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Iron pnictides and chalcogenides: a 
new paradigm for superconductivity

Rafael M. Fernandes1 ✉, Amalia I. Coldea2, Hong Ding3,4, Ian R. Fisher5,6, P. J. Hirschfeld7 & 
Gabriel Kotliar8,9

Superconductivity is a remarkably widespread phenomenon that is observed in most 
metals cooled to very low temperatures. The ubiquity of such conventional 
superconductors, and the wide range of associated critical temperatures, is readily 
understood in terms of the well-known Bardeen–Cooper–Schrieffer theory. 
Occasionally, however, unconventional superconductors are found, such as the 
iron-based materials, which extend and defy this understanding in unexpected ways. 
In the case of the iron-based superconductors, this includes the different ways in 
which the presence of multiple atomic orbitals can manifest in unconventional 
superconductivity, giving rise to a rich landscape of gap structures that share the 
same dominant pairing mechanism. In addition, these materials have also led to 
insights into the unusual metallic state governed by the Hund’s interaction, the 
control and mechanisms of electronic nematicity, the impact of magnetic fluctuations 
and quantum criticality, and the importance of topology in correlated states. Over the 
fourteen years since their discovery, iron-based superconductors have proven to be a 
testing ground for the development of novel experimental tools and theoretical 
approaches, both of which have extensively influenced the wider field of quantum 
materials.

A comprehensive understanding of conventional superconductors, 
in which lattice vibrations bind electrons in Cooper pairs, is provided 
by the Bardeen–Cooper–Schrieffer (BCS)–Eliashberg theory. Several 
families of unconventional superconductors, however, defy explana-
tion within this paradigm, presenting a series of intellectual challenges. 
For many years, attention was split between cuprate superconductors1, 
with critical temperatures (Tc) up to 165 K, and the heavy-fermion and 
organic superconductors, with lower Tc values2. In 2008, a family of 
superconductors based on iron (Fe) was discovered3. The discovery 
was noteworthy given that Fe is generally seen as a strongly magnetic 
ion, and magnetism is typically antithetical to superconductivity. It 
rapidly became more remarkable as more members of the family were 
discovered with progressively higher Tc values—high enough that the 
materials were soon referred to as ‘high Tc’.

A large body of evidence now indicates that these Fe-based supercon-
ductors (FeSCs) are unconventional, that is, the pairing is not driven by 
lattice vibrations (phonons)4–8. They have provided a fascinating array 
of insights into the conditions of occurrence and nature of unconven-
tional superconductivity, particularly in systems where the electrons 
can occupy multiple orbitals. Before their discovery, unconventional 
pairing was synonymous with Cooper pairs with non-zero angular 
momentum and gap nodes, exemplified, for instance, by the d-wave 
superconducting state realized in cuprates1. In Fe-based materials, 
however, the Cooper pairs are widely believed to have zero angular 

momentum, with their unconventional nature arising from the different 
phases they take on different bands4,5. A variety of pairing structures 
have been observed, but attributed to the same dominant pairing 
mechanism.

In addition, the normal state of the FeSCs is unusual. Similar to many 
other quantum materials, electron–electron interactions have an 
important role in shaping their phase diagrams. However, owing to the 
multi-orbital character of these compounds, it is the Hund’s interaction 
that is believed to have the most prominent role9. The resulting ‘Hund 
metal’10 interpolates between a description of incoherent atomic states 
at high temperatures and one of coherent states at low temperatures. 
At intermediate temperatures, charge and orbital degrees of freedom 
seem itinerant, whereas spin degrees of freedom appear localized11. In 
contrast, in the cuprates, the on-site Hubbard repulsion is the domi-
nant interaction, whereas in heavy-fermion materials, it is the Kondo 
coupling between localized and itinerant electrons. Another distin-
guishing feature of FeSCs is that although the distinct Fe orbitals are 
subjected to the same interactions, they experience different degrees 
of correlation—a phenomenon dubbed orbital differentiation10,12–16.

It is from this correlated normal state that not only superconductivity 
emerges but also other electronic ordered states. The majority of FeSCs 
order magnetically17; for example, BaFe2As2 exhibits magnetic order 
with a stripe pattern below a critical temperature of 134 K, although 
more unusual spin configurations are found under hole doping (Fig. 1a). 

https://doi.org/10.1038/s41586-021-04073-2

Received: 25 March 2021

Accepted: 29 September 2021

Published online: 5 January 2022

 Check for updates

1School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA. 2Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK. 3Beijing National Laboratory 
for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China. 4CAS Center for Excellence in Topological Quantum Computation, University of Chinese 
Academy of Sciences, Beijing, China. 5Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University, Stanford, CA, USA. 6Stanford Institute for Materials 
and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA. 7Department of Physics, University of Florida, Gainesville, FL, USA. 8Physics and Astronomy Department, 
Rutgers University, Piscataway, NJ, USA. 9Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA. ✉e-mail: rfernand@umn.edu

https://doi.org/10.1038/s41586-021-04073-2
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-021-04073-2&domain=pdf
mailto:rfernand@umn.edu


36 | Nature | Vol 601 | 6 January 2022

Review

Other compounds, such as FeSe, exhibit no magnetic order at ambient 
pressure (Fig. 1b). More ubiquitously, magnetic fluctuations at the 
stripe-order wavevectors are commonly observed for superconducting 
compositions. The observation, by neutron scattering, of an associated 
resonance in the magnetic spectrum at this specific wavevector18,19 has 
been widely interpreted as evidence for a sign-changing superconduct-
ing gap and for magnetic fluctuations playing a key role in the pairing 
interaction2.

Another common feature in the FeSC phase diagrams is a 
tetragonal-to-orthorhombic phase transition. It often occurs either 
concurrently or at a higher temperature than the magnetic transition 
(Fig. 1a), although in FeSe it occurs in the absence of magnetic order 
at ambient pressure (Fig. 1b). A variety of experiments have revealed 
that lattice strain is not the primary order parameter for this phase 

transition20. Borrowing language from liquid crystals, the state is 
referred to as an electronic nematic phase21, in which interactions 
among electronic degrees of freedom drive the breaking of (discrete) 
rotational symmetry, while translational symmetry is unaffected. 
Experiments have indicated that nematic fluctuations extend far across 
the phase diagram22–24, motivating the question of what role nematicity 
has in these materials.

The most recent surprise is the realization that several representative 
FeSC compounds can show topologically non-trivial band structures25. 
They have been proposed to promote various topological phenom-
ena, such as spin-momentum-locked surface states and semi-metallic 
Dirac bulk states. Owing to their intrinsic fully gapped unconventional 
superconductivity, they have become prime candidates in the search 
for robust topological superconducting states and their associated 
Majorana excitations.

The above brief overview showcases an important feature of the 
FeSCs. After 14 years of research, there is a wide consensus as to the 
nature of the various states found in the phase diagrams. In the Landau 
paradigm, these phases are characterized by the symmetries that they 
break, and there has been little, if any, disagreement about them. Yet, 
knowing what these states are is different from understanding how 
they arise and inter-relate with each other. This enables a series of well 
posed questions that are, in some sense, better defined than what can 
currently be asked for the other family of unconventional high-Tc super-
conductors, the cuprates1. In this review, we outline what is well under-
stood about FeSCs and pose a series of open challenges that we believe 
are central to understanding the origins of their superconductivity.

Electronic structure and correlations
All FeSCs are characterized by a common structural motif compris-
ing tetrahedrally coordinated Fe atoms arranged on a square lattice 
(Fig. 1c). The coordinating ligands are typically from group V (the pnic-
togens phosphorus (P) and arsenic (As)) or group VI (the chalcogens 
sulfur (S), selenium (Se) and tellurium (Te)). Parent compounds have a 
formal valence of Fe2+, corresponding to a 3d6 electronic configuration 
for an isolated atom. Bond angles vary somewhat between compounds, 
differing from the perfect tetrahedral angle of 109.5°, thus leading to 
additional orbital splittings (Fig. 1d).

From a band theory perspective, the FeSCs are compensated semi-
metals with the same number of electron-like and hole-like carriers26. A 
widely used, simplified model features a Brillouin zone corresponding 
to the unit cell of the square Fe lattice (shaded beige area in Fig. 1c). 
The low-lying bands form the electron and hole Fermi-surface pockets 
shown in Fig. 1e and coloured according to the orbitals that contribute 
the largest spectral weight6. More realistic models include the pucker-
ing of the As/Se atoms above and below the Fe plane, which introduces 
a glide plane symmetry and implies a crystallographic unit cell (and 
corresponding Brillouin zone) containing two Fe atoms (blue shaded 
areas in Fig. 1c, f)27,28. Additional effects include the spin–orbit cou-
pling29, which splits the intersecting electron pockets in Fig. 1f, the 
three-dimensional dispersion of the bands27 and the hybridization 
between the As/Se p band and Fe d band30, which is the root of several 
topological phenomena.

In the FeSCs, the charge and orbital degrees of freedom appear to be 
itinerant, as most compounds are metallic at all temperatures. Moreo-
ver, the X-ray absorption spectrum of the unoccupied Fe d states is in 
good agreement with density functional theory (DFT) calculations31. At 
low temperatures, in most cases, the normal state of the FeSCs is well 
described by the Fermi liquid theory. This does not imply the absence 
of electronic correlations, which can strongly renormalize the Fermi 
liquid parameters, making them deviate from DFT-based expectations. 
Indeed, the qualitative features of the quasiparticles dispersion, pre-
dicted by DFT and sketched in Fig. 1e, are often similar to those detected 
experimentally using angle-resolved photoemission spectroscopy 
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Fig. 1 | General structural and electronic properties. a, b, Phase diagrams of 
two families of FeSCs: BaFe2As2 (ref. 80; a) and FeSe (refs. 32,51,104; b). The different 
electronic phases are schematically shown: nematic, spin density wave (SDW, 
where nematic order remains present), double-stripe, C4 magnetic phase and 
superconductivity (SC). The tuning parameter can be electron doping or hole 
doping, isoelectronic substitution (As/P or Se/S, Se/Te) or applied pressure.  
c, The common structure of the FeSCs consists of Fe planes and pnictogens (As) 
or chalcogens (Se) outside the plane. A simplified representation considering a 
single Fe per unit cell is shown in beige and the crystallographic unit cell 
containing two Fe atoms is shown in blue. d, A schematic representation of the 
crystal field levels of an isolated Fe2+ ion (d6) inside a distorted FeAs4 
tetrahedron9. The spins’ alignment corresponds to the high-spin state, but 
other configurations are possible. e, f, Schematic Fermi surface in the 
tetragonal phase. It consists of hole pockets at the centre and of electron 
pockets at the corner of the 1-Fe (e) and 2-Fe (f) Brillouin zone. In f, the two 
electron pockets fold along the diagonal wavevector in e. The colours indicate 
the dominant orbital character of each band6. An additional dxy-dominated 
hole pocket (dashed) is shown centred at M = (π, π) in the 1-Fe zone ((0, 0) in the 
2-Fe zone). The size of this pocket, which is absent in some materials, varies 
widely across compounds. The momenta k in e are in units of the inverse lattice 
constant 1/a.
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(ARPES)32–34 and quantum oscillation measurements32,35,36. However, 
the bandwidth of the quasiparticles dispersions is generally reduced 
relative to the DFT results. Such mass enhancements, also observed 
in optical conductivity measurements37, are attributed to electronic 
correlations, and were anticipated by DFT + dynamical mean-field 
theory (DMFT) calculations38–42. Moreover, the sizes of the Fermi pock-
ets are smaller in experiments36,43,44 compared with the DFT predic-
tions. Whether the correlations causing this effect are promoted by 
low-energy spin fluctuations44–46 or can be captured by first-principles 
calculations going beyond DFT47 remains under debate.

Correlations arise from the screened Coulomb repulsion between 
electrons, resulting in an on-site Hubbard repulsion U, which penalizes 
the system when two electrons occupy the same site and suppresses 
spin fluctuations. However, as multiple orbitals are available in the 
FeSCs, other on-site terms are also generated by the Coulomb repul-
sion. Among them is the Hund’s interaction JH, which favours the align-
ment of the spins of electrons in different orbitals. In contrast to the 
Hubbard U, JH is barely screened from its atomic value48. The resulting 
Hund metal state differs from a Mott insulator, in that charge/orbital 
degrees of freedom are itinerant, whereas spins remain nearly localized 
down to low temperatures. This is illustrated schematically in Fig. 2c, 
which depicts the histogram of all possible 3d Fe atomic states in a Hund 
metal. Although the histogram extends over a wide range of electronic 

occupations, showcasing the itinerant nature of the charge carriers, 
it also shows sharp peaks at high-spin configurations, illustrating the 
local nature of the spins.

A prime feature of the Hund metal phase is the coherence–incoher-
ence crossover9. In very clean FeSCs, this manifests in the resistivity 
behaviour, which crosses over from the characteristic Fermi-liquid 
T2 dependence at low temperatures to values of the order of several 
hundred µΩ cm at high temperatures49. In a semiclassical treatment, 
these values imply a mean free path comparable to the inverse Fermi 
momentum, which is inconsistent with a picture of propagating Bloch 
waves.

Another manifestation of the coherence–incoherence crossover 
is illustrated in Fig. 2a, b. At high temperatures, the dxy hole band is 
much fainter and flatter than the two dxz/dyz hole bands, reflecting 
the small coherence factor and large effective mass of the former. On 
decreasing the temperature, this dxy band becomes much sharper and 
thus more coherent. Such an effect, predicted theoretically14,15,50, has 
been observed in FeSe1−xTex, LiFeAs and KxFe2−ySe2, among others34. In 
extreme cases, the dxy orbital could remain completely localized down 
to zero temperature, whereas the dxz/dyz orbitals remain coherent, giv-
ing rise to an orbital-selective Mott state12,14 that behaves differently 
from a renormalized Fermi liquid. The fact that the dxy orbital is less 
coherent than the others is an example of a broader phenomenon called 
orbital differentiation10,13,51, by which different orbitals are affected 
by correlations in distinct ways in both the normal15 and supercon-
ducting states52,53. Orbital differentiation has been invoked to explain 
the strong anisotropy of the superconducting gap observed in FeSe  
(ref. 54). However, the origin of this anisotropy and its relationship to 
orbital order remain unsettled51,53,55,56.

Correlations also affect the spin-excitation spectrum probed by neu-
tron scattering, which is rather different at low and high energies17. In 
momentum space, as sketched in Fig. 2d, the magnetic spectral weight 
at low energies is strongly peaked near the wavevector of the magnetic 
ground state—usually, the in-plane stripe vectors (π, 0) and (0, π). As 
the energy increases, the magnetic spectral weight generally moves 
towards (π, π)57.

This dichotomy between low and high energies is clearly seen in 
the local magnetic susceptibility extracted from neutron-scattering 
experiments17, the imaginary part of which is schematically plotted in 
Fig. 3a. At energies E0 of about 100 meV, it shows a broad peak indica-
tive of a large local fluctuating magnetic moment. Evidence for local 
moments are also observed in the X-ray emission spectrum, whose 
changes with temperature and doping have also been interpreted in 
terms of a spin-freezing crossover58. Experimental estimates give a 
fluctuating moment of about 2–3 Bohr magneton (µB) across differ-
ent parent compounds (inset of Fig. 3a). In contrast, at energy scales 
of about 10 meV, the imaginary part of the local susceptibility in the 
paramagnetic state increases with energy59, which is indicative of Lan-
dau damping caused by the decay of spin fluctuations into particle–
hole excitations—a hallmark of itinerant magnets. Indeed, the system 
remains metallic inside the magnetically ordered state.

Thus, although charge and orbital degrees of freedom are itinerant, the 
spin degrees of freedom show properties that are typical of local-spin sys-
tems at high energies and of itinerant-spin systems at low energies. This 
‘orbital–spin’ separation11 is the most striking feature of the Hund metal. 
As the temperature is lowered, this correlated metallic state shows Fermi 
liquid behaviour and an ordered phase emerges—magnetic, nematic 
or superconducting. Understanding them requires considering both 
the Fermi surface details (Fig. 1e) and the magnetic spectrum (Fig. 3a).

Magnetism: between itinerancy and localization
The vast majority of FeSC parent compounds, such as BaFe2As2 in 
Fig. 1a, undergo a magnetic transition to a stripe-like configuration17, 
which consists of parallel spins along one in-plane Fe–Fe direction 
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and antiparallel along the other (Fig. 3b). There are two energetically 
equivalent stripe states, related by an in-plane 90° rotation in real and 
spin spaces. The spin–orbit coupling generates magnetic anisotropies 
that force the spins to point parallel to the selected ordering vector60, 
opening a spin gap in the local magnetic susceptibility at low energies 
(Fig. 3a). In contrast to the fluctuating moment, the ordered moment 
can be rather small, and changes considerably across different com-
pounds (inset of Fig. 3a)18. Parent compounds such as LiFeAs and FeSe, 
which do not undergo a magnetic transition, still show low-energy 
fluctuations associated with the stripe state61,62. Even in FeTe, which 
shows a different magnetic configuration—the double-stripe state of 
Fig. 3c—magnetic fluctuations at the single-stripe wavevectors emerge 
on modest substitution of Se for Te (refs. 63,64).

Perturbations such as doping, isovalent chemical substitutions and 
pressure tend to reduce the magnetic transition temperature of the pris-
tine compositions (Fig. 1a) and can also give rise to previously unknown 
magnetic ground states. Locally, impurities can promote puddles of Néel 
and other orders65. Globally, doping BaFe2As2 with electrons stabilizes 
an incommensurate stripe order66, whereas hole-doping promotes the 
so-called C4 magnetic phases67. The C4 magnetic phases are combinations 
of the magnetic configurations with different stripe wavevectors that 
preserve the tetragonal (that is, C4) symmetry of the lattice68,69. They 
can be either the non-collinear spin-vortex crystal (Fig. 3d), as observed 
in electron-doped CaKFe4As4 (ref. 70), or the non-uniform charge–spin 
density wave (Fig. 3e), as observed in hole-doped SrFe2As2 (ref. 67; Fig. 1a).

The simultaneous presence of features commonly associated with 
localized and itinerant magnetism has motivated theoretical models 
adopting both a strong-coupling perspective71–73, usually based on 
substantial exchange interactions beyond nearest-neighbour spins, and 
a weak-coupling approach13,74,75, often associated with Fermi-surface 
nesting. Nesting refers to the situation when the hole and electron 
pockets in Fig. 1e have comparable shapes and sizes. Deterioration of 
the nesting conditions was invoked to explain and anticipate the onset 
of C4 magnetic phases and of incommensurability with doping75. DFT 
has also been widely employed to investigate magnetism in FeSCs. 
Although DFT successfully captures the magnetic ground-state con-
figuration of most compounds4,76, it has problems in explaining the size 
of the ordered moment or the absence of magnetism in FeSe (ref. 77). 
Advanced, beyond-DFT ab initio methods have been able to address 
some of these problems10,78.

Magnetism in FeSCs also provides an arena in which to explore quan-
tum criticality79. A quantum critical point (QCP) is a zero-temperature 
second-order phase transition, in this case tuned by pressure, composi-
tion or strain. The fact that the stripe magnetic transition temperature 
extrapolates to zero near the point where the superconducting dome 
is peaked (Fig. 1a) is reminiscent of certain heavy-fermion materials2. 
Quantum criticality in those compounds is empirically associated with 
non-Fermi-liquid behaviour, such as a resistivity whose temperature 
dependence deviates from the standard metallic T2 behaviour at low 
temperatures. It is noted, however, that this behaviour can also arise due 
to other mechanisms besides a QCP. Among the FeSCs, BaFe2(As1−xPx)2 
(Fig. 1a) shows the clearest evidence for the strange metal behaviour 
associated with a putative QCP. There, a linear-in-T resistivity accom-
panied by a mass enhancement and an unusual scaling of the magne-
toresistance are observed above Tc near optimal doping80,81. Below Tc, a 
sharp peak of the T = 0 superconducting penetration depth is observed 
near the extrapolated QCP80, the origin of which remains unsettled82,83.

Electronic nematicity and vestigial orders
Although on symmetry grounds the nematic transition seen in most 
FeSCs is no different than a tetragonal-to-orthorhombic transition, 
the driving force can arise from various mechanisms. In general, one 
can define order parameters that break the tetragonal symmetry of 
the system in different channels—spin, orbital and lattice (Fig. 4a–c)20. 
Symmetry requires that all of these are simultaneously non-zero or 
zero, but cannot determine which is the primary one. Indeed, direct 
experimental manifestations of nematic order have been reported in 
orbital34, magnetic84 and elastic23 degrees of freedom, with associated 
anisotropies in transport85, optical86 and local electronic87 properties. 
A crucial insight came from the realization that strain is either the pri-
mary order parameter—in which case the nematic transition would be 
a simple structural instability—or a conjugate field to it, in which case 
the instability would be electronically driven. Elasto-resistivity22, 
Raman24 and elastic stiffness23 measurements settled this issue, estab-
lishing the dominant low-energy electronic character of the nematic 
state. Nevertheless, coupling to the lattice raises the critical tempera-
ture by a small amount from T nem

0  to Tnem (Fig. 4d).
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Two general electronic mechanisms for the nematic transition have 
been proposed, attributing it primarily to either spin or orbital degrees 
of freedom. This distinction, however, can become subtle, as they can 
work in tandem44,88. In the simplest realization of the orbital scenario, 
interactions spontaneously lift the degeneracy between the dxz and dyz 
orbitals89,90, distorting the Fermi surfaces in Fig. 1e. In contrast, the spin 
scenario relies on the proximity to the stripe magnetic instability, which 
breaks both the (discrete) rotational and translational symmetries of 
the lattice20,91,92. The idea is that the stripe magnetic phase melts in two 
stages, first restoring the broken translational symmetry and then 
the four-fold rotational symmetry. The intermediate paramagnetic 
orthorhombic phase that onsets between the magnetic orthorhom-
bic and paramagnetic tetragonal phases is the electronic nematic. 
Since it is a partially melted magnetic phase, it has been identified as 
a ‘vestigial’ phase of the stripe magnetic state93. Theoretically, because 
it is stabilized by magnetic fluctuations, vestigial nematicity can be 
captured by phenomenological, beyond mean-field Ginzburg–Landau 
analyses. Microscopically, it has been found in both localized spin91,92,94 
and itinerant magnetic44,95 models.

The spin-driven mechanism naturally accounts for the close prox-
imity between the stripe-magnetic and nematic phase boundaries 
observed in most FeSCs. Whether these two transitions are split or 
simultaneous, second-order or first-order, depends on doping and 

pressure96. Direct experimental evidence for this scenario is the scal-
ing between the shear modulus Cs and the nuclear magnetic resonance 
(NMR) spin-lattice relaxation rate 1/T1, which suggests that the lattice 
softening is caused by magnetic fluctuations97. Application of this 
mechanism to FeSe is problematic98, however, as stripe-magnetic 
order is absent at ambient pressure99 or upon S substitution (Fig. 1b). 
The orbital-order scenario also faces challenges, at least in its simplest 
form, as ARPES measurements indicate the inadequacy of simple on-site 
ferro-orbital order100.

The existence of a doping-dependent nematic transition also opens 
the possibility of a nematic QCP. Several theoretical studies point to 
possible exotic non-Fermi-liquid behaviour near such a QCP, with impli-
cations for the description of the normal state from which the super-
conductor emerges101,102. Probing this, however, is challenging because 
of its proximity to a putative magnetic QCP in most FeSCs. The very 
nature of the coupled nematic–magnetic quantum phase transitions 
remains unsettled both experimentally and theoretically. Neverthe-
less, recent data unveiling the power-law scaling of the nematic critical 
temperature as it is suppressed by doping and strain provide strong 
evidence for a nematic QCP in BaFe2As2, with an associated quantum 
critical regime that spans a large part of the phase diagram103. Another 
promising arena to study nematic quantum criticality is FeSe1−xSx  
(refs. 51,104; Fig. 1b), where magnetic order is absent. Experimental evi-
dence for possible non-Fermi-liquid behaviour near the nematic QCP 
remains controversial, however104,105.

Unconventional superconducting states
The FeSCs show a wide range of superconducting transition tem-
peratures, as illustrated in Fig. 5a. The largest Tc ≈ 65 K is observed in 
monolayer FeSe grown on SrTiO3, but the precise temperature where 
phase-coherent superconductivity sets in remains under dispute106. 
Several unsubstituted compounds show superconductivity, such 
as bulk FeSe, LiFeAs and CaKFe4As4. In others, such as BaFe2As2 and 
LaFeAsO, the competing magnetic and nematic orders need to be sup-
pressed, for example, via doping, chemical substitution or pressure, 
to obtain superconductivity (Fig. 1a, b). In some compounds, a second 
superconducting dome can be accessed by pressure or doping107. In all 
cases, NMR measurements support a singlet pairing state.

As the DFT-calculated electron–phonon coupling cannot account for 
the Tc of the FeSCs38,108, an electronic mechanism has been proposed 4–8. 
However, this does not preclude phonons, which can be enhanced 
by correlations109, from having a role in superconductivity, as it has 
been proposed in monolayer FeSe (ref. 110). Quite generally, electronic 
repulsion forces the gap function to change sign in real or momentum 
space. For a large Fermi surface, such as the cuprates, this can be accom-
plished by an anisotropic gap (for example, with d-wave symmetry). For 
multiple small Fermi pockets, such as the FeSCs, the gap can remain 
nearly isotropic around each Fermi surface, as long as it acquires dif-
ferent signs (that is, phases) on different pockets. We refer to any gap 
structure that satisfies this criterion as s+− wave. In the FeSCs, a strong 
repulsive pairing interaction is believed to be promoted by magnetic 
correlations associated with the nearby stripe magnetic state (Fig. 1a)4.

In a weak-coupling approach, which can be implemented via random 
phase approximation (RPA) or (functional) renormalization group ((f)
RG) calculations, the inter-pocket interaction is boosted by spin fluctua-
tions peaked at the stripe wavevectors (π, 0) and (0, π), which connect 
the hole and electron pockets, thus overcoming the intra-pocket repul-
sion6,7,111. In a strong-coupling approach, real-space pairing is promoted 
by the dominant next-nearest-neighbour antiferromagnetic exchange 
interaction33,71,72. Despite their differences, both approaches generally 
give an s+− gap with opposite signs on the electron and the hole pockets.

Besides stripe magnetism, nematic order is also strongly suppressed 
in the region of the phase diagram where Tc is the largest (Fig. 1a, b). 
This has led to an important question that remains unresolved, namely, 
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what role nematic fluctuations have in the pairing state of the FeSCs20. 
Theoretically, nematic fluctuations generate an attractive pairing inter-
action peaked at zero momentum. Hence, they can boost the Tc of any 
pairing state promoted by a more dominant pairing interaction (for 
example, due to spin fluctuations). Nematic fluctuations can plausi-
bly promote superconducting order on their own, particularly near a 
QCP101,102. However, in the clearest case of FeSe1−xSx (Fig. 1b), no strong 
change in Tc is observed at the putative nematic QCP104, an issue that 
remains under investigation105,112.

Traditional phase-sensitive experiments face difficulties in dis-
tinguishing the s+− state from the more conventional s++ state, which 
has also been proposed to be mediated by orbital fluctuations113, 
because the Cooper pairs have zero angular momentum in both 
cases. Nevertheless, phase-sensitive setups using composite loops 
of polycrystalline FeSCs114 or scanning tunnelling microscopy (STM) 
quasiparticle interference51,115 strongly support the s+−-wave state. The 
strongest evidence for an s+− gap is the observation of a resonance 
mode in the magnetic susceptibility below Tc (refs. 18,19), manifested 
as a sharp peak at the stripe wavevectors and at an energy Eresonance 
below twice the gap value, 2Δ (schematically illustrated in Fig. 3a). 
Such a feature is naturally explained if the gaps at momenta separated 
by the stripe wavevectors have opposite signs2. Additional indirect 
evidence comes from experiments that introduce controlled dis-
order via irradiation. Specifically, the lifting of accidental nodes by 
disorder and the observed rate of suppression of Tc with impurity 
scattering are consistent with an s+− state116. Moreover, the observation 
of in-gap bound states at non-magnetic impurities is also a hallmark 
of a sign-changing gap117.

Various gap structures can be realized under the s+−-wave umbrella, 
depending on details of the Fermi surface and on the orbital degrees 
of freedom6,7,111. Although the gap generally has opposite signs 
on electron and hole pockets, additional sign changes between 
same-character pockets may occur57. Moreover, although ARPES 
observes nearly isotropic gaps in many compounds33, accidental 
nodes may occur as well118, which are well described by weak-coupling 

models5,6. Some of these gap structures are illustrated in Fig. 5b in 
the 1-Fe Brillouin zone. They represent the leading gap-structure 
candidates of the materials in Fig. 5a, partly motivated by theo-
retical considerations, but consistent with ARPES, STM and/or 
neutron-scattering measurements. The variety of gap structures in 
Fig. 5b and the wide range of Tc values in Fig. 5a raise the question of 
whether there is really a common, dominant pairing mechanism in 
the FeSCs. Evidence in favour of this comes from the dimensionless 
ratio 2Δmax/(kBTc), where Δmax is the zero-temperature value of the 
largest gap and kB is the Boltzmann constant. As shown schemati-
cally in Fig. 5c, this ratio falls between 6.0 and 8.5 for many FeSCs 
(blue shaded region)119, in contrast to the 3.5–4.5 range observed in 
canonical electron–phonon superconductors (red shaded region).

The multiband nature of the FeSCs also provides opportunities for 
more exotic pairing states besides s+−. This is illustrated by a toy model 
with one hole and two electron pockets subjected to repulsive pairing 
interactions (see ref. 120 for a related toy model). Figure 5d schemati-
cally shows the pairing states obtained on tuning the ratio between the 
interband electron–pocket/electron–pocket and electron–pocket/
hole–pocket interactions, which can be different, for example, if the 
orbital compositions of the pockets are distinct. When the ratio is small, 
an s+− state is obtained: the gaps on the electron pockets are identical 
and have a π phase shift with respect to the hole–pocket gap. When 
the ratio is large, a d-wave state emerges: the gaps on the two electron 
pockets have equal magnitude but a relative π phase, whereas the ani-
sotropic gap on the hole pocket averages to zero. When the ratio is 
of order one, it is possible to realize a nematic s + d superconducting 
state75, in which the electron–pocket gaps have the same phase but 
distinct magnitudes. This is different from the case where nematicity 
onsets separately above Tc, as in FeSe. Another option is a time-reversal 
symmetry-breaking (TRSB) s + id state121, in which the electron–pocket 
gaps have equal magnitude but their relative phase is neither 0 (as in an 
s+− state) nor π (as in a d wave). A different type of TRSB pairing state, 
called s + is (ref. 120), has been proposed in heavily K-doped BaFe2As2, 
based on muon-spin-rotation measurements122.
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correspond to conventional BCS superconductors. d, Possible 
superconducting ground states realized in a three-band toy model with 
repulsive interband interactions (see refs. 120,122 for the analogous case of an 
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time-reversal symmetry breaking. The electron-pocket gaps have distinct 
averaged values in the nematic case.
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More broadly, the variation of orbital spectral weight along the Fermi 
pockets (Fig. 1e) endows the projected pairing interaction with an angu-
lar dependence, which can favour non-s-wave pairing. Microscopic 
calculations have in fact suggested that the s+−- and d-wave interactions 
can be comparable in strength6,7,111. Experimentally, peculiar peaks 
observed in the Raman spectrum have been interpreted as collective 
d-wave excitations inside the s+− state123,124 or as a collective nematic 
excitation125. The non-monotonic evolution of Tc with pressure in 
KFe2As2 has also been interpreted as evidence for nearly degenerate 
superconducting states126. Finally, the fact that the small Fermi energy 
of some FeSCs is comparable to the gap value has motivated the search 
for strong-coupling superconductivity described by the Bose–Einstein 
condensate (BEC) prescription of tightly bound pre-formed Cooper 
pairs. Although certain properties of FeSe and FeTe1−xSex have been 
described in terms of a BEC–BCS crossover104,127, direct evidence for 
pre-formed pairs remains to be seen.

Topological phenomena
One of the most recent developments in the field is the discovery of 
topological properties in some FeSCs. As schematically shown in Fig. 6a, 
this arises from p–d band inversions along the Γ–Z direction involving 
an odd-parity anionic pz band and an even-parity Fe d-band (t2g)25. Bulk 
band inversion was observed by ARPES30,128, but in a renormalized elec-
tronic dispersion compared with DFT predictions30. The crossings of the 
pz band with the dxy band and the spin–orbit-coupling mixed dxz,↑ + idyz,↑ 
band are protected, resulting in bulk topological Dirac semimetal states 
(purple shaded region in Fig. 6a, left panel)129, 130. However, the crossing 
with the dxz,↑ − idyz,↑ band is gapped, resulting in a topological insulating 
state (green shaded region in Fig. 6a, left panel)30. Both the bulk Dirac 
semimetal states and the helical surface Dirac cones emerging when 
the chemical potential crosses the topological gap were observed by 
ARPES in a few FeSCs, most notably FeTe1−xSex (refs. 25,129.)

Upon emergence of the s+−-wave state in the bulk, superconductivity 
can be induced on these Dirac surface states (right panel of Fig. 6a). 
Similar to topological insulator/superconductor heterostructures, the 
surface Dirac states of the FeSCs can also support Majorana zero modes 
(MZMs) in the vortex cores of the superconducting state. Importantly, 
the topological superconductivity on the FeSC surface is intrinsic, 
shows high Tc values and avoids the interfacial complexities of the 
heterostructures.

Inside the vortex of any superconductor, there are discrete energy 
levels of νΔ2/EF, where EF is the Fermi energy and ν is related to the planar 
angular momentum of the vortex. They can only be resolved in the quan-
tum limit, where thermal broadening is smaller than the level spacing. 
As discussed above, FeSCs usually have small EF owing to correlations. 
In FeTe1−xSex, EF can become comparable to Δ, making the quantum limit 
achievable. In an ordinary vortex, ν is expected to be half-integer, and 
the discrete levels never have zero energy (upper panels of Fig. 6b). 
However, in a topological vortex, ν is shifted to integer values due to 
the spin texture of the Dirac states131. As a result, a MZM emerges as the 
vortex bound state with zero energy (lower panels of Fig. 6b). Experi-
mentally, both zero-energy bound states and higher-energy discrete 
levels have been observed in FeTe1−xSex via STM measurements131–133, 
providing strong support for the existence of MZMs.

Notwithstanding its simplicity, the FeSC Majorana platform is sub-
jected to issues such as spatial inhomogeneity and the interlayer cou-
pling in bulk crystals. Some of these issues may be the reason why zero 
modes are observed in only a fraction of the vortices131. Besides in the 
interior of vortices, signatures consistent with Majorana fermions 
have also been observed in different types of lattice defect, such as 
interstitials134, line defects135 and crystalline domain boundaries136, 
where a one-dimensional dispersing Majorana mode was reported. On 
the theory front, several ideas have been put forward for realizing other 
exotic topological effects, such as dispersing Majorana fermions130 
and higher-order Majorana modes in corners and hinges of samples137.

Outlook
After 14 years, FeSCs continue to provide a rich and unmatched frame-
work to assess the interplay between correlations, unconventional 
superconductivity, magnetism, nematicity, quantum criticality and 
topology. Although substantial advances have occurred, deep ques-
tions linger and continue to emerge.

The correlation effects in FeSCs, which are primarily driven by the 
Hund’s interaction, appear to be enhanced on hole doping49. Although 
several factors affect the strength of correlations10, this observation 
has also been interpreted in terms of a proximate Mott insulator71 
that would exist for d5 compositions15,138, analogous to the Mott state 
of half-filled parent cuprates. Effects typically associated with Mott 
physics, such as Hubbard bands, have been proposed even in d6 com-
pounds139. However, experimental observation of such a Mott state has 
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remained elusive, leaving the interplay between Mott insulating and 
Hund metallic states an open question.

Understanding how and why the different ordered states—super-
conducting, nematic and magnetic—emerge also remains a challenge. 
Although different approaches are possible, in the Hund-metal descrip-
tion this generally happens in the regime where charge degrees of free-
dom are itinerant but spins are localized. Explaining the phase-transition 
mechanisms in this regime will require the development of ideas that 
can seamlessly combine long-wavelength, low-energy physics with 
local, intermediate-energy physics. The former is captured by pertur-
bative methods such as (f)RG and RPA, which focus on the momentum 
dependence of the interactions and on the resulting instabilities of the 
system. The latter is well described by DMFT approaches that focus on 
the frequency dependence of the interactions.

The discovery of the FeSCs provided an arena to test and develop 
ab initio methods for correlated electron materials10,40,41,78,138,140. They 
proved to be of immense value for suggesting new concepts and aiding 
the interpretation of experiments. This line of research will continue 
to have an important role in the future, potentially assisting in the dis-
covery of compounds with desirable properties.

Another problem that will benefit from these first-principles cor-
related approaches is the elucidation of the topological properties 
of FeSCs, as most of the existing analyses rely on DFT. More broadly, 
it will be invaluable to better understand how correlations and other 
electronic states, such as nematicity and magnetism, impact and are 
impacted by topological states141. Experimental progress will benefit 
from controllable tuning of MZMs in the vortex state of homogeneous 
compounds and from designing a feasible pathway for braiding them142.

For antiferromagnetism and nematicity, although their 
symmetry-breaking properties are well understood, key issues remain 
unresolved, such as the origin of nematicity in Fe chalcogenides or the 
role of the C4 magnetism in Fe pnictides. Moreover, it is still unclear 
whether quantum criticality is a central ingredient to the FeSCs. Experi-
mentally disentangling signatures from putative nematic and magnetic 
QCPs will be an important step towards elucidating this issue. Theo-
retically, a full description of the nematic QCP, and of its impact on 
the superconducting instability, will require incorporating two often 
neglected lattice effects. The first comes from lattice vibrations, which 
mediate long-range nematic interactions capable of suppressing critical 
fluctuations112,143. The second arises from random local strains caused 
by dopants and other defects ubiquitously present in the samples144,145. 
Promoting effects typical of the random-field Ising model, random 
strains have been argued to cause a deviation from Curie–Weiss behav-
iour of the nematic susceptibility146. The related issue of electronic 
inhomogeneity and phase separation is not covered in this review.

Important questions about superconductivity also remain open, 
despite substantial theoretical progress, particularly in multi-orbital 
weak-coupling approaches. They include establishing how the gap 
structure and the Tc depend on materials parameters, such as the FeAs4 
tetrahedral angle or the correlation-driven mass enhancement, and 
explaining the seemingly universal 2Δmax/(kBTc) ratio. Another chal-
lenge is posed by compounds with only hole pockets (such as KFe2As2) 
or only electron pockets (such as monolayer FeSe), which do not fall 
within the standard weak-coupling s+− paradigm, and for which the rel-
evance of magnetic fluctuations is not well established. Yet, both display 
superconductivity, with some of the electron-pocket-only compounds 
showing the highest Tc’s among all FeSCs. This requires new approaches 
that can elucidate the pairing mechanism in these compounds (see, for 
example, ref. 147) and its relationship with other FeSCs.

Opportunities to address some of these unanswered questions and 
venture into unexplored directions are provided by other Fe-based 
compounds, which continue to be regularly discovered. Some of 
them have unusual structural properties owing to their spacing lay-
ers, such as CaKFe4As4 with centres of inversion away from the FeAs 
layer, the monoclinic Ca1−xLaxFeAs2 (refs. 148) with a metallic spacer 

layer, and the insulating ladder compound BaFe2Se3 (refs. 149,150). Con-
versely, many of the theoretical and experimental advances spurred 
by FeSC studies have found fertile ground in other quantum materi-
als. For instance, Hund-metal concepts have been used to explain the 
normal-state properties of various quantum materials, most notably 
Sr2RuO4 (ref. 16). Multi-orbital pairing models have been extensively 
employed to elucidate multi-band superconductors such as ruthen-
ates and nickelates. The concept of vestigial orders and the associated 
phenomenological models have led to important insights into antifer-
romagnetic and topological superconducting materials93. Experimen-
tally, symmetry-breaking strain has been recognized as a uniquely 
appropriate tool to probe electronic nematic order. Strain-based tech-
niques applied to transport, thermodynamic, scattering, spectroscopic 
and local probe measurements are now considered mainstream. They 
have enabled the identification and manipulation of electronic nematic-
ity and a variety of other electronic states in disparate materials such 
as cuprates and f-electron systems. Overall, the constantly evolving 
toolbox developed and refined in FeSC studies has equipped the com-
munity with powerful methods to both revisit old problems and search 
for new quantum electronic phenomena.
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