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Design of protein-binding proteins from the 
target structure alone

Longxing Cao1,2,22, Brian Coventry1,2,3,22, Inna Goreshnik1,2, Buwei Huang1,2,4, William Sheffler1,2, 
Joon Sung Park5, Kevin M. Jude6,7,8, Iva Marković9,10, Rameshwar U. Kadam11, 
Koen H. G. Verschueren9,10, Kenneth Verstraete9,10, Scott Thomas Russell Walsh12,13, 
Nathaniel Bennett1,2,3, Ashish Phal1,4,14, Aerin Yang6,7,8, Lisa Kozodoy1,2, Michelle DeWitt1,2, 
Lora Picton6,7,8, Lauren Miller1,2, Eva-Maria Strauch15, Nicholas D. DeBouver16,17, Allison Pires17,18,  
Asim K. Bera1,2, Samer Halabiya19, Bradley Hammerson17, Wei Yang1,2, Steffen Bernard11, 
Lance Stewart1,2, Ian A. Wilson11,20, Hannele Ruohola-Baker1,14, Joseph Schlessinger5, 
Sangwon Lee5, Savvas N. Savvides9,10, K. Christopher Garcia6,7,8 & David Baker1,2,21 ✉

The design of proteins that bind to a specific site on the surface of a target protein 
using no information other than the three-dimensional structure of the target 
remains a challenge1–5. Here we describe a general solution to this problem that starts 
with a broad exploration of the vast space of possible binding modes to a selected 
region of a protein surface, and then intensifies the search in the vicinity of the most 
promising binding modes. We demonstrate the broad applicability of this approach 
through the de novo design of binding proteins to 12 diverse protein targets with 
different shapes and surface properties. Biophysical characterization shows that the 
binders, which are all smaller than 65 amino acids, are hyperstable and, following 
experimental optimization, bind their targets with nanomolar to picomolar affinities. 
We succeeded in solving crystal structures of five of the binder–target complexes, and 
all five closely match the corresponding computational design models. Experimental 
data on nearly half a million computational designs and hundreds of thousands of 
point mutants provide detailed feedback on the strengths and limitations of the 
method and of our current understanding of protein–protein interactions, and 
should guide improvements of both. Our approach enables the targeted design of 
binders to sites of interest on a wide variety of proteins for therapeutic and diagnostic 
applications.

Protein interactions have crucial roles in biology, and general approaches 
to design proteins that disrupt or modulate these interactions would 
have great utility. Empirical selection approaches that start from large 
antibody, designed ankyrin repeat protein or other protein scaffold 
libraries can generate binders to protein targets. However, it is difficult 
at the outset to target a specific region on a target protein surface and 
to sample the entire space of possible binding modes. Computational 
methods can target specific target surface locations and provide a more 
principled and a potentially faster approach to generate binders than 
random library selection methods, as well as insight into the fundamental 
properties of protein interfaces (which must be understood for design 
to be successful). Most current computational methods used to design 

proteins that bind to a target surface utilize information derived from 
structures of the native complex on specific side-chain interactions or 
protein backbone placements optimal for binding1–3. Computational 
docking of antibody scaffolds with varied loop geometries has yielded 
binders, but the designed binding modes have rarely been validated with 
high-resolution structures4. Binders have been generated starting from 
several computationally identified hotspot residues, which were then 
used to guide the positioning of naturally occurring protein scaffolds5. 
However, for many target proteins, there are no obvious pockets or clefts 
on the protein surface into which a small number of privileged side chains 
can be placed, and guidance by a small number of hotspot residues limits 
the approach to a small fraction of possible interaction modes.
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Design method
We sought to develop a general approach to the design of high-affinity 
binders to arbitrary protein targets that addresses two major chal-
lenges. First, there are generally no clear side-chain interactions or 
secondary structure packing arrangements that can mediate strong 
interactions with the target; instead there are vast numbers of individu-
ally very weak possible interactions. Second, the number of ways of 
choosing which of these numerous weak interactions to incorporate 
into a single binding protein is combinatorially large, and any given 
protein backbone is unlikely to be able to simultaneously present side 
chains that can encompass any preselected subset of these interactions. 
To illustrate our approach, consider the simple analogy of a difficult 
climbing wall with only a few suitable footholds or handholds distant 
from each other. Previous hotspot-based approaches correspond to 
focusing on routes that involve these footholds and handholds, but 
this greatly limits possibilities and there may be no way to connect 
them into a successful route. An alternative is to first identify all the 
possible handholds and footholds, no matter how poor; second, have 
thousands of climbers select subsets of these and try to climb the wall; 
third, identify those routes that showed the most promise, and fourth, 
have a second group of climbers explore them in detail. Following this 
analogy, we devised the following multistep approach to overcome the 
above two challenges: step (1), enumerate a large and comprehensive 
set of disembodied side-chain interactions with the target surface; 
step (2), identify from large in silico libraries of protein backbones 
those that can host many of these side chains without clashing with the 
target; step (3), identify recurrent backbone motifs in these structures; 
and step (4), generate and place against the target a second round of 
scaffolds that contain these interacting motifs (Fig. 1a and Extended 
Data Fig. 1). Steps (1) and (2) widely search the space, whereas steps (3) 
and (4) intensify the search in the regions that show the most promise. 
We describe each step in more detail below.

We began by docking disembodied amino acids against the target 
protein and storing the backbone coordinates and target binding 
energies of the typically billions of amino acids that make favourable 
hydrogen bonding or nonpolar interactions in a six-dimensional spatial 
hash table for rapid look-up (Fig. 1a and Methods). This rotamer interac-
tion field (RIF) enables rapid approximation of the target interaction 
energy achievable by a protein scaffold docked against a target based 
on its backbone coordinates alone (with no need for time-consuming 
side-chain sampling). For each dock, the target interaction energies 
of each of the matching amino acids in the hash table are summed.  
A related approach was used for the design of small-molecule binders6; 
as protein targets are so much bigger and because nonpolar interac-
tions are the primary driving force for protein–protein interactions, 
we focused the RIF generation process on nonpolar sites in specific 
surface regions of interest. For example, for the design of inhibitors, we 
focused on interaction sites with biological partners. The RIF approach 
improves on previous discrete interaction-sampling approaches5 by 
reducing the algorithmic complexity from O(N) or O(N2) to O(1) with 
respect to the number of side-chain–target interactions considered, 
thereby allowing for billions, rather than thousands, of potential inter-
faces to be considered.

For docking against the RIF, it is desirable to have a large set of pro-
tein scaffold options, as the chance that any one scaffold can house 
many interactions is small. The structure models of these scaffolds 
must be quite accurate so that the positioning is correct. Using frag-
ment assembly7, piecewise fragment assembly8 and helical exten-
sion9, we designed a large set of miniproteins that ranged in length 
from 50 to 65 amino acids and contained larger hydrophobic cores 
than previous miniprotein scaffold libraries1. These properties make 
the protein more stable and more tolerant to the introduction of the 
designed binding surfaces. A total of 84,690 scaffolds spanning 5 dif-
ferent topologies with structural metrics predictive of folding were 

encoded in large oligonucleotide arrays, and 34,507 of these were 
found to be stable using a high-throughput proteolysis-based protein 
stability assay10.

We experimented with several approaches for docking these stable 
scaffolds against the target structure RIF, balancing overall shape com-
plementarity with maximizing specific rotamer interactions. The most 
robust results were obtained using direct low-resolution shape match-
ing11 followed by grid-based refinement of the rigid body orientation 
in the RIF (RIFDock). This approach resulted in better Rosetta binding 
energy (ddG) values and packing (contact molecular surface, see below) 
after sequence design than shape matching alone with PatchDock 
(Fig. 1b, red and green), and more extensive nonpolar interactions with 
the target than hierarchical search without PatchDock shape match-
ing (Extended Data Fig. 2a) 6.

Because of the loss in resolution in the hashing used to build the 
RIF, and the necessarily approximate accounting for interactions 
between side chains (Methods), we found that evaluation of the RIF 
solutions was considerably enhanced by full combinatorial optimiza-
tion using the Rosetta forcefield, which allow the target side chains to 
repack and the scaffold backbone to relax. However, full combinatorial 
sequence optimization is CPU intensive. To enable efficient screening 
of millions of alternative backbone placements, we developed a rapid 
interface pre-screening method using Rosetta to identify promising 
RIF docks. Restricting to hydrophobic amino acids and considering a 
smaller number of side-chain rotamers than in standard Rosetta design 
calculations, together with a more rapidly computable energy function 
sped up the design time by more than tenfold while retaining a strong 
correlation with results after full sequence design (next paragraph). 
This pre-screen (referred to as the ‘Predictor’ below) substantially 
improved the binding energies and shape complementarity of the 
final designs, as far more RIF solutions could be processed (Extended 
Data Fig. 2b).

We observed that application of the standard Rosetta design to the 
set of filtered docks in some cases resulted in models with buried unsat-
isfied polar groups and other suboptimal properties. To overcome these 
limitations, we developed a combinatorial sequence design protocol 
that maximizes shape and chemical complementarity with the target 
while avoiding buried polar atoms. Sequence compatibility with the 
scaffold monomer structure was increased using a structure-based 
sequence profile12, cross-interface interactions were upweighted during 
the Monte-Carlo-based sequence design stage to maximize the con-
tacts between the binder and the target (ProteinProteinInterfaceUp-
weighter; Methods) and rotamers that contained buried unsatisfiable 
polar atoms were eliminated before packing and buried unsatisfied 
polar atoms penalized by a pair-wise decomposable pseudo-energy 
term13. This protocol yielded amino acid sequences that were more 
strongly predicted to fold to the designed structure (Extended Data 
Fig. 2c) and to bind the target (Extended Data Fig. 2d) than standard 
Rosetta interface design.

In the course of developing the overall binder design pipeline, we 
noted after inspection that even designs with favourable Rosetta 
binding free energies, large changes in the solvent-accessible surface 
area (SASA) after binding and high shape complementarity (SC) often 
lacked dense packing and interactions that involve several secondary 
structural elements. We developed a quantitative measure of packing 
quality in closer accord with visual assessment—the contact molecular 
surface (Methods)—which balances interface complementarity and size 
in a manner that explicitly penalizes poor packing. We used this metric 
to help to select suitable designs at both the rapid Predictor stage and 
after full sequence optimization (Methods).

The space sampled by the search across the structure and sequence 
space is enormous: tens of thousands of possible protein back-
bones × nearly 1 billion possible disembodied side-chain interac-
tions per target × 1016 interface sequences per scaffold placement. 
Sampling of spaces of this size is necessarily incomplete, and many 
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of the designs at this stage contained buried unsatisfied polar atoms 
(only rotamers that cannot make hydrogen bonds in any context are 
excluded at the packing stage) and cavities. To generate improved 
designs, we intensified the search around the best of the designed 
interfaces. We developed a resampling protocol that first extracts 
all the secondary structural motifs that make good contacts with the 
target protein from the first ‘broad search’ designs. Next, it clusters 
these motifs on the basis of their backbone coordinates and rigid 
body placements, and then selects the binding motif in each cluster 
with the best per-position weighted Rosetta binding energy. Using 
this approach, around 2,000 motifs were selected for each target. 
These motifs, which in many cases resemble canonical secondary 
structure packing patterns14, are privileged because they contain a 
much greater density of favourable side-chain interactions with the 
target than the rest of the designs. The motifs were used to guide 
another round of docking and design. First, scaffolds from the library 
were superimposed on the motifs and the favourable-interacting 

motif residues transferred to the scaffold. The remainder of the scaf-
fold sequence was optimized to make further interactions with the 
target, allowing backbone flexibility through backbone torsion-angle 
minimization to increase shape complementarity with the target 
(Fig. 1a). Design Interface metrics following resampling were consid-
erably improved over those from the broad searching stage (Fig. 1b). 
The designs with the most favourable protein folding and protein 
interface metrics from both the broad searching and resampling 
stages were selected for experimental validation.

Experimental testing
Previous approaches used to design protein binders have been tested 
on only one or two targets, which limits assessment of their generality. 
To thoroughly test our new binder design pipeline, we selected 13 native 
proteins of considerable current interest and spanning a wide range of 
shapes and biological functions. These proteins fall into two classes:  
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Fig. 1 | Overview of the de novo protein binder design pipeline. a, Schematic 
of our two-stage binder design approach. In the global search stage, billions of 
disembodied amino acids are docked onto the selected region of the target 
protein surface using RifGen, the favourable interacting amino acids are stored 
as rifres (step 1), and miniprotein scaffolds are then docked on the target 
guided by these favourable side-chain interactions (step 2). The interface 
sequences are then designed to maximize interactions with the target (step 3). 
In the focused search stage, interface structural motifs are extracted and 
clustered (steps 4 and 5). These privileged motifs are then used to guide 

another round of docking and design (steps 6 and 7). Designs are then selected 
for experimental characterization based on computational metrics (step 8). 
See Extended Data Fig. 1 for a more detailed flow chart of the de novo binder 
design pipeline. b, Comparison of the sampling efficiency of PatchDock, 
RifDock and resampling protocols. Bar graph shows the distribution over the 
three approaches of the top 1% of binders based on Rosetta ddG and contact 
molecular surface values after pooling equal-CPU-time dock-and-design 
trajectories for each of the 13 target sites and averaging per-target 
distributions (Methods).
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(1) human cell surface or extracellular proteins involved in signalling, 
and (2) pathogen surface proteins. Binders for human cell surface or 
extracellular proteins could have utility as probes of biological mecha-
nism and potentially as therapeutics, and hence we sought to design 
binders to tropomyosin receptor kinase A (TrkA; also known as NTRK1)15, 
fibroblast growth factor receptor 2 (FGFR2)16, epidermal growth factor 
receptor (EGFR)17, platelet-derived growth factor receptor (PDGFR)18, 

insulin receptor (IR)19, insulin-like growth factor 1 receptor (IGF1R)20, 
angiopoietin-1 receptor (TIE2)21, interleukin-7 receptor-α (IL-7Rα)22, 
CD3 delta chain (CD3δ)23 and transforming growth factor-β (TGFβ)24. 
Binding proteins for pathogen surface proteins could also have thera-
peutic utility, and so we also designed binders to influenza A H3 hae-
magglutinin (H3)25, VirB8-like protein from Rickettsia typhi (VirB8)26 
and the SARS-CoV-2 coronavirus spike protein (Figs. 2 and 3). For each 
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Fig. 2 | De novo design and characterization of miniprotein binders. 
 a, d, Naturally occurring target protein structures shown in surface 
representation, with known interacting partners in cartoons where available. 
Regions targeted for binder design are coloured in pale yellow or green; the 
remainder of the target surface is in grey. See Extended Data Fig. 3 for 
side-by-side comparisons of the native binding partners and the computational 
design models. The PDB identifiers are 3ZTJ (H3), 3MJG (PDGFR), 4OGA (IR), 
5U8R (IGF1R), 2GY7 (TIE2), 1XIW (CD3δ), 3KFD (TGFβ) and 4O3V (VirB8). αCT, 
α-chain C-terminal helix. b, e, Computational models of designed complexes 
coloured by site saturation mutagenesis results. Designed binding proteins 
(cartoons) are coloured by positional Shannon entropy, with blue indicating 

positions of low entropy (conserved) and red those of high entropy (not 
conserved); the target surface is in grey and yellow. The core residues and 
binding interface residues are more conserved than the non-interface surface 
positions, consistent with the computational models. Full SSM maps over all 
positions of all the de novo designs are provided in the Supplementary 
Information. c, f, Circular dichroism spectra at different temperatures (green, 
25 °C; red, 95 °C; blue, 95 °C followed by 25 °C), and circular dichroism signals at 
222-nm wavelength as a function of temperature for the optimized designs 
(insets). See Extended Data Fig. 4 for the biolayer interferometry 
characterization results of the optimized designs.
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of these surface proteins, we selected one or two regions for the bind-
ers to target to ensure maximal biological utility and for potential 
downstream therapeutic potential. These regions span a wide range 
of surface properties, with diverse shape and chemical characteristics 
(Figs. 2 and 3, and Extended Data Fig. 3). Some of the selected target-
ing regions overlap with the native interfaces, but no native interface 
information or native hotspots were used during the binder design 
process. For some targets (for example, CD3δ and VirB8), no structures 
of the native complex were available and there were no proteins known 
to bind at the targeted region.

Using the above protocol, we designed 15,000–100,000 binders 
for each of the 13 target sites on the 12 native proteins (Methods; 
we chose two sites for EGFR). Synthetic oligonucleotides (230 base 
pairs) encoding the 50–65 residue designs were cloned into a yeast 
surface-expression vector so that the designs were displayed on the 
surface of yeast. Those that bound their target were enriched by several 
rounds of fluorescence-activated cell sorting (FACS) using fluores-
cently labelled target proteins. The starting and enriched populations 
were deep sequenced, and the frequency of each design in the starting 
population and after each sort was determined. From multiple sorting 
rounds at different target protein concentrations, we determined, as a 
proxy for the binding dissociation constant (Kd) values, the midpoint 
concentration (SC50) in the binding transitions for each design in the 
library (Extended Data Table 1 and Methods).

To assess whether the top enriched designs for each target fold 
and bind as in the corresponding computational design models, and 
to investigate the sequence dependence of folding and binding, we 
generated high-resolution footprints of the binding surface by sorting 
site saturation mutagenesis libraries (SSMs) in which every residue 
was substituted with each of the 20 amino acids one at a time. For 
the majority of the enriched designs, substitutions at the binding 
interface and in the protein core were less tolerated than substitu-
tions at non-interface surface positions (Figs. 2 and 3, and Extended 
Data Fig. 5), and all of the cysteine residues were highly conserved in 
designs that contained disulfides. The effects of each mutation on 
both binding energy and monomer stability were estimated using 
Rosetta design calculations, and a reasonable correlation was found 
between the predicted and experimentally determined effect of muta-
tions (Extended Data Fig. 6a). In almost all cases, a small number of 
substitutions increased the apparent binding affinity, and we gener-
ated libraries combining 5–15 of these and sorted them for binding 
under increasingly stringent (lower target concentration) conditions. 
Many of these affinity-enhancing substitutions were mutations to 
tyrosine (Extended Data Fig. 6b), which is consistent with the rela-
tively high frequency of tyrosine in natural protein interfaces27. The 
set of affinity-increasing substitutions provide valuable information 
to improve the binder design approach, as these substitutions ideally 
would have been identified in the computational sequence design 
calculations (see ‘Discussion’ for more details).

We expressed the highest affinity combinatorially optimized binders 
for each target in Escherichia coli to enable more detailed structural 
and functional characterization. All of the designs were in the soluble 
fraction and could be readily purified by Ni2+-NTA chromatography. 
All had circular dichroism spectra consistent with the design model, 
and most (9 out of 13) were stable at 95 °C (Figs. 2 and 3, and Table 1). 

The binding affinities for the targets were assessed by biolayer inter-
ferometry and values ranged from 300 pM to 900 nM (Fig. 3, Table 1 
and Extended Data Fig. 4). The sequence mapping data report on 
the residues in the design that are crucial for binding, but only weakly 
on the region of the target bound. We investigated the latter using a 
combination of binding competition experiments, biological assays 
and structural characterization of the complexes. For the nine tar-
gets for which these were available, this characterization suggested 
binding modes consistent with the design models, as described in the 
subsequent paragraphs.

Cell receptors involved in signalling
The receptor tyrosine kinases TrkA, FGFR2, PDGFR, EGFR, IR, IGF1R 
and TIE2 are key regulators of cellular processes and are involved in the 
development and progression of many types of cancer28. We designed 
binders that targeted the native ligand-binding sites for PDGFR, 
EGFR (on both domain I and domain III; the binders are referred to as 
EGFRn_mb and EGFRc_mb, respectively), IR, IGF1R and TIE2, whereas 
for TrkA and FGFR2, we targeted surface regions proximal to the 
native ligand-binding sites (Figs. 2 and 3; see Methods for criteria). 
We obtained binders to all eight target sites, and the binding affinities 
of the optimized designs ranged from about 1 nM or better for TrkA 
and FGFR2 to 860 nM for IGF1R (Table 1). Competition experiments 
with nerve growth factor (NGF), platelet-derived growth factor-BB 
(PDGF-BB), insulin, insulin growth factor 1 (IGF1) and angiopoietin 1 
(ANG1) on yeast indicated that the binders for TrkA, PDGFR, IR, IGF1R 
and TIE2 bind to the targeted sites (Extended Data Fig. 7), consistent 
with the computational design models. The receptor tyrosine kinase 
binders are monomers, and as such are all expected to be antagonists. 
We tested the effect of the cognate binders on signalling through TrkA, 
FGFR2 and EGFR in cultured cells. Strong inhibition of signalling by the 
native agonists was observed in all three cases (Fig. 3c, and Extended 
Data Figs. 8 and 9).

Binding of IL-7 to the IL-7α receptor subunit leads to recruitment 
of the γc receptor, which forms a tripartite cytokine–receptor com-
plex crucial to signalling cascades that lead to the development and 
homeostasis of T and B cells29. We obtained a picomolar affinity binder 
for IL-7Rα targeting the IL-7 binding site and found that it blocks STAT5 
signalling induced by IL-7 (Fig. 3c and Table 1). We also obtained binders 
to CD3δ, one of the subunits of the T cell receptor, and the signalling 
molecule TGFβ, which play pivotal parts in immune cell development 
and activation (Fig. 2 and Table 1).

Pathogen target proteins
Influenza haemagglutinin (HA) is the main target for influenza A virus 
vaccines and drugs, and can be genetically classified into two main sub-
groups: group 1 and group 2 (refs. 30,31). The HA stem region is an attrac-
tive therapeutic epitope as it is highly conserved across all influenza A 
subtypes, and targeting this region can block the low-pH-induced con-
formational rearrangements associated with membrane fusion, which 
is essential for virus infection32,33. Neutralizing antibodies that target 
the stem region of group 2 HA have been identified through screens of 
large B cell libraries after vaccination or infection that neutralize both 

Table 1 | Physicochemical properties of the optimized de novo miniprotein binders

H3 TrkA FGFR2 EGFRn EGFRc PDGFR IR IGF1R TIE2 IL-7Rα CD3δ TGFβ VirB8

Kd (nM) 320 ± 24.0 1.4 ± 0.02 243 ± 59.0 1.2 ± 0.01 6.8 ± 0.3 82 ± 25 210 ± 39 860 ± 270 584 ± 35 0.31 ± 0.004 612 ± 30 113 ± 4.4 0.51 ± 0.005

TM (°C) > 95.0 > 95.0 71.1 > 95.0 71.2 > 95.0 65.0 > 95.0 > 95.0 > 95.0 > 95.0 > 95.0 66.2

The binding affinity and melting temperature (TM) of the optimized de novo miniprotein binders. See Figs. 2 and 3 for the circular dichroism spectra; the raw biolayer interferometry traces are in 
Extended Data Fig. 4. Experimental details can be found in the corresponding figure legends and section of the Methods.
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group 1 and group 2 influenza A viruses34,35. Protein1,5, peptide36 and 
small-molecule inhibitors37 have been designed to bind to the stem 
region of group 1 HA and neutralize influenza A viruses, but none rec-
ognize the group 2 HA. The design of small proteins or peptides that 
can bind and neutralize both group 1 and group 2 HA has been challeng-
ing owing to three main differences between group 1 and group 2 HA. 
First, the group 2 HA stem region is more hydrophilic, containing more 

polar residues. Second, in group 2 HA, Trp21 adopts a configuration 
roughly perpendicular to the surface of the targeting groove, which 
makes the targeted groove much shallower and less hydrophobic. And 
third, the group 2 HA is glycosylated at Asn38, with the carbohydrate 
side chains covering the hydrophobic groove (Extended Data Fig. 10a). 
We used our interface design method to design binders to H3 HA  
(A/Hong Kong/1/1968), the main pandemic subtype of group 2 influenza 
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Fig. 3 | De novo design and inhibition of native signalling pathways by 
designed miniproteins. See the panel descriptions in Fig. 2 legend for a, b, d. 
The PDB identifiers are 2IFG (TrkA), 1DJS (FGFR2), 1MOX (EGFR) and 3DI3  
(IL-7Rα) for a. c, For TrkA, the dose-dependent reduction in cell proliferation 
after 48 h of TF-1 cells with increasing TrkA minibinder (TrkA_mb) 
concentration is shown. (8.0 ng ml–1 human β-NGF was used for competition). 
Titration curves at different concentrations of NGF and the effects of the 
miniprotein binders on cell viability are presented in Extended Data Fig. 8. For 
FGFR2, the dose-dependent reduction pERK signalling elicited by 0.75 nM 
β-FGF in human umbilical vein endothelial cells (HUVECs) with increasing 
FGFR2 minibinder (FGFR2_mb) concentration is shown. For the EGFRn-side 

binder, the dose-dependent reduction in pERK signalling elicited by 1 nM EGF in 
HUVECs with increasing EGFRn-side minibinder (EGFRn_mb) concentration is 
shown. See Extended Data Fig. 9 and Methods for experimental details. For the 
EGFRc-side binder, biolayer interferometry results are shown. See Extended 
Data Fig. 4 for the biolayer interferometry characterization results of the  
other optimized designs. For IL-7R, the reduction in STAT5 activity induced by 
50 pM of IL-7 in HEK293T cells in the presence of increasing IL-7Rα minibinder 
(IL-7Rα_mb) concentrations is shown. The mean values were calculated from 
triplicates for the cell signalling inhibition assays measured in parallel, and 
error bars represent standard deviations. IC50 was calculated using a 
four-parameter-logistic equation in GraphPad Prism 9 software.

https://doi.org/10.2210/pdb2IFG/pdb
https://doi.org/10.2210/pdb1DJS/pdb
https://doi.org/10.2210/pdb1MOX/pdb
https://doi.org/10.2210/pdb3DI3/pdb
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virus, and obtained a binder with an affinity of 320 nM to wild-type H3 
(Fig. 2 and Table 1) and 28 nM to the deglycosylated H3 variant (N38D) 
(Extended Data Fig. 10b). The reduction in affinity is probably due to 
entropy loss of the glycan following binding and/or steric clash with 
the glycan. The binder also bound H1 HA (A/Puerto Rico/8/1934), 
which belongs to the main pandemic subtype of group 1 influenza virus 
(Extended Data Fig. 10b). The binding to both H1 and H3 HA is competed 
by the stem region that binds the neutralizing antibody FI6v3 (ref. 34) 
on the yeast surface (Extended Data Fig. 10c), which indicates that the 
binder attaches the HA at the targeted site. We also designed binders 
to the prokaryotic pathogen protein VirB8, part of the type IV secretion 
system of R. typhi, the causative agent of murine typhus26. We selected 
the surface region composed of the second and the third helices of 
VirB8, and obtained binders with 510 pM affinity (Fig. 2 and Table 1).

With the outbreak of the SARS-CoV-2 pandemic, we applied our 
method to design miniproteins that targeted the receptor-binding 
domain of the SARS-CoV-2 spike protein near the ACE2 binding site to 
block receptor engagement. Owing to the pressing need for corona-
virus therapeutics, we recently described the results of these efforts38 
ahead of those described in this manuscript. Similar to FGFR2, IL-7Rα 
and VirB8, the method yielded picomolar binders, which are among 
the most potent compounds known to inhibit the virus in cell culture 
(half-maximal inhibitory concentration (IC50) of 0.15 ng ml–1). Subse-
quent animal experiments showed that they provide potent protection 
against the virus in vivo39. The modular nature of the miniprotein bind-
ers enables their rapid integration into designed diagnostic biosensors 
for both influenza and SARS-CoV-2 binders40.

The designed binding proteins are all small proteins (<65 amino 
acids), and many are triple-helix bundles. To evaluate their target speci-
ficity, we tested the highest affinity binder to each target for binding 
to all other targets. There was little cross-reactivity (Fig. 4a), which is 
probably due to their diverse surface shapes and electrostatic proper-
ties (Fig. 4b). Consistent with previous observations with affibodies41, 
this result indicates that a wide variety of binding specificities can 

be encoded in simple helical bundles. In our approach, scaffolds are 
customized for each target, so the specificity arises both from the 
set of side chains at the binding interface and the overall shape of the 
interface itself.

High-resolution structural validation
High-resolution structures are crucial for evaluating the accuracy of 
computational protein designs. We succeeded in obtaining crystal 
structures of the unbound miniprotein binders for FGFR2 and IL-7Rα, 
and co-crystal structures of the miniprotein binders of H3, TrkA, FGFR2, 
IL-7Rα and VirB8 in complex with their targets (Extended Data Table 2).

The H3 binder bound to the shallow groove of the stem region of HK68/
H3 HA in the crystal structure as designed. The Cα root-mean-square 
deviation (r.m.s.d.) over the entire miniprotein binder was 1.91 Å using 
HA as the alignment reference (Fig. 5a). The binder makes extensive 
hydrophobic interactions with HA, and almost all of the designed inter-
face side-chain configurations are recapitulated in the crystal structure 
(Fig. 5a). There was a clear reorientation of the oligosaccharide at Asn38 
compared with the unbound HK68/H3 structure (Fig. 5a and Extended 
Data Fig. 10a; this has also been observed in HK68/H3 HA structures 
bound to stem region neutralizing antibodies34,35). Consistent with 
this result, the binder has higher affinity for the N38D variant, which 
lacks this glycan, than for wild-type H3 HA (A/Hong Kong/1/1968) in 
biolayer interferometry assays (Table 1 and Extended Data Fig. 10b).

The crystal structure of the TrkA binder in complex with TrkA was 
close to the design model (Fig. 5b). After aligning the crystal structure 
and design model on TrkA, the Cα r.m.s.d. over the entire miniprotein 
binder was 2.41 Å, and over the two interfacial binding helices, it was 
1.20 Å. The crystal structures of the FGFR2 binder by itself (Extended 
Data Fig. 11a) and in complex with the third immunoglobulin-like 
domain of FGFR4 (Fig. 5c) matched the design models with near 
atomic accuracy, with Cα r.m.s.d. values of 0.58 Å for the binder 
alone and 1.33 Å over the entire complex. The TrkA binder and the 
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in the Supplementary Data 1. b, Surface shape and electrostatic potential 
(generated with the APBS Electrostatics plugin in PyMOL; red positive, blue, 
negative) of the designed binding interfaces.
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FGFR2 binder bound to the curved sheet side of the ligand-binding 
domain of TrkA and FGFR4, with extensive hydrophobic and polar 
interactions. Moreover, most of the key hydrophobic interactions 
as well as the primarily polar interactions in the computational 
design models were largely recapitulated in the crystal structures 
(Fig. 5b, c). The binding interfaces partially overlapped with the native 
ligand-binding sites of NGF and FGF; however, the side-chain interac-
tions were entirely different in the designed and native complexes 
(Extended Data Fig. 3).

For IL-7Rα, the crystal structure of the monomer was close to that 
of the design, with a Cα r.m.s.d. of 0.63 Å (Extended Data Fig. 11b). The 
co-crystal structure with IL-7Rα also closely matched that of the design 
model, with a Cα r.m.s.d. of 2.2 Å using IL-7Rα as the reference (Fig. 5d). 
Both the de novo IL-7Rα binder and the native IL-7 use two helices to 
bind IL-7Rα, but the binding orientations were different (Extended 
Data Fig. 3). The VirB8 binder made extensive interactions with the 
helical regions of VirB8 as designed; no native proteins have been iden-
tified to bind to this region. The Cα r.m.s.d. over the entire miniprotein 
binder was 2.54 Å using the VirB8 as the alignment reference, and the 
side-chain configurations of key interface residues were largely reca-
pitulated (Fig. 5e).

The heavy-atom r.m.s.d. values over the buried side chains at the 
interface (within 8 Å of the target in the design models) were 0.71 Å 
(H3), 1.10 Å (TrkA), 1.29 Å (FGFR2), 1.63 Å (IL-7Rα) and 1.52 Å (VirB8), 

all of which are close to the core side-chain r.m.s.d. values (mean 
0.90 Å). Further highlighting the accuracy of the protein interface 
design method, cryogenic electron microscopy (cryo-EM) structures 
of the SARS-CoV-2 binders LCB1 and LCB3 in complex with the virus 
were also nearly identical to the design models, with Cα r.m.s.d. value 
of 1.27 Å and 1.9 Å, respectively38 (Fig. 5f).

Although we were not able yet to solve structures for the remain-
der of the designs, the high-resolution sequence footprinting (Figs. 2 
and 3) and competition results (Extended Data Fig. 7) suggest that 
the interfaces involve both the designed residues and the intended 
regions on the target. The close agreement between the experimen-
tally determined structures and the original design models indicates 
that the substitutions required to achieve high affinity play relatively 
subtle parts in tuning interface energetics: the overall structure of 
the complex, including the structure of the monomer binders and the 
detailed target binding mode, are determined by the computational 
design procedure.

Determinants of design success
For our de novo design strategy to be successful, we must encode in 
the approximately 60-residue designed sequences information on 
both the folded monomer structures and on the target binding inter-
faces. Indeed, designs that do not fold into the correct structure or 
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Fig. 5 | High-resolution structures of miniprotein binders in complex with 
target proteins closely match the computational design models. a–e, Left, 
superimposition of the computational design model (silver) on the 
experimentally determined crystal structure. Right, zoom-in view of the 

designed interface, with interacting side chains as sticks. a, H3 HA. b, TrkA. 
 c, FGFR2. d, IL-7Rα. e, VirB8. f, Superimposition of the computational design 
model and refined cryo-EM structures of LCB1 (left) and LCB3 (right) bound to 
the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein.
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that fold into the intended structures but do not bind to the target will 
fail. To assess the accuracy with which the monomer structure must 
be designed, we carried out an additional calculation and experiment 
for the IL-7Rα target. Large numbers of scaffolds were superimposed 
onto 11 interface helical binding motifs identified in the first broad 
design search, and sequence design was carried out as described above. 
A strong correlation was found between the extent of binding and 
the root mean square deviations to the binding motif (Extended Data 
Fig. 12a), which indicates that designed backbones must be relatively 
accurate to achieve binding.

To assess the determinants of binding of the designed interfaces, 
assuming that the designs fold into the intended monomer structures, 
we took advantage of the large dataset (810,000 binder designs and 
240,000 single mutants) generated in this study. Design success rates 
varied considerably between the different targets. For some (FGFR2 
and PDGFR), hundreds of binders were generated, whereas for others 
(TIE2 and CD3δ), fewer than 10 binders were obtained from libraries 
of 100,000 designs (Extended Data Table 1). Across all targets, there 
was a strong correlation between success rate and the hydrophobicity 
of the targeted region (Extended Data Fig. 12b), and designs observed 
experimentally to bind their targets tended to have stronger predicted 
binding energy and larger contact molecular surfaces (Extended Data 
Fig. 13). As found previously for designs of protein stability10, iterative 
design-build-test cycles in which the design method is updated at each 
iteration to incorporate feedback from the previous design round 
should lead to systematic improvements in the design methodology 
and success rate.

Conclusions
Our success in designing nanomolar affinity binders for 14 target sites 
demonstrates that binding proteins can be designed de novo using only 
information on the structure of the target protein, without the need for 
prior information on binding hotspots or fragments from structures 
of complexes with binding partners. This success also suggests that 
our design pipeline provides a general solution to the de novo protein 
interface design problem that goes far beyond previously described 
methods. However, there is still considerable room for improvement. 
Only a small fraction of designs bind, and in almost all cases, the best of 
these require additional substitutions to achieve high-affinity binding. 
Furthermore, the design of binders to highly polar target sites remains 
a considerable challenge: the sites targeted here all contain at least 
four hydrophobic residues. The datasets generated in this work—both 
the information on binders versus non binders and the feedback on 
the effects of individual point mutants on binding—should help to 
guide the development of methods for designing high-affinity binders 
directly from the computer with no need for iterative experimental 
optimization. More generally, the de novo binder design method and 
the large dataset generated here provide a starting point to investigate 
the fundamental physical chemistry of protein–protein interactions 
and to develop and assess computational models of protein–protein 
interactions.

This work represents a major step forward towards the longer range 
goal of direct computational design of high-affinity binders starting 
from structural information alone. We anticipate that the binders cre-
ated here, and new ones created with the method moving forwards, 
will find wide utility as signalling pathway antagonists as monomeric 
proteins and as tuneable agonists when rigidly scaffolded in multimeric 
formats, and in diagnostics and therapeutics for pathogenic disease. 
Unlike antibodies, the designed proteins are soluble when expressed 
in E. coli at high levels and are thermostable, and hence could form the 
basis for a next generation of lower cost protein therapeutics. More 
generally, the ability to rapidly and robustly design high-affinity binders 
to arbitrary protein targets could transform the many areas of biotech-
nology and medicine that rely on affinity reagents.
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Methods

Broad search stage
The crystal structures of HA (Protein Data Bank (PDB) identifier: 
4FNK)25, EGFR (PDB: 1MOX, 4UV7)17,42, PDGFR (PDB: 3MJG)18, IR (PDB: 
4ZXB)19, IGF1R (PDB: 5U8R)20, TIE2 (PDB: 2GY7)21, IL-7Rα (PDB: 3DI3)22, 
CD3 (PDB: 1XIW)23, TGFβ (PDB: 3KFD)24 and VirB8 (PDB: 4O3V)26 were 
refined in the Rosetta energy field constrained by experimental dif-
fraction data. The crystal structures of TrkA (PDB: 1WWW)15 and FGFR2 
(PDB: 1EV2)16 were refined with the Rosetta FastRelax protocol with 
coordinate constraints. The targeting chain or the selected targeting 
region were extracted and used as the starting point for docking and 
design. To run PatchDock11, the scaffolds were mutated to poly-valine 
first, and default parameters were used to generate the raw docks. 
RifDock was used to generate the RIF by docking billions of individual 
disembodied amino acids to the selected targeting regions6. In detail, 
hydrophobic side-chain R-groups are docked against the target using 
a branch-and-bound search to quickly identify favourable interac-
tions with the target, and polar side-chain R-groups are enumeratively 
sampled around every target hydrogen bond donor or acceptor.  
To identify backbone placements from which these interactions can 
be made, side-chain rotamer conformations are grown backwards for 
all R-group placements, and their backbone coordinates stored in a 
six-dimensional spatial hash table for rapid look-up. For the hierarchical 
searching protocol, the miniprotein scaffold library (50–65 residues 
in length) was docked into the field of the inverse rotamers using a 
branch-and-bound searching algorithm from low-resolution spatial 
grids to high-resolution spatial grids. For the PatchDock+RifDock pro-
tocols, the PatchDock outputs were used as seeds for the initial posi-
tioning of the scaffolds, and the docks were further refined in the finest 
resolution RIF. These docked conformations were further optimized 
to generate shape and chemically complementary interfaces using the 
Rosetta FastDesign protocol, activating between side-chain rotamer 
optimization and gradient-descent-based energy minimization. Serval 
improvements were added to the sequence design protocol to generate 
better sequences for both folding and binding. These included a bet-
ter repulsive energy ramping strategy9, upweighting cross-interface 
energies, a pseudo-energy term penalizing buried unsatisfied polar 
atoms13 and a sequence profile constraint based on native protein 
fragments12. Computational metrics of the final design models were 
calculated using Rosetta, which includes ddG, shape complementary 
and interface buried SASA, contact molecular surface, among others, 
for design selection. All the script and flag files to run the programs are 
provided in the Supplementary Information.

Focused search stage
The binding energy and interface metrics for all the continuous sec-
ondary structure motifs (helix, strand and loop) were calculated for 
the designs generated in the broad search stage. The motifs with good 
interactions (based on binding energy and other interface metrics, such 
as SASA and contact molecular surface) with the target were extracted 
and aligned using the target structure as the reference. All the motifs 
were then clustered based on an energy based-TMalign-like cluster-
ing algorithm. In brief, all the motifs were sorted on the basis of the 
interaction energy with the target, and the lowest energy motif in the 
unclustered pool was selected as the centre of the first cluster. A similar 
score between this motif and every motif remaining in the unclustered 
pool was calculated based on the TMalign algorithm43 without any 
further superimposition. Those motifs within a threshold similar score 
(default of 0.7) from the current cluster centre were removed from 
the unclustered pool and added to the new cluster. The lowest energy 
motif remaining in the unclustered pool was selected as the centre 
of the next cluster, and the second step was repeated. This process 
continued for subsequent clusters until no motifs remained in the 
unclustered pool. The best motif from each cluster was then selected 

based on the per-position weighted Rosetta binding energy, using the 
average energy across all the aligned motifs at each position as the 
weight. Around 2,000 best motifs were selected, and the scaffold library 
was superimposed onto these motifs using the MotifGraft mover44. 
Interface sequences were future optimized, and computational met-
rics were computed for the final optimized designs as described in 
the broad search stage. CPU time requirements to produce 100,000 
designed binders to be tested experimentally were typically around 
100,000 CPU hours (usually at least ten times as many binders were 
computationally designed than were ordered).

Rapid Rosetta packing evaluation (the Predictor)
A severe speed mismatch existed between the docking methods (Rif-
Dock and focused search) and the subsequent full sequence design step. 
Although the docking methods can typically produce outputs every 
1–3 s, the full sequence design can take upwards of 4 min. To remedy 
this situation, a step was designed to take about 20 s that would be 
more predictive than metrics evaluated on raw docks, but faster than 
the full sequence design.

A stripped down version of the Rosetta beta_nov16 score function 
was used to design only with hydrophobic amino acids. Specifically, 
fa_elec, lk_ball[iso,bridge,bridge_unclp], and the _intra_ terms were 
disabled as these proved to be the slowest energy methods by pro-
filing. All that remained were Lennard–Jones, implicit solvation and 
backbone-dependent one-body energies (fa_dun, p_aa_pp, rama_pre-
pro). Additionally, flags were used to limit the number of rotamers built 
at each position (Supplementary Information).

After the rapid design step, the designs were minimized twice: once 
with a low-repulsive score function and again with a normal-repulsive 
score function. Metrics of interest were then evaluated, including like 
Rosetta ddG, contact molecular surface, and contact molecular surface 
to critical hydrophobic residues.

Based on the observation that these predicted metrics correlated 
with the values after full sequence design, a maximum likelihood esti-
mator (a functional form similar to logistic regression) was used to give 
each predicted design a likelihood that it should be selected to move 
forward. A subset of the docks to be evaluated were subjected to the full 
sequence design, and their final metric values calculated. With a goal 
threshold for each filter, each fully designed output can be marked as 
pass or fail for each metric independently. Then, by binning the fully 
designed outputs by their values from the rapid trajectory and plotting 
the fraction of designs that pass the goal threshold, the probability that 
each predicted design passes each filter can be calculated (sigmoids 
are fitted to smooth the distribution). From here, the probability of 
passing each filter may be multiplied together to arrive at the final 
probability of passing all filters. This final probability can then be used 
to rank the designs and pick the best designs to move forward to full 
sequence optimization.

Note that the rapid design protocol here is used merely to rank the 
designs, not to optimize them; the raw, non-rapid-designed docks are 
the structures carried forward.

Contact molecular surface
SASA is a measure of the exposure of amino acids to the solvent and it 
is typically calculated using methods that involve in silico rolling of a 
spherical probe, which approximates a water molecule (radius 1.4 Å), 
around a full-atom protein model. Delta-SASA after protein–protein 
binding has been widely used to analyse native protein interactions. 
Unlike the crystal structures of the native protein complexes, design 
models for the de novo interactions are usually imperfectly packed and 
contain many holes or cavities. If the sizes of the holes or cavities in the 
interface are smaller than the rolling probe, SASA cannot capture those 
holes and cavities and the real contacts are usually overestimated by 
the delta-SASA metric. The contact molecular surface was developed 
to mitigate the flaws of the de novo designed interactions. First, the 
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molecule surfaces of the binder and the target were calculated using 
the triangularization algorithm in the Rosetta shape complementary 
filter. For each triangle, the distance to the closest triangle on the other 
side was calculated and used to downweight the area of the triangle 
by the following equation: A′ = A × exp(−0.5 × distance2). Then all the 
downweighted areas were summed to obtain the contact molecular 
surface. In this way, the real contacts between the target and the binder 
are penalized by the cavities and holes in the interface. The contact 
molecular surface was implemented as the ContactMolecularSurface 
filter in the Rosetta macromolecular modelling suite.

Upweighted protein interface interactions
Rosetta sequence design starts from generating an interaction graph 
by calculating the energies between all designable rotamer pairs45. The 
best rotamer combinations are searched using a Monte Carlo simulated 
annealing protocol by optimizing the total energy of the protein (mono-
mer/complex). To obtain more contacts between the binder and the 
target protein, we can upweight the energies of all the cross-interface 
rotamer pairs by a defined factor. In this way, the Monte Carlo protocol 
will be biased to find solutions with better cross-interface interactions. 
The upweighted protein interface interaction protocol was imple-
mented as the ProteinProteinInterfaceUpweighter task operation in 
the Rosetta macromolecular modelling suite.

Comparison of sampling efficiency of PatchDock, RifDock and 
resampling protocols
The top 30 PatchDock outputs for the 1,000 helical scaffolds tested 
were designed using the RosettaScripts protocol. RifDock seeded with 
PatchDock outputs generated 300 outputs per scaffold, which were 
trimmed to a total of 19,500 docks with the Predictor (Methods) and 
subsequently designed. The top 150 RifDock outputs per scaffold were 
trimmed to 9,750, designed, and 300 motifs were extracted. The motifs 
were grafted into the scaffold set to produce 150,000 docks, which 
were trimmed to 9,750, designed, and combined with the earlier 9,750.

DNA library preparation
All protein sequences were padded to 65 amino acids by adding a 
(GGGS)n linker at the carboxy terminus of the designs to avoid the 
biased amplification of short DNA fragments during PCR reactions. The 
protein sequences were reversed translated and optimized using DNA-
works2.0 (ref. 46) with the Saccharomyces cerevisiae codon frequency 
table. Oligonucleotide pools encoding the de novo designs and the 
point mutant library were purchased from Agilent Technologies. Com-
binatorial libraries were purchased as Integrated DNA Technologies 
ultramers, with the final DNA diversity ranging from 1 × 106 to 1 × 107.

All libraries were amplified using Kapa HiFi polymerase (Kapa 
Biosystems) with a qPCR machine (Bio-Rad, CFX96). In detail, the 
libraries were first amplified in a 25 μl reaction, and the PCR reaction 
was terminated when the reaction reached half maximum yield to 
avoid overamplification. The PCR product was loaded onto a DNA 
agarose gel. The band with the expected size was cut out, and DNA 
fragments were extracted using QIAquick kits (Qiagen). Then, the 
DNA product was re-amplified as before to generate enough DNA for 
yeast transformation. The final PCR product was cleaned up with a 
QIAquick Clean up kit (Qiagen). For the yeast transformation step, 
2–3 µg of linearized modified pETcon vector (pETcon3) and 6 µg of 
insert were transformed into the EBY100 yeast strain using a previ-
ously described protocol47.

DNA libraries for deep sequencing were prepared using the same 
PCR protocol, except the first step started from yeast plasmid prepared 
from 5 × 107 to 1 × 108 cells by Zymoprep (Zymo Research). Illumina 
adapters and 6-bp pool-specific barcodes were added in the second 
qPCR step. Gel extraction was used to obtain the final DNA product 
for sequencing. All the different sorting pools were sequenced using 
Illumina NextSeq sequencing.

Target protein preparation
The influenza A HA ectodomain was expressed using a baculovirus 
expression system as previously described25,48. In brief, each HA was 
fused with a gp67 signal peptide at the amino terminus and to a BirA 
biotinylation site, thrombin cleavage site, trimerization domain and 
His-tag at the C terminus. Expressed HA was purified using metal affin-
ity chromatography with Ni2+-NTA resin. For binding studies, each HA 
was biotinylated with BirA and purified by gel filtration using a S200 
16/90 column on an ÄKTA protein purification system (GE Healthcare). 
The biotinylation reactions contained 100 mM Tris (pH 8.5), 10 mM 
magnesium acetate, 10 mM ATP, 50 µM biotin and <50 mM NaCl, and 
were incubated at 37 °C for 1 h.

For TrkA, the DNA encoding the human TrkA extracellular domain (ECD) 
(residues 36–382) was cloned into pAcBAP, a derivative of pAcGP67-A 
modified to include a C-terminal biotin acceptor peptide (BAP) tag 
(GLNDIFEAQKIEWHE) followed by a 6×His tag for affinity purification. 
It was then transfected into Trichoplusia ni (High Five) cells (Invitrogen) 
using the BaculoGold baculovirus expression system (BD Biosciences) 
for secretion and purified from the clarified supernatant through Ni-NTA 
followed by size-exclusion chromatography (SEC) with a Superdex-200 
column in sterile PBS (Gibco, 20012-027). The ectodomains of FGFR2 
(residues 147–366, UniProt ID: P21802), EGFR (residues ID 25–525, Uni-
Prot ID: P00533), PDGFR (residues 33–314, UniProt ID: P09619), IR (resi-
dues ID 28–953, UniProt ID: P06213), IGF1R (residues 31–930, UniProt ID: 
P08069), TIE2 (residues 23–445, UniProt ID: Q02763), IL-7Rα (residues 
37–231, UniProt ID: P16871) were expressed in mammalian cells with 
a IgK signal peptide (METDTLLLWVLLLWVPGSTG) at the N terminus 
and a C-terminal tag (GSENLYFQGSHHHHHHGSGLNDIFEAQKIEWHE) 
that contains a TEV cleavage site, a 6-His tag and an AviTag. VirB8 was 
expressed in E. coli with a C-terminal AviTag as previously described26. 
The proteins were purified by Ni2+-NTA, and polished by SEC. The AviTag 
proteins were then biotinylated with a BirA biotin-protein ligase bulk 
reaction kit (Avidity) following the manufacturer’s protocol, and the 
excess biotin was removed through SEC. Biotinylated CD3 protein was 
purchased from Abcam (ab205994). TGFβ was purchased from Acro 
Biosystems (TG1-H8217). IGF1 was purchased from Sigma (407251-100 
μg). Insulin was purchased from Abcam (ab123768). The caged ANG1-Fc 
protein was prepared as previously described49, and was provided by  
G. Ueda. The FI6v3 antibody was provided by D. H. Fuller (University of 
Washington).

Yeast surface display
Saccharomyces cerevisiae EBY100 strain cultures were grown in 
C-Trp-Ura medium supplemented with 2% (w/v) glucose. For induc-
tion of expression, yeast cells were centrifuged at 6,000g for 1 min and 
resuspended in SGCAA medium supplemented with 0.2% (w/v) glucose 
at the cell density of 1 × 107 cells per ml and induced at 30 °C for 16–24 h. 
Cells were washed with PBSF (PBS with 1% (w/v) BSA) and labelled with 
biotinylated targets using two labelling methods: with-avidity and 
without-avidity labelling. For the with-avidity method, the cells were 
incubated with biotinylated target, together with anti-c-Myc fluores-
cein isothiocyanate (FITC, Miltenyi Biotech) and streptavidin–phy-
coerythrin (SAPE, ThermoFisher). The concentration of SAPE in the 
with-avidity method was used at one-quarter of the concentration 
of the biotinylated targets. For the without-avidity method, the cells 
were first incubated with biotinylated targets, washed and secondarily 
labelled with SAPE and FITC. All the original libraries of de novo designs 
were sorted using the with-avidity method for the first few rounds 
of screening to exclude weak binder candidates, followed by several 
without-avidity sorts with different concentrations of targets. For SSM 
libraries, two rounds of without-avidity sorts were applied and in the 
third round of screening, the libraries were titrated with a series of 
decreasing concentrations of targets to enrich mutants with beneficial 
mutations. The combinatorial libraries were sorted to convergence by 
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decreasing the target concentration with each subsequent sort and 
collecting only the top 0.1% of the binding population. The final sorting 
pools of the combinatorial libraries were plated on C-trp-ura plates, and 
the sequences of individual clones were determined by Sanger sequenc-
ing. The competition sort was done following the without-avidity proto-
cols with a minor modification. In brief, the biotinylated target proteins 
(H1, H3, TrkA, IR, IGF1R, PDGFR and TIE2) were first incubated with an 
excess amount of competitors (FI6v3, FI6v3, NGF, insulin, IGF1, PDGF 
and caged ANG1-Fc, respectively) for 10 min, and the mixture was used 
for labelling the cells. The nonspecificity reagent was prepared using 
the protocol as previously described50. For the nonspecificity sort, the 
cells were first washed with PBSF and incubated with the nonspecificity 
reagent at a concentration of 100 μg ml–1 for 30 min. The cells were then 
washed and secondarily labelled with SAPE and FITC for cell sorting. The 
cells were then labelled with RBD using the above-described protocol.

Miniprotein expression
Genes encoding the designed protein sequences were synthesized and 
cloned into modified pET-29b(+) E. coli plasmid expression vectors 
(GenScript, N-terminal 8-His tag followed by a TEV cleavage site). For all 
the designed proteins, the sequence of the N-terminal tag is MSHHHH 
HHHHSENLYFQSGGG (unless otherwise noted), which is followed imme-
diately by the sequence of the designed protein. For proteins expressed 
with the maltose binding protein (MBP) tag, the corresponding genes 
were subcloned into a modified pET-29b(+) E. coli plasmid, which has 
a N-terminal 6-His tag and a MBP tag. Plasmids were transformed into 
chemically competent E. coli Lemo21 cells (NEB). For the designs for 
TrkA, FGFR2, EGFR, IR, IGF1R, TIE2, IL-7Rα, TGFβ and the MBP-tagged 
miniproteins, protein expression was performed using Studier auto-
induction medium supplemented with antibiotic, and cultures were 
grown overnight. For the HA, PDGFR and CD3δ designs, the E. coli cells 
were grown in LB medium at 37 °C until the cell density reached 0.6 at 
OD600. Then, IPTG was added to a final concentration of 500 mM and 
the cells were grown overnight at 22 °C for expression. The cells were 
collected by spinning at 4,000g for 10 min and then resuspended in lysis 
buffer (300 mM NaCl, 30 mM Tris-HCL (pH 8.0), with 0.25% CHAPS for 
cell assay samples) with DNase and protease inhibitor tablets. The cells 
were lysed with a Qsonica Sonicators sonicator for 4 min in total (2 min 
each time, 10 s on, 10 s off) with an amplitude of 80%. The soluble frac-
tion was clarified by centrifugation at 20,000g for 30 min. The soluble 
fraction was purified by immobilized metal affinity chromatography 
(Qiagen) followed by FPLC SEC (Superdex 75 10/300 GL, GE Healthcare). 
All protein samples were characterized by SDS–PAGE, and purity was 
greater than 95%. Protein concentrations were determined by absorb-
ance at 280 nm measured with a NanoDrop spectrophotometer (Thermo 
Scientific) using predicted extinction coefficients.

Circular dichroism
Far-ultraviolet circular dichroism measurements were carried out with 
a JASCO-1500 instrument equipped with a temperature-controlled 
multi-cell holder. Wavelength scans were measured from 260 to 190 nm 
at 25 and 95 °C and again at 25 °C after fast refolding (about 5 min). 
Temperature melts monitored the dichroism signal at 222 nm in steps 
of 2 °C min–1 with 30 s of equilibration time. Wavelength scans and 
temperature melts were performed using 0.3 mg ml–1 protein in PBS 
buffer (20 mM NaPO4, 150 mM NaCl, pH 7.4) with a 1 mm path-length 
cuvette. Melting temperatures were determined by fitting the data 
with a sigmoid curve equation. Nine out of the 13 designs retained 
more than half of the mean residue ellipticity values, which indicated 
that the Tm values are greater than 95 °C. Tm values of the other designs 
were determined as the inflection point of the fitted function.

Biolayer interferometry
Biolayer interferometry binding data were collected on an Octet RED96 
(ForteBio) and processed using the instrument’s integrated software. 

For minibinder binding assays, biotinylated targets were loaded onto 
streptavidin-coated biosensors (ForteBio) at 50 nM in binding buffer 
(10 mM HEPES (pH 7.4), 150 mM NaCl, 3 mM EDTA, 0.05% surfactant 
P20 and 1% BSA) for 6 min. Analyte proteins were diluted from concen-
trated stocks into the binding buffer. After baseline measurement in the 
binding buffer alone, the binding kinetics were monitored by dipping 
the biosensors in wells containing the target protein at the indicated 
concentration (association step) and then dipping the sensors back 
into baseline/buffer (dissociation). The binding affinities of TIE2 and 
IGF1R minibinders were low, and MBP-tagged proteins were used for 
the binding assay to amplify the binding signal. The binding assay for 
the IR designs were conducted with Amine Reactive Second-Generation 
(AR2G ForteBio) Biosensors with the recommended protocol. In brief, 
the miniproteins were immobilized onto the AR2G tips and the IR sam-
ple was used as the analyte with the indicated concentrations. Data 
were analysed and processed using ForteBio Data Analysis software 
v.9.0.0.14.

For the cross-reactivity assay, each target protein was loaded onto 
streptavidin tips at a concentration of 50 nM for 325 s. The tips were 
dipped into the miniprotein wells for 300 s (association) and then 
dipped into the blank buffer wells for 600 s (dissociation). The maxi-
mum raw biolayer interferometry signal binding was used as the indica-
tor of binding strength. The maximum signal among all the miniprotein 
binders for a specific target was used to normalize the data for heat-map 
plotting.

Crystallization and structure determination of the H3 binder in 
complex with HK68/H3
To prepare the H3 minibinder (H3_mb)–HK68/H3 HA complex for crys-
tallization, a fivefold molar excess of H3_mb was mixed with about 
2 mg ml–1 of HK68/H3 HA in 20 mM Tris (pH 8.0), 150 mM NaCl. The 
mixture was incubated overnight at 4 °C to facilitate formation of 
the complex. Saturated complexes were then purified from unbound 
HB_mb by gel filtration. Gel filtration fractions containing the H3_mb–
HK68/H3 HA complex were concentrated to approximately 7 mg ml–1 
in 20 mM Tris (pH 8.0) and 150 mM NaCl. Crystallization screens were 
set up using the sitting-drop vapour-diffusion method with our auto-
mated CrystalMation robotic system (Rigaku) at The Scripps Research 
Institute. Within 3–7 days, diffraction-quality crystals had grown in 
0.2 M sodium thiocyanate and 20% (w/v) PEG 3350 as a precipitant. The 
resulting crystals were cryoprotected through the addition of 5–15% 
ethylene glycol, flash cooled and stored in liquid nitrogen until data 
collection. Diffraction data were collected at 100 K at the Stanford 
Synchrotron Radiation Lightsource (SSRL) beamline 12-1 and processed 
with HKL-2000 (ref. 51). Initial phases were determined by molecular 
replacement using Phaser52,53 with a HA model from PDB identifier 4FNK 
(apo HK68/H3 HA). Refinement was carried out in Phenix54, alternating 
with manual rebuilding and adjustment in COOT55. Electron-density 
maps were calculated using Phenix Data collection, and refinement 
statistics are summarized in Extended Data Table 2. The final coordi-
nates were validated using MolProbity56.

Crystal structure of TrkA in complex with the miniprotein 
binder
The human TrkA receptor ECD was produced in insect cells using 
baculovirus and prepared as previously described57. Hi5 cells were 
co-infected in shaking Fernbach flasks with baculoviruses encoding 
TrkA ECD and endoglycosidase H in the presence of kifunensine. Cul-
tures were allowed to progress for 65 h before the supernatant was 
recovered by centrifugation. Components from the medium were 
precipitated by the addition of 50 mM Tris (pH 8.0), 1 mM NiCl2 and 
5 mM CaCl2, and the supernatant was filtered over diatomaceous earth. 
The filtrate was batch-bound to Ni2+-NTA resin, eluted with 200 mM 
imidazole in HBS (HEPES-buffered saline: 10 mM HEPES (pH 7.3), 
150 mM NaCl), and purified by SEC on a Superdex-75 column (Cytiva 
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Life Sciences). To prepare the TrkA–miniprotein complex, an excess 
amount of miniprotein was mixed with TrkA, digested overnight at 
4 °C with 1:100 (w/w) carboxypeptidases A and B, and purified by SEC.

For crystallization, the TrkA–ligand complex was concentrated to 
38 mg ml–1 in HBS and screened in sitting-drop format using a Mosquito 
crystallization robot (SPT Labtech). Initial sea urchin-like crystals were 
obtained from the MCSG1 screen (Anatrace-Microlytic) in 0.17 M ammo-
nium acetate, 0.085 M sodium citrate (pH 5.6), 25.5% PEG 4000 and 15% 
glycerol. These crystals were crushed and used to microseed the MCSG1 
screen again at a ratio of 3:2:1 protein:precipitant:seed stock, resulting 
in single plate-like crystals grown from 0.2 M ammonium sulfate, 0.1 M 
bis-Tris (pH 6.5) and 25% PEG 3350. After further optimization to 0.4 M 
ammonium sulfate, 0.1 M bis-Tris (pH 6.2) and 20% PEG 3350, new seeds 
were prepared for final seeding into 0.4 M ammonium sulfate, 0.1 M 
bis-Tris (pH 6.2) and 16% PEG 3350.

Crystals were cryoprotected by the addition of ethylene glycol to 30% 
(v/v) and flash cooled in liquid nitrogen. Diffraction data to 1.84 Å reso-
lution were collected at 100 K using an X-ray wavelength of 1.033 Å at the 
SSRL beamline 12-2. Crystals were assigned to space group P21 with unit 
cell dimensions a = 42.20 Å, b = 205.70 Å, c = 72.57 Å and β = 106.42°. 
Data were indexed, integrated and scaled using XDS58,59 and merged 
using Pointless and Aimless from the CCP4 suite60–62.

The structure was solved by molecular replacement in Phaser52 
using separated domains of TrkA ECD (PDB accession 2IFG) and the 
predicted model of the ligand as search models to place two copies of 
the complex in the asymmetric unit. Initial rebuilding was completed 
with phenix.autobuild63 followed by iterative rounds of manual rebuild-
ing in Coot64 and refinement in Phenix65–67. TLS parameters were chosen 
using TLSMD68, and NCS restraints were used throughout refinement69. 
The final resolution of the data was selected as 1.84 Å by comparing 
the results of paired refinements at 1.84, 1.90, 1.95, 2.00 and 2.05 Å 
resolution70. The final refined model included 97.26% of residues in 
the favoured region of the Ramachandran plot with 0.25% outliers as 
calculated by MolProbity56.

Crystallographic software used in this study was configured and 
installed by SBGrid71. Diffraction images have been deposited in the 
SBGrid Data Bank with the identifier 839, and the final model and reflec-
tions have been deposited in the PDB with the identifier 7N3T.

Crystal structures of FGFR2_mb in complex with FGFR4 domain 
3 and FGFR2_mb alone
cDNA of human FGFR4 domain 3 (FGFR4D3, amino acids S245–D355) 
was amplified by PCR and cloned into pET-28a(+) plasmid (Novagen). 
The plasmid containing FGFR4D3 with N-terminal hexa-histidine tag was 
transformed into BL21(DE3) cells. The transformed cells were grown in 
LB medium at 37 °C until the OD600 reached 0.5, induced with 1.0 mM 
IPTG, grown for an additional 4 h at 37 °C and collected. The bacterial 
cells were resuspended and lysed by sonication. FGFR4D3 was refolded 
from insoluble fractions using a previously reported procedure16,72,73, 
and purified to homogeneity using nickel affinity chromatography 
(Ni2+-NTA agarose; Qiagen) followed by SEC (Superdex 200 Increase 
10/300 GL, Cytiva) equilibrated with a buffer containing 200 mM NaCl, 
25 mM HEPES (pH 8.0) and 5% glycerol. The purified FGFR4D3 was mixed 
with a 1.2-fold molar excess of FGFR2_mb and subjected to another 
round of SEC to isolate the FGFR4D3–FGFR2_mb complex. Fractions con-
taining FGFR4D3 bound to FGFR2_mb were pooled and concentrated to 
12 mg ml–1 and screened for crystallization using commercially available 
crystallization screening kits with Mosquito Crystal liquid handler (SPT 
Labtech). Crystals of the FGFR4D3–FGFR2_mb complex were obtained 
with ProPlex screening solution (Molecular Dimensions) containing 
0.2 M sodium chloride, 0.1 M MES pH 6.0 and 20% PEG 3,350 at 4 °C. 
The crystals were cryoprotected using the mother liquor supplemented 
with 25% glycerol before being flash-cooled in liquid nitrogen.

Crystals of FGFR2_mb were obtained using solution containing alco-
hols (0.02 M 1,6-hexanediol, 0.02 M 1-butanol, 0.02 M 1,2-propanediol, 

0.02 M 2-propanol, 0.02 M 1,4-butanediol, 0.02 M 1,3-propanediol), 
buffer mixture (0.1 M Tris and BICINE adjusted to pH 8.5) and pre-
cipitants (12.5% v/v MPD, 12.5% PEG 1000, 12.5% w/v PEG 3,350) by the 
hanging-drop vapour-diffusion method at 20 °C, which were directly 
flash-cooled in liquid nitrogen for X-ray diffraction data collection.

X-ray diffraction data were collected at the NE-CAT 24ID-E beam 
line of Advanced Photon Source (Argonne National Laboratory) and 
processed with XDS74. The initial structure of FGFR2_mb was obtained 
by molecular replacement with PHASER52,75 using the designed model, 
which was iteratively refined using PHENIX67,75 followed by manual 
building with COOT64. The structure of FGFR4D3–FGFR2_mb complex 
was obtained by molecular replacement with Phaser52,75 using the 
coordinates corresponding to the domain 3 region of FGFR1c72 (PDB 
ID: 1CVS) and the coordinates of FGFR2_mb as the search model, fol-
lowed by iterative refinements using PHENIX67,75 and COOT64. The final 
structures were validated with MolProbity75,76. Data collection and 
refinement statistics are provided in Extended Data Table 2.

Crystal structure of unbound IL-7Rα minibinder
To facilitate crystallization, the N-terminal His-tag was removed using 
TEV protease and the protein was concentrated to 40 mg ml–1 in 30 mM 
Tris-HCl (pH 8.0) and 150 mM NaCl. Sparse-matrix crystal screening was 
performed using kits from Hampton Research (Index-HT, PEGRx-HT 
and PEG/Ion-HT) at room temperature. A Mosquito nanolitre crystal-
lization robot was used to set up sitting drops consisting of 200 nl of 
protein and 200 nl of each reservoir solution with 80 μl of reservoir 
solution in MRC-2 plates. Promising prism-shaped crystals grew from 
the IndexHT C3 condition, and optimal conditions ranged from 2.4 to 
3.0 M sodium malonate (pH 7.0). Protein crystals were cryo-cooled 
directly into liquid nitrogen. Initial X-ray diffraction experiments were 
carried out on a home-source system equipped with MicroMax-007 HF 
rotating anode with a Dectris Eiger R 4M single-photon counting device. 
X-ray diffraction data on optimized protein crystals were collected at 
the Advanced Photon Source synchrotron beamline 23ID-D of GM/
CA with a Dectris Pilatus3-6M detector. All X-ray data were processed 
with XDS. Molecular replacement using the de novo designed model 
was used to solve the crystal structure using Phaser within the Phenix 
package. Two molecules were located in the asymmetric unit. Structural 
refinement used Phenix using no NCS restraints. Data collection and 
refinement statistics are given in Extended Data Table 2.

Crystal structure of IL-7Rα in complex with the minibinder
The ectodomain of human IL-7Rα was produced and purified as 
previously described77. The anti-IL-7Rα minibinder was prepared as 
described above. The IL-7Rα–minibinder complex was formed by add-
ing a molar excess of purified minibinder to recombinant IL-7Rα. The 
IL-7Rα–minibinder complex was purified by SEC using a Superdex-75 
column (Cytiva Life Sciences) with HBS buffer (pH 7.4) as the running 
buffer. Fractions corresponding to the IL-7Rα–minibinder complex 
were pooled and concentrated by centrifugal ultrafiltration to a con-
centration of 3.9 mg ml–1. Sparse-matrix crystallization screens were 
carried out using the BCS-Screen (Molecular Dimensions) at 293 K and 
the sitting-drop method. The vapour-diffusion geometry was used to 
set up sitting drops consisting of 200 nl of protein and 100 nl of each 
reservoir solution using a Mosquito nanolitre crystallization robot (TTP 
Labtech). The IL-7Rα–minibinder complex crystallized in condition A5 
(0.1 M phosphate, citrate (pH 5.5) and 25.0% PEG Smear medium). Crys-
tals were cryo-protected with mother liquor supplemented with 25% 
v/v PEG 400 and cryo-cooled by direct plunging into liquid nitrogen. 
X-ray diffraction data of protein crystals were collected at beamline 
ID23-2 of the ESRF (Grenoble) with a Dectris PILATUS3 X 2M detec-
tor and were processed with XDS58. The structure was determined by 
maximum-likelihood molecular replacement in Phaser using the crystal 
structure of IL-7Rα (PDB ID: 3DI2) as a search model52. Three copies of 
the complex were located in the asymmetric unit. Model (re)building 
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was performed in Coot64, and coordinate and ADP refinement was 
performed in PHENIX65 and autoBuster78. Model and map validation 
tools in Coot, the PHENIX suite and the PDB_REDO server79 were used 
to validate the quality of crystallographic models. The final model 
and reflections have been deposited in PDB with the identifier 7OPB. 
Data collection and refinement statistics are provided in Extended 
Data Table 2.

Crystal structure of VirB8-like protein in complex with the 
minibinder
VirB8-like protein of the type IV secretion system from R. typhi (UniProt 
ID: Q68X84) in complex with 0.75 mM VirB8 miniprotein binder was 
suspended in a buffer containing 20 mM HEPES pH 7.0, 300 mM NaCl 
and 5% glycerol. The complex was crystallized using the sitting-drop 
vapour-diffusion method at 14 °C with drops composed of 0.4 ml 
of the complex at 9.9 mg ml–1 mixed with 0.4 ml crystallant (sparse 
matrix screen JCSG Top96 (Rigaku Reagents) condition G9: 100 mM 
sodium acetate/hydrochloric acid (pH 4.6), 25% (w/v) PEG 4000, 
200 mM ammonium sulfate) equilibrated against 80 ml crystallant 
in the reservoir. Crystals were cryoprotected in the crystallant sup-
plemented with 15% (v/v) ethylene glycol. X-ray diffraction data of the 
VirB8 protein–miniprotein binder complex was collected at the LS-CAT 
beamline 21-ID-F at the Advanced Photon Source. Data were integrated 
in XDS and reduced using XSCALE58. Data quality was assessed using 
POINTLESS80. Molecular replacement was performed using Phaser52 
with search models comprising a previously solved crystal structure 
of R. typhi VirB8-like of type IV secretion system (PDB ID: 4O3V) and an 
Alphafold2 (ref. 81) predicted model of the VirB8 miniprotein binder. 
Iterative manual model building and refinement were carried out using 
Coot64 and Phenix65. Structure quality was assessed using Molprobity56 
before deposition in the PDB82,83 (Extended Data Table 2). Diffraction 
images are available at the Integrated Resource for Reproducibility in 
Macromolecular Crystallography84,85.

Comparison between the crystal structures and design models
For the structures of the miniprotein binders in complex with the tar-
gets, the entire structures were aligned using the target as the refer-
ences first. The r.m.s.d. over the Cα atoms of the entire miniprotein 
binder was calculated. For the unbound crystal structures of the FGFR2 
miniprotein binder and the IL-7Rα miniprotein binder, the r.m.s.d. 
values were calculated over all the Cα atoms after superimposition. 
For the analysis of the heavy atoms of the interface core residues, the 
structures were aligned using the target as references first. Interface 
residues of the binders were selected as long as there is one residue on 
the target that has a Cβ–Cβ distance of less than 8 Å using the Neigh-
borhoodResidueSelector, and core residues were selected using the 
LayerSelector in Rosetta with the default burial cut-off value. Then 
heavy atoms of the interface core residues were used to calculate the 
r.m.s.d. values. Four, eight, six and six residues were considered as 
interface core residues for the H3, FGFR2, IL-7Rα and VirB8 complex 
structures respectively.

TrkA minibinder antagonist assay
The Phospho-flow signalling assay was used to characterize the antago-
nistic properties of the TrkA minibinder. TF-1 cells (American Type 
Culture Collection, CRL-2003) were starved for 4 h in base medium 
without NGF or other cytokines before signalling assays. Cells were 
plated in 96-well plates with different concentrations of TrkA binder and 
stimulated with human beta-NGF (R&D) for 10 min at 37 °C, followed by 
fixation with 1.6% paraformaldehyde for 10 min at room temperature. 
Cells were permeabilized by resuspension in ice-cold methanol and 
stored at −20 °C until flow cytometry analysis. For intracellular stain-
ing, the permeabilized cells were washed and incubated with Alexa 
Fluor-488 conjugated anti-ERK1/2 pT202/pY204 antibody (BD) and 
Alexa Fluor-647 conjugated anti-Akt pS473 antibody (Cell Signaling 

Technology) for 1 h at room temperature. After washing with autoMACS 
running buffer (Miltenyi), the fluorescence intensity of each antibody 
staining level was acquired using a CytoFlex flow cytometer (Beckman 
Coulter). Mean fluorescence intensity (MFI) values were background 
subtracted and normalized to the maximal MFI value in the absence 
of TrkA binder and plotted in Prism 9 (GraphPad). The dose–response 
curves were generated using the sigmoidal dose–response analysis 
method.

For the cell proliferation assay, TF-1 cells were plated in a 96-well plate 
and cultured in RPMI-1640 medium containing 2% FBS and different 
concentrations of TrkA binder and NGF for 48 h at 37 °C. The cell pro-
liferation rate was assessed by measuring the cellular ATP level using 
CellTiter-Glo 2.0 Cell Viability Assay reagent (Promega) according to 
the manufacturer’s protocol. The luminescent signal was measured 
using a SpectraMax Paradigm plate reader, and the data were plotted 
and analysed using Prism 9 (GraphPad). The dose–response curves 
were generated using the sigmoidal dose-response analysis method.

FGFR2 and EGFR minibinder antagonist assay
For cell culture, human umbilical vein endothelial cells (HUVECs; 
Lonza, C2519AS) were grown in EGM2 medium on 35-mm cell culture 
dishes coated with 0.1% gelatin. In brief, EGM2 is composed of 20% FBS,  
1% penicillin–streptomycin, 1% GlutaMAX (Gibco, 35050061), 1% ECGS 
(endothelial cell growth factor), 1 mM sodium pyruvate, 7.5 mM HEPES, 
0.08 mg ml–1 heparin and 0.01% amphotericin B in a mixture of 1× RPMI-
1640 with and without glucose (final glucose concentration = 5.6 mM). 
Medium was filtered through a 0.2-µm filter. HUVECs were serially 
passaged and expanded before cryopreservation.

FGFR and EGFR antagonist assay
Frozen HUVECs were thawed and cultured in a 35-mm dish in EGM2 
medium until confluency was reached. After that, EGM2 medium 
was aspirated and cells were rinsed twice with 1× PBS. Cells were then 
serum-starved by adding 2 ml of DMEM serum-free medium (1 g l–1 glu-
cose, Gibco) for 16 h, after which the starvation medium was aspirated. 
The cells were then treated with the FGFR2 minibinder or the EGFR min-
ibinder for 1 h at 37 °C and at concentrations varying between 5 nM and 
1 μM of minibinder. This was followed by stimulation with β-FGF (0.75 nM, 
Fisher Scientific) or EGF (1 nM, Peprotech), respectively, for 15 min at 
37 °C. After treatment, the medium was aspirated, and cells were washed 
once with 1× PBS before collecting the total protein for analysis.

Total protein isolation
After minibinder treatment, the cells were gently rinsed in 1× PBS 
before lysis with 130 µl of lysis buffer containing 20 mM Tris-HCL 
(pH 7.5), 150 mM NaCl, 15% glycerol, 1% Triton, 3% SDS, 25 mM 
β-glycerophosphate, 50 mM NaF, 10 mM sodium pyrophosphate, 0.5% 
orthovanadate, 1% PMSF (all obtained from Sigma-Aldrich), benzonase 
nuclease (EMD Chemicals), protease inhibitor cocktail (Pierce protease 
inhibitor mini tablets, Thermo Scientific) and phosphatase inhibitor 
cocktail 2 (P5726). Cell lysate was collected in a fresh Eppendorf tube. 
A total of 43.33 µl of 4× Laemmli sample buffer (Bio-Rad) (containing 
10% β-mercaptoethanol) was added to the cell lysate and then heated 
at 95 °C for 10 min. The boiled samples were either used for western 
blot analysis or stored at −80 °C.

Western blotting
A total of 30 µl of protein lysate was loaded per well and separated on 
a 4–20% SDS–PAGE gel for 30 min at 250 V. Proteins were then trans-
ferred onto a nitrocellulose membrane for 12 min using a semi-dry turbo 
transfer apparatus (Bio-Rad). The membranes were blocked in 5% BSA 
for 1 h, after which they were probed overnight with respective primary 
antibodies on a rocker at 4 °C. The primary antibodies used in this assay 
were β-actin (1:10,000; Cell Signaling Technologies), p-ERK1/2 p44/42 
(1:10,000; Cell Signaling Technologies) and p-AKT S473 (1:2,000; Cell 
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Signaling Technologies). The next day, membranes were washed three 
times with 1× TBS-T and then incubated with anti-rabbit HRP conju-
gated secondary antibody (1:10,000; Bio-Rad) for 1 h. For p-AKT S473, 
following washes, the membrane was blocked in 5% milk at room tem-
perature for 1 h and then incubated in the respective HRP-conjugated 
secondary antibody (1:2,000) prepared in 5% milk, for 1 h. They were 
developed using Immobilon Western chemiluminescent substrate 
(EMD Millipore), followed by quantification using NIH ImageJ analysis 
software. The raw scans of the western blot results are shown in Sup-
plementary Fig. 5. Quantifications were done by calculating the peak 
area for each band. Inhibition curve fit and corresponding IC50 values 
were determined using GraphPad Prism 9 software.

IL-7Rα minibinder antagonist assay
HEK293T cells were cultured in DMEM medium with 10% FBS at 37 °C 
and 5% CO2. Cells were co-transfected with 1,000 ng pcDNA3-γ com-
mon, 300 ng pMET7-HA-IL-7Rα, 200 ng pMX-IRES-GFP-hJak3, 300 ng 
empty pMET7 vector and 200 ng pGL3-b-casein-luci STAT5 reporter 
plasmid per well of a 6-well plate. One day after transfection, cells 
were detached with cell dissociation buffer (Life Technologies), 
re-suspended in DMEM + 10% FCS and 2% of cells were seeded in 96-well 
plate as previously described77 and stimulated overnight with 50 pM 
human IL-7 (Immunotools) and increasing concentrations of IL-7Rα min-
ibinder. STAT5-dependent luciferase activity was measured on the next 
day using a GloMax 96 microplate luminometer. The fold-induction 
of luciferase activity was calculated by the ratio of the luminescence 
signal from cells stimulated with IL-7 to the signal from the unstimu-
lated cells. The data were plotted and fitted to a log inhibitor versus 
response curve in GraphPad Prism. The pcDNA3-gamma common was 
a gift from J. C. Renauld (Faculty of Medicine and Dentistry, UC Louvain, 
Belgium) and the pMX-IRES-GFP-hJak3 vector86 was provided by S. N. 
Constantinescu (Ludwig Institute for Cancer Research, Belgium). The 
pMET7-HA-IL-7Rα, empty pMET7 and pGL3-β-casein-luci vectors were 
provided by F. Peelman (UGent, Belgium).

Apparent SC50 estimation from FACS and next-generation 
sequencing
The Pear program87 was used to assemble the fastq files from the 
next-generation sequencing (NGS) runs. Translated, assembled reads 
were matched against the ordered designs to determine the number 
of counts for each design in each pool.

The critical assumption to the fitting here is to assume that the yeast 
cells displaying a particular design will follow a modified version of 
the standard Kd equation relating fraction bound to concentration:

Fraction_collected =
concentration

(concentration + SC ) (1)i
i50,

where fraction_collectedi is the fraction of the yeast cells displaying 
design i that were collected, concentration is the target concentration 
for sorting, and SC50,i is the apparent SC50 of the design (the concentra-
tion where 50% of the cells would be collected).

The next assumption is that all designs have the same expression level 
on the yeast surface and that 100% of yeast cells express sufficiently 
well to be collected in the ‘expression’ gate (that is, the right population 
in Supplementary Fig. 7).

These two assumptions, although probably false, enable fitting of 
the data with only one free parameter per design and no global free 
parameters. The correct version of equation (1) for this experiment 
probably has a different shape and slope from a perfect sigmoid; the 
net effect of correcting this would be that all SC50 values are scaled by 
a constant factor (which would not affect the relative comparisons 
made here). It can be shown by analysing the data that different designs 
result in different expression levels on yeast (one can examine the frac-
tion collectedi for strong binders at concentrations for which binding 

should be saturated). The net result is that experimentally, equation (1) 
is multiplied by a constant between 0 and 1 for each design. This con-
stant seems to range from 0.2 to 0.7. As such, when fitting the data, 
fraction collectedi values above 0.2 are considered saturating. How-
ever, because the 0.2 mark may represent 90% collection for poorly 
expressing designs and 30% collection for strongly expressing designs, 
the resulting SC50 fits may vary by up to fivefold. The alternative is to 
try to estimate an expression level; however, this becomes increas-
ingly difficult with weaker binders that never saturate the experiment.

Apparent SC50 estimation from FACS and NGS: point estimates
The following equation may be used to determine the fraction collectedi 
for a single design in a single sort:

Fraction_collected =
proportion_child_pool

proportion_parent_pool

×FACS_collection_fraction

(2)i
i

i

where fraction_collectedi is the proportion of cells carrying design i that 
were collected during the sort, proportion_child_pooli is the proportion 
of the total NGS counts for design i from the pool that was collected, 
proportion_parent_pooli is the proportion of the total NGS counts 
for design i from the pool that was the input for the sorter, and FACS 
collection fraction was the fraction of the yeast cells collected during 
the specific sort (a number extracted from the FACS machine itself).

This point-estimate method is best suited for asking which designs 
have SC50  < SC50,0 by determining the expected fraction_collectedi for a 
given sorting concentration and SC50,0. The sorting concentration and 
SC50,0 should be selected such that equation (1) results in an expected 
fraction_collectedi less than 0.2 to circumvent the expression issues 
mentioned above. Then, any designs with fraction_collectedi greater 
than the cut-off may say that their SC50 is less than SC50,0. Designs with 
low numbers of counts are suspect, see the ‘Doubly transformed yeast 
cells’ section below. For this analysis, any designs with fewer than max 
possible passenger cells were eliminated.

This method may be applied to avidity sorts; however, the resulting 
SC50 would be the SC50 during avidity experiments. It is unclear what 
the precise mathematical effect of avidity is, and as such we do not 
compare avidity SC50 values with non-avidity SC50 values.

Apparent SC50 estimation from FACS and NGS: doubly 
transformed yeast cells
Doubly transformed yeast cells represent a major source of error in these 
experiments. Although rare, a yeast cell that contains two plasmids, one 
of a strong binder and one of a non-binder, will carry the non-binder 
plasmid through the sorting process. The net result is that the non-binder 
will end up with counts that track the strong binder; however, at a greatly 
reduced absolute number. Note that rare is a relative term here. Although 
the odds of any two specific plasmids being in one cell is low, in the entire 
pool of yeast, doubly transformed cells seem to be common.

We chose to address this issue by making the following assumption: 
non-binders that take advantage of a doubly transformed yeast cell do 
so from precisely one double-transformation event. In other words, 
we assumed that the same non-binding plasmid did not get doubly 
transformed into two separate strong-binding yeast. This assumption 
allows us to estimate the largest number of cells we would expect to 
see from a doubly transformed plasmid:

Max_possible_passenger_cells =
cells_collected

cells_sorted_R1

×cell_copies_before_first_sort

(3)
i

i

_ max

_ max

where max_possible_passenger_cells is the highest number of cells that 
we would expect a non-binding plasmid to occupy, cells_collectedi_max 



is the number of cells collected in this round for the design with the 
greatest number of cells collected, cells_sorted_R1i_max is the number 
of cells sorted for design i_max (the same design from cells_collect-
edi_max), and cell copies before first sort is the number of copies of each 
cell that occurred before the first sort (2no. of cell divisions). The number of 
cells_collectedi may be approximated by multiplying the number of 
cells the FACS machine collected by the proportion of the pool that 
design i represents. The number of cells_sortedi may be estimated by 
either dividing the cells_collectedi by the FACS_collection_fraction 
or by multiplying the number of cells fed to the FACS machine by the 
proportion of design i in that pool.

With this number in hand, one can set a floor for the number of cells 
that one would expect to see. Any design with fewer than this num-
ber of cells cannot be considered for calculations because it is unclear 
whether or not that cell is part of a doubly transformed yeast cell.  
On the whole, this method reduces false-positive binders but also 
removes true-positive binders that did not transform well. It is wise to 
simply drop designs from the downstream calculations that did not 
transform well.

Apparent SC50 estimation from FACS and NGS: full estimate
Estimation of an upper and lower bound on the SC50 from the data may 
be performed by looking at an arbitrary number of sorting experiments. 
Taking a P(SC50 == SC50,0 | data) and performing Bayesian analysis, one 
arrives at a confidence interval for the actual SC50 value. This analysis 
may be performed at every sort and the resulting distributions com-
bined to produce a robust estimate.

Each sort may be modelled as a binomial distribution where P = frac-
tion_collected from equation (1) using concentration = sorting_con-
centration and SC50 = SC50,0; n = cells_sortedi; and x = cells_collectedi.  
By performing this analysis at a range of SC50,0 values and examining the 
probability this could happen by the binomial distribution, one arrives 
at P(SC50 == SC50,0 | data). Specifically for this analysis, the cumula-
tive distribution function (CDF) of the binomial was used with the null 
hypothesis that SC50 == SC50,0.

Care should be taken for the valid range of P. As stated previously, it 
is wise to cap the expected value of P to 0.2 to account for expression 
levels and to floor the value such that n × P does not fall below max 
possible passenger cells. In our implementation, if x falls into a range 
that has been clipped, a probability of 1 is returned.

The code to perform this entire analysis is available in the Supple-
mentary Information.

SSM validation: relax protocol
To remove artefacts from designs and to discover the best orientation 
for each SSM mutation, all binders were relaxed using the Rosetta beta_
nov16 score function before calculations began (30 replicates using  
5 repeats of cartesian FastRelax taking the best scoring model). Relaxa-
tion of point mutants then used the standard cartesian FastRelax 
procedure and allowed all residues within 10 Å of the mutation to 
relax. The backbone coordinates of those residues on the binder were 
allowed to relax while the target was held constant. The best of three 
(as evaluated by Rosetta energy) was chosen as the representative 
model. An xml is provided in the Supplementary Information to per-
form this relaxation.

SSM validation: entropy score
To validate that the designed binder was folded into the correct shape 
and was using its designed interface to bind to the target, the entropy of 
the interface, monomer core and monomer surface were examined. For 
each position on the binder, the sequence entropy (Shannon entropy) 
of each position was calculated using the observed frequencies of each 
amino acid in the NGS. The specific pool that was chosen for this analy-
sis was the pool with concentration closest to tenfold lower than the 
calculated SC50 of the parent.

After the per-position sequence entropy was calculated, the average 
per-position entropy of the SASA-hidden positions contacting the 
target (interface core), the SASA-hidden positions not contacting the 
target (monomer core) and the fully exposed positions not contacting 
the target (monomer surface) were calculated. A simple subtraction 
was performed according to equation (4):

S S S

Intermediate entropy score

= + −
(4)

monomer_core interface_core monomer_surface

where Sregion is the average entropy of that region.
Finally, the probability that the score could have come from totally 

random data was computed by performing the above calculation on 
the actual data, and then performing the same calculation 100 times, 
but randomly mismatching the observed counts among all SSM point 
mutations. In this way, the experimental noise is kept constant among 
the 100 decoy datasets. The final step to arrive at a P value was to cal-
culate the mean and standard deviation of the 100 decoy intermediate 
entropy scores and to find the P value with the Normal CDF function 
of the binder’s intermediate entropy score.

SSM validation: Rosetta accuracy score
To further assess the accuracy of the design model, the correlation 
between the predicted effect on binding by Rosetta was compared 
with the experimental data. The effect from Rosetta can be broken into 
two components: monomer stabilization/destabilization and interface 
stabilization/destabilization. The effect on the monomer energy will 
affect the fraction of the proteins that are folded in solution. This frac-
tion of folded proteins will then worsen the affinity because only the 
folded proteins are able to bind. The effect on the monomer stability 
was estimated by taking the difference in Rosetta energy between the 
native relaxed dock and the mutant relaxed dock and looking only at 
the change in Rosetta score of the docked protein (excluding energies 
arising from cross-interface edges). The effect on the target energy was 
calculated the same and was considered to directly affect the binding 
energy. The binding energy was calculated by taking the difference 
in Rosetta score between the docked and undocked conformations 
(but with no repacking or minimization in the unbound form). An xml 
exists in the Supplementary Information to perform this calculation.

The effect on the P(fold monomer) was estimated by first determin-
ing the predicted ΔGfold of the native protein.

P
G G

kT
(fold monomer) = exp

Δ + Δ
(5)

fold mutanteffect

















G kT

P
P

Δdd = ln
(fold monomer)
(fold monomer)

(6)monomer effect
native

mutant

Where k is the Boltzmann constant and T is temperature, which was 
set to 300 K for this calculation.

Using equations (5) and (6), the predicted ΔGfold for the native design 
was estimated by performing a least-squares fit of all mutations that 
did not occur in residues at the interface. A rudimentary confidence 
interval was created by allowing all ΔGfold values that resulted in a root 
mean squared error of within 0.25 kcal mol–1 of the best ΔGfold value. 
Typical confidence intervals spanned 3 kcal mol–1.

G G G

G

Δdd = Δdd + Δdd

+ Δdd
(7)

Rosetta monomer effect interface effect

target effect

With the ΔGfold in hand, the predicted effect on the binding energy 
could be computed according to equation (7). The values of ΔGfold inside 
the confidence range for ΔGfold that produced the largest and smallest 
ΔddGRosetta were used to produce a confidence interval for ΔddGRosetta.
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The per-position accuracy was assessed by determining whether the 

confidence interval for ΔddGRosetta was compatible with the confidence 
interval for the SC50 from the experimental data. A buffer of 1 kcal mol–1 
was allowed.

With the per-position accuracies in hand, the overall percentage of 
mutations that Rosetta was able to explain in the monomer core and 
interface core was assessed. This produced an overall Rosetta accuracy 
score.

In the same way as the entropy score, 100 decoys with randomly 
shuffled SC50 values were subjected to the same procedure. The mean 
and standard deviation of the decoys was determined and the P value 
for the Rosetta score was determined using the Normal CDF function.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The atomic coordinates and experimental data of H3_mb in complex 
with H3 HA, TrkA_mb in complex with TrkA, unbound FGFR2_mb, 
FGFR2_mb in complex with FGFR4, unbound IL-7Rα_mb, IL-7Rα_mb 
in complex with IL-7Rα and VirB8_mb in complex with VirB8 have been 
deposited in the RCSB PDB with the accession numbers 7RDH, 7N3T, 
7N1K, 7N1J, 7S5B, 7OPB and 7SH3, respectively. Diffraction images 
for the TrkA–minibinder complex have been deposited in the SBGrid 
Data Bank with the identifier 838. The Rosetta macromolecular mod-
elling suite (https://www.rosettacommons.org) is freely available to 
academic and non-commercial users. Commercial licences for the 
suite are available through the University of Washington Technology 
Transfer Office.

Code availability
The Rosetta macromolecular modelling suite (https://www.rosettacom-
mons.org) is freely available to academic and non-commercial users. 
Commercial licences for the suite are available through the University 
of Washington Technology Transfer Office. The design scripts and main 
PDB models, computational protocol for data analysis, experimental 
data and analysis scripts, the entire miniprotein scaffold library, all 
the design models and NGS results used in this paper can be down-
loaded from file servers hosted by the Institute for Protein Design:  
https://files.ipd.uw.edu/pub/robust_de_novo_design_minibinders_2021/ 
supplemental_files/scripts_and_main_pdbs.tar.gz, https://files.ipd.
uw.edu/pub/robust_de_novo_design_minibinders_2021/supplemental_ 
files/computational_protocol_analysis.tar.gz, https://files.ipd.uw. 
edu/pub/robust_de_novo_design_minibinders_2021/supplemental_files/ 
experimental_data_and_analysis.tar.gz, https://files.ipd.uw.edu/pub/ 
robust_de_novo_design_minibinders_2021/supplemental_files/scaf 
folds.tar.gz, https://files.ipd.uw.edu/pub/robust_de_novo_design_ 
minibinders_2021/supplemental_files/design_models_pdb.tar.gz and  
https://files.ipd.uw.edu/pub/robust_de_novo_design_minibinders_2021/ 
supplemental_files/design_models_silent.tar.gz. All the files are stored 
in compressed gzip format. Once the files have been downloaded and 
decompressed, there is a detailed description of the binder design pipe-
line and the whole process can be reproduced based on those files. The 
source code for RIF docking implementation is freely available at https://
github.com/rifdock/rifdock.
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Extended Data Fig. 1 | Detailed flow chart of the de novo miniprotein binder design pipeline. The computational design steps are colored as light green and 
experimental characterization and optimization steps are colored as light blue.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Analysis of the critical steps of the de novo binder 
design pipeline. a, Comparison of the two docking approaches based on 
Rosetta ddG and contact molecular surface. Average and per-target 
distribution of the top 1% of binders in two key metrics after pooling equal-
CPU-time dock-and-design trajectories. RifDock seeded with PatchDock 
outputs generated 300 outputs per scaffold that were trimmed to a total of 
19,500 docks with “The Predictor” and designed using combinatorial side-
chain optimization (orange). RifDock using the Hierarchical docking search 
generated 300 outputs per scaffold that were trimmed to a total of 19,500 
docks with “The Predictor” and subsequently designed (purple). Rosetta ddG 
refers to the predicted binding energy as calculated by Rosetta and Contact MS 
to key residues refers to the Contact Molecular Surface value (a distance 
weighted interfacial area calculation) to the key hydrophobic residues on the 
target that define this binding site. b, The rapid pre-screening method enriches 
docks with better Rosetta ddG and contact molecular surface. Average and per-
target distribution of the top 1% of binders in two key metrics after pooling 
equal-CPU-time dock-and-design trajectories. The top 30 PatchDock outputs 
for the 1,000 helical scaffolds tested were designed using the RosettaScripts 
protocol (blue). The top 300 PatchDock outputs for the 1,000 helical scaffolds 
tested were trimmed to 21,000 with “The Predictor” and subsequently 
designed (red). c, The improved sequence design protocol yielded amino acid 

sequences more strongly predicted to fold to the monomer structure.  
The effect on fragment quality and Rosetta Score with different fragment-
quality-guidance approaches. Rosetta using FastDesign with the standard 
LayerDesign settings was used to design 1,000 3-helical and 1,000 4-helical 
mini-protein scaffolds (blue). The same protocol was supplanted with the 
ConsensusLoopDesign TaskOperation (orange). The structure-based PSSM 
was used as an energy term in addition to the Standard Rosetta protocol 
(green). Two predictors of sequence-structure correspondence were found to 
improve without negatively affecting the computed Rosetta score of the 
binders. The probability that the designed sequence encoded for the wrong 
secondary structure was computed using PsiPred488 (left), and for each 9aa 
fragment of the designed scaffold, the closest match to a fragment in the 
Protein Data Bank with the same sequence was computed and averaged over 
the entire structure10 (center). Details can be found in the Supplemental 
Information. d, The improved sequence design protocol yielded amino acid 
sequences more strongly bound to the target. 10,000 scaffolds docked against 
the N-terminal domain of EGFR were designed with the RosettaScripts protocol 
while varying only the weight of the ProteinProteinInterfaceUpweighter. This 
TaskOperation multiplies all energies across the interface by the listed value 
during packing-design calculations.



Extended Data Fig. 3 | Comparison of the native binding partners and the computational design models. Side-by-side comparison of the native binding 
partners of the selected targets and the binding configurations of the computational designed models.
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Extended Data Fig. 4 | Biolayer interferometry characterization of binding 
of optimized designs to the corresponding targets. Two-fold serial dilutions 
were tested for each binder and the highest concentration is labeled. For H3, 
TrkA, FGFR2, EGFR, PDGFR, IL-7Rα, CD3δ, TGF-β and VirB8, the biotinylated 
target proteins were loaded onto the Streptavidin (SA) biosensors, and 
incubated with miniprotein binders in solution to measure association and 
dissociation. For IGF1R and Tie2, MBP- (maltose binding protein) tagged 

miniprotein binders were used as the analytes. For InsulinR, the miniprotein 
binder was immobilized onto the Amine Reactive Second-Generation (AR2G) 
Biosensors and the insulin receptor was used as the analyte. The gray color 
represents experimental data and orange color represents fit curves. The 
fitting curves are poor at high binder concentrations due to the self- 
association of the binders through the interface hydrophobic residues, so we 
only kept the traces and fits at low binder concentrations.



Extended Data Fig. 5 | Average SSM sequence entropy for different regions 
of binders. The sequence entropy of a single position was calculated by 
looking at the counts from the sort with the concentration closest to 10-fold 
lower than the estimated parent SC50 and performing a simple Shannon 
entropy calculation on all amino acids observed at that position. Each plotted 
point is the average entropy of all positions within each of the three zones 
respectively. Validated vs Not Validated refers to the SSM Validation procedure 

with a cutoff of 0.005 (see Methods and Extended Data Figure 15). Since one 
would expect the core residues of the monomer and core residues of the 
interface to be conserved while the surface residues should not matter, the 
validated binders trend above the line. Points on the line do not show a 
difference between their surfaces and cores, potentially indicating unfolded or 
misfolded proteins. Points below the line may be misfolded or binding with 
alternate residues.
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Extended Data Fig. 6 | Computational analysis of the experimental SSM 
results. a, Ability of Rosetta to predict mutational effects. This graph shows 
the observed experimental effect of each mutation versus Rosetta’s expected 
effect. For each plotted point, the delta refers to the effect versus the parent 
SSM design; therefore a “Beneficial” mutation is one that would improve 
affinity relative to the original designed protein the SSM was based on. The 
ΔExperimental ddg is derived from FACS data using the SC50 values 
(see Methods). Confidence intervals were collapsed to their center point to 
make this graph and “No effect” refers to mutations with less than a 1 kcal/mol 
change. Binder region definitions: Interface Core: residue contacts target 
protein and has no SASA (Solvent Accessible Surface Area) in bound state; 
Interface Boundary: residue contacts target protein, but does have SASA; 
Monomer Core: residue has no SASA and does not contact target; Monomer 
Boundary: residue has intermediate SASA and does not contact target; 
Monomer Surface: residue has full SASA and does not contact target. 

see Methods SSM Validation for further explanation. b, Mutations observed in 
SSM experiments that improved affinity bind at least 1kcal/mol graphed by 
relative frequency. Plotted is the #_times_Native_to_Mutant_improved_affinity /  
#_times_Native_to_Mutant_tested_in SSMs. A value of 0.10 with x-axis F and 
y-axis W could therefore represent that for 2 of 20 times W was substituted for 
Y, the affinity improved. Separated bars on each axis represent pooled data for 
the entire row/column. Grey boxes indicate mutations that occurred fewer than 
5 times. Only SSM designs with a validation score of 0.005 or better were 
considered. While some cells are clipped, none extended beyond 0.25. Binder 
region definitions: Interface Core: residue contacts target protein and has no 
SASA in bound state; Interface Boundary: residue contacts target protein, but 
does have SASA; Monomer Core: residue has no SASA and does not contact 
target; Monomer Boundary: residue has intermediate SASA and does not 
contact target; Monomer Surface: residue has full SASA and does not contact 
target.



Extended Data Fig. 7 | Competition experiments indicated the miniprotein 
binders bound to the targeted region. Yeast cells displaying the TrkA binder (a),  
InsulinR binder (b), IGF1R binder (c), PDGFR binder (d) and Tie2 binder (e) were 

incubated with the target protein in the presence or absence of the native 
ligand as the competitor, and target protein binding to cells (y axis) was 
monitored with flow cytometry.
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Extended Data Fig. 8 | Inhibition of the TrkA miniprotein binder on the 
native TrkA-NGF signaling pathway. a, Titration curves of nerve growth 
factor (NGF) on TrkA signaling in the presence of different concentrations of 
the TrkA miniprotein binder. The TrkA miniprotein binder shifted the IC50 
values of the TrkA response to NGF. b, The TrkA miniprotein binder showed  
no effects on the cell viability. TF-1 cells were treated with different 

concentrations of the TrkA miniprotein binder and the cell viability was 
quantified at both 24 and 48 hr. The mean values were calculated from 
duplicates for the pERK and pAKT signaling data, and triplicates for the cell 
proliferation and cell toxicity data. The error bars for the cell proliferation and 
cell cell toxicity data represent standard deviations.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Experimental characterization of the effects of the 
FGFR2 minibinder and the EGFR n-side minibinder on their native 
signaling. a, FGFR2 mini binder (FGFR2_mb) inhibits FGF-induced ERK 
phosphorylation. Western Blot analysis showing reduction in FGF signaling 
(lanes 4-8) with increase in mini binder concentration. Lanes 3-4 show that EGF-
induced ERK phosphorylation is unaffected by FGFR2 mini binder, eliminating 
any cross talk between the two receptors. b, EGFR n-side mini binder (EGFRn_mb)  
inhibits EGF-induced ERK and AKT phosphorylation. Western Blot analysis 
showing reduction in EGF signaling (lanes 4-8) with increase in mini binder 
concentration. Lanes 3-4 show that βFGF-induced ERK phosphorylation is 
unaffected by EGFR mini binder, eliminating any crosstalk between the two 
receptors. c, Titration curve for bFGF mediated pERK signaling. (upper) 
Western Blot showing dose-dependent increase in FGF signaling with βFGF 
concentration. (lower) n = 2 biologically independent experimental repeats 
were performed, and quantification was done using ImageJ analysis software. 
The selected concentration for competition assays was 0.75 nM. d, Titration 

curve for EGF mediated pERK/pAKT signaling. (upper) Western Blot showing 
dose-dependent increase in EGF signaling with EGF concentration. (lower) n = 2 
biologically independent experimental repeats were performed, and 
quantification was done using ImageJ analysis software. The selected 
concentration for competition assays was 1 nM. e, Representative Western Blot 
for inhibition curves – FGFR2 minibinder. Western Blot shows dose-dependent 
reduction in pERK signaling with mini minder concentration. Quantification 
was done using ImageJ analysis software. f, Representative Western Blot for 
inhibition curves – EGFR n-side minibinder. Western Blot shows dose-
dependent reduction in (upper) pERK signaling and (lower) pAKT signaling 
with minibinder concentration. Quantification was done using ImageJ analysis 
software. g, Dose-dependent reduction in pAKT signaling elicited by 1 nM EGF 
in HUVECs with increase in EGFR n-side minibinder concentration. The IC50 was 
calculated using a four-parameter-logistic equation in GraphPad Prism 9 
software.



Extended Data Fig. 10 | De novo design and experimental characterization 
of the influenza hemagglutinin (HA) binder. a, Structure comparison of the 
stem region of group 1 HA and group 2 HA. The stem regions of H1 HA (A/Puerto 
Rico/8/1934) (left, PDB code: 1RU7) and H3 HA (A/Hong Kong/1/1968) (right, 
PDB code: 4WE4) are shown in cartoon and colored in pale cyan and pale green 
respectively, the key residues in the stem region are shown as sticks. Three 
major differences make the H3 HA stem region a more challenging target for 
designing de novo protein binders: the H3 HA stem region contains more polar 
residues and is more hydrophilic. Residues in H1 HA that are hydrophobic 
residues or small polar residues while the corresponding residues are polar or 
larger polar residues are highlighted in dashed circles; Trp21 adopts different 
configurations in H1 HA and H3 HA, and the targeting groove in H3 HA is much 
shallower and less hydrophobic; the H3 HA is glycosylated at Asn38, and the 

carbohydrate side chains cover the hydrophobic groove and protect the HA 
stem region from binding by antibodies or designed binders. The insert shows 
a more extended view of the Asn38 glycosylation site on H3 HA. b, Binding of H3 
binder to the H3 HA (A/Hong Kong/1/1968) N38D mutant (left) and H1 HA (A/
Puerto Rico/8/1934) (right) with BLI. Two-fold serial dilutions were tested for 
each binder and the highest concentrations and the binder affinities are 
labeled. The gray color represents experimental data and orange color 
represents fit curves. c, The FI6v3 antibody competes with the binder for 
binding to the influenza A H1 hemagglutinin (left) and influenza A H3 
hemagglutinin (right). Yeast cells displaying the H3 binder were incubated with 
10 nM H1 or H3 in the presence or absence of 2 μM FI6v3 antibody, and 
hemagglutinin binding to cells (y axis) was monitored with flow cytometry.
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Extended Data Fig. 11 | Structure characterization of the miniprotein 
binders without the target proteins. Superimposition of the computation of 
the design model (silver) and the crystal structure for the FGFR2 binder (a) and 

IL-7Rα (b) binder. The crystal structures of the miniprotein binders were 
determined without the target protein.



Extended Data Fig. 12 | Analysis of the determinants of the success rate of 
de novo binder design. a, Correlation between success rate and root mean 
square deviation (RMSD) with scaffolds. In this experiment, the accuracy of the 
scaffold library was examined with an experiment similar to Chevalier et al1.. 
The binding residues from known-good interfaces were copied onto scaffolds 
that closely resembled the known-good binders. If the scaffold folded properly 
and displayed these binding residues similarly to the original known-good 
interface, the hypothesis was that the scaffold would bind. This experiment 
sought to determine both the required accuracy of displayed sidechains to 
create a successful binder as well as to probe the accuracy of the scaffold 
library. If for instance, the scaffold library was perfectly accurate, this graph 
would indicate that if the Cα RMSD of the displayed sidechains deviates from 
the known-good conformation by 0.5 Å, that there would be a 15% chance of 
binding due to the intrinsic accuracy of sidechains required for binding. The 
scaffold library is likely not perfectly accurate however; as such, the correct 
interpretation would be: If the Cα RMSD of the displayed sidechains according to  
the scaffold PDB model (which may not be perfectly correct) deviates by 0.5 Å  
Cα RMSD, there is a 15% chance of binding. This 15% chance of binding arises in 
part from the likelihood that the scaffold will fold correctly and in part from the 
intrinsic required accuracy of sidechain placements for binding. Notably, the 
RMSD reported in this graph is far lower than the determined crystallographic 
accuracy of the IL-7Rα binder when aligned by the receptor (the two interfacial 
helices are 1.5 Å Cα RMSD when aligned by the IL-7Rα receptor); however, if the 
two interfacial helices are aligned without regard for the receptor (the same 
calculation performed in this figure (i.e. the helices are superimposed on top of 
each other)) the Cα RMSD is 0.43 Å. As such, the best explanation for this data is 
as follows: Although the predicted binding conformation of the complex 
structure was only accurate to 1.5 Å, the predicted monomer structure was 
correct to 0.43 Å. The comparison between scaffold and known-good interface 

was performed at the monomer level, and therefore, these new binders were 
successful because they assumed the correct monomer structure, which 
displayed the sidechains the same as the known-good binder, and therefore 
were able to bind, even though the known-good complex structure was not as 
accurate. This graph continues to show increased signal below 0.43 Å probably 
because the scaffolds at very low RMSD ended up being slightly structurally 
different for the same reason as the known-good binder. (i.e. if we crystallized 
one of the scaffolds that differed only by 0.2 Å, we would likely find that 
scaffold model and the scaffold crystal structure deviate by about 0.43 Å and 
that the scaffold crystal structure and the known-good crystal structure are 
very similar). Method: 11 IL-7Rα SSM-validated interfaces were used as a 
starting point to create 2-helical grafts. All grafts consisted of 2-helices joined 
with a loop and the scaffold library was superimposed onto these two helices 
and the RMSD of the match was assessed. If a good match was found, the 
sidechains making strong interactions with IL-7Rα were copied onto the 
scaffold and the remaining positions near the interface were allowed to 
redesign to avoid clashes. Plotted on the x-axis is the RMSD of the 
superposition of the 2-helices + loop between the motif and the scaffold. The 
y-axis represents the fraction of binders with predicted SC50s <3 μM with the 
number on top representing the denominator. b, Target success rate versus 
hydrophobicity. The y-axis shows what percentage of tested binders against 
the indicated target showed SC50 below 4 μM. The x-axis shows the 
hydrophobicity of the target region in SAP89 units. A greater Δsap_score 
indicates greater hydrophobicity. While this graph is not completely fair as the 
authors improved the method with time, the trend is striking and can be used to 
estimate the difficulty of potential future targets. (The Δsap_score can be 
calculated on the target structure alone by observing the SAP score of all 
residues a potential binder would cover.).
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Extended Data Fig. 13 | Power of computational metrics to predict binders. 
On the fully-relaxed binder dataset (see Methods), the ability of several 
computational metrics to predict which binders would have SC50 below 4 μM 
was assessed. In black and in the bar charts, data for all targets were pooled 
together. The bar charts show the success rate in each of the 10 percentiles for 

the metric while the black solid line shows the ROC plot for the metric. Each of 
the colored lines represents the correlation of this metric on each of the targets 
individually. The AUC of the overall black line is given in the upper left with the 
median of the AUC of the colored lines given immediately below.



Extended Data Table 1 | Number of binders against the 12 targets as estimated from FACS sorting

SC50 (Sorting Concentration50) refers to the target concentration where 50% of expressing yeast cells for a given design are collected. The “SC50 < 4 μM” column was produced by looking for 
binders that saw > 20% collection frequency during a 1 μM w/o avidity sort (see Method). When a 1 μM sort was not performed, 500 nM and 11% were used instead. A similar procedure was used 
to estimate the 400 nM column. Some binders saturate their binding signal at 20% collection frequency (likely expression problems), for this reason, the H3 data were estimated at 800nM to 
avoid needing a threshold higher than 20%. Additionally, binders with very low counts were discarded to guard against doubly-transformed yeast (see Methods). 
*Number of binders with SC50 < 800 nM estimated from 200nM sort. 
a SSM sorts used to estimate the number of binders.
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Extended Data Table 2 | Crystallographic data collection and refinement statistics

*Data collected from a single crystal. *Values in parentheses are for the highest-resolution shell.
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