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The design of proteins that bind to a specific site on the surface of atarget protein
using no information other than the three-dimensional structure of the target
remains a challenge' . Here we describe a general solution to this problem that starts
withabroad exploration of the vast space of possible binding modes to a selected
region of a protein surface, and then intensifies the search in the vicinity of the most
promising binding modes. We demonstrate the broad applicability of this approach
through the de novo design of binding proteins to 12 diverse protein targets with
different shapes and surface properties. Biophysical characterization shows that the
binders, which are all smaller than 65 amino acids, are hyperstable and, following
experimental optimization, bind their targets with nanomolar to picomolar affinities.
We succeeded in solving crystal structures of five of the binder-target complexes, and
all five closely match the corresponding computational design models. Experimental
dataonnearly halfamillion computational designs and hundreds of thousands of
point mutants provide detailed feedback on the strengths and limitations of the
method and of our current understanding of protein-protein interactions, and
should guide improvements of both. Our approach enables the targeted design of
binders tosites of interest on awide variety of proteins for therapeutic and diagnostic
applications.

Proteininteractions have crucial rolesinbiology, and general approaches
to design proteins that disrupt or modulate these interactions would
have great utility. Empirical selection approaches that start from large
antibody, designed ankyrin repeat protein or other protein scaffold
libraries can generate binders to protein targets. However, it is difficult
at the outset to target a specific region on a target protein surface and
to sample the entire space of possible binding modes. Computational
methods cantarget specifictarget surfacelocations and provideamore
principled and a potentially faster approach to generate binders than
randomlibrary selectionmethods, as well asinsightinto the fundamental
properties of protein interfaces (which must be understood for design
tobe successful). Most current computational methods used to design

proteins that bind to a target surface utilize information derived from
structures of the native complex on specific side-chain interactions or
protein backbone placements optimal for binding! . Computational
docking of antibody scaffolds with varied loop geometries has yielded
binders, but the designed binding modes have rarely been validated with
high-resolutionstructures*. Binders have been generated starting from
several computationally identified hotspot residues, which were then
used to guide the positioning of naturally occurring protein scaffolds®.
However, for many target proteins, there are no obvious pockets or clefts
ontheproteinsurfaceinto which asmall number of privileged side chains
canbe placed, and guidance by asmall number of hotspot residues limits
the approach to asmall fraction of possible interaction modes.
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Design method

We sought to develop ageneral approach to the design of high-affinity
binders to arbitrary protein targets that addresses two major chal-
lenges. First, there are generally no clear side-chain interactions or
secondary structure packing arrangements that can mediate strong
interactions with the target; instead there are vast numbers of individu-
ally very weak possible interactions. Second, the number of ways of
choosing which of these numerous weak interactions to incorporate
into a single binding protein is combinatorially large, and any given
proteinbackboneis unlikely to be able to simultaneously present side
chains that can encompass any preselected subset of these interactions.
Toillustrate our approach, consider the simple analogy of a difficult
climbing wall with only a few suitable footholds or handholds distant
from each other. Previous hotspot-based approaches correspond to
focusing on routes that involve these footholds and handholds, but
this greatly limits possibilities and there may be no way to connect
them into a successful route. An alternative is to first identify all the
possible handholds and footholds, no matter how poor; second, have
thousands of climbers select subsets of these and try to climb the wall;
third, identify those routes that showed the most promise, and fourth,
have asecond group of climbers explore themin detail. Following this
analogy, we devised the following multistep approach to overcome the
above two challenges: step (1), enumerate alarge and comprehensive
set of disembodied side-chain interactions with the target surface;
step (2), identify from large in silico libraries of protein backbones
those that can host many of these side chains without clashing with the
target; step (3), identify recurrent backbone motifsinthese structures;
and step (4), generate and place against the target a second round of
scaffolds that contain these interacting motifs (Fig. 1a and Extended
DataFig.1).Steps (1) and (2) widely search the space, whereas steps (3)
and (4) intensify the searchin the regions that show the most promise.
We describe each step in more detail below.

We began by docking disembodied amino acids against the target
protein and storing the backbone coordinates and target binding
energies of the typically billions of amino acids that make favourable
hydrogenbonding or nonpolarinteractionsin asix-dimensional spatial
hash table for rapid look-up (Fig.1aand Methods). This rotamer interac-
tion field (RIF) enables rapid approximation of the target interaction
energy achievable by a protein scaffold docked against a target based
onitsbackbone coordinates alone (with no need for time-consuming
side-chain sampling). For each dock, the target interaction energies
of each of the matching amino acids in the hash table are summed.
Arelated approach was used for the design of small-molecule binders®;
as protein targets are so much bigger and because nonpolar interac-
tions are the primary driving force for protein-protein interactions,
we focused the RIF generation process on nonpolar sites in specific
surfaceregions ofinterest. For example, for the design of inhibitors, we
focused oninteraction sites with biological partners. The RIF approach
improves on previous discrete interaction-sampling approaches’ by
reducing the algorithmic complexity from O(N) or O(N?) to O(1) with
respect to the number of side-chain-target interactions considered,
thereby allowing for billions, rather than thousands, of potential inter-
faces tobe considered.

For docking against the RIF, it is desirable to have alarge set of pro-
tein scaffold options, as the chance that any one scaffold can house
many interactions is small. The structure models of these scaffolds
must be quite accurate so that the positioning is correct. Using frag-
ment assembly’, piecewise fragment assembly® and helical exten-
sion’, we designed a large set of miniproteins that ranged in length
from 50 to 65 amino acids and contained larger hydrophobic cores
than previous miniprotein scaffold libraries'. These properties make
the protein more stable and more tolerant to the introduction of the
designed binding surfaces. A total of 84,690 scaffolds spanning 5 dif-
ferent topologies with structural metrics predictive of folding were

552 | Nature | Vol 605 | 19 May 2022

encoded in large oligonucleotide arrays, and 34,507 of these were
foundto be stable using a high-throughput proteolysis-based protein
stability assay™.

We experimented with several approaches for docking these stable
scaffolds against the target structure RIF, balancing overall shape com-
plementarity with maximizing specific rotamer interactions. The most
robust results were obtained using direct low-resolution shape match-
ing" followed by grid-based refinement of the rigid body orientation
inthe RIF (RIFDock). Thisapproachresulted in better Rosettabinding
energy (ddG) values and packing (contact molecular surface, see below)
after sequence design than shape matching alone with PatchDock
(Fig.1b, red and green), and more extensive nonpolar interactions with
the target than hierarchical search without PatchDock shape match-
ing (Extended Data Fig. 2a) °.

Because of the loss in resolution in the hashing used to build the
RIF, and the necessarily approximate accounting for interactions
between side chains (Methods), we found that evaluation of the RIF
solutions was considerably enhanced by full combinatorial optimiza-
tionusing the Rosetta forcefield, which allow the target side chains to
repack and the scaffold backbone to relax. However, full combinatorial
sequence optimizationis CPU intensive. To enable efficient screening
of millions of alternative backbone placements, we developed arapid
interface pre-screening method using Rosetta to identify promising
RIF docks. Restricting to hydrophobic amino acids and considering a
smaller number of side-chain rotamers thanin standard Rosetta design
calculations, together with amorerapidly computable energy function
sped up the design time by more than tenfold while retaining a strong
correlation with results after full sequence design (next paragraph).
This pre-screen (referred to as the ‘Predictor’ below) substantially
improved the binding energies and shape complementarity of the
final designs, as far more RIF solutions could be processed (Extended
DataFig. 2b).

We observed that application of the standard Rosetta design to the
setof filtered docks in some cases resulted in models with buried unsat-
isfied polar groups and other suboptimal properties. To overcome these
limitations, we developed a combinatorial sequence design protocol
that maximizes shape and chemical complementarity with the target
while avoiding buried polar atoms. Sequence compatibility with the
scaffold monomer structure was increased using a structure-based
sequence profile’?, cross-interface interactions were upweighted during
the Monte-Carlo-based sequence design stage to maximize the con-
tacts between the binder and the target (ProteinProteinInterfaceUp-
weighter; Methods) and rotamers that contained buried unsatisfiable
polar atoms were eliminated before packing and buried unsatisfied
polar atoms penalized by a pair-wise decomposable pseudo-energy
term®, This protocol yielded amino acid sequences that were more
strongly predicted to fold to the designed structure (Extended Data
Fig. 2c) and to bind the target (Extended Data Fig. 2d) than standard
Rosetta interface design.

In the course of developing the overall binder design pipeline, we
noted after inspection that even designs with favourable Rosetta
binding free energies, large changes in the solvent-accessible surface
area (SASA) after binding and high shape complementarity (SC) often
lacked dense packing and interactions thatinvolve several secondary
structural elements. We developed a quantitative measure of packing
qualityin closer accord with visual assessment—the contact molecular
surface (Methods)—which balancesinterface complementarity and size
inamanner that explicitly penalizes poor packing. We used this metric
to help toselectsuitable designs atboth the rapid Predictor stage and
after full sequence optimization (Methods).

The spacesampled by the search across the structure and sequence
space is enormous: tens of thousands of possible protein back-
bones x nearly 1 billion possible disembodied side-chain interac-
tions per target x 10" interface sequences per scaffold placement.
Sampling of spaces of this size is necessarily incomplete, and many
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Fig.1|Overview of the de novo proteinbinder design pipeline. a, Schematic
of our two-stage binder design approach. Inthe global search stage, billions of
disembodied amino acids are docked onto the selected region of the target
proteinsurface using RifGen, the favourableinteractingamino acids are stored
asrifres (step1),and miniprotein scaffolds are then docked on the target
guided by these favourable side-chaininteractions (step 2). Theinterface
sequences are then designed to maximize interactions with the target (step 3).
Inthe focused search stage, interface structural motifs are extracted and
clustered (steps 4 and 5). These privileged motifs are then used to guide

ofthe designs at this stage contained buried unsatisfied polar atoms
(only rotamers that cannot make hydrogen bonds in any context are
excluded at the packing stage) and cavities. To generate improved
designs, we intensified the search around the best of the designed
interfaces. We developed a resampling protocol that first extracts
all the secondary structural motifs that make good contacts with the
target protein from the first ‘broad search’ designs. Next, it clusters
these motifs on the basis of their backbone coordinates and rigid
body placements, and then selects the binding motifin each cluster
with the best per-position weighted Rosetta binding energy. Using
this approach, around 2,000 motifs were selected for each target.
These motifs, which in many cases resemble canonical secondary
structure packing patterns', are privileged because they contain a
much greater density of favourable side-chain interactions with the
target than the rest of the designs. The motifs were used to guide
another round of docking and design. First, scaffolds from the library
were superimposed on the motifs and the favourable-interacting
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another round of docking and design (steps 6 and 7). Designs are then selected
forexperimental characterization based on computational metrics (step 8).
See Extended Data Fig.1for amore detailed flow chart of the de novo binder
design pipeline. b, Comparison of the sampling efficiency of PatchDock,
RifDock and resampling protocols. Bar graph shows the distribution over the
threeapproaches of the top1% of binders based on Rosetta ddGand contact
molecular surface values after pooling equal-CPU-time dock-and-design
trajectories for each of the 13 target sites and averaging per-target
distributions (Methods).

motifresidues transferred to the scaffold. The remainder of the scaf-
fold sequence was optimized to make further interactions with the
target, allowing backbone flexibility through backbone torsion-angle
minimization to increase shape complementarity with the target
(Fig.1a). Design Interface metrics following resampling were consid-
erablyimproved over those from the broad searching stage (Fig. 1b).
The designs with the most favourable protein folding and protein
interface metrics from both the broad searching and resampling
stages were selected for experimental validation.

Experimental testing

Previous approaches used to design protein binders have been tested
ononlyoneortwotargets, which limits assessment of their generality.
Tothoroughly test our new binder design pipeline, we selected 13 native
proteins of considerable currentinterest and spanning a wide range of
shapes and biological functions. These proteins fall into two classes:
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Fig.2|Denovodesignand characterization of miniproteinbinders.

a,d, Naturally occurring target protein structures shownin surface
representation, with knowninteracting partnersin cartoons where available.
Regionstargeted for binder design are coloured in pale yellow or green; the
remainder of the target surfaceisin grey. See Extended DataFig. 3 for
side-by-side comparisons of the native binding partners and the computational
design models. The PDB identifiersare 3ZTJ (H3), 3MJG (PDGFR), 40GA (IR),
SU8R (IGF1R),2GY7 (TIE2),1XIW (CD38), 3KFD (TGFpB) and 403V (VirB8). aCT,
a-chain C-terminal helix. b, e, Computational models of designed complexes
coloured by site saturation mutagenesis results. Designed binding proteins
(cartoons) are coloured by positional Shannon entropy, with blue indicating

(1) human cell surface or extracellular proteins involved in signalling,
and (2) pathogen surface proteins. Binders for human cell surface or
extracellular proteins could have utility as probes of biological mecha-
nism and potentially as therapeutics, and hence we sought to design
binders to tropomyosin receptor kinase A (TrkA; alsoknownas NTRK1)",
fibroblastgrowth factor receptor 2 (FGFR2)", epidermal growth factor
receptor (EGFR)Y, platelet-derived growth factor receptor (PDGFR)’,
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Wavelength (nm) Wavelength (nm)

positions of low entropy (conserved) and red those of high entropy (not
conserved); the target surfaceisingreyandyellow. The coreresiduesand
bindinginterface residues are more conserved than the non-interface surface
positions, consistent with the computational models. Full SSM maps over all
positions of allthe de novo designs are provided in the Supplementary
Information. ¢, f, Circular dichroism spectraat different temperatures (green,
25°C;red, 95°C; blue, 95 °C followed by 25 °C), and circular dichroism signals at
222-nmwavelengthasafunction of temperature for the optimized designs
(insets). See Extended Data Fig. 4 for the biolayer interferometry
characterizationresults of the optimized designs.

insulin receptor (IR)", insulin-like growth factor 1 receptor (IGFIR)%,
angiopoietin-1receptor (TIE2)?, interleukin-7 receptor-a (IL-7Rx)?,
CD3 delta chain (CD38)* and transforming growth factor-f (TGF)*.
Binding proteins for pathogen surface proteins could also have thera-
peutic utility, and so we also designed binders to influenza A H3 hae-
magglutinin (H3)*, VirB8-like protein from Rickettsia typhi (VirB8)*
and the SARS-CoV-2 coronavirus spike protein (Figs.2and 3). Foreach
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Table 1| Physicochemical properties of the optimized de novo miniprotein binders

H3 TrkA FGFR2 EGFRn EGFRc PDGFR IR IGFIR TIE2 IL-7Ra CD33 TGFB VirB8
Ky(nM)  320+24.0 14+0.02 243+590 12+0.01 6.8+03 82+25 210+39 860+270 584+35 0.31+0.004 612+30 113+4.4 0.51+£0.005
Tw(°C) >95.0 >95.0 N >95.0 n2 >950 650 >95.0 >95.0 >95.0 >95.0 >95.0 66.2

The binding affinity and melting temperature (T,,) of the optimized de novo miniprotein binders. See Figs. 2 and 3 for the circular dichroism spectra; the raw biolayer interferometry traces are in
Extended Data Fig. 4. Experimental details can be found in the corresponding figure legends and section of the Methods.

of these surface proteins, we selected one or two regions for the bind-
ers to target to ensure maximal biological utility and for potential
downstream therapeutic potential. These regions span a wide range
of surface properties, with diverse shape and chemical characteristics
(Figs. 2 and 3, and Extended Data Fig. 3). Some of the selected target-
ing regions overlap with the native interfaces, but no native interface
information or native hotspots were used during the binder design
process. For some targets (for example, CD36 and VirB8), no structures
ofthe native complex were available and there were no proteins known
to bind at the targeted region.

Using the above protocol, we designed 15,000-100,000 binders
for each of the 13 target sites on the 12 native proteins (Methods;
we chose two sites for EGFR). Synthetic oligonucleotides (230 base
pairs) encoding the 50-65 residue designs were cloned into a yeast
surface-expression vector so that the designs were displayed on the
surface of yeast. Those that bound their target were enriched by several
rounds of fluorescence-activated cell sorting (FACS) using fluores-
cently labelled target proteins. The starting and enriched populations
were deep sequenced, and the frequency of each designin the starting
populationand after each sort was determined. From multiple sorting
rounds at different target protein concentrations, we determined, asa
proxy for the binding dissociation constant (K;) values, the midpoint
concentration (SCs,) in the binding transitions for each design in the
library (Extended Data Table 1and Methods).

To assess whether the top enriched designs for each target fold
and bind asin the corresponding computational design models, and
to investigate the sequence dependence of folding and binding, we
generated high-resolution footprints of the binding surface by sorting
site saturation mutagenesis libraries (SSMs) in which every residue
was substituted with each of the 20 amino acids one at a time. For
the majority of the enriched designs, substitutions at the binding
interface and in the protein core were less tolerated than substitu-
tions at non-interface surface positions (Figs. 2 and 3, and Extended
DataFig.5), and all of the cysteine residues were highly conserved in
designs that contained disulfides. The effects of each mutation on
both binding energy and monomer stability were estimated using
Rosetta design calculations, and areasonable correlation was found
between the predicted and experimentally determined effect of muta-
tions (Extended Data Fig. 6a). In almost all cases, a small number of
substitutions increased the apparent binding affinity, and we gener-
ated libraries combining 5-15 of these and sorted them for binding
underincreasingly stringent (lower target concentration) conditions.
Many of these affinity-enhancing substitutions were mutations to
tyrosine (Extended Data Fig. 6b), which is consistent with the rela-
tively high frequency of tyrosine in natural protein interfaces”. The
set of affinity-increasing substitutions provide valuable information
toimprove the binder design approach, as these substitutionsideally
would have been identified in the computational sequence design
calculations (see ‘Discussion’ for more details).

We expressed the highest affinity combinatorially optimized binders
for each target in Escherichia coli to enable more detailed structural
and functional characterization. All of the designs were in the soluble
fraction and could be readily purified by Ni?*-NTA chromatography.
All'had circular dichroism spectra consistent with the design model,
and most (9 out of 13) were stable at 95 °C (Figs. 2 and 3, and Table 1).

The binding affinities for the targets were assessed by biolayer inter-
ferometry and values ranged from 300 pM to 900 nM (Fig. 3, Table 1
and Extended Data Fig. 4). The sequence mapping data report on
theresiduesinthe design that are crucial for binding, but only weakly
on the region of the target bound. We investigated the latter using a
combination of binding competition experiments, biological assays
and structural characterization of the complexes. For the nine tar-
gets for which these were available, this characterization suggested
binding modes consistent with the design models, as described in the
subsequent paragraphs.

Cellreceptorsinvolved in signalling

The receptor tyrosine kinases TrkA, FGFR2, PDGFR, EGFR, IR, IGFIR
and TIE2 are key regulators of cellular processes and areinvolved in the
developmentand progression of many types of cancer, We designed
binders that targeted the native ligand-binding sites for PDGFR,
EGFR (on both domain I and domain III; the binders are referred to as
EGFRn_mb and EGFRc_mb, respectively), IR, IGFIR and TIE2, whereas
for TrkA and FGFR2, we targeted surface regions proximal to the
native ligand-binding sites (Figs. 2 and 3; see Methods for criteria).
We obtained binders to all eight target sites, and the binding affinities
of the optimized designs ranged from about 1 nM or better for TrkA
and FGFR2 to 860 nM for IGFIR (Table 1). Competition experiments
with nerve growth factor (NGF), platelet-derived growth factor-BB
(PDGF-BB), insulin, insulin growth factor 1 (IGF1) and angiopoietin 1
(ANGI) onyeastindicated that the binders for TrkA, PDGFR, IR, IGFIR
and TIE2 bind to the targeted sites (Extended Data Fig. 7), consistent
with the computational design models. The receptor tyrosine kinase
bindersare monomers, and as such are all expected to be antagonists.
We tested the effect of the cognate binders on signalling through TrkA,
FGFR2and EGFRin cultured cells. Strong inhibition of signalling by the
native agonists was observed in all three cases (Fig. 3¢, and Extended
DataFigs.8and9).

Binding of IL-7 to the IL-7a receptor subunit leads to recruitment
of the y. receptor, which forms a tripartite cytokine-receptor com-
plex crucial to signalling cascades that lead to the development and
homeostasis of T and B cells®”. We obtained a picomolar affinity binder
forIL-7Ra targeting the IL-7 binding site and found that it blocks STAT5
signallinginduced by IL-7 (Fig. 3cand Table 1). We also obtained binders
to CD36, one of the subunits of the T cell receptor, and the signalling
molecule TGFB, which play pivotal partsinimmune cell development
and activation (Fig. 2 and Table 1).

Pathogen target proteins

Influenza haemagglutinin (HA) is the main target for influenza A virus
vaccines and drugs, and can be genetically classified into two main sub-
groups: group 1and group 2 (refs.3**'). The HA stem regionis an attrac-
tive therapeutic epitope as it is highly conserved across allinfluenza A
subtypes, and targeting this region can block the low-pH-induced con-
formational rearrangements associated with membrane fusion, which
is essential for virus infection®*, Neutralizing antibodies that target
the stem region of group 2 HA have been identified through screens of
large B cell libraries after vaccination or infection that neutralize both
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after 48 hof TF-1cells withincreasing TrkA minibinder (TrkA_mb)
concentrationis shown. (8.0 ng mI human B-NGF was used for competition).
Titration curves at different concentrations of NGF and the effects of the
miniproteinbinders on cell viability are presented in Extended Data Fig. 8. For
FGFR2,the dose-dependentreduction pERK signalling elicited by 0.75 nM
B-FGF in human umbilical vein endothelial cells (HUVECs) withincreasing
FGFR2 minibinder (FGFR2_mb) concentrationis shown. For the EGFRn-side

group 1and group 2 influenza A viruses**. Protein"’, peptide* and
small-molecule inhibitors® have been designed to bind to the stem
region of group 1HA and neutralize influenza A viruses, but none rec-
ognize the group 2 HA. The design of small proteins or peptides that
canbind and neutralize both group 1and group 2 HA hasbeen challeng-
ing owing to three main differences between group 1and group 2 HA.
First, thegroup 2 HA stemregionis more hydrophilic, containing more
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binder, the dose-dependentreductionin pERK signalling elicited by InMEGF in
HUVECs withincreasing EGFRn-side minibinder (EGFRn_mb) concentrationis
shown. See Extended Data Fig. 9 and Methods for experimental details. For the
EGFRc-side binder, biolayer interferometry results are shown. See Extended
DataFig.4 for the biolayer interferometry characterization results of the
other optimized designs. For IL-7R, the reductionin STATS activity induced by
50 pMof IL-7in HEK293T cells in the presence of increasing IL-7Ra minibinder
(IL-7Ra_mb) concentrations isshown. The mean values were calculated from
triplicates for the cell signalling inhibition assays measured in parallel, and
error barsrepresent standard deviations. IC5, was calculated using a
four-parameter-logistic equation in GraphPad Prism 9 software.

polar residues. Second, in group 2 HA, Trp21 adopts a configuration
roughly perpendicular to the surface of the targeting groove, which
makes the targeted groove much shallower and less hydrophobic. And
third, the group 2 HA is glycosylated at Asn38, with the carbohydrate
side chains covering the hydrophobic groove (Extended Data Fig.10a).
We used our interface design method to design binders to H3 HA
(A/HongKong/1/1968), the main pandemic subtype of group 2influenza
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Fig.4 |Designedbinders have high target specificity. To assess the
cross-reactivity of each miniprotein binder (mb) witheach target protein,
biotinylated target proteins were loaded onto biolayer interferometry
streptavidinsensors, allowed to equilibrate and the baseline signal set to zero.
Thebiolayerinterferometry tips were then placed into 100 nM binder solution
for 5 min, washed with buffer, and dissociation was monitored for an additional

virus, and obtained a binder with an affinity of 320 nM to wild-type H3
(Fig.2and Table 1) and 28 nM to the deglycosylated H3 variant (N38D)
(Extended Data Fig. 10b). The reduction in affinity is probably due to
entropy loss of the glycan following binding and/or steric clash with
the glycan. The binder also bound H1 HA (A/Puerto Rico/8/1934),
which belongs to the main pandemic subtype of group 1linfluenzavirus
(Extended Data Fig.10b). The binding to both H1and H3 HA is competed
by the stem region that binds the neutralizing antibody Fl6v3 (ref.>*)
onthe yeast surface (Extended Data Fig. 10c), which indicates that the
binder attaches the HA at the targeted site. We also designed binders
tothe prokaryotic pathogen protein VirB8, part of the type IV secretion
system of R. typhi, the causative agent of murine typhus®. We selected
the surface region composed of the second and the third helices of
VirB8, and obtained binders with 510 pM affinity (Fig. 2 and Table 1).

With the outbreak of the SARS-CoV-2 pandemic, we applied our
method to design miniproteins that targeted the receptor-binding
domain of the SARS-CoV-2 spike protein near the ACE2 binding site to
block receptor engagement. Owing to the pressing need for corona-
virus therapeutics, we recently described the results of these efforts®
ahead of those described in this manuscript. Similar to FGFR2, IL-7Ra
and VirB8, the method yielded picomolar binders, which are among
the most potent compounds known to inhibit the virusin cell culture
(half-maximal inhibitory concentration (ICs,) of 0.15 ng mI™). Subse-
quent animal experiments showed that they provide potent protection
against thevirus in vivo®. The modular nature of the miniprotein bind-
ersenables theirrapid integrationinto designed diagnostic biosensors
for bothinfluenza and SARS-CoV-2 binders*.

The designed binding proteins are all small proteins (<65 amino
acids), and many are triple-helix bundles. To evaluate their target speci-
ficity, we tested the highest affinity binder to each target for binding
to all other targets. There was little cross-reactivity (Fig. 4a), which is
probably due to their diverse surface shapes and electrostatic proper-
ties (Fig. 4b). Consistent with previous observations with affibodies*,
this result indicates that a wide variety of binding specificities can

FGFR2_mb EGFRn_mb

EGFRc_mb PDGFR_mb IL-7Ra_mb

TGFB_mb

Electrostatic potential

-5.0 +5.0

LCB1

VirB8_mb

10 min. The heat map shows the maximum response signal for each binder-
target pair normalized by the maximum response signal of the cognate
designed binder-target pair. The raw biolayer interferometry traces are shown
inthe Supplementary Datal.b, Surface shape and electrostatic potential
(generated with the APBS Electrostatics pluginin PyMOL; red positive, blue,
negative) of the designed bindinginterfaces.

be encoded in simple helical bundles. In our approach, scaffolds are
customized for each target, so the specificity arises both from the
set of side chains at the binding interface and the overall shape of the
interface itself.

High-resolution structural validation

High-resolution structures are crucial for evaluating the accuracy of
computational protein designs. We succeeded in obtaining crystal
structures of the unbound miniprotein binders for FGFR2 and IL-7Ra,
and co-crystal structures of the miniprotein binders of H3, TrkA, FGFR2,
IL-7Racand VirB8 incomplex with their targets (Extended Data Table 2).
TheH3binderboundtotheshallowgroove ofthe stemregion of HK68/
H3 HA in the crystal structure as designed. The C, root-mean-square
deviation (r.m.s.d.) over the entire miniprotein binder was 1.91 A using
HA as the alignment reference (Fig. 5a). The binder makes extensive
hydrophobicinteractions withHA, and almost all of the designed inter-
face side-chain configurations are recapitulated in the crystal structure
(Fig.5a). There was a clear reorientation of the oligosaccharide at Asn38
compared with the unbound HK68/H3 structure (Fig. 5a and Extended
Data Fig. 10a; this has also been observed in HK68/H3 HA structures
bound to stem region neutralizing antibodies***). Consistent with
this result, the binder has higher affinity for the N38D variant, which
lacks this glycan, than for wild-type H3 HA (A/Hong Kong/1/1968) in
biolayer interferometry assays (Table 1 and Extended Data Fig. 10b).
The crystal structure of the TrkA binder in complex with TrkA was
closetothe design model (Fig. 5b). After aligning the crystal structure
and design model on TrkA, the C,r.m.s.d. over the entire miniprotein
binderwas 2.41 A, and over the two interfacial binding helices, it was
1.20 A. The crystal structures of the FGFR2 binder by itself (Extended
Data Fig. 11a) and in complex with the third immunoglobulin-like
domain of FGFR4 (Fig. 5¢) matched the design models with near
atomic accuracy, with C, r.m.s.d. values of 0.58 A for the binder
alone and 1.33 A over the entire complex. The TrkA binder and the
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TrkA_mb-TrkA design model TrkA_mb-TrkA crystal structure

FGFR2_mb-FGFR2 design model

FGFR2_mb-FGFR4 crystal structure

Fig.5|High-resolutionstructures of miniproteinbindersin complex with
target proteins closely match the computational design models. a-e, Left,
superimposition of the computational design model (silver) onthe
experimentally determined crystal structure. Right,zoom-in view of the

FGFR2 binder bound to the curved sheet side of the ligand-binding
domain of TrkA and FGFR4, with extensive hydrophobic and polar
interactions. Moreover, most of the key hydrophobic interactions
as well as the primarily polar interactions in the computational
design models were largely recapitulated in the crystal structures
(Fig.5b, c). Thebindinginterfaces partially overlapped with the native
ligand-binding sites of NGF and FGF; however, the side-chaininterac-
tions were entirely different in the designed and native complexes
(Extended Data Fig. 3).

For IL-7Ra, the crystal structure of the monomer was close to that
ofthe design, witha C,r.m.s.d. of 0.63 A (Extended Data Fig.11b). The
co-crystal structure with IL-7Ra also closely matched that of the design
model, witha C,r.m.s.d.of 2.2 Ausing IL-7Ra as the reference (Fig. 5d).
Both the de novo IL-7Ra binder and the native IL-7 use two helices to
bind IL-7Rq, but the binding orientations were different (Extended
Data Fig. 3). The VirB8 binder made extensive interactions with the
helical regions of VirB8 as designed; no native proteins have beeniden-
tified tobind to thisregion. The C,r.m.s.d. over the entire miniprotein
binder was 2.54 A using the VirB8 as the alignment reference, and the
side-chain configurations of key interface residues were largely reca-
pitulated (Fig. 5e).

The heavy-atom r.m.s.d. values over the buried side chains at the
interface (within 8 A of the target in the design models) were 0.71 A
(H3),1.10 A (TrkA), 1.29 A (FGFR2), 1.63 A (IL-7Ra) and 1.52 A (VirBS),
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VirB8_mb-VirB8 design model

I VirB8_mb-VirB8 crystal structure

Design model
B CryoEM structure

designedinterface, withinteracting side chains assticks.a, H3HA. b, TrkA.

¢, FGFR2.d, IL-7Ra. e, VirB8. f, Superimposition of the computational design
modelandrefined cryo-EM structures of LCBI1 (left) and LCB3 (right) bound to
thereceptor-binding domain (RBD) of the SARS-CoV-2 spike protein.

all of which are close to the core side-chain r.m.s.d. values (mean
0.90 A). Further highlighting the accuracy of the protein interface
design method, cryogenic electron microscopy (cryo-EM) structures
of the SARS-CoV-2 binders LCB1 and LCB3 in complex with the virus
were also nearly identical to the design models, with C, r.m.s.d. value
of1.27 Aand 1.9 A, respectively®® (Fig. 5f).

Although we were not able yet to solve structures for the remain-
der of the designs, the high-resolution sequence footprinting (Figs. 2
and 3) and competition results (Extended Data Fig. 7) suggest that
the interfaces involve both the designed residues and the intended
regions on the target. The close agreement between the experimen-
tally determined structures and the original design models indicates
that the substitutions required to achieve high affinity play relatively
subtle parts in tuning interface energetics: the overall structure of
the complex, including the structure of the monomerbinders and the
detailed target binding mode, are determined by the computational
design procedure.

Determinants of design success

For our de novo design strategy to be successful, we must encode in
the approximately 60-residue designed sequences information on
both the folded monomer structures and on the target binding inter-
faces. Indeed, designs that do not fold into the correct structure or



thatfoldinto the intended structures but do not bind to the target will
fail. To assess the accuracy with which the monomer structure must
be designed, we carried out an additional calculation and experiment
for the IL-7Ra target. Large numbers of scaffolds were superimposed
onto 11 interface helical binding motifs identified in the first broad
designsearch, and sequence design was carried out as described above.
A strong correlation was found between the extent of binding and
the root mean square deviations to the binding motif (Extended Data
Fig.12a), which indicates that designed backbones must be relatively
accurate to achieve binding.

To assess the determinants of binding of the designed interfaces,
assuming that the designs fold into the intended monomer structures,
we took advantage of the large dataset (810,000 binder designs and
240,000 ssingle mutants) generated in this study. Design success rates
varied considerably between the different targets. For some (FGFR2
and PDGFR), hundreds of binders were generated, whereas for others
(TIE2 and CD36), fewer than 10 binders were obtained from libraries
0f 100,000 designs (Extended Data Table 1). Across all targets, there
wasastrong correlation between success rate and the hydrophobicity
ofthetargetedregion (Extended DataFig.12b), and designs observed
experimentally to bind their targets tended to have stronger predicted
binding energy and larger contact molecular surfaces (Extended Data
Fig.13). Asfound previously for designs of protein stability', iterative
design-build-test cyclesinwhichthe design methodis updated ateach
iteration to incorporate feedback from the previous design round
should lead to systematic improvements in the design methodology
and success rate.

Conclusions

Our success in designing nanomolar affinity binders for 14 target sites
demonstrates that binding proteins canbe designed de novo using only
informationonthe structure of thetarget protein, without the need for
prior information on binding hotspots or fragments from structures
of complexes with binding partners. This success also suggests that
our design pipeline provides ageneral solution to the de novo protein
interface design problem that goes far beyond previously described
methods. However, thereis still considerable room forimprovement.
Onlyasmallfraction of designs bind, and in almost all cases, the best of
theserequire additional substitutions to achieve high-affinity binding.
Furthermore, the design of bindersto highly polar target sites remains
a considerable challenge: the sites targeted here all contain at least
four hydrophobic residues. The datasets generated in this work—both
the information on binders versus non binders and the feedback on
the effects of individual point mutants on binding—should help to
guide the development of methods for designing high-affinity binders
directly from the computer with no need for iterative experimental
optimization. More generally, the de novo binder design method and
thelarge dataset generated here provide a starting point toinvestigate
the fundamental physical chemistry of protein-protein interactions
and to develop and assess computational models of protein-protein
interactions.

Thiswork represents amajor step forward towards the longer range
goal of direct computational design of high-affinity binders starting
fromstructural information alone. We anticipate that the binders cre-
ated here, and new ones created with the method moving forwards,
will find wide utility as signalling pathway antagonists as monomeric
proteins and as tuneable agonists when rigidly scaffolded in multimeric
formats, and in diagnostics and therapeutics for pathogenic disease.
Unlike antibodies, the designed proteins are soluble when expressed
inE. coliathighlevels and are thermostable, and hence could form the
basis for a next generation of lower cost protein therapeutics. More
generally, the ability to rapidly and robustly design high-affinity binders
toarbitrary protein targets could transform the many areas of biotech-
nology and medicine that rely on affinity reagents.
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Methods

Broad search stage

The crystal structures of HA (Protein Data Bank (PDB) identifier:
4FNK)%, EGFR (PDB: IMOX, 4UV7)"*2, PDGFR (PDB: 3MJG)', IR (PDB:
47XB)¥,IGFIR (PDB: 5USR)®, TIE2 (PDB: 2GY7)%, IL-7Ra (PDB: 3DI3)%,
CD3 (PDB: 1XIW)*, TGF (PDB: 3KFD)* and VirBS (PDB: 403V)* were
refined in the Rosetta energy field constrained by experimental dif-
fraction data. The crystal structures of TrkA (PDB: IWWW)" and FGFR2
(PDB: 1EV2)" were refined with the Rosetta FastRelax protocol with
coordinate constraints. The targeting chain or the selected targeting
region were extracted and used as the starting point for docking and
design. To run PatchDock", the scaffolds were mutated to poly-valine
first, and default parameters were used to generate the raw docks.
RifDock was used to generate the RIF by docking billions of individual
disembodied amino acids to the selected targeting regions®. In detail,
hydrophobic side-chain R-groups are docked against the target using
abranch-and-bound search to quickly identify favourable interac-
tions with the target, and polar side-chain R-groups are enumeratively
sampled around every target hydrogen bond donor or acceptor.
To identify backbone placements from which these interactions can
be made, side-chain rotamer conformations are grown backwards for
all R-group placements, and their backbone coordinates stored in a
six-dimensional spatial hash table for rapid look-up. For the hierarchical
searching protocol, the miniprotein scaffold library (50-65 residues
in length) was docked into the field of the inverse rotamers using a
branch-and-bound searching algorithm from low-resolution spatial
gridsto high-resolution spatial grids. For the PatchDock+RifDock pro-
tocols, the PatchDock outputs were used as seeds for the initial posi-
tioning of the scaffolds, and the docks were further refined in the finest
resolution RIF. These docked conformations were further optimized
to generate shape and chemically complementary interfaces using the
Rosetta FastDesign protocol, activating between side-chain rotamer
optimizationand gradient-descent-based energy minimization. Serval
improvements were added to the sequence design protocol to generate
better sequences for both folding and binding. These included a bet-
ter repulsive energy ramping strategy®, upweighting cross-interface
energies, a pseudo-energy term penalizing buried unsatisfied polar
atoms® and a sequence profile constraint based on native protein
fragments'?. Computational metrics of the final design models were
calculated using Rosetta, whichincludes ddG, shape complementary
andinterface buried SASA, contact molecular surface,amongothers,
for designselection. All the script and flag files to run the programs are
provided in the Supplementary Information.

Focused search stage

The binding energy and interface metrics for all the continuous sec-
ondary structure motifs (helix, strand and loop) were calculated for
the designs generated in the broad search stage. The motifs with good
interactions (based onbinding energy and other interface metrics, such
as SASA and contact molecular surface) with the target were extracted
and aligned using the target structure as the reference. All the motifs
were then clustered based on an energy based-TMalign-like cluster-
ing algorithm. In brief, all the motifs were sorted on the basis of the
interaction energy with the target, and the lowest energy motif in the
unclustered pool was selected asthe centre of the first cluster. A similar
score between this motifand every motif remainingin the unclustered
pool was calculated based on the TMalign algorithm*® without any
further superimposition. Those motifs within a threshold similar score
(default of 0.7) from the current cluster centre were removed from
theunclustered pooland added to the new cluster. The lowest energy
motif remaining in the unclustered pool was selected as the centre
of the next cluster, and the second step was repeated. This process
continued for subsequent clusters until no motifs remained in the
unclustered pool. The best motif from each cluster was then selected

based onthe per-position weighted Rosettabinding energy, using the
average energy across all the aligned motifs at each position as the
weight. Around 2,000 best motifs were selected, and the scaffold library
was superimposed onto these motifs using the MotifGraft mover*.
Interface sequences were future optimized, and computational met-
rics were computed for the final optimized designs as described in
the broad search stage. CPU time requirements to produce 100,000
designed binders to be tested experimentally were typically around
100,000 CPU hours (usually at least ten times as many binders were
computationally designed than were ordered).

Rapid Rosetta packing evaluation (the Predictor)

A severe speed mismatch existed between the docking methods (Rif-
Dock and focused search) and the subsequent full sequence design step.
Although the docking methods can typically produce outputs every
1-3 s, the full sequence design can take upwards of 4 min. To remedy
this situation, a step was designed to take about 20 s that would be
more predictive than metrics evaluated on raw docks, but faster than
the full sequence design.

A stripped down version of the Rosetta beta_novl16 score function
was used to design only with hydrophobic amino acids. Specifically,
fa_elec, Ik _ball[iso,bridge,bridge_unclp], and the _intra_terms were
disabled as these proved to be the slowest energy methods by pro-
filing. All that remained were Lennard-Jones, implicit solvation and
backbone-dependent one-body energies (fa_dun, p_aa_pp, rama_pre-
pro). Additionally, flags were used to limit the number of rotamers built
at each position (Supplementary Information).

After therapid design step, the designs were minimized twice: once
with alow-repulsive score function and again with anormal-repulsive
score function. Metrics of interest were then evaluated, including like
RosettaddG, contact molecular surface, and contact molecular surface
to critical hydrophobic residues.

Based on the observation that these predicted metrics correlated
with the values after full sequence design, amaximum likelihood esti-
mator (afunctional formsimilar to logistic regression) was used to give
each predicted design a likelihood that it should be selected to move
forward. Asubset of the docks to be evaluated were subjected to the full
sequence design, and their final metric values calculated. With a goal
threshold for each filter, each fully designed output can be marked as
pass or fail for each metric independently. Then, by binning the fully
designed outputs by their values fromthe rapid trajectory and plotting
the fraction of designs that pass the goal threshold, the probability that
each predicted design passes each filter can be calculated (sigmoids
are fitted to smooth the distribution). From here, the probability of
passing each filter may be multiplied together to arrive at the final
probability of passing allfilters. This final probability can then be used
to rank the designs and pick the best designs to move forward to full
sequence optimization.

Note that the rapid design protocol here is used merely to rank the
designs, not to optimize them; the raw, non-rapid-designed docks are
the structures carried forward.

Contact molecular surface

SASA is ameasure of the exposure of amino acids to the solvent and it
is typically calculated using methods that involve in silico rolling of a
spherical probe, which approximates a water molecule (radius 1.4 A),
around a full-atom protein model. Delta-SASA after protein—protein
binding has been widely used to analyse native protein interactions.
Unlike the crystal structures of the native protein complexes, design
models for the de novo interactions are usually imperfectly packed and
contain many holes or cavities. If the sizes of the holes or cavitiesin the
interfaceare smaller thantherolling probe, SASA cannot capture those
holes and cavities and the real contacts are usually overestimated by
the delta-SASA metric. The contact molecular surface was developed
to mitigate the flaws of the de novo designed interactions. First, the


https://doi.org/10.2210/pdb4FNK/pdb
https://doi.org/10.2210/pdb1MOX/pdb
https://doi.org/10.2210/pdb4UV7/pdb
https://doi.org/10.2210/pdb3MJG/pdb
https://doi.org/10.2210/pdb4ZXB/pdb
https://doi.org/10.2210/pdb5U8R/pdb
https://doi.org/10.2210/pdb2GY7/pdb
https://doi.org/10.2210/pdb3DI3/pdb
https://doi.org/10.2210/pdb1XIW/pdb
https://doi.org/10.2210/pdb3KFD/pdb
https://doi.org/10.2210/pdb4O3V/pdb
https://doi.org/10.2210/pdb1WWW/pdb
https://doi.org/10.2210/pdb1EV2pdb

Article

molecule surfaces of the binder and the target were calculated using
the triangularization algorithm in the Rosetta shape complementary
filter. For eachtriangle, the distance to the closest triangle onthe other
side was calculated and used to downweight the area of the triangle
by the following equation: A’ = A x exp(-0.5 x distance?). Then all the
downweighted areas were summed to obtain the contact molecular
surface. Inthis way, thereal contacts between the target and the binder
are penalized by the cavities and holes in the interface. The contact
molecular surface wasimplemented as the ContactMolecularSurface
filter in the Rosetta macromolecular modelling suite.

Upweighted protein interface interactions

Rosetta sequence design starts from generating an interaction graph
by calculating the energies between all designable rotamer pairs®. The
best rotamer combinations are searched using aMonte Carlo simulated
annealing protocol by optimizing the total energy of the protein (mono-
mer/complex). To obtain more contacts between the binder and the
target protein, we can upweight the energies of all the cross-interface
rotamer pairs by a defined factor. In this way, the Monte Carlo protocol
will be biased to find solutions with better cross-interface interactions.
The upweighted protein interface interaction protocol was imple-
mented as the ProteinProteininterfaceUpweighter task operationin
the Rosetta macromolecular modelling suite.

Comparison of sampling efficiency of PatchDock, RifDock and
resampling protocols

The top 30 PatchDock outputs for the 1,000 helical scaffolds tested
were designed using the RosettaScripts protocol. RifDock seeded with
PatchDock outputs generated 300 outputs per scaffold, which were
trimmed to a total of 19,500 docks with the Predictor (Methods) and
subsequently designed. The top 150 RifDock outputs per scaffold were
trimmed t0 9,750, designed, and 300 motifs were extracted. The motifs
were grafted into the scaffold set to produce 150,000 docks, which
were trimmed to 9,750, designed, and combined with the earlier 9,750.

DNA library preparation

All protein sequences were padded to 65 amino acids by adding a
(GGGS)n linker at the carboxy terminus of the designs to avoid the
biased amplification of short DNA fragments during PCRreactions. The
proteinsequences were reversed translated and optimized using DNA-
works2.0 (ref. *®) with the Saccharomyces cerevisiae codon frequency
table. Oligonucleotide pools encoding the de novo designs and the
point mutant library were purchased from Agilent Technologies. Com-
binatorial libraries were purchased as Integrated DNA Technologies
ultramers, with the final DNA diversity ranging from1x10°to 1 x 10’

All libraries were amplified using Kapa HiFi polymerase (Kapa
Biosystems) with a qPCR machine (Bio-Rad, CFX96). In detail, the
libraries were first amplified ina 25 plreaction, and the PCR reaction
was terminated when the reaction reached half maximum yield to
avoid overamplification. The PCR product was loaded onto a DNA
agarose gel. The band with the expected size was cut out, and DNA
fragments were extracted using QIAquick kits (Qiagen). Then, the
DNA product was re-amplified as before to generate enough DNA for
yeast transformation. The final PCR product was cleaned up with a
QIAquick Clean up kit (Qiagen). For the yeast transformation step,
2-3 pg of linearized modified pETcon vector (pETcon3) and 6 pg of
insert were transformed into the EBY100 yeast strain using a previ-
ously described protocol®.

DNA libraries for deep sequencing were prepared using the same
PCR protocol, except the first step started fromyeast plasmid prepared
from 5 x 107 to 1 x 108 cells by Zymoprep (Zymo Research). lllumina
adapters and 6-bp pool-specific barcodes were added in the second
gPCR step. Gel extraction was used to obtain the final DNA product
for sequencing. All the different sorting pools were sequenced using
lllumina NextSeq sequencing.

Target protein preparation

The influenza A HA ectodomain was expressed using a baculovirus
expression system as previously described®*, In brief, each HA was
fused with a gp67 signal peptide at the amino terminus and to a BirA
biotinylation site, thrombin cleavage site, trimerization domain and
His-tagat the C terminus. Expressed HA was purified using metal affin-
ity chromatography with Ni**-NTA resin. For binding studies, each HA
was biotinylated with BirA and purified by gel filtration using a S200
16/90 column on an AKTA protein purification system (GE Healthcare).
The biotinylation reactions contained 100 mM Tris (pH 8.5), 10 mM
magnesium acetate, 10 mM ATP, 50 pM biotin and <50 mM NaCl, and
were incubated at 37 °Cfor1h.

ForTrkA, the DNAencodingthe humanTrkA extracellular domain (ECD)
(residues 36-382) was cloned into pAcBAP, a derivative of pAcGP67-A
modified to include a C-terminal biotin acceptor peptide (BAP) tag
(GLNDIFEAQKIEWHE) followed by a 6xHis tag for affinity purification.
Itwasthentransfected into Trichoplusia ni (High Five) cells (Invitrogen)
using the BaculoGold baculovirus expression system (BD Biosciences)
for secretion and purified from the clarified supernatant through Ni-NTA
followed by size-exclusion chromatography (SEC) with a Superdex-200
column in sterile PBS (Gibco, 20012-027). The ectodomains of FGFR2
(residues 147-366, UniProt ID: P21802), EGFR (residues ID 25-525, Uni-
ProtID:P00533), PDGFR (residues 33-314, UniProtID: P09619), IR (resi-
dues D 28-953, UniProt ID: P06213), IGFIR (residues 31-930, UniProt ID:
P08069), TIE2 (residues 23-445, UniProt ID: Q02763), IL-7Ra (residues
37-231, UniProt ID: P16871) were expressed in mammalian cells with
algK signal peptide (METDTLLLWVLLLWVPGSTG) at the N terminus
and a C-terminal tag (GSENLYFQGSHHHHHHGSGLNDIFEAQKIEWHE)
that contains a TEV cleavage site, a 6-His tag and an AviTag. VirB8 was
expressed in E. coli with a C-terminal AviTag as previously described?.
The proteinswere purified by Ni?*-NTA, and polished by SEC. The AviTag
proteins were then biotinylated with a BirA biotin-protein ligase bulk
reaction kit (Avidity) following the manufacturer’s protocol, and the
excess biotin was removed through SEC. Biotinylated CD3 protein was
purchased from Abcam (ab205994). TGF3 was purchased from Acro
Biosystems (TG1-H8217). IGF1 was purchased from Sigma (407251-100
1g). Insulinwas purchased from Abcam (ab123768). The caged ANGI1-Fc
protein was prepared as previously described*, and was provided by
G.Ueda. The FlI6v3 antibody was provided by D. H. Fuller (University of
Washington).

Yeast surface display

Saccharomyces cerevisiae EBY100 strain cultures were grown in
C-Trp-Ura medium supplemented with 2% (w/v) glucose. For induc-
tion of expression, yeast cells were centrifuged at 6,000g for1 min and
resuspended in SGCAA medium supplemented with 0.2% (w/v) glucose
atthe cell density of 1 x 107 cells per mland induced at 30 °C for16-24 h.
Cells were washed with PBSF (PBS with 1% (w/v) BSA) and labelled with
biotinylated targets using two labelling methods: with-avidity and
without-avidity labelling. For the with-avidity method, the cells were
incubated with biotinylated target, together with anti-c-Myc fluores-
ceinisothiocyanate (FITC, Miltenyi Biotech) and streptavidin-phy-
coerythrin (SAPE, ThermoFisher). The concentration of SAPE in the
with-avidity method was used at one-quarter of the concentration
of the biotinylated targets. For the without-avidity method, the cells
werefirstincubated with biotinylated targets, washed and secondarily
labelled with SAPE and FITC. All the original libraries of de novo designs
were sorted using the with-avidity method for the first few rounds
of screening to exclude weak binder candidates, followed by several
without-avidity sorts with different concentrations of targets. For SSM
libraries, two rounds of without-avidity sorts were applied and in the
third round of screening, the libraries were titrated with a series of
decreasing concentrations of targets to enrich mutants with beneficial
mutations. The combinatorial libraries were sorted to convergence by
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decreasing the target concentration with each subsequent sort and
collecting only the top 0.1% of the binding population. The final sorting
pools ofthe combinatorial libraries were plated on C-trp-ura plates, and
the sequences of individual clones were determined by Sanger sequenc-
ing. The competitionsort was done following the without-avidity proto-
colswithaminor modification. Inbrief, the biotinylated target proteins
(H1,H3,TrkA, IR, IGFIR, PDGFR and TIE2) were firstincubated with an
excess amount of competitors (FI6v3, FI6v3, NGF, insulin, IGF1, PDGF
and caged ANGI-Fc, respectively) for 10 min, and the mixture was used
for labelling the cells. The nonspecificity reagent was prepared using
the protocol as previously described®. For the nonspecificity sort, the
cells were first washed with PBSF and incubated with the nonspecificity
reagent ataconcentration of 100 pg ml™ for 30 min. The cells were then
washed and secondarily labelled with SAPE and FITC for cell sorting. The
cellswere thenlabelled with RBD using the above-described protocol.

Miniprotein expression

Genes encodingthe designed protein sequences were synthesized and
cloned into modified pET-29b(+) E. coli plasmid expression vectors
(GenScript, N-terminal 8-His tag followed by a TEV cleavagesite). For all
the designed proteins, the sequence of the N-terminal tag is MSHHHH
HHHHSENLYFQSGGG (unless otherwise noted), whichis followed imme-
diately by the sequence of the designed protein. For proteins expressed
with the maltose binding protein (MBP) tag, the corresponding genes
were subcloned into a modified pET-29b(+) E. coli plasmid, which has
aN-terminal 6-His tag and a MBP tag. Plasmids were transformed into
chemically competent £. coli Lemo21 cells (NEB). For the designs for
TrkA, FGFR2, EGFR, IR, IGFIR, TIE2, IL-7Ra, TGF and the MBP-tagged
miniproteins, protein expression was performed using Studier auto-
induction medium supplemented with antibiotic, and cultures were
grown overnight. For the HA, PDGFR and CD3& designs, the E. colicells
were grown in LB medium at 37 °C until the cell density reached 0.6 at
ODg,. Then, IPTG was added to a final concentration of 500 mM and
the cells were grown overnight at 22 °C for expression. The cells were
collected by spinning at4,000g for 10 min and then resuspended inlysis
buffer 300 mM NacCl,30 mM Tris-HCL (pH 8.0), with 0.25% CHAPS for
cellassay samples) with DNase and protease inhibitor tablets. The cells
were lysed with a QsonicaSonicators sonicator for 4 minin total (2 min
eachtime, 10 son, 10 s off) withan amplitude of 80%. The soluble frac-
tionwas clarified by centrifugation at 20,000g for 30 min. The soluble
fraction was purified by immobilized metal affinity chromatography
(Qiagen) followed by FPLC SEC (Superdex 7510/300 GL, GE Healthcare).
All protein samples were characterized by SDS-PAGE, and purity was
greater than 95%. Protein concentrations were determined by absorb-
anceat 280 nm measured withaNanoDrop spectrophotometer (Thermo
Scientific) using predicted extinction coefficients.

Circular dichroism

Far-ultraviolet circular dichroism measurements were carried out with
aJASCO-1500 instrument equipped with a temperature-controlled
multi-cell holder. Wavelength scans were measured from 260t0190 nm
at 25 and 95 °C and again at 25 °C after fast refolding (about 5 min).
Temperature melts monitored the dichroism signal at 222 nmin steps
of 2°C min™ with 30 s of equilibration time. Wavelength scans and
temperature melts were performed using 0.3 mg ml™ protein in PBS
buffer (20 mM NaPO,, 150 mM NaCl, pH 7.4) with al mm path-length
cuvette. Melting temperatures were determined by fitting the data
with a sigmoid curve equation. Nine out of the 13 designs retained
more than half of the meanresidue ellipticity values, which indicated
thatthe 7, values are greater than 95 °C. T, values of the other designs
were determined as the inflection point of the fitted function.

Biolayer interferometry
Biolayer interferometry binding datawere collected onan Octet RED96
(ForteBio) and processed using the instrument’s integrated software.

For minibinder binding assays, biotinylated targets were loaded onto
streptavidin-coated biosensors (ForteBio) at 50 nM in binding buffer
(10 mM HEPES (pH 7.4), 150 mM NaCl, 3 mM EDTA, 0.05% surfactant
P20 and 1% BSA) for 6 min. Analyte proteins were diluted from concen-
trated stocksinto the binding buffer. After baseline measurementinthe
binding buffer alone, the binding kinetics were monitored by dipping
the biosensors in wells containing the target protein at the indicated
concentration (association step) and then dipping the sensors back
into baseline/buffer (dissociation). The binding affinities of TIE2 and
IGFIR minibinders were low, and MBP-tagged proteins were used for
the binding assay to amplify the binding signal. The binding assay for
the IR designs were conducted with Amine Reactive Second-Generation
(AR2G ForteBio) Biosensors with the recommended protocol. In brief,
the miniproteins wereimmobilized onto the AR2G tips and the IR sam-
ple was used as the analyte with the indicated concentrations. Data
were analysed and processed using ForteBio Data Analysis software
v.9.0.0.14.

For the cross-reactivity assay, each target protein was loaded onto
streptavidin tips at a concentration of 50 nM for 325 s. The tips were
dipped into the miniprotein wells for 300 s (association) and then
dipped into the blank buffer wells for 600 s (dissociation). The maxi-
mum raw biolayer interferometry signal binding was used as the indica-
tor of binding strength. The maximum signal among all the miniprotein
binders for aspecific target was used to normalize the data for heat-map
plotting.

Crystallization and structure determination of the H3 binder in
complex with HK68/H3

To prepare the H3 minibinder (H3_mb)-HK68/H3 HA complex for crys-
tallization, a fivefold molar excess of H3_mb was mixed with about
2 mg ml™ of HK68/H3 HA in 20 mM Tris (pH 8.0), 150 mM NaCl. The
mixture was incubated overnight at 4 °C to facilitate formation of
the complex. Saturated complexes were then purified from unbound
HB_mb by gelfiltration. Gelfiltration fractions containing the H3_mb-
HK68/H3 HA complex were concentrated to approximately 7 mg ml™
in20 mM Tris (pH 8.0) and 150 mM NaCl. Crystallization screens were
set up using the sitting-drop vapour-diffusion method with our auto-
mated CrystalMation robotic system (Rigaku) at The Scripps Research
Institute. Within 3-7 days, diffraction-quality crystals had grownin
0.2 Msodium thiocyanate and 20% (w/v) PEG 3350 as a precipitant. The
resulting crystals were cryoprotected through the addition of 5-15%
ethylene glycol, flash cooled and stored in liquid nitrogen until data
collection. Diffraction data were collected at 100 K at the Stanford
Synchrotron Radiation Lightsource (SSRL) beamline12-1and processed
with HKL-2000 (ref. ). Initial phases were determined by molecular
replacement using Phaser*>*>with aHA model from PDB identifier 4FNK
(apo HK68/H3 HA). Refinement was carried out in Phenix*, alternating
with manual rebuilding and adjustment in COOT®. Electron-density
maps were calculated using Phenix Data collection, and refinement
statistics are summarized in Extended Data Table 2. The final coordi-
nates were validated using MolProbity®®.

Crystal structure of TrkA in complex with the miniprotein
binder

The human TrkA receptor ECD was produced in insect cells using
baculovirus and prepared as previously described®. Hi5 cells were
co-infected in shaking Fernbach flasks with baculoviruses encoding
TrkA ECD and endoglycosidase Hin the presence of kifunensine. Cul-
tures were allowed to progress for 65 h before the supernatant was
recovered by centrifugation. Components from the medium were
precipitated by the addition of 50 mM Tris (pH 8.0), 1 mM NiCl, and
5mM CaCl,, and the supernatant was filtered over diatomaceous earth.
The filtrate was batch-bound to Ni**-NTA resin, eluted with 200 mM
imidazole in HBS (HEPES-buffered saline: 10 mM HEPES (pH 7.3),
150 mM NacCl), and purified by SEC on a Superdex-75 column (Cytiva
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Life Sciences). To prepare the TrkA-miniprotein complex, an excess
amount of miniprotein was mixed with TrkA, digested overnight at
4 °Cwith1:100 (w/w) carboxypeptidases A and B, and purified by SEC.

For crystallization, the TrkA-ligand complex was concentrated to
38 mg ml'in HBS and screened in sitting-drop format using a Mosquito
crystallizationrobot (SPT Labtech). Initial sea urchin-like crystals were
obtained fromthe MCSG1screen (Anatrace-Microlytic) in 0.17 Mammo-
niumacetate, 0.085 M sodiumcitrate (pH 5.6), 25.5% PEG 4000 and 15%
glycerol. These crystals were crushed and used to microseed the MCSG1
screenagainataratio of 3:2:1 protein:precipitant:seed stock, resulting
insingle plate-like crystals grown from 0.2 Mammonium sulfate, 0.1 M
bis-Tris (pH 6.5) and 25% PEG 3350. After further optimizationto 0.4 M
ammonium sulfate, 0.1 M bis-Tris (pH 6.2) and 20% PEG 3350, new seeds
were prepared for final seeding into 0.4 M ammonium sulfate, 0.1M
bis-Tris (pH 6.2) and 16% PEG 3350.

Crystals were cryoprotected by the addition of ethylene glycol to 30%
(v/v) andflash cooled in liquid nitrogen. Diffraction datato1.84 A reso-
lution were collected at 100 K using an X-ray wavelength of1.033 A at the
SSRLbeamline 12-2. Crystals were assigned to space group P21 with unit
cell dimensions a=42.20 A, b=205.70 A, c=72.57 Aand f=106.42°.
Data were indexed, integrated and scaled using XDS***° and merged
using Pointless and Aimless from the CCP4 suite®® 2,

The structure was solved by molecular replacement in Phaser®?
using separated domains of TrkA ECD (PDB accession 2IFG) and the
predicted model of the ligand as search models to place two copies of
the complex inthe asymmetric unit. Initial rebuilding was completed
with phenix.autobuild® followed by iterative rounds of manual rebuild-
ingin Coot®* and refinementin Phenix® %, TLS parameters were chosen
using TLSMD®, and NCS restraints were used throughout refinement®.
The final resolution of the data was selected as 1.84 A by comparing
the results of paired refinements at 1.84,1.90,1.95,2.00 and 2.05 A
resolution’. The final refined model included 97.26% of residues in
the favoured region of the Ramachandran plot with 0.25% outliers as
calculated by MolProbity*.

Crystallographic software used in this study was configured and
installed by SBGrid”.. Diffraction images have been deposited in the
SBGrid Data Bank with the identifier 839, and the final model and reflec-
tions have been deposited in the PDB with the identifier 7N3T.

Crystal structures of FGFR2_mb in complex with FGFR4 domain
3 and FGFR2_mb alone
cDNA of human FGFR4 domain 3 (FGFR4;, amino acids S245-D355)
was amplified by PCR and cloned into pET-28a(+) plasmid (Novagen).
The plasmid containing FGFR4; with N-terminal hexa-histidine tag was
transformed into BL21(DE3) cells. The transformed cells were grown in
LB medium at 37 °C until the OD,, reached 0.5, induced with 1.0 mM
IPTG, grown for an additional 4 hat 37 °Cand collected. The bacterial
cellswereresuspended and lysed by sonication. FGFR4; was refolded
frominsoluble fractions using a previously reported procedure'®’>”>,
and purified to homogeneity using nickel affinity chromatography
(Ni**-NTA agarose; Qiagen) followed by SEC (Superdex 200 Increase
10/300 GL, Cytiva) equilibrated with a buffer containing 200 mM NaCl,
25 mMHEPES (pH 8.0) and 5% glycerol. The purified FGFR4; was mixed
with a 1.2-fold molar excess of FGFR2_mb and subjected to another
round of SEC toisolate the FGFR4;-FGFR2_mb complex. Fractions con-
taining FGFR4,; bound to FGFR2_mb were pooled and concentrated to
12 mg ml™and screened for crystallization using commercially available
crystallization screening kits with Mosquito Crystal liquid handler (SPT
Labtech). Crystals of the FGFR4;—-FGFR2_mb complex were obtained
with ProPlex screening solution (Molecular Dimensions) containing
0.2 M sodium chloride, 0.1 M MES pH 6.0 and 20% PEG 3,350 at 4 °C.
The crystals were cryoprotected using the mother liquor supplemented
with 25% glycerol before being flash-cooled in liquid nitrogen.
Crystals of FGFR2_mb were obtained using solution containing alco-
hols (0.02 M 1,6-hexanediol, 0.02 M1-butanol, 0.02 M1,2-propanediol,

0.02 M 2-propanol, 0.02 M 1,4-butanediol, 0.02 M 1,3-propanediol),
buffer mixture (0.1 M Tris and BICINE adjusted to pH 8.5) and pre-
cipitants (12.5% v/v MPD, 12.5% PEG 1000, 12.5% w/v PEG 3,350) by the
hanging-drop vapour-diffusion method at 20 °C, which were directly
flash-cooled in liquid nitrogen for X-ray diffraction data collection.
X-ray diffraction data were collected at the NE-CAT 24ID-E beam
line of Advanced Photon Source (Argonne National Laboratory) and
processed with XDS™. The initial structure of FGFR2_mb was obtained
by molecular replacement with PHASER®>” using the designed model,
which was iteratively refined using PHENIX®”” followed by manual
building with COOT®*. The structure of FGFR4;,-FGFR2_mb complex
was obtained by molecular replacement with Phaser®®” using the
coordinates corresponding to the domain 3 region of FGFR1c”? (PDB
ID:1CVS) and the coordinates of FGFR2_mb as the search model, fol-
lowed by iterative refinements using PHENIX®”” and COOT®*. The final
structures were validated with MolProbity”’¢. Data collection and
refinement statistics are provided in Extended Data Table 2.

Crystal structure of unbound IL-7Ra minibinder

Tofacilitate crystallization, the N-terminal His-tag was removed using
TEV protease and the protein was concentrated to 40 mg ml™in30 mM
Tris-HCI (pH 8.0) and 150 mM NacCl. Sparse-matrix crystal screening was
performed using kits from Hampton Research (Index-HT, PEGRX-HT
and PEG/lon-HT) at room temperature. A Mosquito nanolitre crystal-
lization robot was used to set up sitting drops consisting of 200 nl of
protein and 200 nl of each reservoir solution with 80 pl of reservoir
solutionin MRC-2 plates. Promising prism-shaped crystals grew from
theIndexHT C3 condition, and optimal conditions ranged from 2.4 to
3.0 M sodium malonate (pH 7.0). Protein crystals were cryo-cooled
directly into liquid nitrogen. Initial X-ray diffraction experiments were
carried out on ahome-source systemequipped with MicroMax-007 HF
rotating anode with a Dectris Eiger R 4M single-photon counting device.
X-ray diffraction data on optimized protein crystals were collected at
the Advanced Photon Source synchrotron beamline 231D-D of GM/
CA with a Dectris Pilatus3-6M detector. All X-ray data were processed
with XDS. Molecular replacement using the de novo designed model
was used to solve the crystal structure using Phaser within the Phenix
package. Two molecules were located in the asymmetric unit. Structural
refinement used Phenix using no NCS restraints. Data collection and
refinement statistics are given in Extended Data Table 2.

Crystal structure of IL-7Ra in complex with the minibinder

The ectodomain of human IL-7Ra was produced and purified as
previously described”. The anti-IL-7Ra minibinder was prepared as
described above. The IL-7Ra-minibinder complex was formed by add-
ing a molar excess of purified minibinder to recombinant IL-7Ra. The
IL-7Ra-minibinder complex was purified by SEC using a Superdex-75
column (Cytiva Life Sciences) with HBS buffer (pH 7.4) as the running
buffer. Fractions corresponding to the IL-7Ra-minibinder complex
were pooled and concentrated by centrifugal ultrafiltration to a con-
centration of 3.9 mg ml ™. Sparse-matrix crystallization screens were
carried out using the BCS-Screen (Molecular Dimensions) at 293 Kand
thesitting-drop method. The vapour-diffusion geometry was used to
set up sitting drops consisting of 200 nl of protein and 100 nl of each
reservoir solution using aMosquito nanolitre crystallization robot (TTP
Labtech). TheIL-7Ra-minibinder complex crystallized in condition A5
(0.1Mphosphate, citrate (pH 5.5) and 25.0% PEG Smear medium). Crys-
tals were cryo-protected with mother liquor supplemented with 25%
v/v PEG 400 and cryo-cooled by direct plunging into liquid nitrogen.
X-ray diffraction data of protein crystals were collected at beamline
ID23-2 of the ESRF (Grenoble) with a Dectris PILATUS3 X 2M detec-
tor and were processed with XDS*®%. The structure was determined by
maximum-likelihood molecular replacementin Phaser using the crystal
structure of IL-7Ra (PDB ID: 3DI2) as a search model®. Three copies of
the complex were located in the asymmetric unit. Model (re)building
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was performed in Coot®*, and coordinate and ADP refinement was
performed in PHENIX® and autoBuster’®. Model and map validation
tools in Coot, the PHENIX suite and the PDB_REDO server” were used
to validate the quality of crystallographic models. The final model
and reflections have been deposited in PDB with the identifier 7OPB.
Data collection and refinement statistics are provided in Extended
Data Table 2.

Crystal structure of VirB8-like protein in complex with the
minibinder

VirB8-like protein of the type IV secretion system from R. typhi (UniProt
ID: Q68X84) in complex with 0.75 mM VirB8 miniprotein binder was
suspended in a buffer containing 20 mM HEPES pH 7.0, 300 mM NacCl
and 5% glycerol. The complex was crystallized using the sitting-drop
vapour-diffusion method at 14 °C with drops composed of 0.4 ml
of the complex at 9.9 mg ml™ mixed with 0.4 ml crystallant (sparse
matrix screenJCSG Top96 (Rigaku Reagents) condition G9:100 mM
sodium acetate/hydrochloric acid (pH 4.6), 25% (w/v) PEG 4000,
200 mM ammonium sulfate) equilibrated against 80 ml crystallant
in the reservoir. Crystals were cryoprotected in the crystallant sup-
plemented with15% (v/v) ethylene glycol. X-ray diffraction data of the
VirB8 protein-miniproteinbinder complex was collected at the LS-CAT
beamline 21-ID-F at the Advanced Photon Source. Datawere integrated
in XDS and reduced using XSCALE®®, Data quality was assessed using
POINTLESS® . Molecular replacement was performed using Phaser*
with search models comprising a previously solved crystal structure
of R.typhiVirB8-like of type IV secretion system (PDBID:403V) and an
Alphafold2 (ref. ) predicted model of the VirB8 miniprotein binder.
Iterative manual model building and refinement were carried out using
Coot® and Phenix®. Structure quality was assessed using Molprobity*
before deposition in the PDB®*#* (Extended Data Table 2). Diffraction
images are available at the Integrated Resource for Reproducibility in
Macromolecular Crystallography®*%,

Comparison between the crystal structures and design models
For the structures of the miniprotein binders in complex with the tar-
gets, the entire structures were aligned using the target as the refer-
ences first. The r.m.s.d. over the C, atoms of the entire miniprotein
binder was calculated. For the unbound crystal structures of the FGFR2
miniprotein binder and the IL-7Ra miniprotein binder, the r.m.s.d.
values were calculated over all the C, atoms after superimposition.
For the analysis of the heavy atoms of the interface core residues, the
structures were aligned using the target as references first. Interface
residues of thebinders were selected aslong as there is oneresidue on
the target that has a CB-Cp distance of less than 8 A using the Neigh-
borhoodResidueSelector, and core residues were selected using the
LayerSelector in Rosetta with the default burial cut-off value. Then
heavy atoms of the interface core residues were used to calculate the
r.m.s.d. values. Four, eight, six and six residues were considered as
interface core residues for the H3, FGFR2, IL-7Ra and VirB8 complex
structures respectively.

TrkA minibinder antagonist assay

The Phospho-flow signalling assay was used to characterize the antago-
nistic properties of the TrkA minibinder. TF-1 cells (American Type
Culture Collection, CRL-2003) were starved for 4 h in base medium
without NGF or other cytokines before signalling assays. Cells were
platedin96-well plates with different concentrations of TrkA binder and
stimulated with human beta-NGF (R&D) for 10 min at 37 °C, followed by
fixation with1.6% paraformaldehyde for 10 min at room temperature.
Cells were permeabilized by resuspension in ice-cold methanol and
stored at =20 °C until flow cytometry analysis. For intracellular stain-
ing, the permeabilized cells were washed and incubated with Alexa
Fluor-488 conjugated anti-ERK1/2 pT202/pY204 antibody (BD) and
Alexa Fluor-647 conjugated anti-Akt pS473 antibody (Cell Signaling

Technology) for1hatroomtemperature. After washing with autoMACS
running buffer (Miltenyi), the fluorescence intensity of each antibody
staining level was acquired using a CytoFlex flow cytometer (Beckman
Coulter). Mean fluorescence intensity (MFI) values were background
subtracted and normalized to the maximal MFl value in the absence
of TrkAbinder and plotted in Prism 9 (GraphPad). The dose-response
curves were generated using the sigmoidal dose-response analysis
method.

Forthecell proliferation assay, TF-1cells were plated ina 96-well plate
and cultured in RPMI-1640 medium containing 2% FBS and different
concentrations of TrkA binder and NGF for 48 hat 37 °C. The cell pro-
liferation rate was assessed by measuring the cellular ATP level using
CellTiter-Glo 2.0 Cell Viability Assay reagent (Promega) according to
the manufacturer’s protocol. The luminescent signal was measured
using a SpectraMax Paradigm plate reader, and the data were plotted
and analysed using Prism 9 (GraphPad). The dose-response curves
were generated using the sigmoidal dose-response analysis method.

FGFR2 and EGFR minibinder antagonist assay

For cell culture, human umbilical vein endothelial cells (HUVECs;
Lonza, C2519AS) were grown in EGM2 medium on 35-mm cell culture
dishes coated with 0.1% gelatin. In brief, EGM2 is composed of 20% FBS,
1% penicillin-streptomycin, 1% GlutaMAX (Gibco, 35050061),1% ECGS
(endothelial cellgrowth factor),1 mMsodium pyruvate, 7.5 mM HEPES,
0.08 mg mlheparinand 0.01% amphotericin B in amixture of 1x RPMI-
1640 with and without glucose (final glucose concentration = 5.6 mM).
Medium was filtered through a 0.2-pum filter. HUVECs were serially
passaged and expanded before cryopreservation.

FGFR and EGFR antagonist assay

Frozen HUVECs were thawed and cultured in a 35-mm dish in EGM2
medium until confluency was reached. After that, EGM2 medium
was aspirated and cells were rinsed twice with 1x PBS. Cells were then
serum-starved by adding 2 ml of DMEM serum-free medium (1g 1™ glu-
cose, Gibco) for16 h, after which the starvation medium was aspirated.
The cells were then treated withthe FGFR2 minibinder or the EGFR min-
ibinder for1hat37 °Cand at concentrations varying between 5 nMand
1M of minibinder. This was followed by stimulation with 3-FGF (0.75 nM,
Fisher Scientific) or EGF (1 nM, Peprotech), respectively, for 15 min at
37 °C. After treatment, the mediumwas aspirated, and cellswere washed
once with 1x PBS before collecting the total protein for analysis.

Total proteinisolation

After minibinder treatment, the cells were gently rinsed in 1x PBS
before lysis with 130 pl of lysis buffer containing 20 mM Tris-HCL
(pH 7.5), 150 mM NacCl, 15% glycerol, 1% Triton, 3% SDS, 25 mM
B-glycerophosphate, 50 mM NaF, 10 mM sodium pyrophosphate, 0.5%
orthovanadate, 1% PMSF (all obtained from Sigma-Aldrich), benzonase
nuclease (EMD Chemicals), protease inhibitor cocktail (Pierce protease
inhibitor mini tablets, Thermo Scientific) and phosphatase inhibitor
cocktail 2 (P5726). Cell lysate was collected in afresh Eppendorftube.
Atotal of 43.33 pl of 4x Laemmli sample buffer (Bio-Rad) (containing
10% B-mercaptoethanol) was added to the cell lysate and then heated
at 95 °C for 10 min. The boiled samples were either used for western
blot analysis or stored at —80 °C.

Western blotting

Atotal of 30 pl of protein lysate was loaded per well and separated on
a4-20% SDS-PAGE gel for 30 min at 250 V. Proteins were then trans-
ferred ontoanitrocellulose membrane for12 min using asemi-dry turbo
transfer apparatus (Bio-Rad). The membranes were blocked in 5% BSA
for1h, after which they were probed overnight withrespective primary
antibodies onarocker at4 °C. The primary antibodies used in this assay
were 3-actin (1:10,000; Cell Signaling Technologies), p-ERK1/2 p44/42
(1:10,000; Cell Signaling Technologies) and p-AKT S473 (1:2,000; Cell
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Signaling Technologies). The next day, membranes were washed three
times with 1x TBS-T and then incubated with anti-rabbit HRP conju-
gated secondary antibody (1:10,000; Bio-Rad) for 1 h. For p-AKT S473,
following washes, the membrane was blocked in 5% milk at room tem-
perature for1 hand thenincubatedin the respective HRP-conjugated
secondary antibody (1:2,000) prepared in 5% milk, for 1 h. They were
developed using Immobilon Western chemiluminescent substrate
(EMD Millipore), followed by quantification using NIH Image]J analysis
software. The raw scans of the western blot results are shown in Sup-
plementary Fig. 5. Quantifications were done by calculating the peak
areafor each band. Inhibition curve fit and corresponding IC, values
were determined using GraphPad Prism 9 software.

IL-7Ra minibinder antagonist assay

HEK293T cells were cultured in DMEM medium with 10% FBS at 37 °C
and 5% CO,. Cells were co-transfected with 1,000 ng pcDNA3-y com-
mon, 300 ng pMET7-HA-IL-7R&, 200 ng pMX-IRES-GFP-hJak3,300 ng
empty pMET7 vector and 200 ng pGL3-b-casein-luci STATS5 reporter
plasmid per well of a 6-well plate. One day after transfection, cells
were detached with cell dissociation buffer (Life Technologies),
re-suspended in DMEM +10% FCS and 2% of cells were seeded in 96-well
plate as previously described” and stimulated overnight with 50 pM
humanIL-7 (Immunotools) and increasing concentrations of IL-7Ra min-
ibinder. STATS5-dependent luciferase activity was measured on the next
day using a GloMax 96 microplate luminometer. The fold-induction
of luciferase activity was calculated by the ratio of the luminescence
signal from cells stimulated with IL-7 to the signal from the unstimu-
lated cells. The data were plotted and fitted to a log inhibitor versus
response curvein GraphPad Prism. The pcDNA3-gamma common was
agiftfrom)J. C.Renauld (Faculty of Medicine and Dentistry, UC Louvain,
Belgium) and the pMX-IRES-GFP-hJak3 vector® was provided by S. N.
Constantinescu (Ludwig Institute for Cancer Research, Belgium). The
PMET7-HA-IL-7Ra, empty pMET7 and pGL3-f-casein-luci vectors were
provided by F. Peelman (UGent, Belgium).

Apparent SC,, estimation from FACS and next-generation
sequencing
The Pear program® was used to assemble the fastq files from the
next-generation sequencing (NGS) runs. Translated, assembled reads
were matched against the ordered designs to determine the number
of counts for each designin each pool.

Thecritical assumption to thefitting hereis to assumethat the yeast
cells displaying a particular design will follow a modified version of
the standard K equation relating fraction bound to concentration:

concentration

Fraction_collected; = -
- ‘" (concentration +SCs ;)

)]

where fraction_collected; is the fraction of the yeast cells displaying
designithat were collected, concentrationis the target concentration
forsorting, and SCs,;is the apparent SC,, of the design (the concentra-
tion where 50% of the cells would be collected).

The nextassumptionis thatall designs have the same expression level
on the yeast surface and that 100% of yeast cells express sufficiently
welltobe collected inthe ‘expression’ gate (thatis, the right population
inSupplementary Fig. 7).

These two assumptions, although probably false, enable fitting of
the data with only one free parameter per design and no global free
parameters. The correct version of equation (1) for this experiment
probably has a different shape and slope from a perfect sigmoid; the
net effect of correcting this would be that all SC, values are scaled by
a constant factor (which would not affect the relative comparisons
made here). It canbe shown by analysing the data that different designs
resultindifferent expression levels onyeast (one can examine the frac-
tion collected, for strong binders at concentrations for which binding

should be saturated). The netresultis that experimentally, equation (1)
ismultiplied by aconstant between O and 1for each design. This con-
stant seems to range from 0.2 to 0.7. As such, when fitting the data,
fraction collected; values above 0.2 are considered saturating. How-
ever, because the 0.2 mark may represent 90% collection for poorly
expressing designs and 30% collection for strongly expressing designs,
the resulting SCs, fits may vary by up to fivefold. The alternative is to
try to estimate an expression level; however, this becomes increas-
ingly difficult with weaker binders that never saturate the experiment.

Apparent SC;, estimation from FACS and NGS: point estimates
Thefollowing equation may be used to determine the fraction collected,
for asingle designinasingle sort:

proportion_child_pool,
proportion_parent_pool, )

Fraction_collected; =
xFACS _collection_fraction

where fraction_collected;is the proportion of cells carrying design i that
were collected during the sort, proportion_child_pool;is the proportion
of the total NGS counts for design i from the pool that was collected,
proportion_parent_pool;is the proportion of the total NGS counts
for design i from the pool that was the input for the sorter, and FACS
collection fraction was the fraction of the yeast cells collected during
the specific sort (a number extracted from the FACS machine itself).

This point-estimate method is best suited for asking which designs
have SCy, < SCs,, by determining the expected fraction_collected;fora
given sorting concentrationand SCs, ,. The sorting concentration and
SCso0 should be selected such that equation (1) results in an expected
fraction_collected; less than 0.2 to circumvent the expression issues
mentioned above. Then, any designs with fraction_collected; greater
than the cut-off may say that their SCs is less than SCs o. Designs with
low numbers of counts are suspect, see the ‘Doubly transformed yeast
cells’section below. For this analysis, any designs with fewer than max
possible passenger cells were eliminated.

This method may be applied to avidity sorts; however, the resulting
SC,, would be the SCs, during avidity experiments. It is unclear what
the precise mathematical effect of avidity is, and as such we do not
compare avidity SCs, values with non-avidity SCs, values.

Apparent SC,, estimation from FACS and NGS: doubly
transformed yeast cells

Doubly transformed yeast cells represent amajor source of error in these
experiments. Although rare, ayeast cell that contains two plasmids, one
of astrong binder and one of a non-binder, will carry the non-binder
plasmid throughthe sorting process. The net result is that the non-binder
willend up with counts that track the strongbinder; however, atagreatly
reduced absolute number. Note that rareis arelative termhere. Although
the odds of any two specific plasmids beingin one cellis low, inthe entire
pool of yeast, doubly transformed cells seem to be common.

We chose to address this issue by making the following assumption:
non-binders that take advantage of a doubly transformed yeast celldo
so from precisely one double-transformation event. In other words,
we assumed that the same non-binding plasmid did not get doubly
transformed into two separate strong-binding yeast. This assumption
allows us to estimate the largest number of cells we would expect to
see from a doubly transformed plasmid:

cells_collected,

i_max

cells_sorted R1, ... 3)

Max_possible_passenger_cells =

xcell_copies_before_first_sort

where max_possible_passenger_cellsis the highest number of cells that
we would expect anon-binding plasmid to occupy, cells_collected; .y



is the number of cells collected in this round for the design with the
greatest number of cells collected, cells_sorted_R1, ,, is the number
of cells sorted for design i max (the same design from cells_collect-
ed; ), and cell copies before first sort is the number of copies of each
cell that occurred before the first sort (2" ofcelldivisions) The number of
cells_collected; may be approximated by multiplying the number of
cells the FACS machine collected by the proportion of the pool that
design irepresents. The number of cells_sorted, may be estimated by
either dividing the cells_collected; by the FACS_collection_fraction
or by multiplying the number of cells fed to the FACS machine by the
proportion of design i in that pool.

With this number in hand, one can set a floor for the number of cells
that one would expect to see. Any design with fewer than this num-
ber of cells cannot be considered for calculations because it is unclear
whether or not that cell is part of a doubly transformed yeast cell.
On the whole, this method reduces false-positive binders but also
removes true-positive binders that did not transform well. It is wise to
simply drop designs from the downstream calculations that did not
transformwell.

Apparent SC,, estimation from FACS and NGS: full estimate
Estimation of an upper and lower bound on the SC,, from the datamay
be performedbylookingatan arbitrary number of sorting experiments.
Takinga P(SCs,==SCs,, | data) and performing Bayesian analysis, one
arrives at a confidence interval for the actual SCs, value. This analysis
may be performed at every sort and the resulting distributions com-
bined to produce arobust estimate.

Each sort may be modelled asabinomial distribution where P=frac-
tion_collected from equation (1) using concentration = sorting_con-
centration and SCs, = SCs o; 1 = cells_sorted;; and x = cells_collected,.
By performing this analysis atarange of SC;, , values and examining the
probability this could happen by the binomial distribution, one arrives
at P(SCs, == SCy | data). Specifically for this analysis, the cumula-
tive distribution function (CDF) of the binomial was used with the null
hypothesis that SCs, == SCs 0.

Careshould be taken for the valid range of P. As stated previously, it
is wise to cap the expected value of Pto 0.2 to account for expression
levels and to floor the value such that n x P does not fall below max
possible passenger cells. In our implementation, if x falls into arange
that has been clipped, a probability of 1is returned.

The code to perform this entire analysis is available in the Supple-
mentary Information.

SSM validation: relax protocol

Toremove artefacts from designs and to discover the best orientation
foreach SSM mutation, allbinders were relaxed using the Rosettabeta_
novlé score function before calculations began (30 replicates using
Srepeats of cartesian FastRelax taking the best scoring model). Relaxa-
tion of point mutants then used the standard cartesian FastRelax
procedure and allowed all residues within 10 A of the mutation to
relax. The backbone coordinates of those residues on the binder were
allowed torelax while the target was held constant. The best of three
(as evaluated by Rosetta energy) was chosen as the representative
model. An xmlis provided in the Supplementary Information to per-
form this relaxation.

SSM validation: entropy score

Tovalidate that the designed binder was folded into the correct shape
and was using its designed interface to bind to the target, the entropy of
theinterface, monomer core and monomer surface were examined. For
each position onthe binder, the sequence entropy (Shannon entropy)
ofeach positionwas calculated using the observed frequencies of each
aminoacidin the NGS. The specific pool that was chosen for this analy-
sis was the pool with concentration closest to tenfold lower than the
calculated SC,, of the parent.

After the per-position sequence entropy was calculated, the average
per-position entropy of the SASA-hidden positions contacting the
target (interface core), the SASA-hidden positions not contacting the
target (monomer core) and the fully exposed positions not contacting
the target (monomer surface) were calculated. A simple subtraction
was performed according to equation (4):

Intermediate entropy score @

= Smonomer_core + Sinterface_core - Smonomer_surface

where S, is the average entropy of that region.

Finally, the probability that the score could have come from totally
random data was computed by performing the above calculation on
the actual data, and then performing the same calculation 100 times,
butrandomly mismatching the observed counts among all SSM point
mutations. In this way, the experimental noise is kept constant among
the 100 decoy datasets. The final step to arrive at a P value was to cal-
culate the meanand standard deviation of the 100 decoy intermediate
entropy scores and to find the P value with the Normal CDF function
of the binder’s intermediate entropy score.

SSM validation: Rosetta accuracy score
To further assess the accuracy of the design model, the correlation
between the predicted effect on binding by Rosetta was compared
with the experimental data. The effect from Rosetta can be brokeninto
two components: monomer stabilization/destabilization and interface
stabilization/destabilization. The effect on the monomer energy will
affect the fraction of the proteins that are folded in solution. This frac-
tion of folded proteins will then worsen the affinity because only the
folded proteins are able to bind. The effect on the monomer stability
was estimated by taking the difference in Rosetta energy between the
native relaxed dock and the mutant relaxed dock and looking only at
the changeinRosettascore of the docked protein (excluding energies
arising from cross-interface edges). The effect on the target energy was
calculated the same and was considered to directly affect the binding
energy. The binding energy was calculated by taking the difference
in Rosetta score between the docked and undocked conformations
(but with norepacking or minimization in the unbound form). An xml
exists in the Supplementary Information to perform this calculation.
The effect on the P(fold monomer) was estimated by first determin-
ing the predicted AG;,4 of the native protein.

AGq+ AG
P(fold monomer) = exp[ fold kTmUtameffectj )
_ P(fold monomer),,:ive
AddGmonomer effect — len(P(fOld monomer)mutam (6)

Where kis the Boltzmann constant and Tis temperature, which was
set to 300 K for this calculation.

Using equations (5) and (6), the predicted AG;,4 for the native design
was estimated by performing a least-squares fit of all mutations that
did not occur in residues at the interface. A rudimentary confidence
interval was created by allowing all AG, 4 values that resulted in aroot
mean squared error of within 0.25 kcal mol™ of the best AG;,,4 value.
Typical confidence intervals spanned 3 kcal mol™.

Add GRosetta =Add Gmonomer effect T Add Ginterface effect

(7)
+ Adtharget effect

With the AG;,4in hand, the predicted effect on the binding energy
could be computed according to equation (7). The values of AG, 4inside
the confidence range for AGg, s that produced the largest and smallest
AddGg,.. Were used to produce a confidence interval for AddGyeera-
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The per-positionaccuracy was assessed by determining whether the
confidenceinterval for Add Gy, Was compatible with the confidence
interval for the SC,, from the experimental data. A buffer of 1 kcal mol™
was allowed.

With the per-position accuracies in hand, the overall percentage of
mutations that Rosetta was able to explain in the monomer core and
interface core was assessed. This produced an overall Rosetta accuracy
score.

In the same way as the entropy score, 100 decoys with randomly
shuffled SCy, values were subjected to the same procedure. The mean
and standard deviation of the decoys was determined and the P value
for the Rosetta score was determined using the Normal CDF function.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The atomic coordinates and experimental data of H3_mb in complex
with H3 HA, TrkA_mb in complex with TrkA, unbound FGFR2_mb,
FGFR2_mb in complex with FGFR4, unbound IL-7Ro._mb, IL-7Ra._mb
incomplex withIL-7Ra and VirB8_mb in complex with VirB8 have been
deposited in the RCSB PDB with the accession numbers 7RDH, 7N3T,
7NI1K, 7N1J, 7S5B, 70PB and 7SH3, respectively. Diffraction images
for the TrkA-minibinder complex have been deposited in the SBGrid
DataBank with the identifier 838. The Rosetta macromolecular mod-
elling suite (https://www.rosettacommons.org) is freely available to
academic and non-commercial users. Commercial licences for the
suite are available through the University of Washington Technology
Transfer Office.

Code availability

The Rosetta macromolecular modelling suite (https://www.rosettacom-
mons.org) is freely available to academic and non-commercial users.
Commercial licences for the suite are available through the University
of Washington Technology Transfer Office. The design scripts and main
PDB models, computational protocol for data analysis, experimental
data and analysis scripts, the entire miniprotein scaffold library, all
the design models and NGS results used in this paper can be down-
loaded from file servers hosted by the Institute for Protein Design:
https://files.ipd.uw.edu/pub/robust_de_novo_design_minibinders_2021/
supplemental_files/scripts_and_main_pdbs.tar.gz, https://files.ipd.
uw.edu/pub/robust_de_novo_design_minibinders_2021/supplemental_
files/computational_protocol_analysis.tar.gz, https://files.ipd.uw.
edu/pub/robust_de_novo_design_minibinders_2021/supplemental_files/
experimental_data_and_analysis.tar.gz, https://files.ipd.uw.edu/pub/
robust_de_novo_design_minibinders_2021/supplemental_files/scaf
folds.tar.gz, https://files.ipd.uw.edu/pub/robust_de_novo_design_
minibinders_2021/supplemental_files/design_models_pdb.tar.gz and
https://files.ipd.uw.edu/pub/robust_de_novo_design_minibinders_2021/
supplemental_files/design_models_silent.tar.gz. All the files are stored
in compressed gzip format. Once the files have been downloaded and
decompressed, thereis adetailed description of the binder design pipe-
lineand the whole process can bereproduced based on those files. The
source code for RIF dockingimplementationis freely available at https://
github.com/rifdock/rifdock.
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Extended DataFig.1|Detailed flow chart of the de novo miniprotein binder design pipeline. The computational design steps are colored as light green and
experimental characterization and optimization steps are colored as light blue.
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Extended DataFig. 2| Analysis of the critical steps of the de novo binder
design pipeline.a, Comparison of the two docking approaches based on
RosettaddG and contact molecular surface. Average and per-target
distribution of the top 1% of binders in two key metrics after pooling equal-
CPU-time dock-and-design trajectories. RifDock seeded with PatchDock
outputs generated 300 outputs per scaffold that were trimmed to a total of
19,500 docks with “The Predictor” and designed using combinatorial side-
chain optimization (orange). RifDock using the Hierarchical docking search
generated 300 outputs per scaffold that were trimmed to a total of19,500
dockswith“The Predictor” and subsequently designed (purple). Rosetta ddG
referstothe predicted binding energy as calculated by Rosetta and Contact MS
tokey residues refersto the Contact Molecular Surface value (adistance
weighted interfacial area calculation) to the key hydrophobicresidues on the
target that define this binding site. b, The rapid pre-screening method enriches
dockswithbetter RosettaddG and contact molecular surface. Average and per-
targetdistribution of the top 1% of binders in two key metrics after pooling
equal-CPU-time dock-and-design trajectories. The top 30 PatchDock outputs
forthe1,000 helical scaffolds tested were designed using the RosettaScripts
protocol (blue). The top 300 PatchDock outputs for the 1,000 helical scaffolds
tested were trimmed to 21,000 with “The Predictor” and subsequently
designed (red).c, Theimproved sequence design protocol yielded amino acid

sequences more strongly predicted to fold to the monomer structure.

The effect on fragment quality and Rosetta Score with different fragment-
quality-guidance approaches. Rosetta using FastDesign with the standard
LayerDesign settings was used to design1,000 3-helicaland 1,000 4-helical
mini-protein scaffolds (blue). The same protocol was supplanted with the
ConsensusLoopDesign TaskOperation (orange). The structure-based PSSM
wasused asanenergy terminaddition to the Standard Rosetta protocol
(green). Two predictors of sequence-structure correspondence were found to
improve without negatively affecting the computed Rosettascore of the
binders. The probability that the designed sequence encoded for the wrong
secondary structure was computed using PsiPred4®® (left), and for each 9aa
fragment of the designed scaffold, the closest match toafragmentinthe
Protein Data Bank with the same sequence was computed and averaged over
the entire structure' (center). Details can be found in the Supplemental
Information. d, Theimproved sequence design protocol yielded amino acid
sequences more strongly bound to the target. 10,000 scaffolds docked against
the N-terminal domain of EGFR were designed with the RosettaScripts protocol
while varying only the weight of the ProteinProteininterfaceUpweighter. This
TaskOperation multiplies allenergies across the interface by the listed value
during packing-design calculations.
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Extended DataFig. 5| Average SSM sequence entropy for different regions
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of binders. The sequence entropy of asingle position was calculated by

looking at the counts from the sort with the concentration closest to 10-fold

lower thanthe estimated parent SCs,and performing a simple Shannon

entropy calculation onallamino acids observed at that position. Each plotted

pointisthe average entropy of all positions within each of the three zones

respectively. Validated vs Not Validated refers to the SSM Validation procedure

withacutoffof 0.005 (see Methods and Extended Data Figure15). Since one
would expect the coreresidues of the monomer and core residues of the
interface tobe conserved while the surface residues should not matter, the
validated binders trend above the line. Points onthe linedo not showa
difference between their surfaces and cores, potentially indicating unfolded or
misfolded proteins. Points below the line may be misfolded or binding with
alternateresidues.
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Extended DataFig. 6| Computational analysis of the experimental SSM
results. a, Ability of Rosetta to predict mutational effects. This graph shows
the observed experimental effect of each mutation versus Rosetta’s expected
effect. For each plotted point, the deltarefersto the effect versus the parent
SSMdesign; therefore a “Beneficial” mutationis one that would improve
affinity relative to the original designed protein the SSMwas based on. The
AExperimental ddgis derived from FACS data using the SC,, values

(see Methods). Confidence intervals were collapsed to their center point to
make this graph and “No effect” refers to mutations with less than alkcal/mol
change. Binderregion definitions: Interface Core: residue contactstarget
proteinand has no SASA (Solvent Accessible Surface Area) inbound state;
Interface Boundary: residue contacts target protein, but does have SASA;
Monomer Core: residue hasno SASA and does not contact target; Monomer
Boundary:residue hasintermediate SASA and does not contact target;
Monomer Surface: residue has full SASA and does not contact target.

Native Native

see Methods SSM Validation for further explanation. b, Mutations observedin
SSMexperiments thatimproved affinity bind at least 1kcal/mol graphed by
relative frequency. Plotted is the #_times_Native_to_Mutant_improved_affinity/
# _times_Native_to_Mutant_tested_in SSMs. A value of 0.10 with x-axis Fand
y-axis W could therefore represent that for2 of 20 times W was substituted for
Y, the affinity improved. Separated bars on each axis represent pooled data for
the entire row/column. Grey boxes indicate mutations that occurred fewer than
Stimes. Only SSM designs with a validation score of 0.005 or better were
considered. While some cells are clipped, none extended beyond 0.25. Binder
regiondefinitions: Interface Core: residue contacts target protein and has no
SASAinboundstate; Interface Boundary: residue contacts target protein, but
does have SASA; Monomer Core: residue has no SASA and does not contact
target; Monomer Boundary:residue has intermediate SASA and does not
contact target; Monomer Surface: residue has full SASA and does not contact
target.
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Extended DataFig.7| Competitionexperimentsindicated the miniprotein incubated withthe target proteininthe presence or absence of the native
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Extended DataFig. 9 | Experimental characterization of the effects of the
FGFR2minibinder and the EGFR n-side minibinder on their native
signaling.a, FGFR2 minibinder (FGFR2_mb) inhibits FGF-induced ERK
phosphorylation. Western Blot analysis showing reductionin FGF signaling
(lanes 4-8) withincrease in mini binder concentration. Lanes 3-4 show that EGF-
induced ERK phosphorylationis unaffected by FGFR2 minibinder, eliminating
any crosstalk between the tworeceptors. b, EGFR n-side minibinder (EGFRn_mb)
inhibits EGF-induced ERK and AKT phosphorylation. Western Blot analysis
showing reductionin EGF signaling (lanes 4-8) with increase in minibinder
concentration. Lanes 3-4 show that BFGF-induced ERK phosphorylationis
unaffected by EGFR minibinder, eliminating any crosstalk between the two
receptors.c, Titration curve for bFGF mediated pERK signaling. (upper)
Western Blot showing dose-dependentincrease in FGF signaling with BFGF
concentration. (lower) n = 2biologicallyindependent experimental repeats
were performed, and quantification was done using ImageJ analysis software.
Theselected concentration for competition assays was 0.75nM. d, Titration

curve for EGF mediated pERK/pAKT signaling. (upper) Western Blot showing
dose-dependentincrease in EGF signaling with EGF concentration. (lower) n=2
biologicallyindependent experimental repeats were performed, and
quantification was done using ImageJ analysis software. The selected
concentration for competition assays was1nM. e, Representative Western Blot
forinhibition curves - FGFR2 minibinder. Western Blot shows dose-dependent
reductionin pERK signaling with mini minder concentration. Quantification
was done using Image] analysis software. f, Representative Western Blot for
inhibition curves - EGFR n-side minibinder. Western Blot shows dose-
dependentreductionin (upper) pERK signaling and (lower) pAKT signaling
with minibinder concentration. Quantification was done using Image]J analysis
software. g, Dose-dependentreductionin pAKT signaling elicited by 1nM EGF
inHUVECs withincrease in EGFR n-side minibinder concentration. The ICs, was
calculated using afour-parameter-logistic equationin GraphPad Prism 9
software.
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Extended DataFig.10|De novo design and experimental characterization
oftheinfluenzahemagglutinin (HA) binder. a, Structure comparison of the
stemregionofgrouplHAand group2HA.The stemregions of HLHA (A/Puerto
Rico/8/1934) (left, PDB code: 1IRU7) and H3 HA (A/Hong Kong/1/1968) (right,
PDB code:4WE4) are shownin cartoonand colored in pale cyan and pale green
respectively, thekey residuesinthe stemregionare shownassticks. Three
major differences make the H3 HA stem region amore challenging target for
designing de novo protein binders: the H3 HA stem region contains more polar
residues and is more hydrophilic. Residues in HL HA that are hydrophobic
residues or small polar residues while the corresponding residues are polar or
larger polarresidues are highlighted in dashed circles; Trp21adopts different
configurationsin HIHA and H3HA, and the targeting groove inH3 HAismuch
shallower and less hydrophobic; the H3 HA is glycosylated at Asn38, and the
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carbohydrate side chains cover the hydrophobic groove and protect the HA
stemregion frombinding by antibodies or designed binders. Theinsert shows
amoreextended view of the Asn38 glycosylation site onH3 HA. b, Binding of H3
binder tothe H3HA (A/Hong Kong/1/1968) N38D mutant (left) and HLHA (A/
Puerto Rico/8/1934) (right) with BLI. Two-fold serial dilutions were tested for
eachbinder and the highest concentrations and the binder affinities are
labeled. Thegray color represents experimental dataand orange color
represents fit curves. ¢, The FI6v3 antibody competes with the binder for
bindingto the influenza A H1 hemagglutinin (left) and influenza AH3
hemagglutinin (right). Yeast cells displaying the H3 binder were incubated with
10 nMH1orH3inthe presence or absence of 2 uM Fl6v3 antibody, and
hemagglutinin binding to cells (y axis) was monitored with flow cytometry.
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Extended DataFig.11|Structure characterization of the miniprotein IL-7Ra (b) binder. The crystal structures of the miniprotein binders were
binders without the target proteins. Superimposition of the computationof ~ determined without the target protein.
the design model (silver) and the crystal structure for the FGFR2 binder (a) and
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Extended DataFig.12|Analysis of the determinants of the successrate of
denovobinderdesign. a, Correlation between success rate and root mean
square deviation (RMSD) with scaffolds. In this experiment, the accuracy of the
scaffold library was examined with an experiment similar to Chevalier et al'..
Thebinding residues from known-good interfaces were copied onto scaffolds
that closely resembled the known-good binders. If the scaffold folded properly
and displayed these binding residues similarly to the original known-good
interface, the hypothesis was that the scaffold would bind. This experiment
sought todetermineboth the required accuracy of displayed sidechains to
createasuccessful binderaswellas to probe the accuracy of the scaffold
library.If forinstance, the scaffold library was perfectly accurate, this graph
wouldindicate thatif the Ca RMSD of the displayed sidechains deviates from
the known-good conformationby 0.5 A, that there would be a15% chance of
binding due to theintrinsicaccuracy of sidechains required for binding. The
scaffold library is likely not perfectly accurate however; as such, the correct
interpretation would be: Ifthe Ca RMSD of the displayed sidechains according to
the scaffold PDB model (which may not be perfectly correct) deviatesby 0.5 A
CaRMSD, thereis a15% chance of binding. This 15% chance of binding arises in
partfromthelikelihood that the scaffold will fold correctly and in part fromthe
intrinsicrequired accuracy of sidechain placements for binding. Notably, the
RMSD reportedinthisgraphis far lower than the determined crystallographic
accuracy of the IL-7Ra binder when aligned by the receptor (the two interfacial
helicesare1.5A Ca RMSD when aligned by the IL-7Ra receptor); however, if the
twointerfacial helices are aligned without regard for the receptor (the same
calculation performed in this figure (i.e. the helices are superimposed on top of
eachother)) the Ca RMSDis 0.43 A. As such, the best explanation for this datais
as follows: Although the predicted binding conformation of the complex
structure was only accurateto 1.5 A, the predicted monomer structure was
correctto 0.43 A. The comparison between scaffold and known-good interface

was performed at the monomer level, and therefore, these new binders were
successful because they assumed the correct monomer structure, which
displayed the sidechains the same as the known-good binder, and therefore
were abletobind, even though the known-good complex structure was not as
accurate. This graph continues to show increased signal below 0.43 A probably
because the scaffolds at very low RMSD ended up being slightly structurally
different for the same reason as the known-good binder. (i.e. if we crystallized
one of the scaffolds that differed only by 0.2 A, we would likely find that
scaffold model and the scaffold crystal structure deviate by about 0.43 A and
that the scaffold crystal structure and the known-good crystal structure are
very similar). Method: 11 IL-7Ra SSM-validated interfaces were used asa
starting point to create 2-helical grafts. All grafts consisted of 2-helices joined
withaloop and the scaffold library was superimposed onto these two helices
and the RMSD of the match was assessed. Ifagood matchwas found, the
sidechains making stronginteractions with IL-7Ra were copied onto the
scaffold and the remaining positions near the interface were allowed to
redesigntoavoid clashes. Plotted on the x-axis is the RMSD of the
superposition of the 2-helices + loop between the motif and the scaffold. The
y-axisrepresents the fraction of binders with predicted SCs,s <3 puM with the
number ontop representing the denominator. b, Target success rate versus
hydrophobicity. The y-axis shows what percentage of tested binders against
theindicated target showed SCs,below 4 pM. The x-axis shows the
hydrophobicity of the target region in SAP® units. A greater Asap_score
indicates greater hydrophobicity. While this graphis not completely fair as the
authorsimproved the method with time, the trendis strikingand canbe used to
estimate the difficulty of potential future targets. (The Asap_score canbe
calculated on the target structure alone by observing the SAP score of all
residues a potential binder would cover.).
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Extended DataFig.13|Power of computational metrics to predict binders.
Onthe fully-relaxed binder dataset (see Methods), the ability of several
computational metrics to predict which binders would have SCs, below 4 uM
was assessed. Inblack andinthe bar charts, datafor all targets were pooled
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Extended Data Table 1| Number of binders against the 12 targets as estimated from FACS sorting

Total Designs

Target SCs0 <4 uyM SCs0 <400 nM Tested
H3 50 (0.08%) 21* (0.04%) 60,000
TrkA 10 (0.07%) 3 (0.02%) 15,000
FGFR2 604 (1.00%) 196 (0.33%) 60,000
EGFR 15 (0.01%) 12 (0.01%) 100,000
PDGFR 284 (0.28%) 0 (0.00%) 100,000
InsulinR 259 (0.43%) 2 (0.00%) 60,000
IGF1R 45 (0.30%) 1 (0.01%) 15,000
Tie2 5 (0.01%) 0 (0.00%) 100,000
IL-7Ra 22 (0.14%) 7 (0.05%) 15,000
CcD3? 1 (0.00%) 0 (0.00%) 60,000
TGF-B 100 (0.67%) 12 (0.08%) 15,000
VirB8 72 (0.48%) 10 (0.07%) 15,000
SARS-Cov-2 RBD 18 (0.02%) 9 (0.01%) 100,000

SCs, (Sorting Concentrations,) refers to the target concentration where 50% of expressing yeast cells for a given design are collected. The “SCs, < 4 uM” column was produced by looking for
binders that saw > 20% collection frequency during a 1 uM w/o avidity sort (see Method). When a 1 uM sort was not performed, 500 nM and 11% were used instead. A similar procedure was used
to estimate the 400 nM column. Some binders saturate their binding signal at 20% collection frequency (likely expression problems), for this reason, the H3 data were estimated at 800nM to
avoid needing a threshold higher than 20%. Additionally, binders with very low counts were discarded to guard against doubly-transformed yeast (see Methods).

‘Number of binders with SCs, < 800 nM estimated from 200nM sort.

? SSM sorts used to estimate the number of binders.
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Extended Data Table 2 | Crystallographic data collection and refinement statistics

Unbound Unbound )
Minprowin . TKAECD+ - minprotein RS minprotein - CEEE (P
binder miniprotein binder blndlﬁr7a}ga|nst binder complex binder against binder complex binder complex
-7Ra FGFR2
Data collection
Space group P2 P 24 R 32 P 32 P 4322 P 63 1 212424
Cell dimensions
a b c(A) 69.936.2748.80, 42.20, 205.70, 72.57 92.?3,8?42323, 132.1588,.;22.18, 4248, 4248, 8314 107.5623.(1@7.53, 57.12565?111.48
a, B,y (°) 90, 117.3,90 90, 106.42, 90 90, 90, 120 90, 90, 120 90, 90, 90 90, 90, 120 90 90 90
Resolution (A) 60.00 - 2.75 40.48 - 1.85* 36.15 - 1.50* 50.0 - 2.14* 50.0 - 3.01 N 50.0 -2.99 . 50.00 - 3.00*
(2.80 -2.75) (1.91 - 1.85) (1.55 - 1.50) (2.17 -2.14) (3.19-3.01) (3.17 -2.99) (3.08 -3.00)
Rrmeas 0.20 (1.2) 0.21 (5.4) 0.049 (1.7) 0.23 (2.4) 0.064 (0.334) 0.075 (0.357) 0.082 (0.740)
1ol 9.0 (0.8) 6.7 (0.4) 16.19 (1.37) 6.92 (1.04) 17.85 (4.08) 19.10 (6.59) 13.47 (2.52)
Completeness (%)  89.2 (54.2) 96.2 (75.3) 98.95 (97.53) 99.6 (97.6) 93.8 (95.7) 98.7 (97.3) 99.8 (99.8)
Unique reflections 47,866 (1,481) 99,845 (9,655) 28,231 (2,735) 62,839 (9,978) 1,644 (247) 9,194 (1,452) 6,672 (483)
Redundancy 3.2(1.9) 6.9 (6.4) 6.7 (6.5) 8.2(8.1) 5.5 (5.5) 4.7 (4.8) 5.9 (6.1)
cC1/2 0.79 (0.31) 0.997 (0.1) 0.999 (0.450) 0.993 (0.442) 0.999 (0.990) 0.998 (0.952) 0.999 (0.938)
cc* 0.92 (0.69) 1(0.427) 1(0.788) 1(0.663) - - -
Refinement
Resolution (A) 4324 -2.75 (ot 185 oot 50) (2272 14y 4248 -3.01 4656 -2.99 511 -3.00)
No. reflections 47,725 (2,359) 97,648 (7,671) 28,230 (2724) 62832 (1257) 1,619 9,191 6672 (653)
RewlRuw 0202020 03edotel)  (0sg0jodsn)  (0z03bf0) 0210298 02000283 (il G
No. atoms 12,962 6887 961 6511 381 2558 1534
Protein 12,577 6276 886 6166 381 2558 1534
Ligand/ion 289 349 - 36 0 0 0
Water 96 262 75 309 0 0 0
B-factors (A2?) 57 42 36 59 92 79 129
Protein 63 41 35 59 64 60 129
Ligand/ion 97 60 - 58 - - -
Water 52 40 43 50 - - -
Bond lengths (A) 0.002 0.010 0.013 0.008 0.008 0.003 0.008
Bond angles (°) 0.47 1.07 1.39 0.97 0.37 0.49 1.07

*Data collected from a single crystal. *Values in parentheses are for the highest-resolution shell.
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Data exclusions  There is no data exclusion in this study.
Replication Experimental finders were statistically significant and no attempt at reproduction was performed.

Randomization  For the cell signaling assay, the cells were randomly separated into group and then treated with different concentrations of miniprotein
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Blinding For the cell signaling assay, researchers were not blinded to different cell groups.
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Antibodies
Antibodies used FI6v3 antibody was kindly provided by Deborah H. Fuller at University of Washington; Alexa Fluor 488 conjugated anti-ERK1/2 pT202/
pY204 antibody for BD Bioscience; Alexa Fluor 647 conjugated anti-Akt pS473 antibody from Cell Signaling Technology; Anti-rabbit
HRP conjugated secondary antibody from Bio-Rad Laboratories; HRP-conjugated secondary antibody from Bio-Rad Laboratories.
Validation Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins.

Science333, 850-856, doi:10.1126/science.1205669(2011). For the commercially available antibodies, the researchers didn't do any
additional validation.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) TF-1(ATCC CRL-2003); HEK293T (ATCC), Mark Hall, Department of Biochemistry, University of Birmingham, UK; Human
Umbilical Vein Endothelial Cells, LONZA, Cat #2519A. Hi5 cells (ATCC)

Authentication Authenticated by vendors and we didn't do any additional authentication.

Mycoplasma contamination TF-1, confirmed negative for mycoplasma; HET293T, negative, confirmed by Plasmo Test; Human Umbilical Vein Endothelial
Cells, confirmed negative for mycoplasma. Hi5 cells, confirmed negative for mycoplasma.




Commonly misidentified lines  No commonly misidentified cell lines were used in this study.
(See ICLAC register)

Flow Cytometry

Plots
Confirm that:
|Z The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.
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Methodology
Sample preparation Yeast Cell are incubated with the target protein and then labeled with anti-Myc Antibody conjugated with FITC and
Strepavidin congated with PE. The cells were washed with PBSF. See Methods for experimental details.
Instrument Sony SH800
Software FlowJo10
Cell population abundance Yes
Gating strategy Cells labeled without the target protein were used as negative control and all the cells showed binding signal were collected.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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