arenes and 
alkanes2. However, access to 18F-difluoromethylated molecules in high molar activity 
is mostly an unsolved problem, despite the indispensability of the difluoromethyl 
group for pharmaceutical drug discovery3. Here we report a general solution by 
introducing carbene chemistry to the field of nuclear imaging with a [18F]
difluorocarbene reagent capable of a myriad of 18F-difluoromethylation processes. 
In contrast to the tens of known difluorocarbene reagents, this 18F-reagent is 
carefully designed for facile accessibility, high molar activity and versatility.  
The issue of molar activity is solved using an assay examining the likelihood of 
isotopic dilution on variation of the electronics of the difluorocarbene precursor. 
Versatility is demonstrated with multiple [18F]difluorocarbene-based reactions 
including O–H, S–H and N–H insertions, and cross-couplings that harness the 
reactivity of ubiquitous functional groups such as (thio)phenols, N-heteroarenes 
and aryl boronic acids that are easy to install. The impact is illustrated with the 
labelling of highly complex and functionalized biologically relevant molecules and 
radiotracers.

Since the pioneering work of Curtius4 and Staudinger5, carbenes have had 
an important role in organic and organometallic chemistry6, and have 
found applications in biological7, medicinal8 and materials9 sciences.  
One area yet to embrace the synthetic power of carbenes in radiola-
belled form is nuclear science, and more specifically, positron emis-
sion tomography (PET) (Fig. 1a). This molecular imaging technology, 
routinely used for clinical diagnosis and drug development, requires 
radiotracers for in vivo tracking of complex biological processes10. Radi-
olabelling is possible with a range of positron-emitting radionuclides, 
including fluorine-18 (18F), which displays outstanding properties  
(97% β+ decay, 109.8-min half-life and 635-KeV positron energy)11.  
A vital criterion for broad utility is high molar activity (Am), which is 
best achieved using cyclotron-produced [18F]fluoride12. Despite recent 
advances in 18F-radiochemistry, access to 18F-labelled polyfluoro-
alkylated molecules is mostly an unsolved problem, a considerable 
drawback considering the omnipresence of these motifs in drug discov-
ery3,13. A substantial obstruction to progress in 18F-polyfluoroalkylation 
is low Am caused by 19F-fluoride leaching from the fluorinated precur-
sors used in 18F-labelling. The most fruitful efforts have focused on 
18F-trifluoromethylation with metal-mediated and radical strategies 
using [18F]fluoride14–16. Strikingly, molecules featuring a difluorinated 

motif found to be vital for drug efficacy are either not within reach as 
18F-isotopologues, only accessible in prohibitively low Am or from pre-
cursors that require lengthy syntheses17–22. In a unique approach, a [18F]
CF2H radical precursor was generated from [18F]fluoride, but the more 
nucleophilic character of •CF2H with respect to •CF3 limits its utility to 
a prohibitively narrow pool of heteroarenes23. With this current state 
of play, the distinct advantages of CF2H routinely embraced in drug 
discovery programmes3, including reduced lipophilicity compared 
with CF3 and hydrogen-bond donor ability, are not within reach for 
PET ligand discovery. Difluorocarbene chemistry can offer a general 
solution3,24. Tens of reagents have been invented that can be activated 
under various conditions enabling the released difluorocarbene (DFC) 
to participate in insertions25,26, cycloadditions24,27,28 and cross-coupling 
reactions29–32 leading to complex molecules substituted with (X)CF2H/R 
(X = Csp3, Csp2, O, N, S). In stark contrast, studies on [18F]difluorocar-
bene ([18F]DFC) are rare. In 1970, energetic 18F atoms from nuclear 
recoil were found to react with CF2H2 or CF4 to release [18F]DFC on 
substitution followed by elimination33. This study on the mechanism 
of atomic exchange reactions is neither practical nor suitable for PET 
ligand discovery. Here we describe the merits of a bespoke [18F]DFC 
reagent prepared in high Am. Its broad reactivity profile enabling O–H, 
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S–H and N–H insertions, and cross-coupling reactions offers exciting 
opportunities in 18F-radiolabelling for PET ligand discovery and more 
generally for nuclear medicine.

Results and discussion
Initial experiments indicated that a strategy based on 19F/18F exchange 
of in situ-generated DFC had a poor prognosis, encouraging the imple-
mentation of an approach based on an 18F-labelled reagent (Supple-
mentary Fig. 26)34. We ruled out volatile candidates (for example, HCF3 

and ClCF2H) or salts (for example, ClF2CO2Na and Ph3P+CF2CO2
−; where 

Ph is phenyl) that would be difficult to handle, purify or characterize, 
as well as reagents that preferentially require fluoride for DFC release 
to avoid isotopic dilution (for example, TMSCF2Br; where TMS is tri-
methylsilyl). Considering the demand for methods enabling direct 
18F-difluoromethylation of oxygen, sulfur and nitrogen nucleophiles, 
we opted for a reagent releasing [18F]DFC under basic conditions to 
allow simultaneous activation of the heteroatom nucleophile for inser-
tion reactions. Although ((difluoromethyl)sulfonyl)benzene (1a) is 
not used as a DFC precursor, it stood out as an attractive candidate 
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Fig. 1 | Difluorocarbene chemistry, radiosynthesis and divergent reactivity 
of [18F]1. a, Development of the [18F]difluorocarbene reagent [18F]1 offering 
opportunities in PET radiotracer discovery. b, Initial studies. Two-step one-pot 
radiosynthesis of [18F]1b and subsequent 18F-difluoromethylation of 
[1,1′-biphenyl]-4-ol. c, Stepwise mechanism for difluorocarbene release from 
1a. Carbene and nucleophilic reactivity of [18F]1b. dXY, interatomic distance 
between atoms X and Y; TS, transition state; Grel, relative Gibbs free 
energy; ΔGTS3

ǂ, Gibbs free energy of activation for the DFC transfer from 1a to 

phenolate. Radiochemical yield (RCY) determined by radioHPLC. 
a1,1-Diphenyl-ethylene (0.10 mmol), NaOH (0.05 mmol), propylene carbonate 
(0.3 ml), 200 °C. bAcetophenone (0.04 mmol), lithium bis(trimethylsilyl)amide 
(0.10 mmol), tetrahydrofuran/1,3-dimethylimidazolidin-2-one (9:1), −78 °C, 
20 min. cMg (0.80 mmol), N,N-dimethylformamide/acetic acid (9:1), room 
temperature, 20 min. d, 19F NMR fluoride leaching assay. Ratio [6]/[2] measured 
at 1 h (Supplementary Fig. 14).
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for labelling. In 1960, Hine and Porter reported that 1a reacts with 
sodium methoxide in methanol to provide difluoromethyl ether at 
a rate faster than expected for an SN2 reaction, an observation sug-
gesting a mechanism involving DFC formation35; no further studies 
ensued probably owing to the invention of more efficient DFC reagents 
than 1a. From a radiochemistry perspective, however, radiochemical 
yield does not necessarily correlate with chemical yield, and in our 
judgement, 1a could offer clear advantages over newer reagents (Sup-
plementary Fig. 27, Supplementary Table 7). Specifically, [18F]1a could 
be within reach using cyclotron-produced [18F]fluoride by applying 
a protocol that minimizes radiosynthesis time and therefore decay, 
and critically offers opportunities to solve the Am problem by tuning 
the electronic properties of the aryl group. In initial experiments, we 
opted to label 1-(tert-butyl)-4-((difluoromethyl)sulfonyl)benzene (1b) 
considering volatility and precursor stability. Nucleophilic substitution 
of (bromofluoromethyl)-(4-(tert-butyl)phenyl)sulfane (2b) with [18F]
fluoride followed by RuCl3/NaIO4 oxidation afforded [18F]1b isolated in 
10% ± 2% (n = 5) non-decay corrected activity yield (AY) (Fig. 1b). Gratify-
ingly, the reaction of [18F]1b, a model phenol and KOH gave [18F]3 in 72% 
radiochemical yield (RCY), suggesting that [18F]DFC release and O–H 

insertion took place under these conditions. The radiosynthesis was 
automated on the cassette-based Trasis AllinOne platform, and [18F]1b 
was obtained in an overall synthesis time of 72 min in a non-decay cor-
rected AY of up to 6% and Am of 10 ± 0 GBq µmol−1 (n = 2, decay corrected 
to the end of synthesis) from 148 GBq of starting activity (Supplemen-
tary Fig. 33). At this stage, further studies focused on the mechanism 
and improving the Am.

Quantum chemical studies, performed at the B2PLYP-D3/
(ma)-def2-TZVPP//B3LYP-D3/def2-TZVPD level of theory with SMD 
(solvation model based on density) acetonitrile, gave insight into 
the mechanism of DFC release under basic conditions, its reactivity 
with a phenol and the effect of phenyl substitution of [18F]1 (Fig. 1c, 
Supplementary Table 8). DFC formation from 1a occurs by stepwise 
α-elimination. Initial C–H deprotonation by hydroxide is facile and 
exergonic by 24.9 kJ mol−1, whereas the subsequent C–S cleavage, which 
liberates free DFC, has a barrier of 76.3 kJ mol−1 and is endergonic by 
44.5 kJ mol−1. The overall barrier for phenol difluoromethylation, in 
which C–O formation between free DFC and the phenolate anion is rate 
limiting, is 78.6 kJ mol−1. Although recombination of DFC and the phenyl 
sulfinate anion is kinetically competitive, this will occur reversibly, 
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whereas C–O formation is highly exergonic by 81.7 kJ mol−1 and there-
fore irreversible. The possibility of a concerted SN2-like carbene transfer 
was considered; however, with an activation barrier of 112.2 kJ mol−1 
(Supplementary Fig. 67), this can be rejected in favour of the stepwise 
process illustrated (Fig. 1c). A series of synthetically accessible difluo-
romethyl para-substituted aryl sulfones were examined computation-
ally. In each case, the C–O formation step with phenolate defines the 
overall activation barrier, and is consistent with experimental studies 

(Supplementary Table 8); more electron-deficient substituents were 
computationally predicted to show greater reactivity. Each reagent 
considered showed both kinetic feasibility and thermodynamic irre-
versibility of C–O formation, suggesting flexibility with regard to the 
choice of the para-substituent for the optimization of Am. Experimen-
tally, [18F]1b with 1,1-diphenylethylene and NaOH underwent [2 + 1] 
cycloaddition to afford the gem‐difluorinated cyclopropane product 
[18F]4 in 36% RCY, demonstrating that [18F]1b releases [18F]DFC under 
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(top right); Trasis AllinOne automated radiosynthesis platform (bottom).  
b, Scope of [18F]OCF2H from boronic acids and aryl chlorides (Supplementary 

Figs. 44, 45). RCY determined by radioHPLC. Standard conditions: 0.2 mmol 
substrate, MeCN (0.6 ml), KOH(aq.) (0.1 ml, 25 w/w%). aReaction at 80 °C. 
bMeCN-d3, D2O, 100 °C (Supplementary Fig. 43). cReaction at 100 °C. dReaction 
in DMF (0.3 ml) at 140 °C with NaH (0.10 mmol) instead of KOH. eReaction on 
0.10 mmol scale.



106 | Nature | Vol 606 | 2 June 2022

Article

these conditions. We also prepared difluoromethylated alcohol [18F]5 
by reacting acetophenone with [18F]1b under base activation followed 
by reductive cleavage of the sulfone group. These results demonstrated 
the divergent reactivity profile of [18F]1 that can serve either as a [18F]
DFC precursor or as a surrogate of the [18F]CF2H anion (Fig. 1c).

Under labelling conditions, a plausible scenario to account for the 
low Am of [18F]1b is nucleophilic substitution of 2b with hydroxide, 
affording an α-fluorohemiacetal prone to 19F-fluoride elimination, 
which then competes for reaction with 2b (Supplementary Table 13). 
Computational studies predict that SN2 displacement is more facile with 
a hydroxide nucleophile than with fluoride, with standard activation 
barriers (that is, neglecting differences in concentration) of 62.5 kJ mol−1 
and 92.8 kJ mol−1, respectively (Supplementary Fig. 69).

Experimentally, 19F/18F isotope exchange of sulfone 1b was not observed 
under the conditions applied for 18F-incorporation, but importantly, the 
reaction of 2b with K222/K2CO3 in the absence of external fluoride source 
gave (4-(tert-butyl)phenyl)(difluoromethyl)sulfane 6b, as evidenced by 
19F NMR spectroscopy (Supplementary Fig. 14, Supplementary Table 1). 
As varying aryl substitution may influence the degree of fluoride leach-
ing and offer a pathway to improve Am, five DFC precursors featuring  
H (2a), p-tBu (2b), p-NO2 (2c) p-Cl (2d) and p-OMe (2e) substitution were 
reacted with K2.2.2./K2CO3 in the absence of external fluoride. These all 
afforded the corresponding (aryl)(difluoromethyl)sulfanes (6), albeit 
in varying amounts (Fig. 1d). The results indicated that 6 was formed 
in increased amounts in the following order: Cl ≈ NO2 < tBu < H < OMe, 
highlighting that chloro or nitro para-substitution may increase Am by 
reducing 19F-fluoride leaching. Experiments performed in the presence 
of [18F]fluoride (135–148 GBq of starting activity) informed that [18F]1d 
was obtained in the highest Am (131 ± 29 GBq µmol−1, n = 2, decay cor-
rected to the end of synthesis), a result corroborating our 19F NMR assay.

With [18F]1b and [18F]1d in hand, our priority objective was to develop 
a versatile route to 18F-labelled ArOCF2H, a motif increasingly encoun-
tered in medicinal chemistry3,36. At present, 18F-labelling requires 
over-engineered starting materials (ArOCHFCl or ArOCHFCO2H; 
where Ar is aryl) that are not readily accessible and afford [18F]ArOCF2H 
in prohibitively low Am (<1 GBq µmol−1)21,37. 18F-Difluoromethylation 
of alcohol precursors with [18F]DFC represents a direct approach to 
[18F]ArOCF2H, and complements 11C-methylation protocols routinely 
applied in radioligand design38,39. Building on our initial experiments 
with [1,1′-biphenyl]-4-ol and [18F]1b (Fig. 1b), we applied optimized 
reaction conditions consisting of reacting 0.20 mmol of [1,1′-biphenyl]-
4-ol with [18F]1b or [18F]1d for 20 min at 80 °C under aqueous KOH 
conditions (acetonitrile (MeCN)/H2O = 6/1, v/v, 0.7 ml) to a range 
of phenols. A variety of functionalized electronically and sterically 
differentiated (hetero)aryl phenols found in pharmaceutical agents 
gave the desired labelled products. Specifically, the method tolerates 
alkoxy, ketone, alkyl, ester, halide, cyano, nitro, sulfonamide, aldehyde 
and basic amine functionalities ([18F]3, [18F]6–[18F]23 (27–88% RCY)) 
(Fig. 2). It is noteworthy that [18F]DFC inserted site-selectively into the 
phenolic O–H of 4-hydroxybenzaldehyde ([18F]15, 51%). A substrate 
with an ester prone to basic hydrolysis was labelled applying modified 
reaction conditions (NaH, N,N-dimethylformamide (DMF) at 140 °C) 
([18F]23, 27% RCY). Even a challenging, less acidic benzylic alcohol 
(4-methoxyphenyl)methanol underwent [18F]DFC insertion, albeit  
with a lower RCY of 14% ([18F]24). Next, we investigated [18F]DFC inser-
tions into S–H and N–H bonds. These 18F-labelling reactions lead to 
motifs that at present either require multi-step precursor synthesis, 
limiting the scope ([18F]SCF2H)22, or are not available in their 18F-labelled 
form ([18F]NCF2H). Electronically neutral, deficient and rich (hetero)
aromatic thiophenols readily underwent [18F]DFC insertion, providing 
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access to all [18F]SCF2H products ([18F]25–29, 70%–90% RCY). Benzimi-
dazole was successfully subjected to N–H insertion under either aque-
ous (KOH; MeCN/H2O = 6/1), ([18F]30, 81% RCY) or anhydrous reaction 
conditions (NaH, DMF, 61% RCY). (1H-benzo[d]imidazol-2-yl)methanol 
underwent selective 18F-difluoromethylation at nitrogen affording 
[18F]31 (52% RCY). 1H-Indazole gave [18F]32 in good RCY (73%) (1:1 
regioisomers). Similarly, 1H-benzo[d][1,2,3]triazole was a competent 
substrate ([18F]33, 71% RCY). Functional-group tolerance investigated 
with a robustness screening is broad (Supplementary Figs. 15–17). With 
this information, we considered the late-stage 18F-difluoromethylation 
of complex biologically active molecules (Fig. 3). The 18F isotopologue 
of the anti-inflammatory drug roflumilast [18F]35, along with eight [18F]
OCF2H and [18F]NCF2H drug analogues (oestrone [18F]34, 2′-hydroxy-3-
phenylpropiophenone [18F]36, chloroxine [18F]37, PF-03774076 [18F]38, 
triclabendazole [18F]39 and thiabendazole [18F]40) were successfully 
labelled with RCYs reaching 82%. Moreover, the [18F]OCF2H analogues 
of the PET radioligands P2X7R, PMB-protected PF-06809247, DASA-23, 
MPC-6827, DPA-714 and iloperidone were obtained in up to 98% RCY 
([18F]41–[18F]46). As the proton source leading to OCF2H originates 
from the solvent (Supplementary Figs. 3, 4), [2H18F]OCF2H radiotracers 
([2H18F]41, 84% RCY, 94% D; [2H18F]46, 74% RCY, 96% D; [2H18F]34, 64% 
RCY, 96% D) were all within reach. This is important because deute-
rium (D) incorporation is a common strategy to increase the metabolic 
stability of drugs and radiotracers40. For drug analogues (fenofibrate, 
3-fluoro-5-[(2-methyl-1,3-thiazol-4-yl)ethynyl]benzonitrile (FMTEB), 
N-tert-butyloxycarbonyl(Boc)-fluoxetine, phenylalanine, flutamide and 
etoricoxib) that do not feature a phenol functionality, we developed 
a one-pot sequence from aryl boronic acids (Fig. 3b). Oxidation with 
urea hydrogen peroxide (0.20 mmol, 1.0 equiv.) in MeCN for 5 min fol-
lowed by [18F]DFC O–H insertion led to [18F]47, [18F]48, [18F]49, [18F]50, 
[18F]51 and [18F]52 in good RCYs (22–86%). For fenofibrate featuring a 
C(sp2)–Cl bond, we developed a one-pot sequence consisting of boryla-
tion–oxidation–18F-difluoromethylation (Supplementary Fig. 45). With 
the knowledge that our 18F-difluoromethylation protocol is not det-
rimentally impacted by impurities, as evidenced by one-pot tandem 
procedures, a telescoped radiosynthesis of [18F]46 directly from [18F]
fluoride was implemented to reduce the time required for labelling 
and purification. A one-pot 18F-fluorination–oxidation sequence to 
generate [18F]1b, followed by C18 filtration, 18F-difluoromethylation, 
semi-preparative high-performance liquid chromatography (HPLC) 
purification and reformulation afforded [18F]46 in 2% AY and >99% 
radiochemical purity (135 min total synthesis time) (Supplementary 
Fig. 50). This result is comparable to AY obtained for clinically relevant 
[18F]UCB-J prepared directly from [18F]fluoride41. An in vivo study using 
naive C57BL/6J mice was undertaken with FCH2CH2O-substituted [18F]
DPA-714 and its OCF2H analogue [18F]4642,43. The study started with the 
radiosynthesis of [18F]46 (680 MBq, Am = 40 GBq µmol−1) using [18F]1d 
and the Trasis AllinOne platform. Extracts of mouse plasma and brain 
homogenates 5-min post-injection of [18F]46 were absent of metabo-
lites based on radio-HPLC; this is in contrast to [18F]DPA-714 where 
radiolabelled metabolites were observed (Supplementary Figs. 62–65). 
These initial data corroborate expectations on the metabolic stability 
of OCF2H (ref. 44). To further demonstrate the utility of this [18F]DFC 
method in supporting (pre)clinical PET studies, [18F]46 was success-
fully used to image microglial activation in the striatum of a quinolinic 
acid lesion model of Huntington’s disease (Supplementary Fig. 66)45.

Next, we investigated the use of transition-metal complexes for 
the capture and transfer of [18F]DFC derived from [18F]1b and [18F]1d 
for site-selective aromatic 18F-difluoromethylation, an additional 
unsolved problem in 18F-radiochemistry46. Metal-DFC complexes 
known to convert aryl boronic acids into difluoromethylated arenes 
served as a starting point for investigations29–32. 1a is amenable to 
copper-mediated cross-coupling with aryl boronic acids leading to 
(phenylsulfonyl)difluoromethyl-substituted arenes, so the challenge 
was to favour the formation of 18F-difluoromethylated arene products 

from [18F]147. After extensive optimization studies on 4-biphenyl 
boronic acid (0.20 mmol) (Supplementary Fig. 46, Supplementary 
Table 6), [18F]4-(difluoromethyl)-1,1′-biphenyl ([18F]53) was formed 
in 45% RCY under basic conditions (40 µl KOH(aq.)) in the presence of 
Pd2dba3 (2.50 µmol, where dba is dibenzylideneacetone), Xantphos 
(7.50 µmol) and hydroquinone (50 µmol) in 1,4-dioxane (1.0 ml) at 
130 °C. In the absence of Pd or hydroquinone, [18F]53 was not formed, 
or in substantially decreased RCY (Supplementary Table 6). In contrast 
to palladium cross-coupling reactions that must be performed under 
anaerobic conditions, our 18F protocol does not require the exclusion 
of moisture or air29–32. These optimized conditions were applied to 
various aryl boronic acids (Fig. 4), including those featuring hetero-
cycles commonly found in drug-discovery pipelines, yielding [18F]56, 
[18F]58, [18F]60 and [18F]61 in up to 45% RCY. (6-Methoxypyridin-3-yl)
boronic acid underwent site-selective 18F-difluoromethylation at 
the 3-position in 27% RCY ([18F]56), thereby complementing radical 
processes favouring the 2- and 4-positions23. Substrates presenting 
functional groups such as alkenes ((4-vinylphenyl)boronic acid) and 
alkynes ((3-cyano-5-((2-methylthiazol-4-yl)ethynyl)phenyl)boronic 
acid) yielded [18F]62 and [18F]64 in 41% and 24% RCY, respectively. Aryl 
boronic acids can therefore be used either for 18F-difluoromethylation 
or 18F-difluoromethoxylation. Fenofibrate ([18F]63 and [18F]47), 
FMTEB ([18F]64 and [18F]48), N-Boc-fluoxetine ([18F]65 and [18F]49) 
and protected phenylalanine ([18F]66 and [18F]50) were subjected to 
cross-coupling or tandem oxidation 18F-difluoromethylation conditions 
to afford either [18F]CF2H or [18F]OCF2H analogues from a common 
precursor (RCY = 20–86%).

Using hydroquinone-d2 and 1,4-dioxane-d8, the [2H18F]CF2H analogue 
of fenofibrate [2H18F]63 was obtained in 15% RCY (90% D). Inductively 
coupled plasma mass spectrometry analysis of [18F]53 indicated a ruthe-
nium and palladium content of 242.18 µg l−1 and 18.53 µg l respectively, 
which is below the threshold recommended by ICH Q3D(R1) guidelines 
for in-human injection48.

Conclusion
PET ligand discovery is at the forefront of molecular imaging and, 
similarly to pharmaceutical discovery, can immediately benefit from 
a diversity-oriented approach to radiolabelling. Although most prac-
ticing radiochemists are familiar with 18F-incorporation leading to 
aryl and alkyl fluorides, the ambition to consider 18F-polyfluoroalkyl 
substitution as a means to invent PET ligands has been tempered by the 
likelihood of low Am, and the discouraging requirement to synthesize 
over-engineered precursors only accessible after time-consuming 
multi-step syntheses. We now present [18F]difluorocarbene radiochem-
istry as a demonstration that the unique properties of the difluorome-
thyl group can now be exploited in PET ligand discovery programmes 
without compromising on Am and precursor availability. The simplic-
ity of the protocol and the diverse range of molecules labelled in this 
study should encourage rapid adoption in PET centres that have access 
to cyclotron-produced [18F]fluoride, and more generally spark pro-
grammes to advance nuclear medicine imaging.
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