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The brain generates complex sequences of movements that can be flexibly configured
based on behavioural context or real-time sensory feedback’, but how this occursis
not fully understood. Here we developed a ‘sequence licking’ task in which mice

directed their tongue to a target that moved through a series of locations. Mice could
rapidly branch the sequence online based on tactile feedback. Closed-loop
optogenetics and electrophysiology revealed that the tongue and jaw regions of the
primary somatosensory (S1TJ) and motor (M1T]J) cortices? encoded and controlled
tongue kinematics at the level of individual licks. By contrast, the tongue ‘premotor’

(anterolateral motor) cortex

31%encoded latent variables including intended lick

angle, sequence identity and progress towards the reward that marked successful
sequence execution. Movement-nonspecific sequence branching signals occurred in
the anterolateral motor cortex and MITJ. Our results reveal a set of key cortical areas
for flexible and context-informed sequence generation.

Theworld presentsitselfto us asaseries of sensations arising from our
own actions, which in turn elicit further actions in an intricate senso-
rimotor loop. Orofacial sensorimotor control is essential for explora-
tion, communication and survival, and is exquisitely orchestrated" ™.
Toinvestigate the cortical control of complex orofacial movements, we
trained head-fixed mice to use sequences of directed licks to advance
amotorized port through seven consecutive positions, either from
left to right or right to left, after an auditory cue (15 kHz for 0.1 s) that
signalled the start of atrial (Fig.1a, Supplementary Video1). Eachtran-
sition from one position to the next was drivenin a closed loop by a
single lick touching the port. Thus, if a lick missed the port, it would
remainat the same position until the tongue eventually made contact.
The port was no longer moveable after the mouse finished the seven
positions and a water droplet was delivered as a reward after a short
delay (0.25s, or 0.5 s in two mice). The next trial then started with a
sequence in the opposite direction after arandom inter-trial interval
(meandurationof 65s).

We measured instantaneous tongue angle (6), tongue length (L),
vertical and lateral components of contact force (F,.. and F,,), and
contactdurationduring sequences (see Methods; Fig. 1b-d, Extended
DataFig.1a-d). In addition to the continuous d measurement, we use
scalar angle value 8, to denote the angle of the tongue shooting out
ineachlick (see Methods) and use capital @ to represent unified tongue
angles after the sign in right-to-left sequences is flipped to pool data
fromboth sequence directions.

Mice modulated each lick to reach different target locations
(Extended Data Fig. 1e, f). In addition to stereotypic licking kinemat-
ics, expert mice showed remarkable sequence execution speed, with
the seven positions completed in about 1s (Extended Data Fig. 1h).
Mice performed the task in darkness with no visual cues to guide the
licks. Control experiments (Methods) showed that mice did not rely on

auditory (Extended Data Fig. 1i) or olfactory (Extended DataFig. 1j) cues,
butdidrequiretactile feedback fromthe tongue (Extended DataFig. 1k).
Micereached proficiencyinstandard sequences (Fig. 1e) after approxi-
mately 1,500 trials of training (Methods; Extended Data Fig. 11-n).
Todetermine whether sequence generation was ‘ballistic’ or capable
of flexible reconfiguration based on sensory feedback, we varied the
task by introducing unexpected port transitions after mice learned
standard sequences (Fig. 1f, Supplementary Video 2). On a randomly
interleaved subset (one-third or one-quarter) of trials, when a mouse
licked at the middle position, the port would backtrack two steps rather
than continueto the anticipated position. Mice previously trained only
withstandard sequences (Methods; Extended DataFig.2a,b) learned to
detect the change of port transition, branch out to the new position
and finish the sequence (Fig. 1g, Extended Data Fig. 2c, d). On average,
it took one to two missed licks before mice quickly relocated the port
(Extended Data Fig. 2e). Head-fixed mice can thus learn to perform
complex and flexible licking sequences guided by sensory feedback.

Optogeneticinhibition screen

To determine which brain regions contribute to the performance of
our sequence licking task, and at which points during execution, we
performed systematic optogenetic silencing®. In different sessions,
bilateralinhibition was centred at each of five regions (Fig. 2a, Extended
Data Fig. 3a): the anterolateral motor (ALM)" cortex (also including
part of the M1TJ cortex (ALM-MIT]J hereafter)), the body region of
the primary motor (M1B) cortex'®”, the S1TJ cortex®’®, the barrel field
ofthe primary somatosensory (S1BF) cortex and the trunk subregion
of the primary somatosensory (S1Tr, including part of the posterior
parietal cortex) cortex. For eachregion, inhibition was triggered with
equal probability (10%) at sequence initiation, mid-sequence or at the
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Fig.1|Sequencelickingtask. a, Schematic of the (standard) sequence licking
task.ITI, inter-trial interval. b, Schematic of the contact force measurement
and high-speed (400 Hz) videography inrelation to a head-fixed mouse.

¢, Schematics of thebottom view of amouse licking at the water port (top).
Zoomed-in views (5 x 5mm) of example high-speed video frames are also
shown (bottom). Vectors overlaid inred are outputs from the regression deep
neural network and point from the base to the tip of the tongue. Tongue length
(L) isdefined by the vector length. Tongue angle () is the rotation of the vector
fromthe midline. The red shading depicts tongue shape.d, Time series of task
eventsand behavioural variables during an example trial. Variables recorded
fromthe force sensorsinclude the vertical lick force (F,.,; positive acts to lift
the portup) and the lateral lick force (F,,; positive acts to push the porttothe
right). Kinematic variablesincluding, itsrate of change (L) and @ were derived
from high-speed video. Periods of tongue-port contact are shaded ingrey and
arenumbered sequentially. R3,R2,R1, Mid, L1, L2 and L3 indicate the seven port
positions from the rightmost to the leftmost. Missed licks are indicated at
bottomby up-arrows. e, Transition diagram depicting the two standard
sequences. Darker arrows fromright to left correspond to the example trialin
d.f, Transition diagrams depicting sequences with backtracking (green
arrows). Darker arrows in each diagram correspond to the row-matched
exampletrialsing. g, Example trials of aleft-to-right sequence (top) and a
right-to-left sequence (bottom) where the port backtracked (green arrows)
whenamouse touched Mid. Licks including both touches and misses are
indexed with respectto the lick at Mid. Missed licks are indicated at top by
down-arrows.

start of water consumption (Extended Data Fig. 3b). Stimulation at
mid-sequence and at consumption was triggered in closed loop by the
middle touch and by the first touch after water delivery, respectively.

Somatosensory inputs both provide information about external
objectsand enable proprioceptive sensing of the position of the body"
for motor control?®**, Missing sensory feedback can make effortless
manipulations surprisingly difficult despite unchanged motor capa-
bility*>. Normally executed sequences were stereotyped across tri-
als. Therefore, in a given time bin during the sequence, across-trial
variability in lick angle (quantified by the standard deviation of O,
or SD(0Oy,...)) was relatively low. When the S1TJ cortex was inhibited,
however, sequences became disorganized and no longer stereotyped
(see examplesin Extended Data Fig. 3g, Supplementary Video 3). As a
result, SD(Oy,,.,) increased significantly compared with no inhibition

(Fig.2b, left). Despite disorganized targeting, the ability to direct licks
to the sides (that is, |O4;,./) was uncompromised (Fig. 2b, middle).
Inhibition of the S1TJ cortex also did not shorten the length of licks
(Fig. 2b, right), although slight but statistically significant increases
were observed. Full quantifications of data summarized in Fig. 2b
appear in Extended DataFig. 3j. Together, these data suggest that inhibi-
tion of the S1TJ cortex left the core motor capabilities that are required
for tongue protrusions and licking intact, but corrupted their proper
targeting, possibly due to missing sensory feedback.

By contrast, wheninhibiting the ALM-MIT] cortex, mice had reduced
ability to direct licks to the sides (Fig. 2b, middle; see example in
Extended Data Fig. 3h), and showed decreased length of lick (Fig. 2b,
right). Inhibition of the M1B cortex caused only minor increasesin lick
angle variability with no decrease in angle deviation or lick length.
Inhibition of the SIBF or S1Tr cortex changed no aspects of lick control.

The ALM cortex has been shown to be important in motor prepara-
tion of directed single licks to obtain water reward'*>*, Here we found
that inhibiting the ALM-MIT] cortex at sequence initiation strongly
suppressed production of licking sequences (Fig. 2c, left, Supplemen-
tary Video4).Infour of seven mice, licks were largely absent (Extended
DataFig. 3k, top panel under ALM-M1T]). Inhibition of the S1TJ cortex
caused more moderate suppression, with no obvious change from
inhibiting other regions. When applied at mid-sequence, inhibition of
the ALM-MIT]J cortex also suppressed the production of licks, although
less strongly. Inhibition of other regions at mid-sequence showed little
or no effect. Full quantifications appear in Extended Data Fig. 3k (top
and middle rows).

When a sensorimotor sequence reaches its normal stopping point,
one might intuitively expect movement to cease in a passive rather
than active manner. To our surprise, when inhibiting the S1T) or M1B
cortex at water consumption, mice were impaired at stopping ongoing
sequences (Fig. 2c, right, Extended Data Fig. 3k, bottom row; see exam-
plein Supplementary Video 5). This prolonged licking was not due to
additional attempts to reach the port for water, as mice continuously
made successful contacts, nor did we inhibit the water-responsive
gustatory cortex?*,

Totest the possibility thatinhibition of the S1TJ or M1B cortex caused
persistent lick bouts due simply to spread of inhibition to other regions,
we repeated the above experiments with half the illumination power
(2 mW) (Extended Data Fig. 3I, m). The effects of ALM-M1T] inhibi-
tion on sequence initiation, tongue length and angle control, and of
S1TJ inhibition on angle control, remained largely consistent with,
although weaker than, our previous results using higher power (4 mWw).
At consumption, inhibition of the S1TJ or M1B cortex resulted in simi-
larly strong deficits in terminating ongoing sequences (Extended Data
Fig. 3m, bottom row). Therefore, the observed deficit in sequence
termination was not due to spread of inhibition. Rather, our results
indicate that sequence termination is an active process® mediated
collectively by the S1TJ and M1B cortices.

Sequence tiling of single-unit responses
We used silicon probes to record from multiple brain regions from both
hemispheres (Fig. 2d) during the task, obtaining 1,537 single units and
303 multiple units (Methods; Extended DataFig. 4a-e) from 57 record-
ing sessions. Perievent time histograms (PETHSs) of single-unit spiking
(Fig. 2e-h; example neurons are shown in Extended Data Fig. 4f-h)
exhibited awide variety of patterns before, during and after sequence
execution. Spiking that gave rise to the PETHs was consistent across
trials (Methods; Extended DataFig. 4i). To present these PETHs inaway
that reflects the main themes observed in the population activity, we
pooled neurons fromall brain regions and clustered their PETHs using
non-negative matrix factorization (Methods).

We observed that single-neuron responses tile the sequence progres-
sion (Fig. 2e-h, Extended Data Fig. 4k), with more ALM neurons tuned to
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Fig.2| Optogeneticinhibition and single-unitactivity survey across
corticalregions during sequence execution. a, Schematic showing the
dorsal view of amouse brain. Overlaid spotsin blue shading depict the five
bilateral pairs of sites for illumination of the target cortical regions. Bregma
ismarked by alx1mmcrosshair. PPC, posterior parietal cortex. b, Summary
of changesinlicking kinematics resulting from bilateral photoinhibition of
eacharea, quantified acrossall three inhibition periods (Methods). Plots
summarize the quantifications shownin Extended DataFig. 3j. The dot colour
depictstheamountofincrease (red) or decrease (blue) inthe indicated
behavioural variable for trials with photoinhibition compared with those
without. The dot size represents the level of statistical significance. Changes
with P>0.05are not plotted. Two-tailed hierarchical bootstrap test with
Bonferroni correction for 15 comparisons.n =7 mice. ¢, Summary of changes
inlick rate resulting frombilateral photoinhibition of each area during either
sequence initiation (left) or sequence termination (right). Plots summarize
the quantifications shownin Extended Data Fig. 3k (top and bottom rows).
Conventions and statistical tests are asinb, but with Bonferroni correction
for30 comparisons.d, Silicon probe recording during the sequence licking
task (left). Histologically verified locations of the silicon probe recordings
arealso shown (right). S1L, limbregion of primary somatosensory cortex.

e, Normalized PETHs of all SIT) neurons (n = 141 neurons) plotted as
heatmaps, aligned to three periodsin each sequence direction. Neurons are
grouped by functional clusters (see main text) and labelled by colour bands.
f,Same as e, but for all M1T) neurons (n =233 neurons). g, Same ase, but for all
ALM neurons (n =329 neurons). h, Same as e, but for all SIBF neurons (n =55
neurons).3D brainsina-d were produced from the Allen Mouse Common
Coordinate Frameworkin the Brain Explorer 2 software, Allen Institute for
Brain Science.
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sequenceinitiation (Extended Data Fig. 41). The S1TJand M1T] cortices con-
tained more neurons (forexample, cluster 7; Extended Data Fig. 4k, m) that
showedgreater modulationbyindividuallicks (Extended DataFig.4n, 0).
Patterns of activity arising from these single-unit responses might encode
behavioural variables that are important for sequence control.

Hierarchical population coding

Oursequence licking task requires the brain to encode instantaneous
tongue length (L) and angle (6), presumably both for motor output
and sensory feedback. Encoding of velocity (L) could also be used
to indirectly control tongue position. Sequence identity (/) and rela-
tive sequence time (1) can be used to represent the sequence-level
organization of individual licks beyond instantaneous control.
The variable 7 can also serve as a proxy for sequence progress or
‘distance to goal’. The five behavioural variables, L,L’, 8,/ and 7, were
measured (or derived) at 2.5-ms resolution (Fig. 3a). Conveniently,
any pair of these variables was uncorrelated (Extended Data Fig. 5b).
Therefore, being able to encode one is of little or no help with encod-
ing any other.

Foreachrecording session, we performed separate linear regressions
(Methods) to obtain unit weights (and a constant) for each of the five
behavioural variables, such that aweighted sum of instantaneous spike
rates from simultaneously recorded units (32 + 13 units; mean £ s.d.)
plus the constant best predicted the value of a behavioural variable.
We used cross-validated R? values to quantify how well the recorded
population of neurons encoded each behavioural variable?.

The five behavioural variables were decoded from population activ-
ity on a single-trial basis (see examples in Extended Data Fig. 5c, d).
Overall, the S1T) and M1T] cortices had stronger coding of Land L’ than
the ALM cortex and the control region S1BF (Fig. 3b, ¢). S1TJ, M1TJ and
ALM cortices, but not the S1BF cortex, all showed comparable encod-
ing of 6 (Fig. 3b, c). However, the traces of decoded @ in the S1TJ and
MIT]J cortices contained rhythmic fluctuations that were absentinthe
ALM cortex, despite similar overall levels of encoding of 6 (R? values).
These fluctuations indicate that the M1T) and S1T] cortices encoded 6
in amore instantaneous manner, whereas the ALM cortex encoded 6
inacontinuously modulated manner that may provide a control signal
for theintended lick angle or represent the position of the target port.

Higher-level cortical regions are in part defined by the presence of
moreabstract (or latent) representations of sensory, motor and cognitive
variables?®. ComparedwithL,L’and 6, which describe the kinematics of
individual licks, /and 7 describe more abstract motor variables. In the
ALM cortex, we found the strongest encoding of both /and 7 (Fig. 3b, ¢).
Encoding of /and Tbecame progressively weaker in the M1TJ, S1TJ, and
S1BF cortices, respectively. Overall, these results reveal aneural coding
scheme with increasing levels of abstraction across the S1TJ, M1TJ and
ALM cortices during the execution of flexible sensorimotor sequences.

Good decoding may come from asmall fraction of informative units
or from dominant activity patterns across a population. Distinguish-
ingthese requires comparing the similarity between activity patterns
captured by the coding axes (defined by the vector direction of regres-
sion weights), as shown above, and the dominant patterns in popula-
tion activity identified in an unsupervised manner. In each recording
session, we obtained neural trajectories in the coding subspaces (the
subspaces spanned by coding axes) vialinear decoding and trajectories
inprincipal component subspaces (the subspaces spanned by the first
few principal components) via principal component analysis. Trajec-
tories in principal component subspaces depict dominant patterns
in population activity, but the principal components per se need not
have any behavioural relevance. To see whether neural trajectories
in coding and principal component subspaces were the same except
for a change (rotation and/or scaling) in the reference frame, we used
canonical correlation analysis (Methods) to find the linear transforma-
tion of the two trajectories such that they were maximally correlated®.
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Fig.3|Neuronal populations code withincreasing levels of abstraction
across cortical areas. a, Time series of the behavioural variables (mean +99%
bootstrap confidenceinterval; n=2,684 trials) for different sequence types.
Time pointsin whichmore than 80% of trials had no observations are not
plotted. LR, lefttoright; RL, right to left. Vertical dashed linesindicate times O s
and 0.5sonthexaxis. b, Decoding of the five behavioural variables (rows) from
populationsrecordedinthe S1TJ, M1TJ, ALM and S1BF cortices (columns).
Cross-validated R*values for eachregionand variable are given (mean +s.d.).
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sessions (S1BF) for all graphsin Fig. 3 unless otherwise noted. Same plotting
conventionsasina.c, Bars show the means of R? values fromb. Circles show
R*values forindividual sessions. d, Neural trajectories from the ALM cortex
(mean) during standard sequences (linked by dashed lines). The arrows
indicate the direction of time. Decoded trajectories (darker thick curves) are

After transformation, trajectories of the ALM population in the
subspace of the top three principal components aligned (Fig. 3d) and
correlated (Fig.3e; group 2inthe ALM cortex) well with the trajectories
in the subspace encoding 6, / and 7. This indicates that the dominant
neural activity patterns in the ALM population encoded 6, / and 7.
As the ALM cortex minimally encoded L and L’, including these in the
coding subspaces decreased the correlation with principal component
trajectories (Fig. 3e; groups 1and 3 in the ALM cortex). The decoded
trajectories and principal component trajectoriesin the M1TJ and S1T)
cortices also showed a strong correlation but only when the coding
subspacesincluded L and L.

Acrossregions, the sum of variance explained by the five coding axes
reached about half that of the top five principal components (Methods;
Extended Data Fig. Se). The five coding axes were largely orthogonal
with each other (Extended Data Fig. 5f), indicating that they not only
captured dominant neural dynamics but also did so efficiently with
little redundancy.

Sequence branching signalsin ALM-MI1T)

In backtracking sequences, mice licked back to a previous angle to
relocate the port and then progressed through the rest of the sequence.
The opposing deflections in the decoded 6 from backtracking trials
matched this behaviour (Fig. 3a, b, dashed curves for 6). This is not
surprising as the M1TJ and ALM cortices are expected to encode the

overlaid with trajectories (lighter thick curves) in the space of the top three
principal components (PCs), after alinear transformation. A projectioninto
the/-0planeisdepicted with thinnerand lighter curves. e, Mean canonical
correlation coefficients (r) for each neural population (grey traces) across
three conditions. The average mean rvalues for each condition are shownin
black.*P<0.001, notsignificant P> 0.05 otherwise, paired two-tailed
permutation test.f, Classification of standard versus backtracking sequences
from population activity. Accuracy is the fraction of trials correctly classified
(mean +95% hierarchical bootstrap confidence interval; n = 6 sessions (ALM)).
Colouredtraces and error shadings are from original data; black traces and
shadings are from datawith randomly shuffled trial labels. The average time
series of tongue length are overlaid (grey traces) toshow the concurrent
behaviour. Thedashed grey tracesindicate licks that unexpectedly missed the
portasaresultofthe portbacktracking.

changed motor program, and the SITJ cortex to signal the resulting
proprioceptive or reafferent feedback. However, the motor cortical
mechanisms that allow sensory feedback to integrate with unfolding
motor programs®* could involve a movement-nonspecific signal to
indicate sequence branching.

We used alinear support-vector machine to classify trials into either
backtracking or standard sequences based on population activity at
each time bin (Methods). Within each class, about equal numbers of
left-to-right and right-to-left sequences were pooled so classifiers could
not rely on the coding of specific licking movements. ALM and M1T]
activity started to predict the presence or absence of backtracking
duringtheinitial missed lick (Fig. 3f). We randomly shuffled class labels
to determine chance-level classification accuracy. S1TJ populations
showed only a statistically insignificant trend towards being able to
distinguish backtracking from standard sequences (Fig. 3f), at much
later time points (Extended Data Fig. 5g). As expected, SIBF popula-
tions showed no prediction.

Context-dependent coding of subsequences

Complex sequences can be composed of different combinations of
subsequences. The same subsequence can be used in multiple complex
sequences, anditis crucial for the brain to keep track of the contextin
whichasubsequenceis executed®*. Tosearch for such sequence con-
text signals, we trained mice on two new sequences where the port steps
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Fig.4|Context-dependent coding of subsequencesinALM. a, Transition
diagrams depicting the two zigzag sequences, which contain symmetrical
transitions. b, Example trials showing patterns of tongue anglein the two
zigzagsequences. ¢, The four ways to shift and match subsequences. Coloured
traces show tongue angles froman example session (mean+s.d.). Thearrow
coloursindicate the sequence to be shifted. The arrow lengths and the number
inmilliseconds show how much the chosen sequence must be shifted to match
theother.LRLR, left-right-left-right; RLRL, right-left-right-left.d, Zoomed-in
plots of cshowing the three licks in the middle of matched subsequences.
e, Examplerastersand PETHs for three simultaneously recorded neurons.
PETHs are normalized to the maximum spike rate for each neuron across the
four shifts. f, Classification accuracy (black trace) for sequence identity based
on populationactivity for the sessionin c-e. Chance accuracy (grey shading)
was determined by randomly shuffling sequence labels. g, Similar to f, but
showing mean +95% hierarchical bootstrap confidence interval across
sessions (n=6) and mice (n=3). The two grey vertical barsind-gare gridlines
to aid visualization of matching time points across plots.

in a ‘zigzag’ manner from one side to the other, then steps back, and
then again steps to the other side (Fig. 4a, b, Supplementary Video 6).
The two sequences have symmetrical movements. By fixing one and
shifting the other forwards or backwards in time, it is possible to find
subsequences that have the same licking movements but different
sequence contexts (Fig. 4c). There are in total four ways to shift and
match subsequences, and we focused on the three licks in the middle
(Fig. 4d) for analysis.

Three simultaneously recorded ALM neurons illustrate three
types of response (Fig. 4e). The first neuron preferentially fired dur-
ing blue-coloured sequences, and the second neuron fired during
red-coloured sequences, whereas the third neuron responded faithfully
to the physical movements with no clear sequence preference (Fig. 4e,
neurons1-3, respectively). Using population activity asa predictor, lin-
ear support-vector machine classifiers (Methods) were able to predict
the sequence identity, or context, in the example session (Fig. 4f) and
across sessions and mice (Fig. 4g). Chance-level classification accuracy
was determined by shuffling the sequence labels.
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Ourresults provide strong evidence that ALM neurons in mice encode
complex sequences with combined information about both physical
movements and the latent sequence context.

Reward modulationin ALM

Inthe decoding analysis for standard sequences, the T coding axis was
identified by fitting models to link neural activity and relative sequence
time. We performed the same decoding analysis with zigzag sequences
and found a similar ramping pattern of 7 (Extended Data Fig. 5h).
The monotonic coding of 7 therefore does not require a constant
sequence direction. However, if 7 faithfully represents time, the
downward deflection of traces from backtracking sequences (Fig. 3b)
should not appear, as time advances regardless of what the animals do.
This suggests representation of a distance to goal*°, which might cor-
respond to arrival at the last port position, water delivery, finishing
water consumption, and so on.

The ALM cortex contained single neurons (Extended Data Fig. 6a)
thatfired actively during sequence executionbut abruptly decreased
firing upon tongue contact with water, even though mice continued
with approximately five consummatory licks (Extended Data Fig. 6b)
of similar or more strongly modulated kinematics and force (Extended
Data Fig. 6¢). The 7 decoded from ALM populations showed similar
time courses (Extended Data Fig. 6d, top left).

ALM activity was thus modulated by reward* so as to signal reward
expectationin amanner that smoothlyincreased as mice approached
water delivery, regardless of sequence direction or lick angle, that was
suppressed by the delay of progress upon backtracking, and that ter-
minated at water delivery despite continued licking. Coding of /and 6
followed more complex time courses than  (Extended Data Fig. 6d, e).

ALM encodes upcoming sequences

Inour task, sequences alternated direction across trials (Extended Data
Fig.7a).Before eachtrial, there was no cue toindicate the starting side.
Expert mice nevertheless usually initiated sequences fromthe correct
side without exploring the other (Extended Data Fig. 7b), suggesting
internal maintenance of information about target position during
inter-trial intervals. Brain regions maintaining such information may
contribute to organizing higher-level sequences across trials.

Inthe ALM cortex, we found simultaneously recorded units that fired
persistently to specific target position values during the inter-trial
interval (Extended DataFig. 7c). A linear model fitted using data from
the second before cue onset showed smooth population decoding of
target position across the span of many trials (Extended Data Fig. 7d).
On average, ALM populations showed stronger encoding of target
position (Extended Data Fig. 7e, f) than other regions. When using
thismodel to decode during sequence execution, the resulting traces
fromtwo sequence directions crossed at mid-sequence (Extended Data
Fig.7g), showingsimilar structure as 8. None of the regions, including
the ALM cortex, encoded time or adistance to trial start (Extended Data
Fig.7h), perhapsbecause ourinter-trial interval contained an exponen-
tial portion (Methods) that made the time to trial start unpredictable’.

Together, our results from behaviour analysis, population electro-
physiology and optogenetics define key sensory and motor cortices
inmice that govern hierarchical execution of flexible, feedback-driven
sensorimotor sequences.
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Methods

Mice

All procedures were in accordance with protocols approved by the
Johns Hopkins University Animal Care and Use Committee (proto-
cols: MO18M187 and M021M195). Mice were housed in a room on
areverse light-dark cycle, with each phase lasting 12 h, and main-
tained at 20-25 °C and 30-70% humidity. Before surgery, mice were
housed in groups of up to five, but afterwards were housed individu-
ally. Fifteen mice (12 male and 3 female) were obtained by crossing
VGAT-IRES-Cre (Jackson Labs: 028862; B6).129S6(FVB)-Slc32a1™mc®
Lowl/Mwar]))* with Ai32 (Jackson Labs: 012569; B6;129S-Gt(ROSA)26
SOrtm32(CAG-COPHHIB4R/EYFPHze /1143 lines, Two (one male and one female)
were heterozygous VGAT-ChR2-EYFP (Jackson Labs: 014548;
B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)8Gfng/))** mice. Twelve (nine
male and three female) were wild-type mice, including nine C57BL/6)
(Jackson Labs: 000664) mice, one wild-type littermate for each of
VGAT-ChR2-EYFP, TH-Cre (Jackson Labs: 008601; B6.Cg-7630403G2
3Rik&MerellTmd /1335 and Etvl-Cre™ (Jackson Labs: 013048)*. Two were
male TH-Cre mice. Two (one male and one female) were Advillin-Cre
(Jackson Labs: 032536; B6.129P2-Avil™9Fwa/)47 mice, Mice ranged
in age from approximately 2 to 9 months at the start of training. A set
ofbehavioural testing sessions typically lasted approximately 1 month
(Supplementary Table1).

Surgery

Before behavioural testing, mice underwent implantation of a metal
headpost. For surgical procedures, mice were anaesthetized withiso-
flurane (1-2%) and kept on a heating blanket (Harvard Apparatus).
Lidocaine or bupivacaine was used as a local analgesic and injected
under the scalp at the start of surgery. Ketoprofen was injected intra-
peritoneally to reduce inflammation. All skin and periosteum above
the dorsal surface of the skull were removed. The temporal muscle
was detached fromthe lateral edges of the skull on either side and the
boneridge at the temporal-parietal junction was thinned using a dental
drill to create awider accessible region. Metabond (C & B Metabond)
was used to cover the entirety of the skull surface in a thin layer, seal
the skin at the edges and cement the headpost onto the skull over the
lambda suture.

To make the skull transparent, a layer of cyanoacrylate adhesive
wasthendropped over the entirety of the Metabond-coated skull and
left to dry. Asilicone elastomer (Kwik-Cast) was then applied over the
surface to prevent deterioration of skull transparency before photo-
stimulation. Buprenorphine was used as a post-operative analgesic
and the mice were allowed to recover over 5-7 days following surgery
with free access to water.

Forsilicon probe recording, asmall craniotomy of about 600 pmin
diameter was made for implantation of a ground screw. The skull was
thinned using a dental bur until the remaining bone could be carefully
removed with a tungsten needle and forceps. Following this, one or
more craniotomies of about1 mmin diameter were made over the sites
of interest for silicon probe recording. Craniotomies were protected
with alayer of silicone elastomer (Kwik-Cast) on top. Additional crani-
otomies were usually made in new locations after finishing recordings
in previous ones.

Task control

Task control wasimplemented with an Arduino-based system (Teensy
3.2and Teensyduino), including the generation of audio (Teensy Audio
Shield). Custom MATLAB-based software withagraphical user interface
was developed to logtask events and change task parameters. Touches
between the tongue and the port were registered by a conductive lick
detector (Svobodalab, HHMI Janelia Research Campus), in which the
mouse acted as amechanical switch that opened (no touch) or closed
(withtouch) the circuit. Any mechanical switch has electrical bouncing

issues when a contact is weak and unstable. To handle bouncing dur-
ing loose touches, we merged any contact signals with intervals less
than 60 ms.

Theauditory cue that signalled the beginning of each trialwasa0.1s
long, 65 dB SPL and 15 kHz pure tone. Touches that occurred during
the auditory cue were not used to trigger port movement as they were
probably due to impulsive licking rather than areaction to the cue.

Thelick port was motorized in the horizontal plane by two perpen-
dicularlinear stages (LSM0O50B-T4 and LSM025B-T4, Zaber Technolo-
gies), one for anterior and posterior movement and the other for left
and right. A manual linear stage (MT1/M, Thorlabs) installed in the
vertical direction controlled the height of the lick port. The motors were
drivenbya controller (X-MCB2, Zaber Technologies), whichwasinturn
commanded by the Teensy board viaserial interface communication.
Although the linear stages were set up in cartesian coordinates, we
specified the movement of the port using a polar coordinate system.
For achosen origin of the polar coordinates, the seven port positions
were arrangedinan arc symmetrical to the midline with equal spacing
(inarc length) between adjacent positions (Fig. 1a).

A movement of the lick port was triggered by the onset of a touch
during sequence performance. A second port movement could not
be triggered within a refractory period of 80 ms, which prevented
mice from driving a sequence by constantly holding the tongue on
the port (although we never observed such behaviour). Whenamove-
mentwastriggered, the portfirstaccelerated (477 or 715 mm s ) until
the maximal speed (39.3 mm s™) was reached, then maintained the
maximal velocity, and decelerated until it stopped at the end position.
The acceleration and deceleration phases were always symmetrical,
such that the maximal velocity might not be reached if the distance
of travel was short.

The movement was typically in a straight line. For four of the nine
mice, when the two positions were not adjacent (for example, at
backtracking and the following transition), the port would move in
anoutward half circle whose diameter was the linear distance separat-
ing the two positions. This arc motion minimized the chance of mice
occasionally catching the port prematurely before the port stopped.
Nevertheless, catching the port prematurely did not trigger the next
transitioninasequencebecause, in this case, the port movement could
only be triggered again after 200 ms from the start of backtracking (and
300 ms after the following touch). As a result, mice always needed to
touch the port at the fully backtracked position to continue progress
inasequence.

The control of port movement was similar for zigzag sequences
except that five port positions were used instead of seven, the refrac-
tory period before the next trigger was 100 ms, the acceleration was
2,000 mm s, the maximal speed was 75 mm s and every port move-
ment travelled along an outward half circle.

Mice performed the task in darkness with no visual cues about the
position of the port. To prevent mice from using sounds emitted by the
motor to guide their behaviour, we played two types of noise through-
out a session. The first was a constant white noise (cut-off at 40 kHz;
80 dB SPL) and the second was a random playback (with 150-300-ms
interval) of previously recorded motor sounds during 12 different
transitions.

Two-axis optical force sensors

Astainless steel lick tube was fixed on one end to forma cantilever. Mice
licked the other free end, producing a small displacement (approxi-
mately less than 0.1 mmat the tip for 5 mN) of the tube. Two photointer-
rupters (GP1S094HCZOF, Sharp) placed along the tube (Extended Data
Fig.1c,d) wereused to convert the vertical and horizontal components
of displacement into voltage signals. Specifically, the cantilever nor-
mally blocked about half of the light passing through, outputting a
voltage value in the middle of the measurement range. Pushing the tip
down caused the cantilever to block morelight at the vertical sensor and



thereby decreased the output voltage; conversely, less force applied at
thetip resultedinincreased voltage. For the horizontal sensor, pushing
thetubetotheleft orright decreased orincreased the voltage output,
respectively. Output was amplified by an op-amp thenrecorded viaan
RHD2000 Recording System (Intan Technologies).

By design (the circuit diagram and the displacement-response curve
areavailableinthe GP1S094HCZOF datasheet), the force applied at the
tip of the lick tube and the output voltage of the sensor follow a near
linear relationship withinarange of forces. To find this range, we meas-
ured the voltages (relative to baseline) with different weights added to
the tip. Excellent linearity (R? = 0.9999) was achieved up to more than
20 mN (Extended Data Fig.1d). By contrast, the maximal force of alick
was on average about 4 mN (Extended Data Fig. If).

The motorization of the lick tube introduced mechanical noise to
the forcesignals. The spectral components of these noises were mainly
at300 Hzand its higher harmonics, presumably due to the resonance
frequency of the tube, whereas the force signal induced by licking
occupied muchlower frequencies. Therefore, we low-pass (at 100 Hz)
filtered the original signal (sampled at 30 kHz) to remove the motor
noise. Additional interference came from the 850-nmilluminationlight
used for high-speed video, which leaked into the optical sensors (mainly
inearly experiments with two mice) and caused slow fluctuationsin the
baseline over seconds. To mitigate this slow drift, we used a baseline
estimated separately for eachindividual lick as follows. We first masked
out the parts of the signal when the tongue was touching the port, then
linearly interpolated tofillin these masked out lick portions using the
neighbouring (thatis, notouch) values. These interpolated time series
served asthe baseline for each lick. Asthelick force was only afunction
ofvoltage change compared to baseline, the above procedure would at
most negligibly affect the force estimation. Owing to the dependency
of this procedure on complete touch detection, we excluded eight
sessions from behavioural quantificationsin Fig.1and Extended Data
Figs.1,2in which only touch onsets were correctly registered.

High-speed videography and tongue tracking

High-speed video (400 Hz, 0.6-ms exposure time, 32 pum per pixel,
800 x 320 pixels) providing side and bottom views of the mouth region
was acquired using a x0.25 telecentric lens (55-349, Edmund Optics),
aPhotonFocus DR1-D1312-200-G2-8 camera and Streampix 7 software
(Norpix). lllumination was viaan 850-nm LED (LED850-66-60, Roithner
Laser) passed through a condenser lens (Thorlabs).

Three deep convolutional neural networks were constructed (MAT-
LAB2017b, Neural Network Toolbox v11.0) to extract tongue kinematics
and shape from these videos. The first network classified each frame
as ‘tongue-out’ if a tongue was present, or ‘tongue-in’ otherwise.
This network was based on ResNet-50 (ref. *8) (pretrained for ImageNet),
butthefinal layers were redefined to classify the two categories using
asoftmaxlayeranda classification layer that computes cross-entropy
loss. A total of 37,658 frames were manually labelled in which 1,611
frames were set aside as testing data. Image augmentation was per-
formed to expand the training dataset. A standard training scheme was
used with a mini-batch size of 32and alearningrate of 1 x10#to1x 107,
The fully trained network achieved a high accuracy in classifying the
validation data (Extended Data Fig. 1a).

The second network assigned a vector from the base to the tip of the
tonguein each frame classified as tongue-out. L and Owere derived from
this vector (Fig.1c). Atotal of 12,095 frames were manually labelled in
which 643 frames were used only for testing. The architecture and train-
ing parameters of this network are similar to those of the classification
network except that the final layers were redefined to output thexand
yimage coordinates of the base, tip and two bottom corners (not used
inanalysis) of the tongue with mean absolute error loss. The regression
error of the fully trained network in testing datawas 3.1+ 5.4°for 8 and
0.00 £ 0.13 mmfor L (mean+s.d.). This performance was comparable
to humanlevel (Extended DataFig. 1b). Specifically, asubset of frames

(separate from testing data) was labelled by each of the five human
labellers. The variability in human judgement was quantified by the
differences between L and 6 from individual humans and the human
mean for each frame. We also computed the differences between L
and 6from the network and the human mean for each frame. The two
distributions showed a comparable variability, although the network
showed smallbiases (L: humans O + 0.11 mm, network—0.05 + 0.10 mm;
0:humans 0 +5.7°, network 3.3 + 5.5°; mean +s.d.).

Inasubset of trials and in frames classified as tongue-out, the third
network, aVGG13-based SegNet*, extracted the shape of the tongue by
semantic image segmentation, that s, classifying each pixel as belong-
ing to a tongue or not. Human labellers used a 10-vertex polygon to
encompassthe areaofthe tongueinatotal of 3,856 frames. The training
parameters were similar to the other networks except for amini-batch
size of eight and alearning rate of 1 x 107>,

Behavioural training

Behavioural sessions occurred once per day during the dark phase
and lasted for approximately 1 h or until the mouse stopped perform-
ing, whichever came earlier. Mice would receive all of their water from
these sessions, unless it was necessary to supply additional water to
maintainastable body weight. The amount of water consumed during
behaviour was measured by subtracting the pre-session volume of
water inthe dispenser from the post-session volume. Ondaysin which
their behaviour was not tested, they received 1 ml of water. Mice were
water restricted (1 ml daily) for at least 7 days before beginning train-
ing. Whiskers and hairs around the mouth were trimmed frequently
to avoid contact with the port.

The precise position of theimplanted headpost varied across mice,
soeachmouse required aninitial setup of the positions of the lick port.
Thelick port moved inanarcwithrespect toachosen origin (see ‘Task
control’). The origin was initially set at the midline of the animal and
2 mm posterior from the posterior face of the upper incisors. If there
was any yaw of the head, the whole arc was rotationally shifted accord-
ingly. The height of the lick port was manually adjusted until it was
approximatelylmm below theinterface between the upperand lower
lips when the mouth was closed.

In initial training sessions, the distance between the leftmost (L3)
and the rightmost (R3) lick port position was reduced, the radius of the
arcwasshortened and the water reward was larger. As mice learned the
task, boththe L3 to R3 distance and the radius of the arc were gradually
increased over afew days of training (Extended Data Fig. 1m). The dif-
ficulty of the task wasincreased whenever the mouse showed improve-
ments in performing the task at the current port distance, radius and
reward size. The difficulty remained constant intwo conditions: either
when the maximum set of parameters had been met (aradius of 5mm
for male mice and 4.5 mm for female mice) or if the mouse appeared
demotivated (typically indicated by a notable decrease in the num-
ber of trials and licks). During the initial training sessions, water was
occasionally supplemented at other points during the sequence to
encourage licking behaviour. The amount of water reward per trial was
eventually lowered to approximately 3 pl. For 3 of the 33 mice included
in this study, we first trained them to lick in response to the auditory
cuewiththelick port staying at fixed positions. After mice responded
consistently tothe go cue, we shifted to the complete task with gradu-
allyincreased difficulty. Although the three mice performed similarly
toothers whenwell trained, this procedure proved to be less efficient
than beginning with the complete task.

Once amouse had become adept at standard sequences, they were
trained on the backtracking sequences. The first nine fully trained
mice were used in backtracking related analyses; later, mice used for
other purposes were not always fully trained in backtracking. For five
of the nine mice, we first trained them with backtracking trialsin only
one direction and added the other direction once they mastered the
first. For three of the nine mice, backtrackingtrials and standard trials
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were organized into separate blocks of 30 trials each. In developing this
task, we tested subtle variations in the detailed organization of trial
types, such as varying the percentage of backtracking trialsin ablock,
or different forms of jumpsin the port position. Details appearin Sup-
plementary Table 1. Two of these three mice continued to perform the
block-based backtracking trials during recording sessions. All nine mice
eventually learned backtracking sequences but showed mixed learning
curves (Extended Data Fig. 2a, b). About three mice were more biased
towards previously learned standard sequences and tended to miss the
port many times before relocating the lick port through exploration.
The other six mice more readily made changes.

The shaping processes for zigzag sequences in a total of four mice
alldiffered. Empirically, however, training on standard sequences first
until proficiency and then on zigzag sequences could produce desir-
able performance.

Hearingloss

Hearing loss experiments were performed to exclude the possibility
that mice used sounds produced by the motors to localize the motion
of the lick port during sequence performance. To induce temporary
hearing loss (approximately 27.5 dB attenuation)*®, we inserted two ear-
plugs made of malleable putty (BlueStik Adhesive Putty, DAP Products
Inc.) into the openings of the ear canal bilaterally under microscopic
guidance. Earplugs were shaped like balls and then formed appropri-
ately to cover the unique curvature of each ear canal. When necessary,
the positioning of the earplugs was readjusted, or larger balls were
inserted. Five well-trained mice performed one ‘earplug’ session and
one control session. Mice did not have experience with earplugs before
the earplug session. In earplug sessions, mice were first anaesthetized
under isoflurane toimplant earplugs (taking 11-12.5 min), then were put
backinthe homecagetorecover fromanaesthesia (taking 10-11.5min),
and performed the task after recovery. In control sessions, mice were
anaesthetized for the same duration and allowed to recover for the
same duration before performing the task.

Odour masking

Odour masking experiments were performed to exclude the possibility
that mice used potential odours emanating from the lick port to localize
its position during sequence performance. A fresh air outlet (1.59 mmin
diameter) was placed in front of the mouse and aimed at the nose from
approximately 2 cm away with an approximately 45° downward angle.
We checked the coverage of air flow (2 LPM) by testing whether a water
droplet (approximately 3 pl) would vigorously wobble in the flow at various
locations, and confirmed that both the nose and all seven port positions
were covered. Before the test session, head-fixed mice were habituated
to occasional air flows when they were not performing sequences. Inthe
test session, the air flow was turned off first and turned on continuously
after the one-hundredth trial (in four mice) until the end of the session, or
turned on firstand turned off after the one-hundredth trial (in two mice).
The air-off period served as the control condition for the air-on period.

Tongue numbing

Tongue numbing experiments were performed to directly test whether
proper sequence execution depended on tactile feedback from the
tongue. The sodium channelblocker lidocaineis used clinically to block
signals from somatosensory afferentsinthe periphery. Before abehav-
ioural session, mice were anaesthetized under isoflurane, and a cotton
ball soaked with 2% lidocaine (for numbing) or saline (as control) was
inserted into the oral cavity, covering the tongue. After 10 min, the cot-
tonballwasremoved, the anaesthesia was terminated and the mice woke
up inabehavioural setup to perform standard sequences. As lidocaine
hasarelatively short half-life, we limited the analysis to trials performed
withinapproximately 30 min after removing the cotton ball. One of the
sixmice was excluded fromanalysis as it was unable to perform the task
within approximately 30 min after its tongue was numbed.

Electrophysiology

Two types of silicon probe were used to record extracellular potentials.
One (H3, Cambridge Neurotech) had a single shank with 64 electrodes
evenly spaced at20-pmintervals. The other (H2, Cambridge Neurotech)
had two shanks separated by 250 pm, where each shank had 32 elec-
trodes evenly spaced with 25-pm intervals. Before each insertion, the
tips of the silicon probe were dipped in either Dil (saturated), CM-Dil
(1mg ml™) or DiD (5-10 mg ml™) ethanol solution and allowed to dry.
Probe insertions were either vertical or at 40° from the vertical line
depending onthe anatomy of the recorded region and surgical acces-
sibility. Once fully inserted, the brain was covered with alayer of 1.5%
agarose and ACSF, and was left to settle for approximately 10 min before
recording. On the basis of the depth of the probe tip, the angle of pen-
etration and the position of these sites, the location of units could be
determined. Units recorded outside the target structure were excluded
from analysis.

Extracellular voltages were amplified and digitized at 30 kHz viaan
RHD2164 amplifier board and acquired by an RHD2000 system (Intan
Technologies). Nofiltering was performed at the data acquisition stage.
Kilosort™was used for initial spike clustering. We configured Kilosort to
high-passfilter theinput voltage time series at 300 Hz. The automatic
clustering results were manually curated in Phy for putative single-unit
isolation. We noticed a previously reported issue of Phy double count-
ing asmallfraction of spikes (with exact same timestamps) after manu-
ally merging certain clusters, thus duplicated spike times in a cluster
were fixed post-hoc to keep only one.

Cluster quality was quantified using two metrics (Extended Data
Fig.4a-c, e). The first was the percentage of inter-spike intervals vio-
lating the refractory period (RPV). We set 2.5 ms as the duration of the
refractory period and used 1% as the RPV threshold above which clusters
were regarded as multi-units. It has been argued that RPV does not rep-
resentan estimate of false alarmrate of contaminated spikes*>** as units
with low spike rates tend to have lower RPV, whereas units with high
spikerates tend to show higher RPV evenifthey are contaminated with
the same percentage of false-positive spikes. Therefore, we estimated
the contamination rate based onareported method®. A modification
was that we computed the mean spike rate of a cluster from periods
during which the spike rate was at least 0.5 spikes per second rather
than from an entire recording session. As aresult, the mean spike rate
reflected more about neuronal excitability than task involvement.
Any clusters with more than 15% contamination rate were regarded as
multi-units. Combining these two criteriain fact classified fewer single
units than using a single, although more stringent, RPV of 0.5%. A low
RPV can fail potentially well-isolated fast-spiking interneurons whose
inter-spike intervals can frequently be shorter than the set threshold.

Photostimulation

We used the ‘clear-skull’ preparation®, a method that greatly improves
the optical transparency of intact skull (see the ‘Surgery’ section), to
non-invasively photoactivate channelrhodopsin-expressing GABAe-
rgic neurons and thus indirectly inhibit nearby excitatory neurons
(Extended Data Fig. 3a).

Bilateral stimulation of the brain was achieved using a pair of optic
fibres (0.39 NA, 400-pum core diameter) that were manually positioned
above the clear skull before the beginning of each behavioural session.
These optic fibres were coupled to 470-nm LEDs (M470F3, Thorlabs).
Theillumination power was externally controlled via WaveSurfer (http://
wavesurfer.janelia.org). Each stimulation had a2-slong 40-Hz sinusoidal
waveform with a 0.1-s linearly modulated ramp-down at the end.
The peak powers inthe main experiments were16 mWand 8 mW. We used
the previously reported 50% transmission efficiency of the clear-skull
preparation® and report the estimated average power in the main text.
Therewasal0%chance of light delivery triggered at each of the following
pointsinasequence: cue onset, the middle touch or thefirst touch after
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water delivery. To ensure that the light from photostimulation did not
affect the performance of the mouse through vision, we set up amasking
light with two blue LEDs directed at each eye of the mouse. Each flash of
the masking light was 2 s long separated by random intervals of 5-10 s.
This masking light was introduced several training sessions in advance of
photostimulation to ensure that the light no longer affected the behav-
iour of the mouse. Inaddition, the optic fibres were positioned to shine
light from approximately 5 to 10 mm above the head of the mouse on
these days leading up to photostimulation.

Inasubset of silicon probe recording sessions (related to Extended
DataFig.3c-f), weused an opticfibre (0.3 NA, 400-um core diameter)
to simultaneously photoinhibit the same cortical region (within 1 mm)
oradifferent cortical region (approximately 1.5 or approximately 3 mm
away) via a craniotomy. The tip of the fibre was kept approximately
1 mm away from the brain surface. For testing the efficiency of pho-
toinhibition, the same 2-s photostimulation was applied but only at
the mid-sequence, with 7.5% probability for each of the four powers
(1,2,4 and 8 mW). For each isolated unit, the photo-evoked spike rate
was normalized to that obtained during the equivalent 2-s time window
without photostimulation. To avoid a floor effect, we also excluded
units that on average fired less than one spike during the no stimulation
windows. We classified units as putative pyramidal neurons if the width
of the average spike waveform (defined as time from trough to peak)
was greater than 0.5 ms, and as putative fast-spiking interneurons if
shorter than 0.4 ms or if units had more than twice the firing rate dur-
ing 8-mW photostimulations than during periods of no stimulation.

With the light powers we used in the main experiments (4 mW each
hemisphere), light within al-mm distance reduced the mean spike rate
of putative pyramidal cells (Extended Data Fig. 3c-e) by 91%, light at
approximately 1.5 mm away by 61%, and at approximately 3 mm away
by19%in behaving animals (Extended Data Fig. 3f). The mean spikerate
of putative fast-spiking neurons at approximately 3 mmaway was also
reduced by 19%, rather than showing an increase due to photoactiva-
tion, suggesting that the decreased activity of both pyramidal and
fast-spiking neurons was probably due toareduction of cortical input.
By contrast, light shined within1 mmincreased the mean spike rate of
fast-spiking neurons by 739% and at approximately 1.5 mm by 140%.

Histology

Mice were perfused transcardially with PBS followed by 4% PFAin 0.1M
PB. Thetissue was fixed in 4% PFA at least overnight. The brain was then
suspendedin 3% agarosein PBS. Avibratome (HM 650V, Thermo Scien-
tific) cut coronal sections of 100 pmthat were mounted and subsequently
imaged onafluorescence microscope (BX41, Olympus).Images showing
Diland DiD fluorescence were collected torecover the location of silicon
probe recordings. The plotted coordinates of recording sites (Fig. 2d)
were randomly jittered by £0.05 mm to avoid visual overlap.

General data analysis
All analyses were performed in MATLAB (MathWorks) version 2019b
unless noted otherwise.

The first trial and the last trial were always removed due to incom-
plete dataacquisition. Trials in which mice did not finish the sequence
before videorecording stopped were excluded from the analyses that
involved kinematic variables of tongue motion.

We assigned mice of appropriate genotypes to experimental groups
arbitrarily, without randomization or blinding. We did not use statisti-
calmethodsto predetermine sample sizes. Sample sizes are similar to
those reported in the field.

Behavioural quantifications

The duration of individual licks was variable. To average quantities
within single licks (Fig. 1, Extended Data Figs. 1, 2, 6), we first linearly
interpolated each quantity using the same 30 time points spanning the
lick duration (from the first to the last video frame of a tracked lick).

L’ was computed before interpolation. When the tongue was short,
the regression network showed greater variability in determining 8
and sometimes produced outliers. Thus, we detected and replaced
outliers using the MATLAB “filloutliers’ function (with ‘nearest’ and
‘quartiles’ options), and only included @when L was longer than1mm.
Inaddition, any ‘lick’ with a duration shorter than 10 ms was excluded.
For licks occurring at the most lateral positions, the tongue would
typically ‘shoot’ out and quickly but briefly reach a maximal deviation
frommidline (|61,,,) (Extended DataFig. 1g). Asaresult, the onset of touch
mostly occurred around |6],,.. When analysing licks that may or may not
have contact, we used 8,,,, defined as the 6when L reached 0.84 maxi-
mal L (L), tosuccinctly depict the lick angle (Extended Data Fig. 1g).
The instantaneous lick rate was computed as the reciprocal of the
inter-lick interval (ILI). Theinstantaneous sequence speed was defined
as the reciprocal of the duration from the touch onset of a previous
port position to the touch onset of the next.
Values in the learning curves (Extended Data Figs. 11, m, 2a, b) were
averaged in bins of 100 trials, with 50% overlap of consecutive bins.
Thebehavioural effects of photoinhibition (Extended Data Fig. 3j—m)
were quantified in two steps. First, we used 0.2-s time bins to com-
pute Og0r Lmax, the rate of licks and the rate of touches as functions
of time for each trial. The time series of SD(Oy;,,.) was computed from
binned Oy, across trials in each experimental condition and each ses-
sion. Second, bins within a time window during photoinhibition (or
equivalent time for trials without inhibition) were averaged to yield a
single number. The time window was typically 1 s following the start of
photoinhibition. The shorter window helped to minimize the effects
‘bleeding over’ from mid-sequence to initiation, and from consump-
tion to mid-sequence. However, this was not an issue for the consump-
tion period, and we instead used the 2-s window during which light was
delivered (Fig. 2¢, right; ‘Cons’ in Extended Data Fig. 3k, m). Figure 2b, ¢
presentsthe sameresults quantified in Extended DataFig. 3j,k but directly
plotting changesin means between conditions onschematic brainimages.

Standardization of ILIs within lick bouts

Owingtoindividual variability, different mice tended to lick at slightly
different rates within lick bouts. The same mouse might also perform
a bit faster in one sequence direction than the other. Evenin a given
direction, a mouse might start faster and then slow down allittle, or
go slower first and faster later. When aligning trials from heterogene-
ous sources, a10% difference in lick rate, for instance, will resultin a
complete mismatch (reversed phase) of lick cycle after only five licks.
Therefore, before the analyses that were sensitive to inconsistent lick
rates (Figs. 2e-h, 3, 4, Extended Data Figs. 4-7, except for Extended
Data Fig. 4f-h), we linearly stretched or shrunk ILIs within each lick
bouttoaconstant value of 0.154 s (thatis, 6.5 licks per second), which
isaround the overall mean. The lick timestamps used to compute ILIs
were the mid-time of the duration of each lick. A lick bout was opera-
tionally defined as a series of consecutive licks in which every ILImust
beshorter than1.5x the median of all ILIs in the entire behavioural ses-
sion. ILIs outside lick bouts were unchanged. For ease of programming,
we compensatorily scaled the time between the last lick of a trial and
the start of the next trial to maintain an unchanged global trial time.
Original time series, including spike ratesand L’, were obtained before
standardizing ILIs. After standardization, the behavioural and neural
time series were resampled uniformly at 400 samples per second.

Trial selection for standard and backtracking sequences

After standardizing lick boutILIs, we used a custom algorithm to select
agroup of trials with the most similar sequence performance. First,
all trials of the same sequence type in a behavioural session were col-
lected and atime window of interest was determined. In Fig. 2e~hand
Extended Data Fig. 4, we used 0-0.5 s from cue onset, -1to1s from
middle touch, and -0.5 to 0.7 s from last consummatory touch for
the respective periods. In Fig. 3, we used -1to 1s from middle touch.
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In Extended Data Fig. 6, we used -0.5to 1s from the first lick touching
water. Next, for each trial, we created three time histograms (with a
10-msbinsize): one foralllicks, one for all touches and one for touches
that triggered port movements. The three time histograms were then
smoothed by a Gaussian filter (100-ms kernel width,20-mss.d.). Con-
catenating themalong time gave asingle feature vector that depicts the
licking pattern and performance for the trial. Last, pairwise Euclidean
distances were computed among feature vectors of all candidate trials
and we chose a subset of n trials with the lowest average pairwise dis-
tance, thatis, those that have the most similar lick and touch patterns.
The number n was set to one-third of the available candidate trials
with aminimal limit of n =10 trials. We used this relatively low fraction
mainly to handle the greater behavioural variability in sequences with
backtracking. To handle trial-to-trial variability in sequenceinitiation
time (defined as the interval from the cue onset to the onset of the first
touch), whichwas not captured in our feature vectors, before clustering
we limited trials to those with asequenceinitiation time of lessthan1s.

Trial selection and subsequence matching for zigzag sequences
After standardizing lick bout ILIs, we limited candidate trials to those
with perfect sequence execution, that is, no missed licks or breaks.
To find the time shift that gave the best match between two subse-
quences, as illustrated in Fig. 4c, we first computed the median time
series of tongue angles (0) for each of the two sequence types. Next,
we identified the best time shifts as those corresponding to the peaks
ofa cross-correlogram between the two time series.

Analysis of zigzag sequences was intended to reveal whether neurons
encoded sequence context (that is, identity) during periods with the
same subsequence movements. To aid this purpose, we further selected
trials whose 6 were closest to the median 8 computed from trials of
either sequence type pooled together, unless the resulting number
of trials was less than one-third of all candidate trials.

Hierarchical bootstrap

Directly averaging trials pooled across animals assumes that data
from different animals, acquired in different sessions, come from
the same distribution. Potentially meaningful animal-to-animal and
session-to-session variability is thereby underestimated. To account
for this variability, where noted, we performed a hierarchical bootstrap
procedure® when computing confidence intervals and performing
statistical tests. In eachiteration of this procedure, we first randomly
sampled animals with replacement, then, from each of these resampled
animals, sampled sessions with replacement, and then trials fromeach
of theresampled sessions. The statistic of interest was then computed
from each of these bootstrap replicates.

PETH and NNMF clustering

Spike rates were computed by temporal binning (bin size of 2.5 ms)
of spike times followed by smoothing (15-ms s.d. Gaussian kernel).
The smooth PETHs were computed by averaging spike rates across
trials. Each unit had six PETHs: three time windows (for sequence ini-
tiation, mid-sequence and sequence termination) each in two stand-
ard sequences (left to right and right to left). We excluded inactive
units whose maximal spike rate across the six PETHs was less than 10
spikes per second. For the rest, we normalized PETHs of each unit to
this maximal spike rate.

To evaluate the consistency of neuronal spiking across trials, we
quantified the uncertainty in PETHs using a variant of bootstrap
cross-validation. Specifically, for each neuron and in a given run, we
randomly split the trials into two halves and computed PETHs with
each half. We then computed the root mean squared error (RMSE)
between the two sets of PETHSs, producing a single RMSE value. This
procedure was performed for every neuron and was repeated 200
times. The mean RMSE value for each neuron across the 200 runs is
shownin Extended DataFig. 4i.

To construct inputs to non-negative matrix factorization (NNMF),
the six PETHs of each unit were downsampled from 2.5 ms per sample
to 25 ms per sample and were concatenated along time to form asingle
feature vector.

NNMF is a close relative of principal component analysis (PCA)
and has gained increasing popularity for processing neural data®.
Thealgorithm finds a small number of activity patterns (non-negative
left factor, analogous to principal components in PCA) along with a
set of weights for each neuron (non-negative right factor), so that the
original PETHSs can be best reconstructed by weighted sums of those
activity patterns. As a result, a small number of activity patterns (or
dimensions) is usually able to capture the main structure of the original
PETHSs, and the weights of the neuron quantify the degree to whichits
activity reflects each pattern. In the context of clustering, each pattern
describesrepresentative activity of acluster, and the pattern with the
greatest weight for a neuron determines its cluster membership.

NNMF was performed using the MATLAB function ‘nnmf’ with default
options. Tofind the best number of clusters, we tested arange of num-
bers with bootstrap cross-validation to see what cluster number pro-
duced the most consistent cluster membership. In each bootstrap
iteration, NNMF with a given cluster number was applied using 50%
of randomly sampled neurons. The extracted activity patterns were
used to compute cluster memberships for the other 50% of neurons
that were held-out. This process was repeated 1,000 times. The final
cluster membership of aneuronwas the one that had the highest likeli-
hood of containing that neuron. We ran this method with the number
of clusters set to each value from 6 to 20, and found that 13 clusters
achieved the best consistency (Extended Data Fig. 4j), quantified as
the mean likelihood that a neuron was grouped in the same cluster
across all bootstrap iterations.

Quantification of rhythmic licking modulationin spike PETHs
Neuronal responses modulated by rhythmic licking should show a
modulation frequency that matches the rate of licks (approximately
6.5 licks per second during sequence execution), with a phase shift
that may vary from neuron to neuron. Therefore, we first quantified
the rhythmicity by fitting a sinusoidal function, f(¢) = A X sinQmw;;, ¢t +
®)+C,toeach PETH (Extended DataFig.4n), where the free parameter
@ shifts the function in phase, A and Cscale and offset the function
vertically to match the neuronal firing rate, and w;,. is a constant of 6.5.
Next, a Pearson’s correlation coefficient (r) was computed between a
mid-sequence PETH and its best-fitted sinusoids. Every neuron had
two rvalues, one for each sequence direction. The final rhythmicity
was represented by the average of the two (r,,,).

PCA

The input to PCA was the normalized spike rates of simultaneously
recorded single units and multi-units (Extended Data Fig. 4d).
The original spike rates were first computed by temporal binning
(2.5-ms bin size, that is, 400 samples per second) of spike times
followed by smoothing (15-mss.d. Gaussian kernel). To obtain normal-
ized spike rates, we divided the original spike rates by the maximum
spikerate or 5 Hz, whichever was greater. We adopted this ‘soft’ normali-
zation technique® to prevent weakly firing units from contributing as
much variance as actively firing units. The percent variance explained
by principal components was simply derived from the singular values.

Linear regression and decoding
Alinear model can be expressed as
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wheretisthe timeinarecordingsession, nis the number of simultane-
ously recorded units, y,is the behavioural variable at ¢, r\ is the normal-
ized spike rate of the i-th unit at ¢, w' is the regression coefficient for



the i-thunit, cisthe intercept, €,is the error term, and r] wis the matrix
notation form of the summed multiplications.

The normalized population spike rates were computed in the same
way as those for PCA. Note that, although the normalization was only
necessary for PCA, it did not affect the goodness of fit, R?, of linear
models. The behavioural variable was either tongue length (L), tongue
velocity (L’), tongue angle (6), sequence identity (/), target position
(TP) or relative sequence time (7) (Fig. 3a, Extended Data Figs. 5, 7).
L,L’and Owere directly available at 400 samples per second. However,
these variables had values only when the tongue was outside of the
mouth. Therefore, samples without observed values were either set
to zero (for L) or excluded from regression (for L’ and 8)./was defined
as lifthe sequence was from right to left and 2 if left to right. T simply
took sample timestamps as its values. TP was the same as /but defined
based on the upcoming sequence.

Predicting single responses with dozens of predictors is prone to
overfitting. Therefore, we chose the elastic-net* variant of linear regres-
sion (using the MATLAB function ‘lasso’ with ‘Alpha’ set to 0.1), which
penalizes big coefficients for redundant or uninformative predictors.
A parameter A controls the strength of this penalty. To find the best A,
we configured the lasso function to compute a tenfold cross-validated
meansquared error (cvMSE) of the fit for aseries of 1 values. The small-
est cvMSE indicates the best generalization, that is, the least overfit.
We conservatively chose the largest A value such that the cvMSE was
withinone standard error of the minimum cvMSE. For each model, we
derived the R? from this cvMSE and reported it in Fig. 3 and Extended
DataFigs.5, 7.

Linear decoding can be expressed as
D =Wt wirirwiri v w'rirc=rwtc
where y, is the decoded behavioural variable at ¢, w and c are the coef-
ficients obtained from regression, and r, is the vector of normalized
population spike rates at ¢. We did not perform additional
cross-validationin decoding because (1) 30% of the decoding for stand-
ardsequences (0.5-0.8sinFig.3and -1.3to-1sin Extended DataFig.7)
was from new data; (2) all decoding in backtracking sequences and
during consumption periods was from new data; and (3) the model has
been proven to be the best generalization via cross-validation when
selecting A.

The matrix notation form of the equation, r'w, shows that the linear
decoding canbe geometrically interpreted as projecting the vector of
population spike rates r onto the axis in the direction of vector w, and
reading outthelength of the projection (scaled by ||w||, plus the inter-
ceptc). Wetherefore referred to this axis as the coding axis. To compute
the variance explained for each coding axis, we first obtained its unit
vector and projected population spike rates ontoit. The variance of the
projected valuesis Var(explained). The total variance, Var(total), of the
population activity is the sum of variance of all units. Finally, variance
explained equals Var(explained) / Var(total) x 100%.

Support-vector machine classification

First, to prepare a denoised version of the predictors for more robust
classification, we performed PCA with normalized population spike
rates, and projected the spike rates onto the first 12 principal compo-
nents. The projected activity was then downsampled from 400 to 66.7
samples per second (Fig. 3f) or 200 samples per second (Fig. 4f, g) to
reduce subsequent computation time. Class labels were the sequence
identity values, including standard versus backtracking types (Fig. 3f),
or the two types of zigzag sequence (Fig. 4).

Classification was performed independently for each time bin with
the MATLAB ‘fitcsvm’ function. Linear kernels were used for all classifi-
cations. Trials were weighted so that the chance classification accuracy
was 0.5 even if the two classes did not have equal numbers of trials.
The results were computed with tenfold cross-validation. All other

function parameters were kept as the defaults. The null classification
results were obtained using the same procedure but with randomly
shuffled class labels.

Canonical correlation analysis

The canonical correlation analysis seeks linear transformations of two
vectors of random variables such that the Pearson’s correlation coef-
ficients between the transformed vectors are maximized:

arg maxcorr(UV), U;=a'X, V;=bY, i=1,2,....n

a;,b;

where Xand Y are vectors of random variables, a;and b; are transforma-
tion vectors for the i-thiteration, and n is the number of dimensions
inXorY,whicheveris smaller. Matrices Aand B will be used to represent
the concatenated transformation vectors across all iterations.

In the present analysis, X and Y were matrices of sampled data for
each session. X contained the time series of the decoded behavioural
variables (L, L’, 8, I, T; zero centred). Y contained the projection of
neural activity onto the top principal components obtained from PCA.
We focused our analysis on standard sequences, with a time window
of —0.5t0 0.8 s relative to the middle touch. The linearly decoded or
principal component-projected datawere averaged across trials with
the same sequence direction. Averaged data from the two sequence
directions were concatenated along time.

Canonical correlations were computed using the MATLAB ‘canon-
corr’ function between matrices with aselected subset of dimensions.
InFig.3d, Y was transformed using A™'B"Y so that the pattern could be
bestaligned with the patterns of X. InFig. 3e, n correlation coefficients
(r) quantified the correlation between each pair of U,and V.. The aver-
age racross the n values reflected the overall alignment between the
two transformed matrices.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability
Data are available from the corresponding author upon request.

Code availability

The MATLAB code used to analyse the data is available at GitHub and
from the corresponding author upon request.
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Extended DataFig.1|Behavioral measurements, performance, and
control experiments. a, Confusion matrix showing the performance of the
classification network. The numbers represent percentages within each (true)
class (n=1696 frames). b, Performance of the regression network. Top, the gray
probability distribution shows how L from five humanindividuals varied from
themean L across the five. Thered distribution shows how predicted L varied
from the human mean. Bottom, similar quantification as the top but for 6.
n=>573frames.c, CAD images of the sensor core (left) and the assembly (right)
withalicktube.d, Linear relationship between the applied force and the sensor
outputvoltage. e, Two example trials showing the trajectories of the tongue tip
whenamousesequentially reached the 7 port positions, for both sequence
directions. Arrows indicate the direction of time within each trajectory.

f, Patterns of kinematics and forces of single licks at each port position
(n=25683trials from 17 mice; mean + 95% bootstrap confidence interval).
Theduration of individual licks was normalized. g, Top, the pattern of angle
deviation from midline (|0]) of single licks pooled fromR3 and L3. The vertical
lineindicates maximum |6] (|6],,.,)- Middle, tongue length (L) expressed asa
fraction of its maximum (L ,.). The horizontal line indicates, on average, the
fraction where|0),,,, occurred. Bottom, time aligned probability distributions
showing when touch onset, [01,,4., L nax OF O500. 0Ccurred. Red lines mark
quartiles.n=25683 trials from17 mice. Lick patterns show mean + 95%

bootstrap confidenceinterval. h, Top, probability distributions of L .., and
6,0ucn for licks at each port position. Bottom, probability distributions of the
changein,,,,(40,,,,) andinstantaneous sequence speed (Methods) for each
interval separating port positions. Distributions show mean +s.d.acrossn=17
mice. i, Mediantimeto first touch (top) and the average number of missed licks
during sequence performance (bottom) in control (Sham) versus hearingloss
(Earplug) conditions. Bars show group means and lines show data from
individual mice. s p <0.001, n.s.p > 0.05, paired one-tailed bootstrap test,
n=>5mice.j, Average number of missed licks before first touch (top) and during
sequence performance (bottom) in control (Normal) versus odor masking
(Masked) conditions. Same statistical testsasin (i), n = 6 mice.k, Similar to

(j) but comparing control (Saline) versus tongue numbing (Lidocaine)
conditions.n=5mice.l, Learning curves for 15individual mice (gray) and the
mean (black) showingareductioninsequence initiation time (left) inresponse
totheauditory cueandanincreaseinsequence speed (right). The threered
asterisks correspond to the three examples of sequence performance shownin
(n).m, Gradualincrease in task difficulty (Methods) accompanying the
improved performance shownin (I). n, Depiction of example sequences
performed by amouse inalternating directions across consecutive trials at
different stages of learning. Trial onsets are marked by yellow bars. Port
positionsshownintheblack trace are overlaid with touch onsets (dots).
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Extended DataFig. 2| Performance inbacktracking sequences. a, Learning
curvesfor9individual mice (gray) and the mean (black) showing the duration
of time spent to performstandard (left) and backtracking (right) sequences.

b, Similar to (a) but limited to the interval following the middle lickin standard
(left) or backtracking (right) sequences. c, L, L’and O patterns for seven
consecutivelicks aligned at the Mid touch (number 0). Licks in standard
sequences (n = 7458 trials) are showninblack, those in backtracking sequences
(n=2695trials) areingreen.Mean s.d.d, Probability distributions of
instantaneous lick rate for each interval separating consecutive pairs of the
seven licks during standard (black) or backtracking (green) sequences (n=8
mice; meants.d.).e, Top, timetolocate the portatits next positionduringthe
4thinterval, for standard sequences (black) or for sequences when the port
backtracked (green). Bottom, the number of missed licks during the 4th
interval. Mean+95%bootstrap confidence interval. n = 7458 standard and 2695
backtracking sequences from 47 total sessions.
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Extended DataFig. 3 |See next page for caption.



Extended DataFig. 3| Closed-loop optogeneticinhibition defines cortical
areasinvolvedinsequence control. a, Left, dorsal view of an example “clear-
skull” preparation. Right, table shows the center coordinates used for
illumination for each targetregion. b, Triggering scheme for photoinhibition at
sequence initiation, mid-sequence and water consumption. ¢, Average spike
waveform of putative pyramidal cells (black; n =224) and putative FS neurons
(blue; n=117), normalized to the amplitude of negative peaks. d, Relationship
between spike widths (defined as the trough to peak time of average waveform)
and changesin mean spike rate under optoillumination (4 mW, within1 mm)
relative to baseline. Pyramidal cells (black; n =42) and FS neurons (blue; n = 41)
were classified by the two thresholds (dashed lines at 0.4 and 0.5 ms) with
ambiguous units (gray; n = 6) inthe middle. e, Distributions of spike widths
fromneuronsin (d) (filled bars; n=89) and from all neurons (empty bars;
n=414) including those where illuminations were not at recording sites.
Classification thresholds are shownin dashed lines. f, Left, inhibition efficiency
of putative pyramidal cellsas a function of light power and distance away from
the center of illumination (n = 224 units total). Right, similar to left but showing
the excitation efficiency of putative FS neurons (n =117 units total). Mean + 95%

hierarchical bootstrap confidenceinterval. g, Example trial with S1TJ inhibition
triggered at mid-sequence. Instantaneous tongue angle (0) and length (L) are
showninlighter traces. Shooting angles (O,,,) and maximum length (L ,,,,) of
eachlick are marked using stems ontop of the instantaneous traces. The blue
waveformindicates photostimulation. Traces and markers during
photostimulation are colored blue. h, Similar to (g) but inhibiting ALM-MIT].
i, Similar to (g) butinhibiting S1BF.j, Changes in licking kinematics (rows) when
inhibiting each of the five brain regions (columns), quantified across all three
inhibition periods (Methods). Bar plots show mean +99% hierarchical
bootstrap confidence interval. Gray lines show the data of individual mice.
Two-tailed hierarchical bootstrap test, s+ p < 0.001, x* p < 0.01, * p<0.05,n.s.
p >0.05, after Bonferroni correction for 15 comparisons. k, Changesin therate
oflick (solid bars) and touch (dashed bars) at each of the inhibition periods
(rows) wheninhibiting each of the five brain regions (columns). Plot style and
statistical testsare the same asin (j) but using Bonferronicorrection for 30
comparisons.l,Same convention asin (j) but showingresults with half-power
(2 mW) inhibition.m, Same convention as in (k) but showing results with half-
power (2 mW) inhibition.
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Extended DataFig. 4 |Characterization of single-unit responses.

a, Contaminationrates and refractory period violation rates of all recorded
single- (green) and multi-units (black). The shaded region shows the thresholds
for assignment as multi- vs single-unit. b, CDF of contamination rate including
single- (green) and multi-units (gray). ¢, Same as (b) but for refractory period
violationrate.d, The number of single- (green) and multi-units (black)
recordedin eachsession, groupedbybrainarea.e, ISI histograms of

randomly selected single-units. Refractory period violation rates (RPV) and
contaminationrates (Con) are labeled on the top (in percent). f, Responses of
three simultaneously recorded S1T) neurons during right-to-left (top half) or
left-to-right (bottom half) licking sequences, aligned at cue onset (left
column), middle touch (middle column), and the last consummatory touch
(right column). For each sequence direction, the first row shows rasters of lick
times (touchesinblack and missesin gray) from10 selected trials (Methods).
Stacked below arespikerastersand the corresponding PETHs (mean +s.e.)
fromthesame10 trials for each example neuron. g, Same as (f) but for three
example neurons from M1T]J. h, Same as (f) but for three example neurons from
ALM.i, Uncertainty in mean spike rate (normalized to peak) estimated by
bootstrap crossvalidation (Methods). Each data pointis the bootstrap average
value of the root meansquared error (RMSE) for asingle neuron. Data (n =804
neurons) are grouped by brainregion and presented in whisker-box plots

(centre mark: median, bounds of box: 25th and 75th percentiles, max whisker
length: 1.5 times IQR, no max or min limit). j, The probability (mean +95%
bootstrap confidence interval) of aPETH being consistently groupedinto the
same cluster across bootstrapiterations for different total numbers of
clusters. Maximal consistency was achieved when using thirteen clusters for
NNMF (arrow). k, NNMF components that represent each of the thirteen PETH
clusters. Right-to-left (blue) and left-to-right (red) activities (mean + 95%
bootstrap confidenceinterval) are overlaid together. The vertical lines are
located attime zeroin each period. The height of the lines represents the scale
of normalized neuronal activity from O to 1.1, Histograms of PETH peak times.
Plot organizationand time alignment are the same as in (f). m, Proportions of
neurons from different clusters at different cortical depths. Some clusters with
similar types of response were grouped together for better readability. ALM
(n=324), M1TJ (n =233) and S1TJ (n =119). n, Quantification of rhythmicity in
PETHSs. Black traces are mid-sequence PETHs of three example neuronsin

(), (g),and (h). Colored traces show the best fit licking rhythms (6.5 Hz sinusoids).
Average Pearson’s correlation coefficients (r,,,) of the left-to-right and right-to-
left fits are shown beneath neuronIDs. o, Empirical CDFs of r,,. for neuronsin
S1TJ, M1TJ, and ALM. Circles mark the values of the 9 example neuronsin

(F), (), and (h).
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Extended DataFig. 5| Additional analyses for population coding. a, Relative
goodness of fit of tongue angle regressions with arange of shifts in spike times.
Black traces and error bars show mean + 95% bootstrap confidence interval.
Lighter traces show individual recordings. (S1TJ, n = 8 sessions; M1TJ),n=9
sessions; ALM, n =13 sessions). b, Absolute pairwise Pearson’s correlation
coefficientsamongthe five behavioral variables (mean; n = 35 sessions).

¢, Single-trial decoding of the five behavioral variables (rows; black traces)
from 29 simultaneously recorded S1TJ unitsin aright-to-left (left) and a
left-to-right (right) sequence.d, Same as (c) but decoding from 58 simultaneously
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recorded unitsin ALM. e, Total percent variance explained (VE) by the first five
principal components (leftin eachregion) versus that by the five coding axes
(rightineachregion) during sequence execution. Lighter lines show individual
recording sessions and thicker lines show the means. f, Absolute pairwise
cosine values among coding axes (mean; n =35 sessions). g, Cumulative time
histograms showing the fraction of trials that could be correctly classified asa
standard vs backtracking sequence as time progresses. Two-tailed bootstrap
test, s« p =0,n.s.p=0.91. h,Same as sequence progress in Fig.3a, b, but for
“zigzag” sequences.
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Extended DataFig. 6 | Reward modulation ofactivity in ALM. a, Responses
oftwo simultaneously recorded ALM neurons (number 1and number 2) aligned
atthefirstlick (specifically the middle of atongue-out period) that touched
water reward. For each sequence direction, shown at top arerasters of lick
times (touchesinblack and missesin gray) and the duration of water delivery
(blue) from 20 selected trials (Methods). Stacked below are spike rasters and
the corresponding PETHs from the same 20 trials for each example neuron.

b, The probability of licking (i.e. tongue-out) as a function of time. Licks are
sequentially indexed with respect to the firstlick (number 0) touching the

water. ¢, Patterns of kinematics and force for single licks around the first lick
(number 0) touching water (n = 25289 trials; mean + 95% bootstrap confidence
interval). The duration of individual licks was normalized. The total force (F,y.,)
isthevector sum of vertical and lateral forces.d, Decoding of 7,/and 8 (mean +
99%bootstrap confidence interval) from neuronal populations recorded in
ALM (n =13 sessions), MIT]J (n =9 sessions), and SITJ (n = 8 sessions) in
right-to-left (blue) or left-to-right (red) trials around the consumption period.
e, Thedifference between the decoded ftracesinright-to-left versus
left-to-right trials. Same datasource, meanand error presentationasin (d).
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Extended DataFig.7|Coding ofupcomingsequencesinALM. a, Depiction
ofsequences performed by amouse in alternating directions across 14
consecutive trials. Trial onsets are marked by yellow lines. Port positions shown
intheblack traceare overlaid with touch onsets (dots). b, Probability
distributions of @, (left) and L ,,,, (middle) for the first 3licks at the start of a
sequence (n =8 mice; mean +s.d.). The negative y-axis of O, points to the side
atwhichtheportislocated. The CDF (right; 8 individual micein gray and the
meaninblack) of the maximal O,,,,, explored before touching the port (at the
side of negative O,,,,). The blue line shows the probability of successfully
locating the port without exploring beyond the midline. ¢, Top, rasters of two
example neurons which had persistent and target position (TP) selective firing
duringthe 14 consecutive trialsin (a). Bottom, normalized and smoothed
(0.25ss.d. Gaussian kernel) spike rates of the two neurons. d, Decoded
instantaneous TP (dark trace) from 58 simultaneously recorded unitsin ALM,
overlaid with normalized port position (light trace). e, Decoding of TPfrom
ALM (mean +99%bootstrap confidence interval) before upcoming right-to-left
trials (blue) or left-to-right trials (red). Crossvalidated R?is shown (mean +s.d.;
n=13sessions). f, Goodness of fit for linear models that predict TP during ITIs,
quantified by crossvalidated R?. g, Using the same linear modelsin (e) to
decode TPduring execution of standard right-to-left (blue) or left-to-right (red)
sequences (mean+99%bootstrap confidence interval). h, Same as (f) but for 7.
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Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
IZ] The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

IZ] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

E The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

IZ] A description of all covariates tested
E A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

IZ] A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

IZ] For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

D For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

E For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OO0 O OO0 O000s

Iz] Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Custom code was used to control the behavioral task and to collect behavioral event data. Two GitHub repositories contain the relevant code:
https://github.com/oconnorlab/satellites/tree/d70b07ab682d5ba0daedef7215d4fac4el17c¢1f92, https://github.com/oconnorlab/
Xu_et_al_2021/commit/f8ab3bbc832e7abc7673ad9636f118473dd3a49e. These URLs refer to the specific commit.

Data analysis Custom code was used to analyze the data, which can be found in this GitHub repository: https://github.com/oconnorlab/Xu_et_al_2021/
commit/f8ab3bbc832e7abc7673ad9636f118473dd3a49e. The URL refers to the specific commit.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unigue identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data are available from the corresponding author upon request, or via publicly available download at the following URL: https://www.dropbox.com/
sh/7zjrxdypgn39i9k/AADISUxmSfnJRIe4vUWFpnzsa?dI=0.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes used in this study are comparable to the typical sample sizes in the field, e.g.
Guo, Z. V. et al. Flow of Cortical Activity Underlying a Tactile Decision in Mice. Neuron 81, 179-194 (2014)
Li, N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532, 459-464
(2016). We did not use statistical methods to predetermine sample sizes.
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Data exclusions Mice, behavioural/recording sessions, or trials with incomplete data acquisition were excluded from relevant analyses.

Replication All experiments were replicated in a range from 5 to 17 mice, each with one or more independent behavioral/recording sessions.
Randomization We assigned mice of appropriate genotypes to experimental groups arbitrarily without randomization.

Blinding We did not apply blinding because 1) different trial types were pseudo-randomly generated by programs during runtime, and were processed

automatically and identically by the same code, and 2) all experiments had within-animal controls.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [x]|[ ] chiP-seq
Eukaryotic cell lines [Z‘ [:‘ Flow cytometry
Palaeontology and archaeology [Z] [:] MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern

<] ] [x] [ (%] ] [x] &
OOoO0xOO0O

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Fifteen mice (12 male, 3 female, 4 to 9 months) were obtained by crossing VGAT-IRES-Cre (Jackson Labs: 028862; B6J.129S6(FVB)-
Slc32a1tm2(cre)Lowl/Mwar]) with Ai32 (Jackson Labs: 012569; B6;129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/)) lines.
Two (1 male, 1 female, 5 months) were heterozygous VGAT-ChR2-EYFP (Jackson Labs: 014548; B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)
8Gfng/J) mice. Twelve (9 male, 3 female, 3 to 8 months) were wild-type mice, including nine C57BL/6J (Jackson Labs: 000664) mice,
one wild-type littermate for each of VGAT-ChR2-EYFP, TH-Cre (Jackson Labs: 008601; B6.Cg-7630403G23RikTg(Th-cre)1Tmd/J), and
Etv1-Cre-/- (Jackson Labs: 013048). Two were male TH-Cre mice (5 and 6 months). Two (1 male, 1 female, 2 months) were Advillin-
Cre (Jackson Labs: 032536; B6.129P2-Aviltm2(cre)Fawa/J) mice.

Wild animals The study did not involve wild animals.
Field-collected samples The study did not involve samples collected from the field.
Ethics oversight All procedures were in accordance with protocols approved by the Johns Hopkins University Animal Care and Use Committee

(protocols: MO18M187, MO21M195).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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