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Cortical processing of flexible and 
context-dependent sensorimotor sequences

Duo Xu1, Mingyuan Dong1, Yuxi Chen2, Angel M. Delgado2, Natasha C. Hughes2, 
Linghua Zhang1 & Daniel H. O’Connor1 ✉

The brain generates complex sequences of movements that can be flexibly configured 
based on behavioural context or real-time sensory feedback1, but how this occurs is 
not fully understood. Here we developed a ‘sequence licking’ task in which mice 
directed their tongue to a target that moved through a series of locations. Mice could 
rapidly branch the sequence online based on tactile feedback. Closed-loop 
optogenetics and electrophysiology revealed that the tongue and jaw regions of the 
primary somatosensory (S1TJ) and motor (M1TJ) cortices2 encoded and controlled 
tongue kinematics at the level of individual licks. By contrast, the tongue ‘premotor’ 
(anterolateral motor) cortex3–10 encoded latent variables including intended lick 
angle, sequence identity and progress towards the reward that marked successful 
sequence execution. Movement-nonspecific sequence branching signals occurred in 
the anterolateral motor cortex and M1TJ. Our results reveal a set of key cortical areas 
for flexible and context-informed sequence generation.

The world presents itself to us as a series of sensations arising from our 
own actions, which in turn elicit further actions in an intricate senso-
rimotor loop. Orofacial sensorimotor control is essential for explora-
tion, communication and survival, and is exquisitely orchestrated11–14.  
To investigate the cortical control of complex orofacial movements, we 
trained head-fixed mice to use sequences of directed licks to advance 
a motorized port through seven consecutive positions, either from 
left to right or right to left, after an auditory cue (15 kHz for 0.1 s) that 
signalled the start of a trial (Fig. 1a, Supplementary Video 1). Each tran-
sition from one position to the next was driven in a closed loop by a 
single lick touching the port. Thus, if a lick missed the port, it would 
remain at the same position until the tongue eventually made contact. 
The port was no longer moveable after the mouse finished the seven 
positions and a water droplet was delivered as a reward after a short 
delay (0.25 s, or 0.5 s in two mice). The next trial then started with a 
sequence in the opposite direction after a random inter-trial interval 
(mean duration of 6 s).

We measured instantaneous tongue angle (θ), tongue length (L), 
vertical and lateral components of contact force (Fvert and Flat), and 
contact duration during sequences (see Methods; Fig. 1b–d, Extended 
Data Fig. 1a–d). In addition to the continuous θ measurement, we use 
scalar angle value θshoot to denote the angle of the tongue shooting out 
in each lick (see Methods) and use capital Θ to represent unified tongue 
angles after the sign in right-to-left sequences is flipped to pool data 
from both sequence directions.

Mice modulated each lick to reach different target locations 
(Extended Data Fig. 1e, f). In addition to stereotypic licking kinemat-
ics, expert mice showed remarkable sequence execution speed, with 
the seven positions completed in about 1 s (Extended Data Fig. 1h). 
Mice performed the task in darkness with no visual cues to guide the 
licks. Control experiments (Methods) showed that mice did not rely on 

auditory (Extended Data Fig. 1i) or olfactory (Extended Data Fig. 1j) cues, 
but did require tactile feedback from the tongue (Extended Data Fig. 1k). 
Mice reached proficiency in standard sequences (Fig. 1e) after approxi-
mately 1,500 trials of training (Methods; Extended Data Fig. 1l–n).

To determine whether sequence generation was ‘ballistic’ or capable 
of flexible reconfiguration based on sensory feedback, we varied the 
task by introducing unexpected port transitions after mice learned 
standard sequences (Fig. 1f, Supplementary Video 2). On a randomly 
interleaved subset (one-third or one-quarter) of trials, when a mouse 
licked at the middle position, the port would backtrack two steps rather 
than continue to the anticipated position. Mice previously trained only 
with standard sequences (Methods; Extended Data Fig. 2a, b) learned to 
detect the change of port transition, branch out to the new position 
and finish the sequence (Fig. 1g, Extended Data Fig. 2c, d). On average, 
it took one to two missed licks before mice quickly relocated the port 
(Extended Data Fig. 2e). Head-fixed mice can thus learn to perform 
complex and flexible licking sequences guided by sensory feedback.

Optogenetic inhibition screen
To determine which brain regions contribute to the performance of 
our sequence licking task, and at which points during execution, we 
performed systematic optogenetic silencing6. In different sessions, 
bilateral inhibition was centred at each of five regions (Fig. 2a, Extended 
Data Fig. 3a): the anterolateral motor (ALM)15 cortex (also including 
part of the M1TJ cortex (ALM–M1TJ hereafter)), the body region of 
the primary motor (M1B) cortex16,17, the S1TJ cortex2,18, the barrel field 
of the primary somatosensory (S1BF) cortex and the trunk subregion 
of the primary somatosensory (S1Tr, including part of the posterior 
parietal cortex) cortex. For each region, inhibition was triggered with 
equal probability (10%) at sequence initiation, mid-sequence or at the 
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start of water consumption (Extended Data Fig. 3b). Stimulation at 
mid-sequence and at consumption was triggered in closed loop by the 
middle touch and by the first touch after water delivery, respectively.

Somatosensory inputs both provide information about external 
objects and enable proprioceptive sensing of the position of the body19 
for motor control20,21. Missing sensory feedback can make effortless 
manipulations surprisingly difficult despite unchanged motor capa-
bility22. Normally executed sequences were stereotyped across tri-
als. Therefore, in a given time bin during the sequence, across-trial 
variability in lick angle (quantified by the standard deviation of Θshoot, 
or SD(Θshoot)) was relatively low. When the S1TJ cortex was inhibited, 
however, sequences became disorganized and no longer stereotyped 
(see examples in Extended Data Fig. 3g, Supplementary Video 3). As a 
result, SD(Θshoot) increased significantly compared with no inhibition 

(Fig. 2b, left). Despite disorganized targeting, the ability to direct licks 
to the sides (that is, |Θshoot|) was uncompromised (Fig. 2b, middle). 
Inhibition of the S1TJ cortex also did not shorten the length of licks 
(Fig. 2b, right), although slight but statistically significant increases 
were observed. Full quantifications of data summarized in Fig. 2b 
appear in Extended Data Fig. 3j. Together, these data suggest that inhibi-
tion of the S1TJ cortex left the core motor capabilities that are required 
for tongue protrusions and licking intact, but corrupted their proper 
targeting, possibly due to missing sensory feedback.

By contrast, when inhibiting the ALM–M1TJ cortex, mice had reduced 
ability to direct licks to the sides (Fig. 2b, middle; see example in 
Extended Data Fig. 3h), and showed decreased length of lick (Fig. 2b, 
right). Inhibition of the M1B cortex caused only minor increases in lick 
angle variability with no decrease in angle deviation or lick length. 
Inhibition of the S1BF or S1Tr cortex changed no aspects of lick control.

The ALM cortex has been shown to be important in motor prepara-
tion of directed single licks to obtain water reward10,15,23. Here we found 
that inhibiting the ALM–M1TJ cortex at sequence initiation strongly 
suppressed production of licking sequences (Fig. 2c, left, Supplemen-
tary Video 4). In four of seven mice, licks were largely absent (Extended 
Data Fig. 3k, top panel under ALM–M1TJ). Inhibition of the S1TJ cortex 
caused more moderate suppression, with no obvious change from 
inhibiting other regions. When applied at mid-sequence, inhibition of 
the ALM–M1TJ cortex also suppressed the production of licks, although 
less strongly. Inhibition of other regions at mid-sequence showed little 
or no effect. Full quantifications appear in Extended Data Fig. 3k (top 
and middle rows).

When a sensorimotor sequence reaches its normal stopping point, 
one might intuitively expect movement to cease in a passive rather 
than active manner. To our surprise, when inhibiting the S1TJ or M1B 
cortex at water consumption, mice were impaired at stopping ongoing 
sequences (Fig. 2c, right, Extended Data Fig. 3k, bottom row; see exam-
ple in Supplementary Video 5). This prolonged licking was not due to 
additional attempts to reach the port for water, as mice continuously 
made successful contacts, nor did we inhibit the water-responsive 
gustatory cortex24,25.

To test the possibility that inhibition of the S1TJ or M1B cortex caused 
persistent lick bouts due simply to spread of inhibition to other regions, 
we repeated the above experiments with half the illumination power 
(2 mW) (Extended Data Fig. 3l, m). The effects of ALM–M1TJ inhibi-
tion on sequence initiation, tongue length and angle control, and of 
S1TJ inhibition on angle control, remained largely consistent with, 
although weaker than, our previous results using higher power (4 mW). 
At consumption, inhibition of the S1TJ or M1B cortex resulted in simi-
larly strong deficits in terminating ongoing sequences (Extended Data 
Fig. 3m, bottom row). Therefore, the observed deficit in sequence 
termination was not due to spread of inhibition. Rather, our results 
indicate that sequence termination is an active process26 mediated 
collectively by the S1TJ and M1B cortices.

Sequence tiling of single-unit responses
We used silicon probes to record from multiple brain regions from both 
hemispheres (Fig. 2d) during the task, obtaining 1,537 single units and 
303 multiple units (Methods; Extended Data Fig. 4a–e) from 57 record-
ing sessions. Perievent time histograms (PETHs) of single-unit spiking 
(Fig. 2e–h; example neurons are shown in Extended Data Fig. 4f–h) 
exhibited a wide variety of patterns before, during and after sequence 
execution. Spiking that gave rise to the PETHs was consistent across 
trials (Methods; Extended Data Fig. 4i). To present these PETHs in a way 
that reflects the main themes observed in the population activity, we 
pooled neurons from all brain regions and clustered their PETHs using 
non-negative matrix factorization (Methods).

We observed that single-neuron responses tile the sequence progres-
sion (Fig. 2e–h, Extended Data Fig. 4k), with more ALM neurons tuned to 
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Fig. 1 | Sequence licking task. a, Schematic of the (standard) sequence licking 
task. ITI, inter-trial interval. b, Schematic of the contact force measurement 
and high-speed (400 Hz) videography in relation to a head-fixed mouse.  
c, Schematics of the bottom view of a mouse licking at the water port (top). 
Zoomed-in views (5 × 5 mm) of example high-speed video frames are also 
shown (bottom). Vectors overlaid in red are outputs from the regression deep 
neural network and point from the base to the tip of the tongue. Tongue length 
(L) is defined by the vector length. Tongue angle (θ) is the rotation of the vector 
from the midline. The red shading depicts tongue shape. d, Time series of task 
events and behavioural variables during an example trial. Variables recorded 
from the force sensors include the vertical lick force (Fvert; positive acts to lift 
the port up) and the lateral lick force (Flat; positive acts to push the port to the 
right). Kinematic variables including L, its rate of change (L′) and θ were derived 
from high-speed video. Periods of tongue–port contact are shaded in grey and 
are numbered sequentially. R3, R2, R1, Mid, L1, L2 and L3 indicate the seven port 
positions from the rightmost to the leftmost. Missed licks are indicated at 
bottom by up-arrows. e, Transition diagram depicting the two standard 
sequences. Darker arrows from right to left correspond to the example trial in 
d. f, Transition diagrams depicting sequences with backtracking (green 
arrows). Darker arrows in each diagram correspond to the  row-matched 
example trials in g. g, Example trials of a left-to-right sequence (top) and a 
right-to-left sequence (bottom) where the port backtracked (green arrows) 
when a mouse touched Mid. Licks including both touches and misses are 
indexed with respect to the lick at Mid. Missed licks are indicated at top by 
down-arrows.
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sequence initiation (Extended Data Fig. 4l). The S1TJ and M1TJ cortices con-
tained more neurons (for example, cluster 7; Extended Data Fig. 4k, m) that 
showed greater modulation by individual licks (Extended Data Fig. 4n, o).  
Patterns of activity arising from these single-unit responses might encode 
behavioural variables that are important for sequence control.

Hierarchical population coding
Our sequence licking task requires the brain to encode instantaneous 
tongue length (L) and angle (θ), presumably both for motor output 
and sensory feedback. Encoding of velocity (L′) could also be used 
to indirectly control tongue position. Sequence identity (I) and rela-
tive sequence time (τ) can be used to represent the sequence-level 
organization of individual licks beyond instantaneous control.  
The variable τ can also serve as a proxy for sequence progress or  
‘distance to goal’. The five behavioural variables, L, L′, θ, I and τ, were 
measured (or derived) at 2.5-ms resolution (Fig. 3a). Conveniently, 
any pair of these variables was uncorrelated (Extended Data Fig. 5b). 
Therefore, being able to encode one is of little or no help with encod-
ing any other.

For each recording session, we performed separate linear regressions 
(Methods) to obtain unit weights (and a constant) for each of the five 
behavioural variables, such that a weighted sum of instantaneous spike 
rates from simultaneously recorded units (32 ± 13 units; mean ± s.d.) 
plus the constant best predicted the value of a behavioural variable. 
We used cross-validated R2 values to quantify how well the recorded 
population of neurons encoded each behavioural variable27.

The five behavioural variables were decoded from population activ-
ity on a single-trial basis (see examples in Extended Data Fig. 5c, d). 
Overall, the S1TJ and M1TJ cortices had stronger coding of L and L′ than 
the ALM cortex and the control region S1BF (Fig. 3b, c). S1TJ, M1TJ and 
ALM cortices, but not the S1BF cortex, all showed comparable encod-
ing of θ (Fig. 3b, c). However, the traces of decoded θ in the S1TJ and 
M1TJ cortices contained rhythmic fluctuations that were absent in the 
ALM cortex, despite similar overall levels of encoding of θ (R2 values). 
These fluctuations indicate that the M1TJ and S1TJ cortices encoded θ 
in a more instantaneous manner, whereas the ALM cortex encoded θ 
in a continuously modulated manner that may provide a control signal 
for the intended lick angle or represent the position of the target port.

Higher-level cortical regions are in part defined by the presence of 
more abstract (or latent) representations of sensory, motor and cognitive 
variables28 . Compared with L, L′ and θ, which describe the kinematics of 
individual licks, I and τ describe more abstract motor variables. In the 
ALM cortex, we found the strongest encoding of both I and τ (Fig. 3b, c). 
Encoding of I and τ became progressively weaker in the M1TJ, S1TJ, and 
S1BF cortices, respectively. Overall, these results reveal a neural coding 
scheme with increasing levels of abstraction across the S1TJ, M1TJ and 
ALM cortices during the execution of flexible sensorimotor sequences.

Good decoding may come from a small fraction of informative units 
or from dominant activity patterns across a population. Distinguish-
ing these requires comparing the similarity between activity patterns 
captured by the coding axes (defined by the vector direction of regres-
sion weights), as shown above, and the dominant patterns in popula-
tion activity identified in an unsupervised manner. In each recording 
session, we obtained neural trajectories in the coding subspaces (the 
subspaces spanned by coding axes) via linear decoding and trajectories 
in principal component subspaces (the subspaces spanned by the first 
few principal components) via principal component analysis. Trajec-
tories in principal component subspaces depict dominant patterns 
in population activity, but the principal components per se need not 
have any behavioural relevance. To see whether neural trajectories 
in coding and principal component subspaces were the same except 
for a change (rotation and/or scaling) in the reference frame, we used 
canonical correlation analysis (Methods) to find the linear transforma-
tion of the two trajectories such that they were maximally correlated29.
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Fig. 2 | Optogenetic inhibition and single-unit activity survey across 
cortical regions during sequence execution. a, Schematic showing the 
dorsal view of a mouse brain. Overlaid spots in blue shading depict the five 
bilateral pairs of sites for illumination of the target cortical regions. Bregma 
is marked by a 1 × 1 mm crosshair. PPC, posterior parietal cortex. b, Summary 
of changes in licking kinematics resulting from bilateral photoinhibition of 
each area, quantified across all three inhibition periods (Methods). Plots 
summarize the quantifications shown in Extended Data Fig. 3j. The dot colour 
depicts the amount of increase (red) or decrease (blue) in the indicated 
behavioural variable for trials with photoinhibition compared with those 
without. The dot size represents the level of statistical significance. Changes 
with P > 0.05 are not plotted. Two-tailed hierarchical bootstrap test with 
Bonferroni correction for 15 comparisons. n = 7 mice. c, Summary of changes 
in lick rate resulting from bilateral photoinhibition of each area during either 
sequence initiation (left) or sequence termination (right). Plots summarize 
the quantifications shown in Extended Data Fig. 3k (top and bottom rows). 
Conventions and statistical tests are as in b, but with Bonferroni correction 
for 30 comparisons. d, Silicon probe recording during the sequence licking 
task (left). Histologically verified locations of the silicon probe recordings 
are also shown (right). S1L, limb region of primary somatosensory cortex.  
e, Normalized PETHs of all S1TJ neurons (n = 141 neurons) plotted as 
heatmaps, aligned to three periods in each sequence direction. Neurons are 
grouped by functional clusters (see main text) and labelled by colour bands.  
f, Same as e, but for all M1TJ neurons (n = 233 neurons). g, Same as e, but for all 
ALM neurons (n = 329 neurons). h, Same as e, but for all S1BF neurons (n = 55 
neurons). 3D brains in a–d were produced from the Allen Mouse Common 
Coordinate Framework in the Brain Explorer 2 software, Allen Institute for 
Brain Science.
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After transformation, trajectories of the ALM population in the 
subspace of the top three principal components aligned (Fig. 3d) and 
correlated (Fig. 3e; group 2 in the ALM cortex) well with the trajectories 
in the subspace encoding θ, I and τ. This indicates that the dominant 
neural activity patterns in the ALM population encoded θ, I and τ.  
As the ALM cortex minimally encoded L and L′, including these in the 
coding subspaces decreased the correlation with principal component 
trajectories (Fig. 3e; groups 1 and 3 in the ALM cortex). The decoded 
trajectories and principal component trajectories in the M1TJ and S1TJ 
cortices also showed a strong correlation but only when the coding 
subspaces included L and L′.

Across regions, the sum of variance explained by the five coding axes 
reached about half that of the top five principal components (Methods; 
Extended Data Fig. 5e). The five coding axes were largely orthogonal 
with each other (Extended Data Fig. 5f), indicating that they not only 
captured dominant neural dynamics but also did so efficiently with 
little redundancy.

Sequence branching signals in ALM–M1TJ
In backtracking sequences, mice licked back to a previous angle to 
relocate the port and then progressed through the rest of the sequence. 
The opposing deflections in the decoded θ from backtracking trials 
matched this behaviour (Fig. 3a, b, dashed curves for θ). This is not 
surprising as the M1TJ and ALM cortices are expected to encode the 

changed motor program, and the S1TJ cortex to signal the resulting 
proprioceptive or reafferent feedback. However, the motor cortical 
mechanisms that allow sensory feedback to integrate with unfolding 
motor programs30–35 could involve a movement-nonspecific signal to 
indicate sequence branching.

We used a linear support-vector machine to classify trials into either 
backtracking or standard sequences based on population activity at 
each time bin (Methods). Within each class, about equal numbers of 
left-to-right and right-to-left sequences were pooled so classifiers could 
not rely on the coding of specific licking movements. ALM and M1TJ 
activity started to predict the presence or absence of backtracking 
during the initial missed lick (Fig. 3f). We randomly shuffled class labels 
to determine chance-level classification accuracy. S1TJ populations 
showed only a statistically insignificant trend towards being able to 
distinguish backtracking from standard sequences (Fig. 3f), at much 
later time points (Extended Data Fig. 5g). As expected, S1BF popula-
tions showed no prediction.

Context-dependent coding of subsequences
Complex sequences can be composed of different combinations of 
subsequences. The same subsequence can be used in multiple complex 
sequences, and it is crucial for the brain to keep track of the context in 
which a subsequence is executed36–39. To search for such sequence con-
text signals, we trained mice on two new sequences where the port steps 
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correlation coefficients (r) for each neural population (grey traces) across 
three conditions. The average mean r values for each condition are shown in 
black. *P < 0.001, not significant P > 0.05 otherwise, paired two-tailed 
permutation test. f, Classification of standard versus backtracking sequences 
from population activity. Accuracy is the fraction of trials correctly classified 
(mean ± 95% hierarchical bootstrap confidence interval; n = 6 sessions (ALM)). 
Coloured traces and error shadings are from original data; black traces and 
shadings are from data with randomly shuffled trial labels. The average time 
series of tongue length are overlaid (grey traces) to show the concurrent 
behaviour. The dashed grey traces indicate licks that unexpectedly missed the 
port as a result of the port backtracking.
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in a ‘zigzag’ manner from one side to the other, then steps back, and 
then again steps to the other side (Fig. 4a, b, Supplementary Video 6). 
The two sequences have symmetrical movements. By fixing one and 
shifting the other forwards or backwards in time, it is possible to find 
subsequences that have the same licking movements but different 
sequence contexts (Fig. 4c). There are in total four ways to shift and 
match subsequences, and we focused on the three licks in the middle 
(Fig. 4d) for analysis.

Three simultaneously recorded ALM neurons illustrate three 
types of response (Fig. 4e). The first neuron preferentially fired dur-
ing blue-coloured sequences, and the second neuron fired during 
red-coloured sequences, whereas the third neuron responded faithfully 
to the physical movements with no clear sequence preference (Fig. 4e, 
neurons 1–3, respectively). Using population activity as a predictor, lin-
ear support-vector machine classifiers (Methods) were able to predict 
the sequence identity, or context, in the example session (Fig. 4f) and 
across sessions and mice (Fig. 4g). Chance-level classification accuracy 
was determined by shuffling the sequence labels.

Our results provide strong evidence that ALM neurons in mice encode 
complex sequences with combined information about both physical 
movements and the latent sequence context.

Reward modulation in ALM
In the decoding analysis for standard sequences, the τ coding axis was 
identified by fitting models to link neural activity and relative sequence 
time. We performed the same decoding analysis with zigzag sequences 
and found a similar ramping pattern of τ (Extended Data Fig. 5h).  
The monotonic coding of τ therefore does not require a constant 
sequence direction. However, if τ faithfully represents time, the 
downward deflection of traces from backtracking sequences (Fig. 3b) 
should not appear, as time advances regardless of what the animals do.  
This suggests representation of a distance to goal40, which might cor-
respond to arrival at the last port position, water delivery, finishing 
water consumption, and so on.

The ALM cortex contained single neurons (Extended Data Fig. 6a) 
that fired actively during sequence execution but abruptly decreased 
firing upon tongue contact with water, even though mice continued 
with approximately five consummatory licks (Extended Data Fig. 6b) 
of similar or more strongly modulated kinematics and force (Extended 
Data Fig. 6c). The τ decoded from ALM populations showed similar 
time courses (Extended Data Fig. 6d, top left).

ALM activity was thus modulated by reward41 so as to signal reward 
expectation in a manner that smoothly increased as mice approached 
water delivery, regardless of sequence direction or lick angle, that was 
suppressed by the delay of progress upon backtracking, and that ter-
minated at water delivery despite continued licking. Coding of I and θ 
followed more complex time courses than τ (Extended Data Fig. 6d, e).

ALM encodes upcoming sequences
In our task, sequences alternated direction across trials (Extended Data 
Fig. 7a). Before each trial, there was no cue to indicate the starting side. 
Expert mice nevertheless usually initiated sequences from the correct 
side without exploring the other (Extended Data Fig. 7b), suggesting 
internal maintenance of information about target position during 
inter-trial intervals. Brain regions maintaining such information may 
contribute to organizing higher-level sequences across trials.

In the ALM cortex, we found simultaneously recorded units that fired 
persistently to specific target position values during the inter-trial 
interval (Extended Data Fig. 7c). A linear model fitted using data from 
the second before cue onset showed smooth population decoding of 
target position across the span of many trials (Extended Data Fig. 7d). 
On average, ALM populations showed stronger encoding of target 
position (Extended Data Fig. 7e, f) than other regions. When using 
this model to decode during sequence execution, the resulting traces 
from two sequence directions crossed at mid-sequence (Extended Data 
Fig. 7g), showing similar structure as θ. None of the regions, including 
the ALM cortex, encoded time or a distance to trial start (Extended Data 
Fig. 7h), perhaps because our inter-trial interval contained an exponen-
tial portion (Methods) that made the time to trial start unpredictable7.

Together, our results from behaviour analysis, population electro-
physiology and optogenetics define key sensory and motor cortices 
in mice that govern hierarchical execution of flexible, feedback-driven 
sensorimotor sequences.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods

Mice
All procedures were in accordance with protocols approved by the 
Johns Hopkins University Animal Care and Use Committee (proto-
cols: MO18M187 and MO21M195). Mice were housed in a room on 
a reverse light–dark cycle, with each phase lasting 12 h, and main-
tained at 20–25 °C and 30–70% humidity. Before surgery, mice were 
housed in groups of up to five, but afterwards were housed individu-
ally. Fifteen mice (12 male and 3 female) were obtained by crossing 
VGAT-IRES-Cre ( Jackson Labs: 028862; B6J.129S6(FVB)-Slc32a1tm2(cre)

Lowl/MwarJ)42 with Ai32 ( Jackson Labs: 012569; B6;129S-Gt(ROSA)26
Sortm32(CAG-COP4*H134R/EYFP)Hze/J)43 lines. Two (one male and one female) 
were heterozygous VGAT-ChR2-EYFP ( Jackson Labs: 014548; 
B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)8Gfng/J)44 mice. Twelve (nine 
male and three female) were wild-type mice, including nine C57BL/6J 
( Jackson Labs: 000664) mice, one wild-type littermate for each of 
VGAT-ChR2-EYFP, TH-Cre ( Jackson Labs: 008601; B6.Cg-7630403G2
3RikTg(Th-cre)1Tmd/J)45, and Etv1-Cre−/− ( Jackson Labs: 013048)46. Two were 
male TH-Cre mice. Two (one male and one female) were Advillin-Cre 
( Jackson Labs: 032536; B6.129P2-Aviltm2(cre)Fawa/J)47 mice. Mice ranged 
in age from approximately 2 to 9 months at the start of training. A set 
of behavioural testing sessions typically lasted approximately 1 month 
(Supplementary Table 1).

Surgery
Before behavioural testing, mice underwent implantation of a metal 
headpost. For surgical procedures, mice were anaesthetized with iso-
flurane (1–2%) and kept on a heating blanket (Harvard Apparatus). 
Lidocaine or bupivacaine was used as a local analgesic and injected 
under the scalp at the start of surgery. Ketoprofen was injected intra-
peritoneally to reduce inflammation. All skin and periosteum above 
the dorsal surface of the skull were removed. The temporal muscle 
was detached from the lateral edges of the skull on either side and the 
bone ridge at the temporal–parietal junction was thinned using a dental 
drill to create a wider accessible region. Metabond (C & B Metabond) 
was used to cover the entirety of the skull surface in a thin layer, seal 
the skin at the edges and cement the headpost onto the skull over the 
lambda suture.

To make the skull transparent, a layer of cyanoacrylate adhesive 
was then dropped over the entirety of the Metabond-coated skull and 
left to dry. A silicone elastomer (Kwik-Cast) was then applied over the 
surface to prevent deterioration of skull transparency before photo-
stimulation. Buprenorphine was used as a post-operative analgesic 
and the mice were allowed to recover over 5–7 days following surgery 
with free access to water.

For silicon probe recording, a small craniotomy of about 600 μm in 
diameter was made for implantation of a ground screw. The skull was 
thinned using a dental bur until the remaining bone could be carefully 
removed with a tungsten needle and forceps. Following this, one or 
more craniotomies of about 1 mm in diameter were made over the sites 
of interest for silicon probe recording. Craniotomies were protected 
with a layer of silicone elastomer (Kwik-Cast) on top. Additional crani-
otomies were usually made in new locations after finishing recordings 
in previous ones.

Task control
Task control was implemented with an Arduino-based system (Teensy 
3.2 and Teensyduino), including the generation of audio (Teensy Audio 
Shield). Custom MATLAB-based software with a graphical user interface 
was developed to log task events and change task parameters. Touches 
between the tongue and the port were registered by a conductive lick 
detector (Svoboda lab, HHMI Janelia Research Campus), in which the 
mouse acted as a mechanical switch that opened (no touch) or closed 
(with touch) the circuit. Any mechanical switch has electrical bouncing 

issues when a contact is weak and unstable. To handle bouncing dur-
ing loose touches, we merged any contact signals with intervals less 
than 60 ms.

The auditory cue that signalled the beginning of each trial was a 0.1 s 
long, 65 dB SPL and 15 kHz pure tone. Touches that occurred during 
the auditory cue were not used to trigger port movement as they were 
probably due to impulsive licking rather than a reaction to the cue.

The lick port was motorized in the horizontal plane by two perpen-
dicular linear stages (LSM050B-T4 and LSM025B-T4, Zaber Technolo-
gies), one for anterior and posterior movement and the other for left 
and right. A manual linear stage (MT1/M, Thorlabs) installed in the 
vertical direction controlled the height of the lick port. The motors were 
driven by a controller (X-MCB2, Zaber Technologies), which was in turn 
commanded by the Teensy board via serial interface communication. 
Although the linear stages were set up in cartesian coordinates, we 
specified the movement of the port using a polar coordinate system. 
For a chosen origin of the polar coordinates, the seven port positions 
were arranged in an arc symmetrical to the midline with equal spacing 
(in arc length) between adjacent positions (Fig. 1a).

A movement of the lick port was triggered by the onset of a touch 
during sequence performance. A second port movement could not 
be triggered within a refractory period of 80 ms, which prevented 
mice from driving a sequence by constantly holding the tongue on 
the port (although we never observed such behaviour). When a move-
ment was triggered, the port first accelerated (477 or 715 mm s−2) until 
the maximal speed (39.3 mm s−1) was reached, then maintained the 
maximal velocity, and decelerated until it stopped at the end position. 
The acceleration and deceleration phases were always symmetrical, 
such that the maximal velocity might not be reached if the distance 
of travel was short.

The movement was typically in a straight line. For four of the nine 
mice, when the two positions were not adjacent (for example, at 
backtracking and the following transition), the port would move in 
an outward half circle whose diameter was the linear distance separat-
ing the two positions. This arc motion minimized the chance of mice 
occasionally catching the port prematurely before the port stopped. 
Nevertheless, catching the port prematurely did not trigger the next 
transition in a sequence because, in this case, the port movement could 
only be triggered again after 200 ms from the start of backtracking (and 
300 ms after the following touch). As a result, mice always needed to 
touch the port at the fully backtracked position to continue progress 
in a sequence.

The control of port movement was similar for zigzag sequences 
except that five port positions were used instead of seven, the refrac-
tory period before the next trigger was 100 ms, the acceleration was 
2,000 mm s−2, the maximal speed was 75 mm s−1 and every port move-
ment travelled along an outward half circle.

Mice performed the task in darkness with no visual cues about the 
position of the port. To prevent mice from using sounds emitted by the 
motor to guide their behaviour, we played two types of noise through-
out a session. The first was a constant white noise (cut-off at 40 kHz; 
80 dB SPL) and the second was a random playback (with 150–300-ms 
interval) of previously recorded motor sounds during 12 different 
transitions.

Two-axis optical force sensors
A stainless steel lick tube was fixed on one end to form a cantilever. Mice 
licked the other free end, producing a small displacement (approxi-
mately less than 0.1 mm at the tip for 5 mN) of the tube. Two photointer-
rupters (GP1S094HCZ0F, Sharp) placed along the tube (Extended Data 
Fig. 1c, d) were used to convert the vertical and horizontal components 
of displacement into voltage signals. Specifically, the cantilever nor-
mally blocked about half of the light passing through, outputting a 
voltage value in the middle of the measurement range. Pushing the tip 
down caused the cantilever to block more light at the vertical sensor and 



thereby decreased the output voltage; conversely, less force applied at 
the tip resulted in increased voltage. For the horizontal sensor, pushing 
the tube to the left or right decreased or increased the voltage output, 
respectively. Output was amplified by an op-amp then recorded via an 
RHD2000 Recording System (Intan Technologies).

By design (the circuit diagram and the displacement–response curve 
are available in the GP1S094HCZ0F datasheet), the force applied at the 
tip of the lick tube and the output voltage of the sensor follow a near 
linear relationship within a range of forces. To find this range, we meas-
ured the voltages (relative to baseline) with different weights added to 
the tip. Excellent linearity (R2 = 0.9999) was achieved up to more than 
20 mN (Extended Data Fig. 1d). By contrast, the maximal force of a lick 
was on average about 4 mN (Extended Data Fig. 1f).

The motorization of the lick tube introduced mechanical noise to 
the force signals. The spectral components of these noises were mainly 
at 300 Hz and its higher harmonics, presumably due to the resonance 
frequency of the tube, whereas the force signal induced by licking 
occupied much lower frequencies. Therefore, we low-pass (at 100 Hz) 
filtered the original signal (sampled at 30 kHz) to remove the motor 
noise. Additional interference came from the 850-nm illumination light 
used for high-speed video, which leaked into the optical sensors (mainly 
in early experiments with two mice) and caused slow fluctuations in the 
baseline over seconds. To mitigate this slow drift, we used a baseline 
estimated separately for each individual lick as follows. We first masked 
out the parts of the signal when the tongue was touching the port, then 
linearly interpolated to fill in these masked out lick portions using the 
neighbouring (that is, no touch) values. These interpolated time series 
served as the baseline for each lick. As the lick force was only a function 
of voltage change compared to baseline, the above procedure would at 
most negligibly affect the force estimation. Owing to the dependency 
of this procedure on complete touch detection, we excluded eight 
sessions from behavioural quantifications in Fig. 1 and Extended Data 
Figs. 1, 2 in which only touch onsets were correctly registered.

High-speed videography and tongue tracking
High-speed video (400 Hz, 0.6-ms exposure time, 32 μm per pixel,  
800 × 320 pixels) providing side and bottom views of the mouth region 
was acquired using a ×0.25 telecentric lens (55–349, Edmund Optics), 
a PhotonFocus DR1-D1312-200-G2-8 camera and Streampix 7 software 
(Norpix). Illumination was via an 850-nm LED (LED850-66-60, Roithner 
Laser) passed through a condenser lens (Thorlabs).

Three deep convolutional neural networks were constructed (MAT-
LAB 2017b, Neural Network Toolbox v11.0) to extract tongue kinematics 
and shape from these videos. The first network classified each frame 
as ‘tongue-out’ if a tongue was present, or ‘tongue-in’ otherwise.  
This network was based on ResNet-50 (ref. 48) (pretrained for ImageNet), 
but the final layers were redefined to classify the two categories using 
a softmax layer and a classification layer that computes cross-entropy 
loss. A total of 37,658 frames were manually labelled in which 1,611 
frames were set aside as testing data. Image augmentation was per-
formed to expand the training dataset. A standard training scheme was 
used with a mini-batch size of 32 and a learning rate of 1 × 10−4 to 1 × 10−5. 
The fully trained network achieved a high accuracy in classifying the 
validation data (Extended Data Fig. 1a).

The second network assigned a vector from the base to the tip of the 
tongue in each frame classified as tongue-out. L and θ were derived from 
this vector (Fig. 1c). A total of 12,095 frames were manually labelled in 
which 643 frames were used only for testing. The architecture and train-
ing parameters of this network are similar to those of the classification 
network except that the final layers were redefined to output the x and 
y image coordinates of the base, tip and two bottom corners (not used 
in analysis) of the tongue with mean absolute error loss. The regression 
error of the fully trained network in testing data was 3.1 ± 5.4° for θ and 
0.00 ± 0.13 mm for L (mean ± s.d.). This performance was comparable 
to human level (Extended Data Fig. 1b). Specifically, a subset of frames 

(separate from testing data) was labelled by each of the five human 
labellers. The variability in human judgement was quantified by the 
differences between L and θ from individual humans and the human 
mean for each frame. We also computed the differences between L 
and θ from the network and the human mean for each frame. The two 
distributions showed a comparable variability, although the network 
showed small biases (L: humans 0 ± 0.11 mm, network −0.05 ± 0.10 mm; 
θ: humans 0 ± 5.7°, network 3.3 ± 5.5°; mean ± s.d.).

In a subset of trials and in frames classified as tongue-out, the third 
network, a VGG13-based SegNet49, extracted the shape of the tongue by 
semantic image segmentation, that is, classifying each pixel as belong-
ing to a tongue or not. Human labellers used a 10-vertex polygon to 
encompass the area of the tongue in a total of 3,856 frames. The training 
parameters were similar to the other networks except for a mini-batch 
size of eight and a learning rate of 1 × 10−3.

Behavioural training
Behavioural sessions occurred once per day during the dark phase 
and lasted for approximately 1 h or until the mouse stopped perform-
ing, whichever came earlier. Mice would receive all of their water from 
these sessions, unless it was necessary to supply additional water to 
maintain a stable body weight. The amount of water consumed during 
behaviour was measured by subtracting the pre-session volume of 
water in the dispenser from the post-session volume. On days in which 
their behaviour was not tested, they received 1 ml of water. Mice were 
water restricted (1 ml daily) for at least 7 days before beginning train-
ing. Whiskers and hairs around the mouth were trimmed frequently 
to avoid contact with the port.

The precise position of the implanted headpost varied across mice, 
so each mouse required an initial setup of the positions of the lick port. 
The lick port moved in an arc with respect to a chosen origin (see ‘Task 
control’). The origin was initially set at the midline of the animal and 
2 mm posterior from the posterior face of the upper incisors. If there 
was any yaw of the head, the whole arc was rotationally shifted accord-
ingly. The height of the lick port was manually adjusted until it was 
approximately 1 mm below the interface between the upper and lower 
lips when the mouth was closed.

In initial training sessions, the distance between the leftmost (L3) 
and the rightmost (R3) lick port position was reduced, the radius of the 
arc was shortened and the water reward was larger. As mice learned the 
task, both the L3 to R3 distance and the radius of the arc were gradually 
increased over a few days of training (Extended Data Fig. 1m). The dif-
ficulty of the task was increased whenever the mouse showed improve-
ments in performing the task at the current port distance, radius and 
reward size. The difficulty remained constant in two conditions: either 
when the maximum set of parameters had been met (a radius of 5 mm 
for male mice and 4.5 mm for female mice) or if the mouse appeared 
demotivated (typically indicated by a notable decrease in the num-
ber of trials and licks). During the initial training sessions, water was 
occasionally supplemented at other points during the sequence to 
encourage licking behaviour. The amount of water reward per trial was 
eventually lowered to approximately 3 μl. For 3 of the 33 mice included 
in this study, we first trained them to lick in response to the auditory 
cue with the lick port staying at fixed positions. After mice responded 
consistently to the go cue, we shifted to the complete task with gradu-
ally increased difficulty. Although the three mice performed similarly 
to others when well trained, this procedure proved to be less efficient 
than beginning with the complete task.

Once a mouse had become adept at standard sequences, they were 
trained on the backtracking sequences. The first nine fully trained 
mice were used in backtracking related analyses; later, mice used for 
other purposes were not always fully trained in backtracking. For five 
of the nine mice, we first trained them with backtracking trials in only 
one direction and added the other direction once they mastered the 
first. For three of the nine mice, backtracking trials and standard trials 
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were organized into separate blocks of 30 trials each. In developing this 
task, we tested subtle variations in the detailed organization of trial 
types, such as varying the percentage of backtracking trials in a block, 
or different forms of jumps in the port position. Details appear in Sup-
plementary Table 1. Two of these three mice continued to perform the 
block-based backtracking trials during recording sessions. All nine mice 
eventually learned backtracking sequences but showed mixed learning 
curves (Extended Data Fig. 2a, b). About three mice were more biased 
towards previously learned standard sequences and tended to miss the 
port many times before relocating the lick port through exploration. 
The other six mice more readily made changes.

The shaping processes for zigzag sequences in a total of four mice 
all differed. Empirically, however, training on standard sequences first 
until proficiency and then on zigzag sequences could produce desir-
able performance.

Hearing loss
Hearing loss experiments were performed to exclude the possibility 
that mice used sounds produced by the motors to localize the motion 
of the lick port during sequence performance. To induce temporary 
hearing loss (approximately 27.5 dB attenuation)50, we inserted two ear-
plugs made of malleable putty (BlueStik Adhesive Putty, DAP Products 
Inc.) into the openings of the ear canal bilaterally under microscopic 
guidance. Earplugs were shaped like balls and then formed appropri-
ately to cover the unique curvature of each ear canal. When necessary, 
the positioning of the earplugs was readjusted, or larger balls were 
inserted. Five well-trained mice performed one ‘earplug’ session and 
one control session. Mice did not have experience with earplugs before 
the earplug session. In earplug sessions, mice were first anaesthetized 
under isoflurane to implant earplugs (taking 11–12.5 min), then were put 
back in the homecage to recover from anaesthesia (taking 10–11.5 min),  
and performed the task after recovery. In control sessions, mice were 
anaesthetized for the same duration and allowed to recover for the 
same duration before performing the task.

Odour masking
Odour masking experiments were performed to exclude the possibility 
that mice used potential odours emanating from the lick port to localize 
its position during sequence performance. A fresh air outlet (1.59 mm in 
diameter) was placed in front of the mouse and aimed at the nose from 
approximately 2 cm away with an approximately 45° downward angle.  
We checked the coverage of air flow (2 LPM) by testing whether a water 
droplet (approximately 3 μl) would vigorously wobble in the flow at various 
locations, and confirmed that both the nose and all seven port positions 
were covered. Before the test session, head-fixed mice were habituated 
to occasional air flows when they were not performing sequences. In the 
test session, the air flow was turned off first and turned on continuously 
after the one-hundredth trial (in four mice) until the end of the session, or 
turned on first and turned off after the one-hundredth trial (in two mice). 
The air-off period served as the control condition for the air-on period.

Tongue numbing
Tongue numbing experiments were performed to directly test whether 
proper sequence execution depended on tactile feedback from the 
tongue. The sodium channel blocker lidocaine is used clinically to block 
signals from somatosensory afferents in the periphery. Before a behav-
ioural session, mice were anaesthetized under isoflurane, and a cotton 
ball soaked with 2% lidocaine (for numbing) or saline (as control) was 
inserted into the oral cavity, covering the tongue. After 10 min, the cot-
ton ball was removed, the anaesthesia was terminated and the mice woke 
up in a behavioural setup to perform standard sequences. As lidocaine 
has a relatively short half-life, we limited the analysis to trials performed 
within approximately 30 min after removing the cotton ball. One of the 
six mice was excluded from analysis as it was unable to perform the task 
within approximately 30 min after its tongue was numbed.

Electrophysiology
Two types of silicon probe were used to record extracellular potentials. 
One (H3, Cambridge Neurotech) had a single shank with 64 electrodes 
evenly spaced at 20-μm intervals. The other (H2, Cambridge Neurotech) 
had two shanks separated by 250 μm, where each shank had 32 elec-
trodes evenly spaced with 25-μm intervals. Before each insertion, the 
tips of the silicon probe were dipped in either DiI (saturated), CM-DiI 
(1 mg ml−1) or DiD (5–10 mg ml−1) ethanol solution and allowed to dry. 
Probe insertions were either vertical or at 40° from the vertical line 
depending on the anatomy of the recorded region and surgical acces-
sibility. Once fully inserted, the brain was covered with a layer of 1.5% 
agarose and ACSF, and was left to settle for approximately 10 min before 
recording. On the basis of the depth of the probe tip, the angle of pen-
etration and the position of these sites, the location of units could be 
determined. Units recorded outside the target structure were excluded 
from analysis.

Extracellular voltages were amplified and digitized at 30 kHz via an 
RHD2164 amplifier board and acquired by an RHD2000 system (Intan 
Technologies). No filtering was performed at the data acquisition stage. 
Kilosort51 was used for initial spike clustering. We configured Kilosort to 
high-pass filter the input voltage time series at 300 Hz. The automatic 
clustering results were manually curated in Phy for putative single-unit 
isolation. We noticed a previously reported issue of Phy double count-
ing a small fraction of spikes (with exact same timestamps) after manu-
ally merging certain clusters, thus duplicated spike times in a cluster 
were fixed post-hoc to keep only one.

Cluster quality was quantified using two metrics (Extended Data 
Fig. 4a–c, e). The first was the percentage of inter-spike intervals vio-
lating the refractory period (RPV). We set 2.5 ms as the duration of the 
refractory period and used 1% as the RPV threshold above which clusters 
were regarded as multi-units. It has been argued that RPV does not rep-
resent an estimate of false alarm rate of contaminated spikes52,53 as units 
with low spike rates tend to have lower RPV, whereas units with high 
spike rates tend to show higher RPV even if they are contaminated with 
the same percentage of false-positive spikes. Therefore, we estimated 
the contamination rate based on a reported method52. A modification 
was that we computed the mean spike rate of a cluster from periods 
during which the spike rate was at least 0.5 spikes per second rather 
than from an entire recording session. As a result, the mean spike rate 
reflected more about neuronal excitability than task involvement. 
Any clusters with more than 15% contamination rate were regarded as 
multi-units. Combining these two criteria in fact classified fewer single 
units than using a single, although more stringent, RPV of 0.5%. A low 
RPV can fail potentially well-isolated fast-spiking interneurons whose 
inter-spike intervals can frequently be shorter than the set threshold.

Photostimulation
We used the ‘clear-skull’ preparation6, a method that greatly improves 
the optical transparency of intact skull (see the ‘Surgery’ section), to 
non-invasively photoactivate channelrhodopsin-expressing GABAe-
rgic neurons and thus indirectly inhibit nearby excitatory neurons 
(Extended Data Fig. 3a).

Bilateral stimulation of the brain was achieved using a pair of optic 
fibres (0.39 NA, 400-μm core diameter) that were manually positioned 
above the clear skull before the beginning of each behavioural session. 
These optic fibres were coupled to 470-nm LEDs (M470F3, Thorlabs). 
The illumination power was externally controlled via WaveSurfer (http://
wavesurfer.janelia.org). Each stimulation had a 2-s long 40-Hz sinusoidal  
waveform with a 0.1-s linearly modulated ramp-down at the end.  
The peak powers in the main experiments were 16 mW and 8 mW. We used 
the previously reported 50% transmission efficiency of the clear-skull 
preparation6 and report the estimated average power in the main text. 
There was a 10% chance of light delivery triggered at each of the following 
points in a sequence: cue onset, the middle touch or the first touch after 
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water delivery. To ensure that the light from photostimulation did not 
affect the performance of the mouse through vision, we set up a masking 
light with two blue LEDs directed at each eye of the mouse. Each flash of 
the masking light was 2 s long separated by random intervals of 5–10 s. 
This masking light was introduced several training sessions in advance of 
photostimulation to ensure that the light no longer affected the behav-
iour of the mouse. In addition, the optic fibres were positioned to shine 
light from approximately 5 to 10 mm above the head of the mouse on 
these days leading up to photostimulation.

In a subset of silicon probe recording sessions (related to Extended 
Data Fig. 3c–f), we used an optic fibre (0.3 NA, 400-μm core diameter) 
to simultaneously photoinhibit the same cortical region (within 1 mm) 
or a different cortical region (approximately 1.5 or approximately 3 mm 
away) via a craniotomy. The tip of the fibre was kept approximately 
1 mm away from the brain surface. For testing the efficiency of pho-
toinhibition, the same 2-s photostimulation was applied but only at 
the mid-sequence, with 7.5% probability for each of the four powers 
(1, 2, 4 and 8 mW). For each isolated unit, the photo-evoked spike rate 
was normalized to that obtained during the equivalent 2-s time window 
without photostimulation. To avoid a floor effect, we also excluded 
units that on average fired less than one spike during the no stimulation 
windows. We classified units as putative pyramidal neurons if the width 
of the average spike waveform (defined as time from trough to peak) 
was greater than 0.5 ms, and as putative fast-spiking interneurons if 
shorter than 0.4 ms or if units had more than twice the firing rate dur-
ing 8-mW photostimulations than during periods of no stimulation.

With the light powers we used in the main experiments (4 mW each 
hemisphere), light within a 1-mm distance reduced the mean spike rate 
of putative pyramidal cells (Extended Data Fig. 3c–e) by 91%, light at 
approximately 1.5 mm away by 61%, and at approximately 3 mm away 
by 19% in behaving animals (Extended Data Fig. 3f). The mean spike rate 
of putative fast-spiking neurons at approximately 3 mm away was also 
reduced by 19%, rather than showing an increase due to photoactiva-
tion, suggesting that the decreased activity of both pyramidal and 
fast-spiking neurons was probably due to a reduction of cortical input. 
By contrast, light shined within 1 mm increased the mean spike rate of 
fast-spiking neurons by 739% and at approximately 1.5 mm by 140%.

Histology
Mice were perfused transcardially with PBS followed by 4% PFA in 0.1 M 
PB. The tissue was fixed in 4% PFA at least overnight. The brain was then 
suspended in 3% agarose in PBS. A vibratome (HM 650V, Thermo Scien-
tific) cut coronal sections of 100 μm that were mounted and subsequently 
imaged on a fluorescence microscope (BX41, Olympus). Images showing 
DiI and DiD fluorescence were collected to recover the location of silicon 
probe recordings. The plotted coordinates of recording sites (Fig. 2d) 
were randomly jittered by ±0.05 mm to avoid visual overlap.

General data analysis
All analyses were performed in MATLAB (MathWorks) version 2019b 
unless noted otherwise.

The first trial and the last trial were always removed due to incom-
plete data acquisition. Trials in which mice did not finish the sequence 
before video recording stopped were excluded from the analyses that 
involved kinematic variables of tongue motion.

We assigned mice of appropriate genotypes to experimental groups 
arbitrarily, without randomization or blinding. We did not use statisti-
cal methods to predetermine sample sizes. Sample sizes are similar to 
those reported in the field.

Behavioural quantifications
The duration of individual licks was variable. To average quantities 
within single licks (Fig. 1, Extended Data Figs. 1, 2, 6), we first linearly 
interpolated each quantity using the same 30 time points spanning the 
lick duration (from the first to the last video frame of a tracked lick).  

L′ was computed before interpolation. When the tongue was short, 
the regression network showed greater variability in determining θ 
and sometimes produced outliers. Thus, we detected and replaced 
outliers using the MATLAB ‘filloutliers’ function (with ‘nearest’ and 
‘quartiles’ options), and only included θ when L was longer than 1 mm. 
In addition, any ‘lick’ with a duration shorter than 10 ms was excluded.

For licks occurring at the most lateral positions, the tongue would 
typically ‘shoot’ out and quickly but briefly reach a maximal deviation 
from midline (|θ|max) (Extended Data Fig. 1g). As a result, the onset of touch 
mostly occurred around |θ|max. When analysing licks that may or may not 
have contact, we used θshoot, defined as the θ when L reached 0.84 maxi-
mal L (Lmax), to succinctly depict the lick angle (Extended Data Fig. 1g).

The instantaneous lick rate was computed as the reciprocal of the 
inter-lick interval (ILI). The instantaneous sequence speed was defined 
as the reciprocal of the duration from the touch onset of a previous 
port position to the touch onset of the next.

Values in the learning curves (Extended Data Figs. 1l, m, 2a, b) were 
averaged in bins of 100 trials, with 50% overlap of consecutive bins.

The behavioural effects of photoinhibition (Extended Data Fig. 3j–m)  
were quantified in two steps. First, we used 0.2-s time bins to com-
pute Θshoot, Lmax, the rate of licks and the rate of touches as functions 
of time for each trial. The time series of SD(Θshoot) was computed from 
binned Θshoot across trials in each experimental condition and each ses-
sion. Second, bins within a time window during photoinhibition (or 
equivalent time for trials without inhibition) were averaged to yield a 
single number. The time window was typically 1 s following the start of 
photoinhibition. The shorter window helped to minimize the effects 
‘bleeding over’ from mid-sequence to initiation, and from consump-
tion to mid-sequence. However, this was not an issue for the consump-
tion period, and we instead used the 2-s window during which light was 
delivered (Fig. 2c, right; ‘Cons’ in Extended Data Fig. 3k, m). Figure 2b, c  
presents the same results quantified in Extended Data Fig. 3j,k but directly 
plotting changes in means between conditions on schematic brain images.

Standardization of ILIs within lick bouts
Owing to individual variability, different mice tended to lick at slightly 
different rates within lick bouts. The same mouse might also perform 
a bit faster in one sequence direction than the other. Even in a given 
direction, a mouse might start faster and then slow down a little, or 
go slower first and faster later. When aligning trials from heterogene-
ous sources, a 10% difference in lick rate, for instance, will result in a 
complete mismatch (reversed phase) of lick cycle after only five licks. 
Therefore, before the analyses that were sensitive to inconsistent lick 
rates (Figs. 2e–h, 3, 4, Extended Data Figs. 4–7, except for Extended 
Data Fig. 4f–h), we linearly stretched or shrunk ILIs within each lick 
bout to a constant value of 0.154 s (that is, 6.5 licks per second), which 
is around the overall mean. The lick timestamps used to compute ILIs 
were the mid-time of the duration of each lick. A lick bout was opera-
tionally defined as a series of consecutive licks in which every ILI must 
be shorter than 1.5× the median of all ILIs in the entire behavioural ses-
sion. ILIs outside lick bouts were unchanged. For ease of programming, 
we compensatorily scaled the time between the last lick of a trial and 
the start of the next trial to maintain an unchanged global trial time. 
Original time series, including spike rates and L′, were obtained before 
standardizing ILIs. After standardization, the behavioural and neural 
time series were resampled uniformly at 400 samples per second.

Trial selection for standard and backtracking sequences
After standardizing lick bout ILIs, we used a custom algorithm to select 
a group of trials with the most similar sequence performance. First, 
all trials of the same sequence type in a behavioural session were col-
lected and a time window of interest was determined. In Fig. 2e–h and 
Extended Data Fig. 4, we used 0–0.5 s from cue onset, −1 to 1 s from 
middle touch, and −0.5 to 0.7 s from last consummatory touch for 
the respective periods. In Fig. 3, we used −1 to 1 s from middle touch. 



Article
In Extended Data Fig. 6, we used −0.5 to 1 s from the first lick touching 
water. Next, for each trial, we created three time histograms (with a 
10-ms bin size): one for all licks, one for all touches and one for touches 
that triggered port movements. The three time histograms were then 
smoothed by a Gaussian filter (100-ms kernel width, 20-ms s.d.). Con-
catenating them along time gave a single feature vector that depicts the 
licking pattern and performance for the trial. Last, pairwise Euclidean 
distances were computed among feature vectors of all candidate trials 
and we chose a subset of n trials with the lowest average pairwise dis-
tance, that is, those that have the most similar lick and touch patterns. 
The number n was set to one-third of the available candidate trials 
with a minimal limit of n = 10 trials. We used this relatively low fraction 
mainly to handle the greater behavioural variability in sequences with 
backtracking. To handle trial-to-trial variability in sequence initiation 
time (defined as the interval from the cue onset to the onset of the first 
touch), which was not captured in our feature vectors, before clustering 
we limited trials to those with a sequence initiation time of less than 1 s.

Trial selection and subsequence matching for zigzag sequences
After standardizing lick bout ILIs, we limited candidate trials to those 
with perfect sequence execution, that is, no missed licks or breaks. 
To find the time shift that gave the best match between two subse-
quences, as illustrated in Fig. 4c, we first computed the median time 
series of tongue angles (θ) for each of the two sequence types. Next, 
we identified the best time shifts as those corresponding to the peaks 
of a cross-correlogram between the two time series.

Analysis of zigzag sequences was intended to reveal whether neurons 
encoded sequence context (that is, identity) during periods with the 
same subsequence movements. To aid this purpose, we further selected 
trials whose θ were closest to the median θ computed from trials of 
either sequence type pooled together, unless the resulting number 
of trials was less than one-third of all candidate trials.

Hierarchical bootstrap
Directly averaging trials pooled across animals assumes that data 
from different animals, acquired in different sessions, come from 
the same distribution. Potentially meaningful animal-to-animal and 
session-to-session variability is thereby underestimated. To account 
for this variability, where noted, we performed a hierarchical bootstrap 
procedure54 when computing confidence intervals and performing 
statistical tests. In each iteration of this procedure, we first randomly 
sampled animals with replacement, then, from each of these resampled 
animals, sampled sessions with replacement, and then trials from each 
of the resampled sessions. The statistic of interest was then computed 
from each of these bootstrap replicates.

PETH and NNMF clustering
Spike rates were computed by temporal binning (bin size of 2.5 ms) 
of spike times followed by smoothing (15-ms s.d. Gaussian kernel). 
The smooth PETHs were computed by averaging spike rates across 
trials. Each unit had six PETHs: three time windows (for sequence ini-
tiation, mid-sequence and sequence termination) each in two stand-
ard sequences (left to right and right to left). We excluded inactive 
units whose maximal spike rate across the six PETHs was less than 10 
spikes per second. For the rest, we normalized PETHs of each unit to 
this maximal spike rate.

To evaluate the consistency of neuronal spiking across trials, we 
quantified the uncertainty in PETHs using a variant of bootstrap 
cross-validation. Specifically, for each neuron and in a given run, we 
randomly split the trials into two halves and computed PETHs with 
each half. We then computed the root mean squared error (RMSE) 
between the two sets of PETHs, producing a single RMSE value. This 
procedure was performed for every neuron and was repeated 200 
times. The mean RMSE value for each neuron across the 200 runs is 
shown in Extended Data Fig. 4i.

To construct inputs to non-negative matrix factorization (NNMF), 
the six PETHs of each unit were downsampled from 2.5 ms per sample 
to 25 ms per sample and were concatenated along time to form a single 
feature vector.

NNMF is a close relative of principal component analysis (PCA) 
and has gained increasing popularity for processing neural data55.  
The algorithm finds a small number of activity patterns (non-negative 
left factor, analogous to principal components in PCA) along with a 
set of weights for each neuron (non-negative right factor), so that the 
original PETHs can be best reconstructed by weighted sums of those 
activity patterns. As a result, a small number of activity patterns (or 
dimensions) is usually able to capture the main structure of the original 
PETHs, and the weights of the neuron quantify the degree to which its 
activity reflects each pattern. In the context of clustering, each pattern 
describes representative activity of a cluster, and the pattern with the 
greatest weight for a neuron determines its cluster membership.

NNMF was performed using the MATLAB function ‘nnmf’ with default 
options. To find the best number of clusters, we tested a range of num-
bers with bootstrap cross-validation to see what cluster number pro-
duced the most consistent cluster membership. In each bootstrap 
iteration, NNMF with a given cluster number was applied using 50% 
of randomly sampled neurons. The extracted activity patterns were 
used to compute cluster memberships for the other 50% of neurons 
that were held-out. This process was repeated 1,000 times. The final 
cluster membership of a neuron was the one that had the highest likeli-
hood of containing that neuron. We ran this method with the number 
of clusters set to each value from 6 to 20, and found that 13 clusters 
achieved the best consistency (Extended Data Fig. 4j), quantified as 
the mean likelihood that a neuron was grouped in the same cluster 
across all bootstrap iterations.

Quantification of rhythmic licking modulation in spike PETHs
Neuronal responses modulated by rhythmic licking should show a 
modulation frequency that matches the rate of licks (approximately 
6.5 licks per second during sequence execution), with a phase shift 
that may vary from neuron to neuron. Therefore, we first quantified 
the rhythmicity by fitting a sinusoidal function, f(t) = A × sin(2πωlickt + 
Φ) + C, to each PETH (Extended Data Fig. 4n), where the free parameter 
Φ shifts the function in phase, A and C scale and offset the function 
vertically to match the neuronal firing rate, and ωlick is a constant of 6.5. 
Next, a Pearson’s correlation coefficient (r) was computed between a 
mid-sequence PETH and its best-fitted sinusoids. Every neuron had 
two r values, one for each sequence direction. The final rhythmicity 
was represented by the average of the two (ravg).

PCA
The input to PCA was the normalized spike rates of simultaneously 
recorded single units and multi-units (Extended Data Fig.  4d).  
The original spike rates were first computed by temporal binning 
(2.5-ms bin size, that is, 400 samples per second) of spike times  
followed by smoothing (15-ms s.d. Gaussian kernel). To obtain normal-
ized spike rates, we divided the original spike rates by the maximum 
spike rate or 5 Hz, whichever was greater. We adopted this ‘soft’ normali-
zation technique29 to prevent weakly firing units from contributing as 
much variance as actively firing units. The percent variance explained 
by principal components was simply derived from the singular values.

Linear regression and decoding
A linear model can be expressed as
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where t is the time in a recording session, n is the number of simultane-
ously recorded units, yt is the behavioural variable at t, r t

i  is the normal-
ized spike rate of the i-th unit at t, wi is the regression coefficient for 



the i-th unit, c is the intercept, ∈t is the error term, and tr w⊤  is the matrix 
notation form of the summed multiplications.

The normalized population spike rates were computed in the same 
way as those for PCA. Note that, although the normalization was only 
necessary for PCA, it did not affect the goodness of fit, R2, of linear 
models. The behavioural variable was either tongue length (L), tongue 
velocity (L′), tongue angle (θ), sequence identity (I), target position 
(TP) or relative sequence time (τ) (Fig. 3a, Extended Data Figs. 5, 7).  
L, L′ and θ were directly available at 400 samples per second. However, 
these variables had values only when the tongue was outside of the 
mouth. Therefore, samples without observed values were either set 
to zero (for L) or excluded from regression (for L′ and θ). I was defined 
as 1 if the sequence was from right to left and 2 if left to right. τ simply 
took sample timestamps as its values. TP was the same as I but defined 
based on the upcoming sequence.

Predicting single responses with dozens of predictors is prone to 
overfitting. Therefore, we chose the elastic-net56 variant of linear regres-
sion (using the MATLAB function ‘lasso’ with ‘Alpha’ set to 0.1), which 
penalizes big coefficients for redundant or uninformative predictors. 
A parameter λ controls the strength of this penalty. To find the best λ, 
we configured the lasso function to compute a tenfold cross-validated 
mean squared error (cvMSE) of the fit for a series of λ values. The small-
est cvMSE indicates the best generalization, that is, the least overfit. 
We conservatively chose the largest λ value such that the cvMSE was 
within one standard error of the minimum cvMSE. For each model, we 
derived the R2 from this cvMSE and reported it in Fig. 3 and Extended 
Data Figs. 5, 7.

Linear decoding can be expressed as
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where ŷt is the decoded behavioural variable at t, w and c are the coef-
ficients obtained from regression, and tr  is the vector of normalized 
population spike rates at t. We did not perform additional 
cross-validation in decoding because (1) 30% of the decoding for stand-
ard sequences (0.5–0.8 s in Fig. 3 and −1.3 to −1 s in Extended Data Fig. 7) 
was from new data; (2) all decoding in backtracking sequences and 
during consumption periods was from new data; and (3) the model has 
been proven to be the best generalization via cross-validation when 
selecting λ.

The matrix notation form of the equation, rTw, shows that the linear 
decoding can be geometrically interpreted as projecting the vector of 
population spike rates r onto the axis in the direction of vector w, and 
reading out the length of the projection (scaled by ||w||, plus the inter-
cept c). We therefore referred to this axis as the coding axis. To compute 
the variance explained for each coding axis, we first obtained its unit 
vector and projected population spike rates onto it. The variance of the 
projected values is Var(explained). The total variance, Var(total), of the 
population activity is the sum of variance of all units. Finally, variance 
explained equals Var(explained) / Var(total) × 100%.

Support-vector machine classification
First, to prepare a denoised version of the predictors for more robust 
classification, we performed PCA with normalized population spike 
rates, and projected the spike rates onto the first 12 principal compo-
nents. The projected activity was then downsampled from 400 to 66.7 
samples per second (Fig. 3f) or 200 samples per second (Fig. 4f, g) to 
reduce subsequent computation time. Class labels were the sequence 
identity values, including standard versus backtracking types (Fig. 3f), 
or the two types of zigzag sequence (Fig. 4).

Classification was performed independently for each time bin with 
the MATLAB ‘fitcsvm’ function. Linear kernels were used for all classifi-
cations. Trials were weighted so that the chance classification accuracy 
was 0.5 even if the two classes did not have equal numbers of trials. 
The results were computed with tenfold cross-validation. All other 

function parameters were kept as the defaults. The null classification 
results were obtained using the same procedure but with randomly 
shuffled class labels.

Canonical correlation analysis
The canonical correlation analysis seeks linear transformations of two 
vectors of random variables such that the Pearson’s correlation coef-
ficients between the transformed vectors are maximized:

U V U a X V b Yi i i i
⊤ ⊤ i narg max corr( ), = , = , = 1, 2, …,

a b
i i

,i i

where X and Y are vectors of random variables, ai and bi are transforma-
tion vectors for the i-th iteration, and n is the number of dimensions 
in X or Y, whichever is smaller. Matrices A and B will be used to represent 
the concatenated transformation vectors across all iterations.

In the present analysis, X and Y were matrices of sampled data for 
each session. X contained the time series of the decoded behavioural 
variables (L, L′, θ, I, τ; zero centred). Y contained the projection of  
neural activity onto the top principal components obtained from PCA.  
We focused our analysis on standard sequences, with a time window 
of −0.5 to 0.8 s relative to the middle touch. The linearly decoded or 
principal component-projected data were averaged across trials with 
the same sequence direction. Averaged data from the two sequence 
directions were concatenated along time.

Canonical correlations were computed using the MATLAB ‘canon-
corr’ function between matrices with a selected subset of dimensions. 
In Fig. 3d, Y was transformed using AT−1BTY so that the pattern could be 
best aligned with the patterns of X. In Fig. 3e, n correlation coefficients 
(r) quantified the correlation between each pair of Ui and Vi. The aver-
age r across the n values reflected the overall alignment between the 
two transformed matrices.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data are available from the corresponding author upon request.

Code availability
The MATLAB code used to analyse the data is available at GitHub and 
from the corresponding author upon request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Behavioral measurements, performance, and 
control experiments. a, Confusion matrix showing the performance of the 
classification network. The numbers represent percentages within each (true) 
class (n = 1696 frames). b, Performance of the regression network. Top, the gray 
probability distribution shows how L from five human individuals varied from 
the mean L across the five. The red distribution shows how predicted L varied 
from the human mean. Bottom, similar quantification as the top but for θ. 
n = 573 frames. c, CAD images of the sensor core (left) and the assembly (right) 
with a lick tube. d, Linear relationship between the applied force and the sensor 
output voltage. e, Two example trials showing the trajectories of the tongue tip 
when a mouse sequentially reached the 7 port positions, for both sequence 
directions. Arrows indicate the direction of time within each trajectory.  
f, Patterns of kinematics and forces of single licks at each port position 
(n = 25683 trials from 17 mice; mean ± 95% bootstrap confidence interval).  
The duration of individual licks was normalized. g, Top, the pattern of angle 
deviation from midline (|θ|) of single licks pooled from R3 and L3. The vertical 
line indicates maximum |θ| (|θ|max). Middle, tongue length (L) expressed as a 
fraction of its maximum (Lmax). The horizontal line indicates, on average, the 
fraction where |θ|max occurred. Bottom, time aligned probability distributions 
showing when touch onset, |θ|max, Lmax, or θshoot occurred. Red lines mark 
quartiles. n = 25683 trials from 17 mice. Lick patterns show mean ± 95% 

bootstrap confidence interval. h, Top, probability distributions of Lmax and 
θtouch for licks at each port position. Bottom, probability distributions of the 
change in Θtouch (ΔΘtouch) and instantaneous sequence speed (Methods) for each 
interval separating port positions. Distributions show mean ± s.d. across n = 17 
mice. i, Median time to first touch (top) and the average number of missed licks 
during sequence performance (bottom) in control (Sham) versus hearing loss 
(Earplug) conditions. Bars show group means and lines show data from 
individual mice. ∗∗∗ p < 0.001, n.s. p > 0.05, paired one-tailed bootstrap test, 
n = 5 mice. j, Average number of missed licks before first touch (top) and during 
sequence performance (bottom) in control (Normal) versus odor masking 
(Masked) conditions. Same statistical tests as in (i), n = 6 mice. k, Similar to  
( j) but comparing control (Saline) versus tongue numbing (Lidocaine) 
conditions. n = 5 mice. l, Learning curves for 15 individual mice (gray) and the 
mean (black) showing a reduction in sequence initiation time (left) in response 
to the auditory cue and an increase in sequence speed (right). The three red 
asterisks correspond to the three examples of sequence performance shown in 
(n). m, Gradual increase in task difficulty (Methods) accompanying the 
improved performance shown in (l). n, Depiction of example sequences 
performed by a mouse in alternating directions across consecutive trials at 
different stages of learning. Trial onsets are marked by yellow bars. Port 
positions shown in the black trace are overlaid with touch onsets (dots).



Interval
# -1~0 0~1 1~2 2~3 3~4 4~5

0

5

10

Li
ck

s/
s

0
1
2
3

-200
0

200

-30
0

30

L'
 (m

m
/s

)
Θ

(˚)
L 

(m
m

)

# -1 0 
Lick from backtracking onset (Mid)

1 2 3 4 5 

Animal
0

.35

.7

Se
co

nd

Time to locate

Animal

0

1

2

3
# of missed lick

ec

d

100 300 500 700
# of trials

1

10
Se

co
nd

Standard seq. duration

100 300 500 700
# of trials

1

10

Se
co

nd

Backtracking seq. duration

100 300 500 700
# of trials

.1

1

10

Se
co

nd

Interval from 4th to 5th
touch in standard seq.

Interval from 4th to 5th
touch in backtracking seq.

100 300 500 700
# of trials

.1

1

10

Se
co

nd

a

b

Extended Data Fig. 2 | Performance in backtracking sequences. a, Learning 
curves for 9 individual mice (gray) and the mean (black) showing the duration 
of time spent to perform standard (left) and backtracking (right) sequences.  
b, Similar to (a) but limited to the interval following the middle lick in standard 
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seven licks during standard (black) or backtracking (green) sequences (n = 8 
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Extended Data Fig. 3 | Closed-loop optogenetic inhibition defines cortical 
areas involved in sequence control. a, Left, dorsal view of an example “clear-
skull” preparation. Right, table shows the center coordinates used for 
illumination for each target region. b, Triggering scheme for photoinhibition at 
sequence initiation, mid-sequence and water consumption. c, Average spike 
waveform of putative pyramidal cells (black; n = 224) and putative FS neurons 
(blue; n = 117), normalized to the amplitude of negative peaks. d, Relationship 
between spike widths (defined as the trough to peak time of average waveform) 
and changes in mean spike rate under opto illumination (4 mW, within 1 mm) 
relative to baseline. Pyramidal cells (black; n = 42) and FS neurons (blue; n = 41) 
were classified by the two thresholds (dashed lines at 0.4 and 0.5 ms) with 
ambiguous units (gray; n = 6) in the middle. e, Distributions of spike widths 
from neurons in (d) (filled bars; n = 89) and from all neurons (empty bars; 
n = 414) including those where illuminations were not at recording sites. 
Classification thresholds are shown in dashed lines. f, Left, inhibition efficiency 
of putative pyramidal cells as a function of light power and distance away from 
the center of illumination (n = 224 units total). Right, similar to left but showing 
the excitation efficiency of putative FS neurons (n = 117 units total). Mean ± 95% 

hierarchical bootstrap confidence interval. g, Example trial with S1TJ inhibition 
triggered at mid-sequence. Instantaneous tongue angle (Θ) and length (L) are 
shown in lighter traces. Shooting angles (Θshoot) and maximum length (Lmax) of 
each lick are marked using stems on top of the instantaneous traces. The blue 
waveform indicates photostimulation. Traces and markers during 
photostimulation are colored blue. h, Similar to (g) but inhibiting ALM–M1TJ.  
i, Similar to (g) but inhibiting S1BF. j, Changes in licking kinematics (rows) when 
inhibiting each of the five brain regions (columns), quantified across all three 
inhibition periods (Methods). Bar plots show mean ± 99% hierarchical 
bootstrap confidence interval. Gray lines show the data of individual mice. 
Two-tailed hierarchical bootstrap test, ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, n.s. 
p ≥ 0.05, after Bonferroni correction for 15 comparisons. k, Changes in the rate 
of lick (solid bars) and touch (dashed bars) at each of the inhibition periods 
(rows) when inhibiting each of the five brain regions (columns). Plot style and 
statistical tests are the same as in ( j) but using Bonferroni correction for 30 
comparisons. l, Same convention as in ( j) but showing results with half-power 
(2 mW) inhibition. m, Same convention as in (k) but showing results with half-
power (2 mW) inhibition.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Characterization of single-unit responses.  
a, Contamination rates and refractory period violation rates of all recorded 
single- (green) and multi-units (black). The shaded region shows the thresholds 
for assignment as multi- vs single-unit. b, CDF of contamination rate including 
single- (green) and multi-units (gray). c, Same as (b) but for refractory period 
violation rate. d, The number of single- (green) and multi-units (black) 
recorded in each session, grouped by brain area. e, ISI histograms of  
randomly selected single-units. Refractory period violation rates (RPV) and 
contamination rates (Con) are labeled on the top (in percent). f, Responses of 
three simultaneously recorded S1TJ neurons during right-to-left (top half) or 
left-to-right (bottom half) licking sequences, aligned at cue onset (left 
column), middle touch (middle column), and the last consummatory touch 
(right column). For each sequence direction, the first row shows rasters of lick 
times (touches in black and misses in gray) from 10 selected trials (Methods). 
Stacked below are spike rasters and the corresponding PETHs (mean ± s.e.) 
from the same 10 trials for each example neuron. g, Same as (f) but for three 
example neurons from M1TJ. h, Same as (f) but for three example neurons from 
ALM. i, Uncertainty in mean spike rate (normalized to peak) estimated by 
bootstrap crossvalidation (Methods). Each data point is the bootstrap average 
value of the root mean squared error (RMSE) for a single neuron. Data (n = 804 
neurons) are grouped by brain region and presented in whisker-box plots 

(centre mark: median, bounds of box: 25th and 75th percentiles, max whisker 
length: 1.5 times IQR, no max or min limit). j, The probability (mean ± 95% 
bootstrap confidence interval) of a PETH being consistently grouped into the 
same cluster across bootstrap iterations for different total numbers of 
clusters. Maximal consistency was achieved when using thirteen clusters for 
NNMF (arrow). k, NNMF components that represent each of the thirteen PETH 
clusters. Right-to-left (blue) and left-to-right (red) activities (mean ± 95% 
bootstrap confidence interval) are overlaid together. The vertical lines are 
located at time zero in each period. The height of the lines represents the scale 
of normalized neuronal activity from 0 to 1. l, Histograms of PETH peak times. 
Plot organization and time alignment are the same as in (f). m, Proportions of 
neurons from different clusters at different cortical depths. Some clusters with 
similar types of response were grouped together for better readability. ALM 
(n = 324), M1TJ (n = 233) and S1TJ (n = 119). n, Quantification of rhythmicity in 
PETHs. Black traces are mid-sequence PETHs of three example neurons in  
(f), (g), and (h). Colored traces show the best fit licking rhythms (6.5 Hz sinusoids). 
Average Pearson’s correlation coefficients (ravg) of the left-to-right and right-to-
left fits are shown beneath neuron IDs. o, Empirical CDFs of ravg for neurons in 
S1TJ, M1TJ, and ALM. Circles mark the values of the 9 example neurons in  
(f), (g), and (h).
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Extended Data Fig. 5 | Additional analyses for population coding. a, Relative 
goodness of fit of tongue angle regressions with a range of shifts in spike times. 
Black traces and error bars show mean ± 95% bootstrap confidence interval. 
Lighter traces show individual recordings. (S1TJ, n = 8 sessions; M1TJ, n = 9 
sessions; ALM, n = 13 sessions). b, Absolute pairwise Pearson’s correlation 
coefficients among the five behavioral variables (mean; n = 35 sessions).  
c, Single-trial decoding of the five behavioral variables (rows; black traces) 
from 29 simultaneously recorded S1TJ units in a right-to-left (left) and a 
left-to-right (right) sequence. d, Same as (c) but decoding from 58 simultaneously 

recorded units in ALM. e, Total percent variance explained (VE) by the first five 
principal components (left in each region) versus that by the five coding axes 
(right in each region) during sequence execution. Lighter lines show individual 
recording sessions and thicker lines show the means. f, Absolute pairwise 
cosine values among coding axes (mean; n = 35 sessions). g, Cumulative time 
histograms showing the fraction of trials that could be correctly classified as a 
standard vs backtracking sequence as time progresses. Two-tailed bootstrap 
test, ∗∗∗ p ≈ 0, n.s. p = 0.91. h, Same as sequence progress in Fig. 3a, b, but for 
“zigzag” sequences.
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Extended Data Fig. 6 | Reward modulation of activity in ALM. a, Responses 
of two simultaneously recorded ALM neurons (number 1 and number 2) aligned 
at the first lick (specifically the middle of a tongue-out period) that touched 
water reward. For each sequence direction, shown at top are rasters of lick 
times (touches in black and misses in gray) and the duration of water delivery 
(blue) from 20 selected trials (Methods). Stacked below are spike rasters and 
the corresponding PETHs from the same 20 trials for each example neuron.  
b, The probability of licking (i.e. tongue-out) as a function of time. Licks are 
sequentially indexed with respect to the first lick (number 0) touching the 

water. c, Patterns of kinematics and force for single licks around the first lick 
(number 0) touching water (n = 25289 trials; mean ± 95% bootstrap confidence 
interval). The duration of individual licks was normalized. The total force (Ftotal) 
is the vector sum of vertical and lateral forces. d, Decoding of τ, I and θ (mean ± 
99% bootstrap confidence interval) from neuronal populations recorded in 
ALM (n = 13 sessions), M1TJ (n = 9 sessions), and S1TJ (n = 8 sessions) in 
right-to-left (blue) or left-to-right (red) trials around the consumption period. 
e, The difference between the decoded θ traces in right-to-left versus 
left-to-right trials. Same data source, mean and error presentation as in (d).
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Extended Data Fig. 7 | Coding of upcoming sequences in ALM. a, Depiction 
of sequences performed by a mouse in alternating directions across 14 
consecutive trials. Trial onsets are marked by yellow lines. Port positions shown 
in the black trace are overlaid with touch onsets (dots). b, Probability 
distributions of Θshoot (left) and Lmax (middle) for the first 3 licks at the start of a 
sequence (n = 8 mice; mean ± s.d.). The negative y-axis of Θshoot points to the side 
at which the port is located. The CDF (right; 8 individual mice in gray and the 
mean in black) of the maximal Θshoot explored before touching the port (at the 
side of negative Θshoot). The blue line shows the probability of successfully 
locating the port without exploring beyond the midline. c, Top, rasters of two 
example neurons which had persistent and target position (TP) selective firing 
during the 14 consecutive trials in (a). Bottom, normalized and smoothed 
(0.25 s s.d. Gaussian kernel) spike rates of the two neurons. d, Decoded 
instantaneous TP (dark trace) from 58 simultaneously recorded units in ALM, 
overlaid with normalized port position (light trace). e, Decoding of TP from 
ALM (mean ± 99% bootstrap confidence interval) before upcoming right-to-left 
trials (blue) or left-to-right trials (red). Crossvalidated R 2 is shown (mean ± s.d.; 
n = 13 sessions). f, Goodness of fit for linear models that predict TP during ITIs, 
quantified by crossvalidated R 2. g, Using the same linear models in (e) to 
decode TP during execution of standard right-to-left (blue) or left-to-right (red) 
sequences (mean ± 99% bootstrap confidence interval). h, Same as (f) but for τ.
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