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Synthon-based ligand discovery in virtual 
libraries of over 11 billion compounds

Arman A. Sadybekov1,2,11, Anastasiia V. Sadybekov1,2,11, Yongfeng Liu3,6,11, Christos Iliopoulos-Ts
outsouvas5,11, Xi-Ping Huang3,6, Julie Pickett3,6, Blake Houser2, Nilkanth Patel1, Ngan K. Tran5, 
Fei Tong5, Nikolai Zvonok5, Manish K. Jain3, Olena Savych7, Dmytro S. Radchenko7,8, 
Spyros P. Nikas5, Nicos A. Petasis2, Yurii S. Moroz8,9, Bryan L. Roth3,4,6 ✉, 
Alexandros Makriyannis5,10 ✉ & Vsevolod Katritch1,2 ✉

Structure-based virtual ligand screening is emerging as a key paradigm for early drug 
discovery owing to the availability of high-resolution target structures1–4 and 
ultra-large libraries of virtual compounds5,6. However, to keep pace with the rapid 
growth of virtual libraries, such as readily available for synthesis (REAL) combinatorial 
libraries7, new approaches to compound screening are needed8,9. Here we introduce a 
modular synthon-based approach—V-SYNTHES—to perform hierarchical 
structure-based screening of a REAL Space library of more than 11 billion compounds. 
V-SYNTHES first identifies the best scaffold–synthon combinations as seeds suitable 
for further growth, and then iteratively elaborates these seeds to select complete 
molecules with the best docking scores. This hierarchical combinatorial approach 
enables the rapid detection of the best-scoring compounds in the gigascale chemical 
space while performing docking of only a small fraction (<0.1%) of the library 
compounds. Chemical synthesis and experimental testing of novel cannabinoid 
antagonists predicted by V-SYNTHES demonstrated a 33% hit rate, including 14 
submicromolar ligands, substantially improving over a standard virtual screening of 
the Enamine REAL diversity subset, which required approximately 100 times more 
computational resources. Synthesis of selected analogues of the best hits further 
improved potencies and affinities (best inhibitory constant (Ki) = 0.9 nM) and CB2/CB1 
selectivity (50–200-fold). V-SYNTHES was also tested on a kinase target, ROCK1, 
further supporting its use for lead discovery. The approach is easily scalable for the 
rapid growth of combinatorial libraries and potentially adaptable to any docking 
algorithm.

Standard libraries for high-throughput screening (HTS)10 and virtual 
ligand screening (VLS)11–13 have been historically limited to fewer 
than 10 million available compounds, which is a small fraction of the 
enormous chemical space, estimated to be 1020 to 1060 drug-like com-
pounds14,15. This limitation of standard HTS and VLS slows the pace 
of drug discovery, usually yielding initial hits with modest affinities, 
poor selectivity and ADMET profiles that require elaborate multistep 
optimization to gain lead- and drug-like candidate properties. Recently, 
ultra-large libraries of more than 100 million readily accessible (REAL) 
compounds have been developed and used in docking-based VLS, yield-
ing high-quality hits for lead discovery5,6. The Enamine REAL library, 
which now comprises 1.4 billion compounds, and its REAL Space exten-
sion with more than 11 billion drug-like compounds, take advantage of 

modular parallel synthesis with a large set of optimized reactions and 
building blocks (synthons)6. This makes the synthesis of potential hit 
compounds fast (less than 4–6 weeks), reliable (>80% success rate) 
and affordable.

The modular nature of REAL libraries supports their further rapid 
growth way beyond 10 billion drug-like compounds16. However, 
with increasing library sizes, the computational time and cost of 
docking-based VLS itself become the next bottleneck in screening, 
even with massively parallel cloud computing capacities. For example, 
the docking of 10 billion compounds at a standard rate of 10 s per com-
pound would take more than 3,000 years on a single CPU core, or cost 
over US$800,000 on a computing cloud. The ability to substantially 
reduce the computational burden of VLS without compromising the 
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accuracy of docking or losing the best-hit compounds would remove 
this bottleneck and assure broad accessibility of gigascale screening. 
Recently, an iteration of docking and machine learning steps9, or step-
wise filtering of the whole enumerated library using docking algorithms 
of increasing accuracy8, were suggested to tackle ultra-large libraries 
of 138 million and 1.4 billion compounds, respectively. However, these 
methods still require vast computational resources that scale linearly 
with the growing number of compounds.

Here we present the virtual synthon hierarchical enumeration 
screening (V-SYNTHES) approach, which takes full advantage of the 
modular building block organization of the Enamine REAL Space, 
does not need full enumeration of the library and requires thousands 
of times less computational resources than standard VLS without 
compromising docking accuracy at any step. Moreover, the algo-
rithm cost scales linearly with the number of synthons, or as the 
square or cubic root of the whole library size (O(N1/2) and O(N1/3) for 
two-component and three-component reactions, respectively). 
Such performance of V-SYNTHES relies on the initial docking of a 
prebuilt set of the fragment-like compounds representing all of the 
library reaction scaffolds and corresponding synthons. The best 
selected scaffold–synthon combinations are then enumerated, and 
the resulting focused library is docked again to select fully elaborated 
hits. These iterations help to focus on a small fraction (<0.1%) of the 
best synthons, therefore substantially reducing the combinatorial 
chemical space for docking.

The approach is applied here to cannabinoid receptors, which are 
class A G-protein-coupled receptors (GPCRs), and are key targets in 
drug discovery for inflammatory disorders, neurodegenerative dis-
eases and cancer17–19. V-SYNTHES enabled us to speed up prospec-
tive screening of the 11-billion-compound REAL Space library more 
than 5,000 fold by iteratively docking only around 2 million full com-
pounds. Moreover, experimental validation showed that V-SYNTHES 
doubled the success rate in the discovery of CB hits as compared to a 
standard VLS screen of the REAL diversity subset of 115 million com-
pounds (33% versus 15%). Similarly, application of V-SYNTHES to the 
kinase target ROCK1 yielded a 28.5% hit rate, including ligands with 
nanomolar affinity and potency. The new approach provides a practi-
cal alternative for fast screening of growing gigascale modular virtual 
libraries, helping to identify leads that are suitable for fast optimiza-
tion in the sa me REAL Space.

The REAL Space virtual library
The V-SYNTHES approach has been implemented for the REAL Space 
virtual library, which comprises more than 11 billion readily accessible 
compounds based on optimized one-pot parallel synthesis developed 
by Enamine, involving 121 reaction protocols and 75,000 unique rea-
gents. The reaction protocols include single and multistep procedures 
that involve two (102 reaction protocols) or three (17 reaction protocols)  
starting reagents. In this study, we used only two-component and 
three-component reactions, yielding around 500 million and around 
10.5 billion compounds, respectively. The V-SYNTHES approach can 
easily be expanded to four-component and more reactions when they 
become a substantial part of REAL Space. Each reaction/scaffold in the 
library is presented in the form of a Markush scheme with two or more 
R groups representing synthons7,20.

The high diversity of the REAL Space is achieved by using diverse sets 
of starting reagents. The average numbers of starting reagents per proto-
col are as follows: for two-reagent reactions, 3,344 (reagent 1) and 2,068 
(reagent 2); for three-reagent reactions, 939 (reagent 1), 1,308 (reagent 2)  
and 1,389 (reagent 3). The modular design of the library is based on 
well-established and optimized reactions and an automated one-pot 
parallel synthesis approach, enabling fast synthesis (less than 4–6 
weeks) with a high success rate (>80%) and guaranteed high purity 
(>90%).

The V-SYNTHES screening approach
The V-SYNTHES approach involves iterative steps of library prepara-
tion, enumeration, docking and hit selection as outlined in Fig. 1. In 
preparatory step 1, we generate a library of fragment-like compounds 
representing all possible scaffold–synthon combinations for all reac-
tions in the whole Enamine REAL Space, which we refer to as a minimal 
enumeration library (MEL). The MEL compounds are built from the reac-
tion scaffolds, enumerated with the corresponding synthons at one of 
its R positions, while the other R position(s) are capped with a special 
minimal synthon according to the reaction specified for this R position 
(Fig. 1). This capping, which usually contains methyl or phenyl moieties, 
is needed to convert the reactive groups of the scaffold into a chemical 
form that corresponds to the full compounds (such as primary amine 
into methyl-amide or secondary amine), to better match the binding 
properties of the full compounds. As only one of the R groups is fully 
enumerated, and the others are just systematically capped, the MEL 
library size is of the same order as the number of synthons in the REAL 
Space, that is, only about 600,000 compounds. This MEL preparation 
step is performed once for the REAL Space library and does not depend 
on the target receptor.

In step 2, the MEL compounds are docked onto the target recep-
tor using energy-based docking of the flexible ligand. The results of 
docking, including the predicted binding scores and ligand–recep-
tor interaction information, typically for a few thousand top-scoring 
compounds, are then used to select the most promising fragments 
for the next enumeration. The selection is also filtered for diversity, 
including a rule that a single reaction cannot contribute more than 
20% of the selection.

Step 3 involves the iterative enumeration and docking of the best 
MEL compounds selected in step 2. On each iteration, the com-
pounds are enumerated such that one of the capped R groups is 
replaced by a full range of corresponding synthons from the library. 
For example, for two-component reactions with only two R groups, 
a single step-3 iteration completes the molecule, representing a 
full compound from the REAL Space. For three-component and 
more reactions, two and more iterations are performed, replac-
ing one by one the minimal caps with real R group synthons. Thus, 
each ‘hit’ MEL compound selected in the previous iteration step is 
combinatorially ‘grown’, resulting in fully enumerated compounds 
from the REAL Space.

Finally, step 4 performs the docking screen on the final enumer-
ated subset of the library. The several thousands of top-ranked VLS 
hits undergo postprocessing filtering for PAINS21, physico-chemical 
properties, drug likeness, novelty and chemical diversity to select a 
final limited set (typically 50–100) of compounds for synthesis and 
experimental testing.

The premise of this approach is to enrich the MEL library on step 2— 
and then each subsequent iteration library—with scaffold–synthon 
combinations that have high binding scores in the pocket and are suit-
able for further enumeration. Owing to the modular combinatorial 
nature of the REAL Space library, narrowing down the most promising 
scaffold–synthon combinations considerably reduces the enumerated 
chemical space for docking, for example, from 11 billion to 2 million 
compounds in our case.

Structure-guided selection of fragments
Selection of synthons in step 2, if based solely on binding scores, can 
already offer substantial library enrichment for example, there are an 
estimated 40 times more high-scoring compounds in the final itera-
tion library than in the random subset of the full REAL Space library 
(Extended Data Fig. 1). At the same time, we found that the perfor-
mance of the iterative approach can be further improved by taking 
into account docking poses of the compounds and, specifically, 
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positions of the minimal capping R group. Thus, docking the frag-
ments into a binding pocket can result in two conceptually differ-
ent outcomes. The first, ‘productive’ outcome, is when the minimal 
capping group of the docked MEL ligand is positioned in the pocket 
in such a way that it can be replaced by real, bulkier synthons from 
the library  in the next step of enumeration. This requires the cap 
to be pointing towards the unoccupied part of the pocket and not 
being blocked by the pocket residues. A second, ‘non-productive’ 
outcome is when the minimal cap at one of the R positions is directly 
pointing towards the receptor residues at the dead-end subpocket, 

where it does not have space to grow. Another non-productive situ-
ation is when the capping R group is pointing outside of the pocket, 
where useful contacts are much less likely. To select productive hits, 
we used an automated procedure that checks the distance from the 
cap atoms to selected (dummy) atoms at the dead-end subpockets. 
The corresponding rules in implementation for the CB2 receptor 
are described in Extended Data Fig. 2. The docked MEL compounds 
for which their cap atoms approached the dead-end atoms closer 
than 4 Å were excluded from further consideration even if they had 
high-ranked binding scores.
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Fig. 1 | V-SYNTHES approach to modular screening of Enamine REAL Space. A general overview of the four-step algorithm (left) and examples for each step 
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Screening CB receptors with V-SYNTHES
The V-SYNTHES approach was then applied to screen 11 billion 
REAL Space compounds using the recently solved representative 
CB2R structure in complex with an antagonist (Protein Data Bank 
(PDB): 5ZTY) as a template22. We performed separate screening for 
two-component and three-component reactions of the library, rep-
resenting around 500 million and around 10.5 billion virtual com-
pounds. Note that V-SYNTHES required docking of only 1 million 
and 0.5 million compounds, respectively, for these libraries in the 
last enumeration step, reducing the computational cost of screening 
more than 5,000-fold.

To computationally benchmark the performance of V-SYNTHES 
versus a standard VLS procedure, we also generated randomized 1 mil-
lion and 0.5 million compound subsets from the same two-component 
and three-component REAL Space and assessed them in standard VLS 
using the same receptor model and same docking parameters. Note 
that the full 11-billion-compound REAL Space library is not amena-
ble to standard VLS with any reasonable computational resources. 
Figure 2 compares the screening performance of V-SYNTHES with 
the  standard VLS benchmark  over the range of docking score 
thresholds. The results show that V-SYNTHES detected many more 
high-scoring compounds with much better scores than standard VLS 
that involved docking of the same number of compounds. Thus, the 
best two-component compound identified by V-SYNTHES scored 
7 kJ mol−1 better than the very best hit from standard VLS; the differ-
ence was 6.5 kJ mol−1 for three-component compounds. Moreover, 
two-component REAL Space V-SYNTHES identified 84 compounds 
with binding scores that were better than the very best compound 
from standard VLS; this number was 136 for the three-component 
space.

To systematically characterize the enrichment for high-scoring 
compounds in the final step of V-SYNTHES versus a random subset 
of the whole library, we introduced the enrichment factor. At a given 
docking score threshold, the enrichment factor is calculated as a ratio 
of the number of candidate hits detected in the V-SYNTHES final-step 
enumerated library versus a random subset of REAL Space with the 
same number of compounds, as shown in Fig. 2c, d.

Note that, at the −30 kJ mol−1 binding score threshold, V-SYNTHES 
already yields around a 40–50-fold higher number of potential hits from 
two-component (>10,000 hits) and three-component space (>5,000 

hits) compared with standard VLS. This enrichment further increases 
for more restrictive thresholds, reflecting the focus of V-SYNTHES 
on the iterative selection of the very-best-scoring compounds. One 
relevant way of measuring the enrichment factor is to set the dock-
ing score threshold such that it selects the 100 top-scoring com-
pounds (EF100), where 100 is a typical number of compounds selected 
in VLS campaigns for synthesis and experimental testing. For the 
two-component reaction, this enrichment factor was estimated as 
EF100 = 250. This is approaching the theoretical limit of ideal enrich-
ment of around 500, which would be achievable if all possible hits from 
the full chemical space of 500 million compounds were present in the 
1-million-compound final enumerated library. For the three-component 
reactions, the EF100 = 460 is even higher and sufficient for practical use, 
although further from the theoretical limit of 20,000.

The enrichment factor evaluation did not take into account 
computational efforts for the initial docking of MEL compounds  
(and intermediate library for three-component). However, these initial 
steps add only limited computational costs to V-SYNTHES screens 
(~20% for two-component and 35% for three-component), as smaller 
fragment-like compounds in the MEL library dock much faster on 
average compared with the larger and more flexible compounds. 
Considering the full computational cost at all of the iterative steps, 
the acceleration of V-SYNTHES as compared with standard screen-
ing for the identification of the 100 top candidate hits at the same 
score threshold can therefore be evaluated as around 200-fold for 
two-component and 300-fold for three-component compounds in 
the current benchmark.

Selection and synthesis of candidate hits
To select the best V-SYNTHES hits for chemical synthesis and in vitro 
testing at CB receptors, we applied a standard post-processing 
procedure to the top-ranking 5,000 candidate hits, which included  
(1) filtering out compounds with potential PAINS properties and low 
drug-likeness; (2) filtering out compounds with high similarity to 
known CB1/CB2 ligands in ChEMBL; (3) redocking initial hits at a higher 
docking effort; and (4) clustering and selecting a limited number of 
the best compounds from each cluster to maintain a higher diver-
sity of the final set. The final selected set included 80 compounds, 
of which 60 were synthesized with >90% purity and delivered by 
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Enamine in less than 5 weeks. The details of this selection procedure 
are provided in Extended Data Fig. 3. A list of all of the synthesized 
compounds from the V-SYNTHES screening is provided in Supple-
mentary Table 1, and details of compound synthesis and quality con-
trol are provided in the Supplementary Methods and source data).

Characterization of new CB ligands
Initial functional characterization of 60 new candidate ligands pre-
dicted by V-SYNTHES identified 21 compounds with antagonist activity  
(>40% inhibition at 10 μM concentration) at human CB1, CB2 or both 
in the β-arrestin recruitment Tango assay (Supplementary Figs. 1 and 
2). Three compounds—673, 505 and 599—showed weak partial CB2 
agonism at 10 μM and or 3 μM, they also behaved like antagonists in 
the antagonism assays. The primary hits were tested for their antago-
nist potency in full 16-point dose–response assays at CB1 and CB2 in the 
presence of a fixed 100 nM concentration (EC80) of the dual agonist 
of CB1 and CB2 CP55,940, which submaximally activates the recep-
tors (Extended Data Fig. 4). Among the 60 compounds predicted 
by V-SYNTHES, the Tango assays identified 21 hits with functional 
Ki values better than 10 μM, including 21 antagonists of CB1 and  

20 antagonists of CB2 (Fig. 3 and Extended Data Table 1). This constitutes  
a high 33% hit rate for both receptors, on the high end of the range 
observed in prospective screening for GPCRs4. Among the identified hit 
compounds, 14 showed submicromolar functional Ki values as antago-
nists at the CB1 receptor and three compounds at the CB2 receptor. The 
same 60 compounds were also tested in radioligand binding assays with 
human CB2 and rat CB1 receptors and [3H]CP55,940 as the radioligand. 
Of these, nine compounds had affinities (Ki) better than 10 μM to the 
CB1 receptor and 16 compounds had affinities better than 10 μM to CB2 
receptor (Extended Data Table 1 and Extended Data Fig. 5).

To assess the broad off-target selectivity, the best compounds—523, 
610, and 673—were also tested at 10 μM concentration in GPCRome–
Tango assays with a panel of more than 300 human  receptors23 
(Extended Data Fig. 6). The initial panel shows only a few (3–5) poten-
tial off-target effects, with only negligible off-target activities in the 
follow-up dose–response assays.

Molecular determinants of the hits
Experimentally identified hit compounds showed a broad diversity in 
their chemical structures (Fig. 3b–g), representing new scaffolds with 
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Fig. 3 | The top five CB2 hits identified by V-SYNTHES. a, Chemical structures 
and measured antagonist potencies for CB1 and CB2 receptors. b–g, Crystal 
structure of CB2 receptor with AM10257 (b) and the predicted binding poses for 
hit compounds 505 (c), 523 (d), 610 (e), 665 (f) and 673 (g) in the CB2 receptor. 
Key subpockets of the binding pocket are marked as SP1, SP2 and SP3.  
h, i, Concentration–response curves for the top antagonists in β-arrestin 

recruitment Tango assays at the CB1 (h) and CB2 (i) receptors. The assays were 
performed in the presence of 100 nM (EC80) of the dual CB1/CB2 agonist 
CP55,940. The compounds rimonabant (h) and SR144528 (i) were used as 
positive controls. Data are mean ± s.e.m. from n = 3 independent experiments; 
each run was performed in triplicate.



Nature | Vol 601 | 20 January 2022 | 457

a Tanimoto distance of >0.3 from known CB1 and CB2 ligands found in 
ChEMBL24 (negative logarithm of the activity pAct > 5.0). The best hit 
compounds were predicted to largely fill the receptor orthosteric pocket, 
similar to antagonist AM10257 that was cocrystallized with CB2 receptor22 
(Fig. 3c–g). These compounds occupy all three subpockets of the CB2 
binding pocket, at which the benzene ring (subpocket 1), 5-hydroxypentyl 
chain (subpocket 2) and adamantyl group (subpocket 3) of AM10257 
are bound in the crystal structure of the receptor. Similar to AM10257, 
these interactions suggest antagonistic profiles for our hit compounds, 
as compared to the recently solved cryo-electron microscopy structure 
of CB2 receptor with agonist WIN 55,212-2, which avoids interaction with  
subpocket 1 Trp194, Phe117 and Trp258 side chains25. Subpocket 1 prefera-
bly binds to the aromatic ring; however, two hit compounds (505 and 523)  
fill it with a non-aromatic ring and one compound with an aliphatic 
substituent (681). Interestingly, although most previously known  
CB1/CB2 ligands, including AM10257 and THC analogues, have an aliphatic 
moiety in subpocket 2, some of our hits have more bulky cyclic groups, 
whereas compound 505 avoids this pocket altogether. Notably, although 
the lipophilicity of the CB receptor pockets represents a challenge for 
developing high-affinity drug-like ligands, all of the V-SYNTHES-derived 
hits have low lipophilicity (cLogP < 5) and are smaller than 500 Da.

Comparison to standard VLS
In parallel to the V-SYNTHES screen, we performed a standard ultra-large 
VLS for a representative 115-million-compound diversity subset of the 
Enamine REAL library, using the same receptor model and the same 
parameters of the docking algorithm. As a result of this standard full-scale 
screening, 97 predicted hits were selected, synthesized and tested in the 
same functional and binding assays as the candidate hits from V-SYNTHES 
(Supplementary Table 2, Supplementary Figs. 3, 4). Out of 97 compounds 
from standard VLS, 16 compounds showed activity in functional assays 
(Extended Data Fig. 7), of which nine compounds were identified as antag-
onists at CB1 with functional Ki of better than or equal to 10 μM, and five 
at CB2. Of these, three compounds had a submicromolar antagonist Ki at 

CB1, and none at CB2. A binding affinity of better than 10 μM was detected 
for 8 compounds at CB1 and 15 at CB2 (8% and 15% hit rates, respectively) 
(Extended Data Fig. 8). Thus, hit rates for the standard VLS did not exceed 
15% in any of the assays, as opposed to 33% hit rate obtained for candidate 
compounds selected by the V-SYNTHES approach.

Optimization of initial V-SYNTHES hits
Hits identified using V-SYNTHES have a great potential for further opti-
mization because the combinatorial nature of the vast REAL Space of 
11 billion compounds ensures thousands of close analogues for structure–
activity relationship analysis (SAR). To assess this potential, we performed 
the first ‘SAR-by-catalogue’ search for three of the most prominent hits 
(523, 610 and 673) in REAL Space. A chemical similarity search using 
ChemSpace fast algorithms selected 920 compounds within a Tanimoto 
distance of 0.3 from the hits. The hits from the initial V-SYNTHES screen-
ing containing the same synthons as the selected hit compounds were 
also added to the list of similar compounds. On the basis of docking in 
the same CB2 structural model, 121 of these analogues were selected for 
synthesis, with 104 of the selected compounds synthesized within 5 weeks 
(Supplementary Table 3). Testing in functional assays detected 60 ana-
logues with a potency that was better than 10 μM (Extended Data Fig. 9 
and Supplementary Table 4) and 23 analogues with sub-μM antagonist 
potency at CB2 (13 for 523 analogues, 7 for 610 and 3 for 673) (Extended 
Data Figs. 10 and 11). A series of 523 analogues yielded the most potent 
antagonists, with at least five compounds (733, 736, 742, 747 and 749) in 
the low-nM range and more than 50-fold CB2 versus CB1 selectivity in their 
binding affinity and functional potency (Fig. 4). The highest affinity was 
shown for compound 747 (Ki = 0.9 nM). Similar to their parent V-SYNTHES 
hit 523, the best analogues 733 and 747 also demonstrated high selec-
tivity against the GPCRome–Tango panel of more than 300 receptors23 
(Extended Data Fig. 12). Thus, the V-SYNTHES screen and subsequent 
SAR-by-catalogue enabled the identification of a CB2-selective lead series 
with nanomolar activity, good chemical tractability and physico-chemical 
properties, without requiring custom synthesis.
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Ki (nM) 10.9 48.5 125 120 9.6 49.2
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Fig. 4 | Selection and characterization of the best analogue series for CB2 
hits from V-SYNTHES screening. a, Chemical scaffold for the antagonist 
analogues of compound 523. b, Predicted binding poses of the best two 
analogues 733 and 747 in the CB2 pocket. c, Measured antagonist potencies and 
binding affinities for the best six analogues of compound 523. d, Dose–
response curves for the best six analogues tested in functional β-arrestin 

recruitment Tango assays at CB2; SR144528 was used as a positive control.  
e, Dose–response curves for the best six analogues at CB2 tested in a 
radioligand-binding assay; compound AM10257 was used as a positive control. 
For d and e, data are mean ± s.e.m. n = 3 independent experiments; each repeat 
was carried out in triplicate.
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V-SYNTHES applied to ROCK1 inhibitor discovery
To assess the more broad applicability of the V-SYNTHES approach, 
we tested its performance on the Rho-associated coiled-coil contain-
ing protein kinase 1 (ROCK1), which is an important and challenging 
target in cancer drug discovery26,27. We performed a V-SYNTHES screen 
on 11 billion compounds with minor modifications in the selection 
procedure (Methods). The benchmark comparing the docking of a 
random compound subset of two-component REAL Space with the 
docking of selected MEL fragments (Extended Data Fig. 13) suggests 
enrichment EF100 ≈ 180 for ROCK1, which is comparable to EF100 ≈ 250 
obtained for CB screening.

We next selected and ordered 24 fully enumerated compounds, of 
which 21 were synthesized and tested for functional potency and bind-
ing affinity in human ROCK1 inhibition assays (Extended Data Fig. 14). 
Potencies of better than 10 μM were found for six compounds (28.5% 
hit rate), with five of these also showing binding affinities Kd < 10 μM 
in the competitive-binding assay. The best compound, RS-15, achieved 
potency IC50 = 6.3 nM and affinity Kd = 7.9 nM.

Discussion
We introduce V-SYNTHES, a new iterative approach for fast structure- 
based virtual screening of combinatorial compound libraries, and 
apply it here to discover new antagonist chemotypes of cannabinoid 
CB1 and CB2 receptors among >11 billion compounds of Enamine 
REAL Space. In the computational benchmark, the first iteration of 
V-SYNTHES enriched the enumerated library with high-scoring can-
didate hits as much as 250-fold for two-component and 460-fold 
for three-component reactions, as compared with a random sub-
set of the REAL Space. Moreover, the experimental hit rate for 
V-SYNTHES (~33%) was twice as high compared with a standard VLS 
of a 115-million-compound diversity subset of Enamine REAL, which 
used ~100 times more computational resources to complete. Similarly, 
high hit rates and potent nanomolar antagonists were obtained by 
V-SYNTHES for the kinase target ROCK1, suggesting that the approach 
can be used for different classes of protein targets.

The benefits of the V-SYNTHES modular approach in screening 
gigasize libraries, although already substantial with current REAL 
Space, are expected to further increase in the future when the size 
of such libraries becomes even more prohibitive for conventional 
full screening. In the past year, the drug-like portion Enamine REAL 
Space grew from about 11 billion to more than 21 billion compounds, 
increasing from 121 to 185 reactions and from 75,000 to 115,000 unique 
reactants, and will continue to grow polynomially. Thus, the library can 
grow as fast as a square of synthon numbers for the two-component 
reactions, and even faster for three- and higher-component reactions. 
By contrast, the V-SYNTHES computational cost increases only linearly 
with the number of synthons, and can therefore easily accommodate 
the further growth of REAL Space towards terascale and petascale 
libraries.

Conceptually, V-SYNTHES takes advantage of the same paradigm as 
fragment-based ligand discovery28–30, in which the binding of an anchor 
fragment serves as a core for growing the full drug-like compounds. 
However, classical fragment-based ligand discovery requires experi-
mental testing of fragment binding by highly sensitive approaches such 
as nuclear magnetic resonance, X-ray or SPR, and is therefore limited to 
smaller libraries (~1,000 compounds) of smaller fragments (<200 Da). 
The validated fragments are then elaborated by expanding them to fill 
the binding pocket or connecting several fragments into one molecule, 
which requires elaborate custom chemistry. By contrast, V-SYNTHES 
avoids both the experimental testing of weakly binding fragments and 
custom synthesis of compounds by performing fragment enumera-
tion in a very large but well-defined REAL chemical space, and yields 
drug-like compounds with affinities and potencies that are reliably 

measurable using standard biochemical assays. The apparent caveat 
of skipping experimental validation of initial fragments is a higher 
reliance on computational docking accuracy. However, this can be 
compensated for in several ways. First, the initial MEL compounds 
are relatively small (250–350 Da) and rigid, which is optimal for the 
performance of most docking algorithms, enabling better sampling 
and higher success rates31–34. Second, the detection of strong anchor 
fragments and their validation in the context of full drug-like molecules 
makes V-SYNTHES hits highly suitable for subsequent optimization. 
Thus, SAR-by-catalogue for several CB2 hit analogues here yielded 
low-nM compounds with strong CB2 selectivity, all achieved without 
requiring elaborate custom synthesis.

By design, V-SYNTHES is not limited to cannabinoid receptors 
(GPCRs) and ROCK1 (a kinase), but can potentially be applied to any 
target with a well-defined crystal or cryo-EM structure, including 
orphan receptors and allosteric pockets. Moreover, although this 
implementation uses ICM-Pro docking and applies to the Enamine 
REAL Space library, the iterative synthon-based screening algorithm can 
be implemented with any reliable docking-based screening platform 
and use any ultra-large modular library that can be represented as a 
combination of scaffolds and synthons. Such implementations may 
require custom adjustment of some parameters of the algorithm for 
optimal performance, opening many paths of further exploration of 
this approach.
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Methods

Preparation of synthon and reaction libraries
The database of reactions and corresponding synthons was pro-
vided by Enamine (the version of May 2019). All of the reactions in the 
database can be separated into two categories: two-component and 
three-component reactions, based on the number of variable synthons. 
Synthons and reaction libraries were prepared for enumeration using 
ICM-Pro Molecular Modeling Software35 (Molsoft). For each reaction 
from the reaction database, a Markush structure representing a reac-
tion scaffold with defined attachment points for substituent synthons 
was generated in a smile format. Structures of possible synthons for 
each R group in each reaction were generated in 2D format with attach-
ment points defined for enumeration. An example of a two-reagent 
reaction is the one-pot reductive amination of aldehydes with heter-
oaromatic amines36, as shown in Extended Data Fig. 15a. An example of 
a three-reagent reaction is the one-pot formation of thiazoles through 
asymmetrical thioureas37, shown in Extended Data Fig. 15b.

Enumeration of the combinatorial library
Enumeration of combinatorial libraries was performed using combina-
torial chemistry tools implemented in ICM-Pro35. Markush structures 
for enumeration were derived from reaction SMARTS provided by 
Enamine.

Generation of the MEL
The MEL was generated to represent all possible scaffold–synthon 
combinations in Enamine REAL Space. Each compound in the MEL 
library comprises a reaction scaffold enumerated with a single syn-
thon, whereas other attachment points are replaced with the minimal 
synthons, or ‘caps’. Minimal chemically feasible synthons for every 
substituent in each reaction were selected as either methyl or phenyl, 
the latter one in case the reaction required an aromatic group. Minimal 
synthon atoms were labelled as 13C isotopes to facilitate computational 
analysis of docking poses (Extended Data Fig. 2).

In two-component MEL generation, filters on molecular weight 
and cLogP were applied to remove MEL compounds with a molecu-
lar mass (MM) of >425 Da or cLogP > 5, which would be likely to result 
in fully enumerated compounds that violate Lipinski’s rule of 5.  
For three-component reactions, the size filters were set to MM < 350 Da 
on the first iteration of V-SYNTHES and to MM < 425 Da on the second.

Generation of the random enumerated library
To generate random subsets of the REAL database for internal bench-
marking was performed by enumeration of randomly selected syn-
thons from each reaction. To create the 1-million-compound library for 
two-component reactions, 1% of synthons (a total of 6,418 synthons) 
were randomly selected, representing each R group in each reaction. 
For three-component reactions, 0.47% of synthons (a total of 512 syn-
thons) were randomly selected for the 500,000-compound library, 
with no less than 1 synthon per Markush R group. The random libraries 
were filtered by Lipinski’s rules of five.

Selection of MEL candidates for CB1/CB2 for full enumeration
To select MEL candidates for further enumeration, the docking score 
and docking pose of each MEL candidate were analyzed. The frag-
ments were ranked by score and the top 1% were retained for further 
investigation. To detect productive versus non-productive com-
pound poses, the algorithm calculates the distances between the cap 
atoms of docked MEL candidates and the selected atoms (or dummy 
atoms) marking the dead-end subpocket in the protein-binding site.  
For the CB2 receptor pocket, three dead-end points were used to define 
potentially non-productive MEL ligands: the water molecule from the 
crystal structure and two dummy atoms, one placed between residues 
Phe106 and Lys109, another between residues His95 and Leu182. MEL 

compounds for which their cap atoms closer than 4 Å to the ‘dead-end’ 
points were excluded from further consideration. Furthermore, to 
ensure the diversity of the final library, the best MEL candidates were 
filtered in a way that the final selection did not contain more than 20% 
of the MEL candidates from the same reaction.

For two-component reactions, the 819 best MEL candidates were 
selected for further enumeration resulting in a library of 1 million full 
compounds. For three-component reactions, two rounds of enumera-
tions were required to arrive at full molecules. In the first round, the 
1,043 best MEL candidates were used to produce 500,000 molecules 
with two real synthons and one minimal cap. After docking and analysis 
of these ligands, the 4,739 best molecules were selected for the final 
enumeration step resulting in 500,000 fully enumerated molecules.

Receptor model preparation for CB2

Both V-SYNTHES and standard VLS used a structural model based on 
the CB2R crystal structure with an antagonist AM10257 at a resolution 
of 2.8 Å (PDB: 5ZTY)22. The structure was converted from PDB coordi-
nates to the internal coordinates object using the ICM-Pro conversion 
tool by restoring missing heavy atoms and hydrogens, locally mini-
mizing polar hydrogens, and optimizing His, Asn and Gln side-chain 
protonation state and rotamers. In the final step of selection, we also 
used ligand-optimized structural models for redocking of the top 1% 
hits. These refined models were generated in a ligand-guided receptor 
optimization procedure (LiBERO)38, which refined the sidechains and 
water molecules within the 8 Å radius from the orthosteric binding 
pocket. Two binding modes for the CB2 receptor binding pocket were 
prepared: one guided by 20 known antagonists and another by 20 ago-
nists, selected from ChEMBL high-affinity ligands for CB2 (CHEMBL253, 
affinity pKd > 8). These compounds, along with 200 decoy molecules 
that were selected from the CB2 receptor decoy database (GDD)39 were 
docked into the refined conformers. The conformers yielding the best 
area under the receiver operating characteristic curves were selected 
as the best LiBERO models. The two LiBERO models, along with the 
crystal structure model, were combined into one 4D model as described 
previously40. The 4D model was used for screening in both V-SYNTHES 
iterative algorithm and standard VLS. In contrast to V-SYNTHES, stand-
ard VLS used a preassembled library of 115 million REAL compounds, 
including 100 million of a lead-like subset of REAL and a diversity REAL 
subset of 15 million drug-like compounds41.

Docking and VLS for CB2

Docking simulations in both V-SYNTHES and standard VLS were per-
formed using ICM-Pro molecular modeling software (Molsoft)35. Dock-
ing involves an exhaustive sampling of the molecule conformational 
space in the rectangular box that comprised the CB2 orthosteric binding 
pocket and was performed using the thoroughness parameter set to 2. 
Docking uses biased probability Monte Carlo optimization of the com-
pound’s internal coordinates in the precalculated grid energy potentials 
of the receptor. The 4D model of the receptor pocket described above 
was used to sample three slightly different receptor conformations 
in a single docking run as implemented in ICM-Pro (Molsoft). Before 
the final selection of hits for experimental testing, the top 30,000 
compounds from the screen were redocked into the model with higher 
thoroughness (5) to assure their comprehensive sampling.

V-SYNTHES enrichment factor for CB2

To evaluate the efficiency of the V-SYNTHES approach and com-
pare it with standard VLS, we introduced an enrichment factor that 
provides a quantitative measurement of how the final library on 
step 4 of the algorithm is enriched in hits as compared to a library 
of the same size generated as a random subset of the Enamine REAL 
Space. For two-component reactions (500 million compounds), we 
compared random and enriched libraries of 1 million compounds. 
For three-component reactions (total 10.5 billion compounds),  

https://doi.org/10.2210/pdb5ZTY/pdb


we compared random and enriched libraries of 0.5 million compounds. 
The enrichment is calculated for hits with docking scores equal to or 
better than a certain threshold X, and is defined as the following ratio:

X
X

X
Enrichment factor( ) =

No. of hits with scores < in SYNTHES
No. of hits with scores < in standard VLS

The enrichment factor at the docking score threshold that selects 
100 candidate hits in V-SYNTHES, designated EF100, can be used as a 
single-value practical metric of the algorithm performance.

Generating initial SAR for selected CB2 hits
Chemical search for analogues of the best compounds 523, 610 and 
673 in REAL Space was performed using REALSpaceNavigator16. 
Compounds with a Tanimoto distance less than 0.3 (<0.4 for 673) 
were selected for docking. The following criteria were used to select 
top-scoring compounds for each parent molecule: docking scores 
better then −30 (−25 for 673), cLogP < 5, cLogS > −5, MM < 500 Da and 
Tanimoto distance to known CB1/CB2 ligands >0.3. Furthermore, the 
20,000 top hits from initial V-SYNTHES screening were reanalysed and 
the best molecules generated from the same fragments as 523, 610 
and 673 were added to the final list. The number of analogues selected 
for synthesis were as follows: 49 compounds for 523 (49 compounds 
synthetized), 42 compounds for 610 (38 compounds synthetized) and 
30 compounds for 673 (17 compounds synthesized).

Parallel synthesis
Parallel one-pot synthesis for all compounds in this study was per-
formed by Enamine in 5 weeks with >90% purity guaranteed as 
described in the Supplementary Methods. This includes (1) candidate 
CB compounds from the initial V-SYNTHES round (60 synthesized 
out of 80 ordered); (2) SAR-by-catalogue compounds (104 out of 121);  
(3) compounds from the benchmark full screen of 115 REAL diversity 
library (97 out of 109); and (4) ROCK1 candidate compounds (21 syn-
thesized out of 24 ordered),

Functional potency in CB1/CB2 Tango assays
The Tango arrestin recruitment assays were performed as previously 
described23. In brief, HTLA cells were transiently transfected with human 
CB1 or CB2 Tango DNA construct overnight in DMEM supplemented with 
10 % FBS, 100 μg ml−1 streptomycin and 100 U ml−1 penicillin. The trans-
fected cells were then plated into poly-l-lysine-coated 384-well white 
clear-bottom cell culture plates in DMEM containing 1% dialysed FBS at 
a density of 10,000–15,000 cells per well. After incubation for 6 h, the 
plates were added with drug solutions prepared in DMEM containing 
1% dialysed FBS for overnight incubation. Specifically for the antagonist 
assay, 100 nM of CP55940 was added after 30 min of incubation of the 
drugs. On the day of assay, medium and drug solutions were removed 
and 20 μl per well of BrightGlo reagent (Promega) was added. The plates 
were further incubated for 20 min at room temperature and counted 
using the Wallac TriLux Microbeta counter (PerkinElmer). The results 
were analysed using GraphPad Prism 9. Each experiment was performed 
in triplicate and functional Ki values were determined from three inde-
pendent experiments and are expressed as the mean of the three values.

Radioligand binding in CB1/CB2-binding assays
The affinities (Ki) of the new compounds for rat CB1 receptors and 
human CB2 receptors were obtained using membrane preparations 
from rat brain or HEK293 cells, respectively, and [3H]CP-55,940 as the 
radioligand, as previously described42,43. Results from the competi-
tion assays were analysed using nonlinear regression to determine the 
IC50 values for the ligand; Ki values were calculated from the IC50 using 
GraphPad Prism 9. Each experiment was performed in triplicate and 
Ki values were determined from three independent experiments and 
are expressed as the mean of the three values.

PRESTO-Tango GPCRome
Screening of the compounds in the PRESTO-Tango GPCRome was per-
formed as previously described23 with modifications. First, HTLA cells 
were plated in poly-l-lysine-coated 384-well white plates in DMEM 
containing 1% dialysed FBS for 6 h. Next, the cells were transfected 
with 20 ng per well PRESTO-Tango receptor DNAs overnight. The cells 
were then added with 10 μM drugs without changing the medium and 
incubated for another 24 h. Each target was designed to have four 
wells for basal and four wells for sample. The remaining steps of the 
PRESTO-Tango protocol23 were followed. The results were plotted as 
fold change in the average basal signalling activity against individual 
receptors in GraphPad v.9.0. For the receptors that had greater than 
threefold basal signaling activity, assays were repeated as a full dose–
response assay and the results were plotted as a percentage of refer-
ence compounds.

V-SYNTHES applied to ROCK1 screen
The MEL library was docked into the ROCK1 crystal structure  
(PDB: 2ETR)44 prepared in ICM-Pro. The 20,000 best-scoring fragments 
were then screened for their hydrogen bond interactions with the hinge 
region of ROCK1, residues Glu154 and Met156. To eliminate potentially 
non-productive fragments in the enumeration step, all fragments with 
caping atoms within 4.6 Å distance from these hinge-region residues 
were removed, leaving about 5,000 compounds for enumeration with 
full synthons. Docking of the 1 million fully enumerated compounds 
resulted in the top 30,000 compounds with docking scores ranging 
between −35 kJ mol−1 to −50 kJ mol−1. The vast majority of them (>99%) 
retained hydrogen bonding to hinge region residues, showing that the 
full molecules maintain the binding properties predicted for MEL frag-
ment selection. The remaining compounds were filtered with PAINS 
score, drug-likeness properties, chemical diversity as well as ligand 
interaction diversity to sample different binding modes in the pocket. 
We selected 24 compounds for purchase from Enamine, of which 21 
were successfully synthesized with a purity >90% and were delivered 
in under 6 weeks.

ROCK1 functional and binding assays
The HotSpot radiometric assay (Reaction Biology Corporation) 
measures inhibition of ROCK1 catalytic activity towards a specific 
peptide substrate (KEAKEKRQEQIAKRRRLSSLRASTSKSGGSQK), 
which is monitored by P81 filter-binding methods45. All compounds 
were tested in triplicate at a starting concentration of either 100 μM 
or 90 μM in the presence of 1 μM ATP and diluted threefold for a total 
of ten doses.

The KdElect assay (Eurofins/DiscovereX) measures quantitative 
binding (Kd) of compounds to ROCK1 in competition with an immo-
bilized active-site-directed ligand. Binding is determined by measur-
ing the amount of kinase captured by immobilized ligands versus 
the control samples through the use of qPCR. Soluble compounds 
specifically binding to ROCK1 prevent the immobilized ligand from 
binding. Our compounds were tested in triplicate in an eleven-dose 
response curve at a starting concentration of 30 μM. IC50 was calcu-
lated and graphed using a nonlinear regression curve in GraphPad 
Prism 8.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Chemical structures, synthetic methods, detailed results of biochemi-
cal characterization are presented in this paper and its Supplementary 
Information.

https://doi.org/10.2210/pdb2ETR/pdb
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Extended Data Fig. 1 | Evaluation of SYNTHES performance on CB2 receptor 
with only docking score (without considering docking pose of MEL 
candidates in the binding pocket). (a) The number of hits at each score 

threshold from V-SYNTHES and standard VLS (b) Enrichment in V-SYNTHES vs. 
Standard VLS at different score thresholds, with the red x-mark showing 
threshold that yields 100 V-SYNTHES hits in the two-component library.
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Extended Data Fig. 2 | Binding pocket of CB2 with selected dead-end atoms. 
a) 3D illustration of a MEL compound binding pose (carbon atoms colored 
cyan) with a “non-productive” pose. (b-d) 2D schematics showing other 

possible non-productive cases, including dead-end subpockets. Dead-end 
water-colored red, pseudoatoms colored magenta.



Extended Data Fig. 3 | Details of practical application V-SYNTHES algorithms to CB receptors screening. a, b, Two-component (a) and three-component  
(b) reaction cases.
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Extended Data Fig. 4 | Concentration-response curves for V-SYNTHES hits 
in functional assays at CB1 and CB2 receptors (except those shown in main 
text Figure 3). β-arrestin recruitment Tango assays were performed to assess 
antagonist activity of the compounds in (a,b) CB1 and (c,d) CB2 receptors.  

The compounds rimonabant or SR144528 served as positive controls. The 
assays were carried out in the presence of 100 nM (EC80) of the dual CB1/CB2 
CP55,940 agonist. The data points are presented as mean ± SEM with n = 3 
independent experiments, each one carried out in triplicate.



Extended Data Fig. 5 | Competition binding curves for the best CB2 hit 
compounds from V-SYNTHES. Radioligand binding assays were used to 
assess the binding affinities in rCB1 (a) and hCB2 (b). [3H]CP-55,940 was used as 

the radioligand. The data were presented as mean ± SEM with n = 3 independent 
experiments, each one carried out in triplicate.
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Extended Data Fig. 6 | Assessment of off-target selectivity for the best 
V-SYNTHES CB2 hits. (a-c) Screening of compounds 673, 610 and 523 at 10 μM 
concentrations in GPCRome-Tango assays for >300 receptors. Dopamine D2 
(DRD2) and 100 nM Quinpirole served as an assay control. The data are 
presented as mean ± SEM (n = 4) and the values of fold of basal > 3 are marked as 

significant hits. (d-o) Follow-up dose-response curves for targets with >3 fold 
increased activity. Known agonists or antagonist that showed activity served 
as positive controls. The data points are presented as mean ± SEM with n = 3 
independent experiments, each assay carried out in triplicate.



Extended Data Fig. 7 | Identification and characterization of CB1 and CB2 
hits from standard VLS of 115M Enamine REAL compounds. (a) Chemical 
structures of the hits from the standard VLS. (b-c). Concentration-response 
curves of the best hits in β-arrestin recruitment Tango assays for antagonist 
activity at CB1 (b) and CB2 (c) receptors. The compounds rimonabant or 
SR144528 served as positive controls. The assays were carried out in the 
presence of 100 nM (EC80) of the dual CB1/CB2 CP55,940 agonist. The data 

points are presented as mean ± SEM with n = 3 independent experiments, each 
one carried out in triplicate. (d) Functional potencies and binding affinities of 
the hit compounds from standard VLS. The 95% Confidence Intervals (CI) were 
calculated from n = 3 independent assays, with 16 dose-response points for 
functional Ki values and 8 dose-response points for affinity Ki values, except for 
values marked with *, roughly estimated from three-point assays.
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Extended Data Fig. 8 | Competition binding curves for the best CB2 hit 
compounds from standard VLS. Radioligand binding assays were used to 
assess the binding affinities in hCB2. [3H]CP-55,940 was used as the 

radioligand. The data were presented as mean ± SEM with n = 3 independent 
experiments, each one carried out in triplicate.



Extended Data Fig. 9 | Chemical structures for series of the SAR-by-catalog 
analogues of antagonists, discovered by V-SYNTHES. Shown are  
60 analogues of 523 (a), 610 (b), and 673 (c) with inhibitory activity >40% in the 

single point functional assays. All 104 analogues tested are shown in 
Supplementary Information Table S3.
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Extended Data Fig. 10 | Functional potency and binding affinity 
assessment of the SAR-by-catalog analogues of the antagonist 523, 
discovered by V-SYNTHES. Table compounds with CB2 potency better than 
500 nM are shown, antagonists with affinities better than 10 nM highlighted in 

bold, >50-fold selective by italic. Functional Ki values and 95% Confidence 
Intervals were calculated from n = 4 independent assays with 16 dose-response 
points. Affinity Ki values and 95% Confidence Intervals were calculated from 
n = 3 independent assays with 8 dose-response points.



Extended Data Fig. 11 | Concentration-response curves for series of the 
SAR-by-catalog analogues of 523, 610 and 673 antagonists, discovered by 
V-SYNTHES. The β-arrestin recruitment Tango assays were performed to 
assess the antagonist activity of the best hits at CB1 (a-i), and CB2 ( j-o) 
receptors. Note that the six best analogues of 523 shown in Fig. 4 are excluded 

here. The compounds rimonabant and SR144528 served as positive controls. 
The assays were carried out in the presence of 100 nM (EC80) of the CP55,940 
agonist. The data were presented as mean ± SEM with n = 3 independent 
experiments, each run carried out in triplicate.
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Extended Data Fig. 12 | Assessment of off-target selectivity for the best 
SAR-by-catalog compounds 733 and 747. (a-b) Screening of compounds 733 
and 747 in GPCRome-Tango assay for >300 receptors at 10 μM concentrations. 
Dopamine D2 (DRD2) and 100 nM Quinpirole served as an assay control. The 
data are presented as mean ± SEM (n = 4) and the values of fold of basal > 3 

marked as significant hits. (c-d) Follow-up dose-response curves for targets 
with >3 fold increased activity. Known agonists that showed activity served as 
positive controls. The data were presented as mean ± SEM with n = 3 
independent experiments, each run carried out in triplicate.



Extended Data Fig. 13 | Application of V-SYNTHES to the discovery of 
ROCK1 inhibitors. (a,b) Computational assessment of V-SYNTHES 
performance vs standard VLS. (a) The number of candidate hits at each score 
threshold from V-SYNTHES and standard VLS. (b) Enrichment in V-SYNTHES vs. 

standard VLS at different score thresholds, with the red x-mark showing 
threshold that yields 100 hits in the two-component library. (c) Chemical 
structures of all selected by V-SYNTHES and synthesized compounds for 
ROCK1 kinase.
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Extended Data Fig. 14 | Experimental characterization of candidate ROCK1 
inhibitors predicted by V-SYNTHES. Full dose-response curves for the ROCK1 
hits in (a) functional potency and (b) binding affinity at human ROCK1. The 
data points are presented as mean ± SEM from n = 3 independent experiments, 

each run carried out in triplicate. (c) Values of binding affinities and functional 
potencies for all candidate compounds predicted by V-SYNTHES. Bold font 
highlight hits with IC50<10 μM. Estimated values for curves that did not allow 
accurate fitting are marked with *.



Extended Data Fig. 15 | Examples of typical Enamine REAL reactions. (a) two-component reaction (b) three-component reaction.



Article
Extended Data Table 1 | Potencies and affinities of V-SYNTHES hits in functional and binding assays at CB1 and CB2 receptors

Sub-micromolar hits are shown in bold, selective by italic. The 95% Confidence Intervals (CI) were calculated from n = 3 independent assays, with 16 dose-response points for functional Ki values 
and 8 dose-response points for affinity Ki values, except for values marked with *, roughly estimated from three-point assays. Potencies are measured in assays running in antagonist mode, 
except for those marked & that were measured in agonist mode. N/D stands for Not Determined.
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