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Protecting secrets is a key challenge in our contemporary information-based era. In 
common situations, however, revealing secrets appears unavoidable; for instance, 
when identifying oneself in a bank to retrieve money. In turn, this may have highly 
undesirable consequences in the unlikely, yet not unrealistic, case where the bank’s 
security gets compromised. This naturally raises the question of whether disclosing 
secrets is fundamentally necessary for identifying oneself, or more generally for 
proving a statement to be correct. Developments in computer science provide an 
elegant solution via the concept of zero-knowledge proofs: a prover can convince a 
verifier of the validity of a certain statement without facilitating the elaboration of a 
proof at all1. In this work, we report the experimental realization of such a 
zero-knowledge protocol involving two separated verifier–prover pairs2. Security is 
enforced via the physical principle of special relativity3, and no computational 
assumption (such as the existence of one-way functions) is required. Our 
implementation exclusively relies on off-the-shelf equipment and works at both short 
(60 m) and long distances (≥400 m) in about one second. This demonstrates the 
practical potential of multi-prover zero-knowledge protocols, promising for 
identification tasks and blockchain applications such as cryptocurrencies or smart 
contracts4.

In a foreign city where you know absolutely no one, you go to an auto-
matic teller machine to obtain a handful of local cash. You have never 
heard of the bank owning that teller machine, yet when requested for 
your personal identification number to obtain money you blindly 
provide it. No joke, you give away that super unique information to 
a complete stranger. But why? Because of the cash you get in return? 
There is actually no solid reason to trust that teller machine. You should 
never have to give away this private information to anyone at all! But 
how could we prove who we are without giving away such a secret piece 
of data?

The idea behind zero-knowledge proofs was born in the middle of the 
1980s1,5 and formalizes the possibility to demonstrate knowledge of a 
secret information without divulging it. A natural application is the task 
of identification, where a user can demonstrate their identity via the 
knowledge of a secret proof of a mathematical statement they created 
and published. A well-known example is the Rivest–Shamir–Adleman 
(RSA) cryptosystem6 in which the mathematical secret is the factoriza-
tion into two huge prime numbers of an even larger number. In this work 
we consider the problem of three-colouring of graphs: an instance is a 
graph (nodes and edges attaching some of them to one another) and 
a proof of three-colourability assigns to each vertex one out of three 
possible colours in a way that any two vertices connected by an edge 
have different colours (Fig. 1a). Some graphs are three-colourable, 
some are not, and the general problem of deciding whether a graph 

is three-colourable has no known efficient solution. However, given a 
colouring it is extremely easy to efficiently check if it is proper, that is, 
whether the end points of every edge are assigned different colours. 
For this reason, three-colourability is a problem in NP, the class of all 
problems that are efficiently verifiable given a solution7. Moreover, 
it is also NP-complete because an instance of any problem in NP can 
be efficiently simulated by an instance of three-colourability, so that 
if this latter were in P, the class of all problems efficiently solvable, 
then we would have P = NP, an equality that has been the most famous 
challenge of theoretical computer science for the past half century 
and that remains unsolved.

A zero-knowledge proof for three-colourability has been intro-
duced in ref. 8 by assuming the existence of one-way functions, that 
is, functions that can be efficiently computed but for which finding 
a preimage of a particular output cannot. The zero-knowledge proof 
guarantees that upon participation in such an interaction, a prover 
would convince a verifier of the validity of the statement when it is 
indeed valid (completeness) and would not convince the verifier when 
it is invalid (soundness), while not allowing the latter to improve their 
ability to find a proper three-colouring (zero-knowledge), but this is 
under the assumption that one-way functions exist. It is widely believed 
that a zero-knowledge proof for any NP-complete problem such as 
three-colourability is not possible without this extra computational 
assumption. If not, this would lead to vast implications in the world 
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of complexity9. However, this feature is generally undesirable as it 
significantly weakens the long-term security of such zero-knowledge 
protocols, which are used, for example, in certain cryptocurrencies10. 
This may have important consequences, as security would be fully 
compromised if the specific one-way function used in the protocol 
is (later) found to be efficiently invertible. This aspect is particularly 
relevant given recent advances on quantum computing11,12.

Remarkably, it is possible to devise zero-knowledge protocols without 
the need of any computational assumption. The key idea, as developed by 
Ben-Or, Goldwasser, Kilian and Wigderson2, is to generalize the interac-
tive proof model such that several provers are now trying to convince a 
verifier of the three-colourability of a graph in perfect zero-knowledge 
without the need of any further assumption. Intuitively, this approach 
reflects the strategy used by police investigators when interrogating 
suspects in separate rooms to discern the truth more easily: it is harder 
to collectively lie about the validity of a statement when interrogated 
separately. The key difference between the multi-prover scenario and 
the original definition of interactive proof rests in the possibility to pre-
vent several provers from talking to each other, a single prover always 
being able to talk to themself. This naturally suggests the use of spatial 
separation to enforce the impossibility to communicate3,13, at least for 
some short period of time: assuming the principle of special relativity 
(nothing can signal faster than the speed of light) and sending queries to 
the different provers simultaneously, there is a short time window during 
which they are physically unable to signal to each other given they have 
to respond fast enough to their nearby verifier. So far, these ideas have 
been mainly of purely theoretical interest, as known protocols required 
extremely large information transfer between the provers and verifiers, 
which prohibited their implementation.

In this work, we report experimental realizations of relativistic 
zero-knowledge proofs for an NP-complete problem (three-colourability). 
Specifically we simplify and develop an efficient implementation of the 
protocol recently established in ref. 14 for two separated verifier–prover 
pairs. In practice, key challenges involve the generation of adequate 
large three-colourable graphs, as well as an efficient management of 
the randomness shared between the provers, achieved via suitable 
error-correcting codes. We report on two experiments: first, using global 
positioning system (GPS) clocks to synchronize the two verifiers, we 

performed the protocol at a distance of 400 m; second, using a trig-
gering fibre between the two verifiers, we conducted the same test at a 
shorter distance of 60 m. In both cases, the full running time was about 
one second. The first implementation shows that the protocol at large 
distances is rather effortless since the wide relativistic separation only 
demands a moderate speed on the provers’ side; the second one dem-
onstrates a clear potential for serviceable applications. Importantly, 
the security is enforced by relativistic constraints, and does not rely on 
any computational hypothesis such as the existence of one-way func-
tions. Note that the aforementioned NP-completeness guarantees that 
any application based on a problem in NP can be (polynomially) cast 
into an instance of our protocol. For example, if you trust the Advanced 
Encryption Standard (AES) as a secure cryptographic primitive, you can 
transform AES instances into three-colourable graphs. Our implemen-
tation achieves security against classically correlated provers and we 
discuss the prospects of extending the security to the general case of 
quantum-mechanically correlated provers below.

Protocol
We start by presenting the zero-knowledge proof that we used in the 
experiment. Let V E( , ) be a finite undirected graph, namely, a finite set 
V of vertices and a collection E of edges, that is, unordered pairs of 
(distinct) vertices. We further assume that this graph is three-colourable 
(Fig. 1a). In the following we denote the three different colours by 0, 1 
and 2, and we refer to proper colourings simply as ‘colourings’, whereas 
we call improper ones ‘labellings’.

The protocol we implemented is a simplified version of the one pre-
sented in ref. 14. It is schematized in Fig. 1c, d and fully explained in the 
‘Protocol’ section of the Methods. In a nutshell, the (honest) provers 
share in advance two labellings of the graph (summing up to a 
three-colouring), which they can use to correctly answer the verifiers’ 
questions. Combining both answers, the verifiers can then be con-
vinced, round after round, that the provers are not cheating, and this 
without getting any information that they did not have initially. With 
a number of rounds of E k5| | , where |E| is the number of edges in the 
graph, classically correlated provers can dishonestly pass the protocol 
with probability at most e k− .
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Fig. 1 | Relativistic zero-knowledge protocol for three-colourability on a 
short distance. Two separated provers try to convince a verifier that they know 
a given graph is three-colourable without facilitating the elaboration of a 
three-colouring. a, A three-colourable graph with six vertices and ten edges. 
The three-colouring depicted here is such that c c= = 01 3  (full blue), c c= = 12 5  
(dashed yellow), c c= = 24 6  (dotted red); vertices linked by an edge are indeed of 
different colours. b, Satellite view28 of the building of the experiment. The 
distance between the two parties involved is 60 m, that is, 200 ns at the speed 
of light. This separation makes the communication between the two provers 
impossible at this timescale due to the non-signalling principle of special 
relativity. The verifiers simultaneously trigger their questions to their provers 
by means of an optical fibre (dashed line). c, d, Illustration of a round of the 
protocol on both verifier–prover pairs. Each verifier sends (downward arrow) 

an edge and a bit b to their prover, who should answer (upward arrow, 
incomplete to emphasize the chronology) their bth labellings at the end points 
of the edge: for all vertex k the provers have indeed pre-agreed on two 
labellings ℓ ℓ, ∈ {0, 1, 2}k k

0 1  that should sum up to a three-colouring, namely, 
ℓ ℓ c+ ≡ (mod 3)kk k

0 1 . When asking the same edge on both sides and opposite bits, 
the verifiers can check, thanks to the definition of the labellings, that the 
provers know that the graph is three-colourable. To make sure that the provers 
are not cheating, the verifiers can also send the same bit with edges sharing 
(at least) one vertex; the consistency of the provers’ answers can then be tested. 
By repeating this procedure many times the verifiers can make the probability 
for dishonest provers to pass the protocol arbitrarily small (soundness). 
However, even with all the provers’ answers in hand, the verifiers are not more 
efficient at elaborating a three-colouring than initially (zero-knowledge).
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The graph
From a theoretical perspective, the three-colourability problem is 
NP-complete. For the implementation we need a concrete graph together 
with a three-colouring of it. Here comes a complication: though the 
general problem is ‘hard’, there exist efficient algorithms in many cases. 
To overcome this difficulty we use sufficiently large critical graphs. A 
four-critical graph is not three-colourable but is such that the deletion 
of any edge gives rise to a valid three-colouring for the resulting graph. 
Ref. 15 proposes an algorithm to build large critical graphs correspond-
ing to very hard instances of three-colourability, a fact corroborated by 
extensive experimental evidence. However, no method for generating a 
three-colouring on the way is provided therein, so that we adapted the 
technique to our needs; see the ‘Graph generation’ section in the Meth-
ods. The graph used in the following experiments has |V| = 588 vertices 
and |E| = 1,097 edges, so that reaching a security parameter of k = 100, 
widely considered safe16, takes about half a million rounds.

Implementation
Our protocol features two separated verifier–prover pairs. For its imple-
mentation, the critical aspect dwells on the speed of the answer on the 
provers’ side; therefore they were operated on field-programmable 
gate-arrays (FPGA) to reduce the communication latency, speed up the 
computation, and improve its time reliability. On the verifiers’ side, FPGAs 
were also used for communication, together with standard computers 
for global monitoring and checking of the answers; see the ‘Hardware’  
section in the Methods for details of the hardware, which builds on 
techniques developed for the implementation of bit commitment17.

As the protocol involves a significant number of rounds and requires 
the provers to share in advance some randomness, this resource must 
be used sparingly. For instance, it is easy to see that, starting from a 
shared three-colouring, storing a single permutation of three elements 
is enough to draw a random three-colouring in each round. Regarding 
the remaining shared randomness needed in the protocol, it requires at 
first sight one random trit per vertex and per round, which is not afford-
able. On second thought only four (two per prover) may suffice but for 
this the provers should know which question their partner was asked, 
that is, which trits were ‘consumed’, which is not possible. Drawing a con-
nection with error-correcting codes18,19 we could nonetheless overcome 
this difficulty; see the ‘Shared randomness’ section of the Methods.

Note that two timescales are involved in the experiment: the speed of 
the exchange between the verifiers and the provers and the repetition 
rate of the rounds. The former fixes the minimum distance required 
between the two locations and is limited by the speed of computation 
on the provers’ side; the latter determines the time that the protocol 
takes to reach a given security parameter.

In the next sections, we explain our implementations of the protocol 
in two complementary spatial domains.

Long distance
The two verifier–prover pairs are placed in different buildings on the 
campus at 390 m from one another, corresponding to a time separation  
of 1.3 µs. The synchronization relies on GPS clocks as in ref. 20. Both 
verifiers send to their neighbouring prover a stream of challenges at a 
frequency of 0.3 MHz. As soon as they receive a challenge the provers 
compute their answers based on their shared data (Fig. 1c, d). Taking 
into account the imprecision of the system used, the total time elapsed 
between the emission of the verifiers’ challenges and the reception of 
the provers’ answers is 840 ns, which is below the 1.3 µs time separation 
between the parties, thus fulfilling the soundness requirement. The 
whole protocol with half a million rounds runs in about 2 s .

Note that the theoretical minimum distance between the verifiers 
is fixed by the 840 ns in which the provers respond and is thus about 

250 m. Also there is no upper bound for this distance since the two 
verifier–prover pairs are disconnected in this case. Applications involv-
ing faraway actors may be designed based on this simple protocol17:  
as the distance between the verifier–prover pairs increases, the 
one between the verifier and the prover within a pair becomes less 
constrained. Typically verifier–prover pairs widely separated would 
allow the provers to be anywhere in the verifiers’ cities.

Short distance
The two verifier–prover pairs are placed on two tables outside of the 
university building at 60 m from one another, corresponding to a time 
separation of 200 ns (Fig. 1b). A trigger signal is sent from the first 
verifier to the second who sends, upon receipt, a challenge to their 
neighbouring prover. The first verifier delays the emission of their 
challenge by the time the trigger will take to be transferred to the 
second verifier. So both verifiers send to their neighbouring prover a 
stream of challenges. Again, as soon as they receive a challenge the 
provers compute their answers based on their shared data and send 
them back to the verifiers. Altogether a round is achieved in a maximum 
192 ns, thus constraining the verifier to be at a minimal distance of 
57.6 m; see the ‘Hardware’ section of the Methods for details. With a 
repetition rate of 0.5 MHz the whole protocol with half a million rounds 
runs in about 1 s. Note that with the hardware used and its time and 
memory limitations, it would still be possible to gain an order of mag-
nitude in the size of the graphs, namely, |V| ≈ 5 × 103 and |E| ≈ 104, while 
keeping the same security parameter k = 100 and a reasonable total 
time (about 10 s). With the improvements mentioned below, this limit 
could be further pushed to V| | and E| | of the order of 105.

In our implementation the time needed for an exchange between 
the provers and the verifiers is mostly constrained by the latency of the 
hardware, primarily the one of the multi-gigabit transceivers used for 
the optical links. The computation of the provers’ answers (memory 
look-up and calculation) is done in a single clock cycle (here 8 ns). A 
parallel communication with dedicated input/outputs could reduce 
the transfer time from and to the physical pins of the provers’ FPGAs, 
adding no more than another clock cycle of delay, hence bringing the 
exchange time down to 16 ns. Moreover, implementing the scheme on 
state-of-the-art application-specific integrated circuit (ASIC) technol-
ogy would further reduce the clock cycle, thus the overall delay. There-
fore it seems possible to run a full exchange in only a few nanoseconds 
so that the two verifier–prover pairs could eventually be placed about 
a metre away from each other.

Quantum provers
So far we have only considered the case of classically correlated prov-
ers. However, it would be desirable to extend the security to the case of 
quantum provers. This is because they could establish stronger correla-
tions than classically correlated ones, a phenomenon due to quantum 
entanglement21. Concerning our protocol, it is at the moment unknown 
whether it remains secure against two quantum provers, though it 
appears to be the case. In principle there also exist protocols that are 
secure against such quantum provers22–24 but they are currently unprac-
tical (see the ‘Quantum provers’ section of the Methods) because too 
many rounds are required under existing analysis. Therefore, in all cases, 
improving theoretical proofs clearly represents the key challenge.

Conclusion
We have demonstrated that a relativistic zero-knowledge proof for the 
NP-complete problem of three-colourability is possible in practice, 
even for small distances. For the example mentioned in the introduc-
tion, one could thus conceive a teller machine with two separate ports; 
customers may then simply spread their arms and insert a pair of chips 
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to identify themselves by proving they know their (public) graph is 
three-colourable. Given the simplicity of the operations on the prov-
ers’ side in our protocol, these chips may furthermore be integrated in 
(two) cell phones. More generally, these ideas may find applications in 
a wide range of areas where the concept of zero-knowledge is relevant, 
such as blockchain systems and smart contracts4, electronic voting and 
auctions25,26, as well as nuclear warhead verification27.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods

Protocol
In this section we describe the protocol we implemented together 
with the strategy used by the verifiers, which gives rise to the number 
of rounds presented in the main text. All this is adapted from the very 
similar though more complex protocol presented in ref. 14.

The protocol involves two verifiers and two provers. Initially the two 
provers pre-agree on random three-colourings c n( ) ∈ {0, 1, 2}k    for k V∈  
and n identifying the round. In the following, the dependency in n will 
be omitted for conciseness. For all vertex k they also choose two labell-
ings ℓk

0 and ℓk
1  such that the equality ℓ ℓ c+ ≡k k k

0 1  (mod 3) holds. Recall that 
the labellings ℓ0 and ℓ1 do not need to have different values on adjacent 
vertices. A round is then illustrated in Extended Data Fig. 1 and consists 
of (1) the first, respectively second, verifier providing their prover with 
an edge i j E{ , } ∈ , respectively i j{ ′, ′} and a bit b ∈ {0, 1}, respectively b′; 
(2) the first, respectively second, prover answering ℓ ℓ( , )i

b
j

b , respectively 
ℓ ℓ( , )i

b
j

b
′
′

′
′ ; and (3) the two verifiers checking the provers’ answers as 

described in the next two paragraphs. If none of the parties abort the 
protocol, then we repeat rounds until a certain security level is reached 
(see the end of this section). The verifiers’ tests follow two different paths.

On the one hand, the verifiers can check that the provers do indeed 
know that the graph is three-colourable. This test is done when both 
verifiers send the same random edge e i j i j e E= { , } = { ′, ′} = ′ ∈  and when 
b b≠ ′. Then the answers a a( , )0 1  and a a( ' , ' )0 1  of the two provers are 
accepted if and only if a a+ '0 0 ≢ a a+ ' (mod 3)1 1 .

On the other hand, the verifiers can test the consistency of the provers’ 
answers. When the edges sent share at least one vertex (say, i i= ′) and 
when the bits sent are equal (b b= ′), then the verifiers accept if and only 
if the corresponding answers of the two provers are equal (a a= '0 0). This 
test prevents the provers from answering in a way that would take no 
account of the edges asked but would only aim at passing the previous 
check.

For honest verifiers and honest provers (when the graph is 
three-colourable), it is easy to see that following the protocol will 
always lead to acceptance. This property of the protocol is referred 
to as completeness.

For honest verifiers and dishonest provers (when the graph is not 
three-colourable), the soundness refers to the verifiers being able to 
reveal the cheat with very high probability when performing many 
rounds. Intuitively, if the answers of a prover (say, P2) reach their cor-
responding verifier (V2) before the question of the other one (V1) could 
have, by any means, made its way there, then this prover (P2) must have 
answered without knowing what the other one (P1) has been asked. By 
separating the verifier–prover pairs by a sufficient distance and by 
timing the protocol carefully, we can use the non-signalling principle of 
special relativity to create this separation to make the protocol sound 
against classically correlated provers. We discuss the case of quantum 
provers in the ‘Quantum provers’ section in the Methods.

For dishonest verifiers (trying to get any knowledge of a 
three-colouring) and honest provers, the zero-knowledge property 
amounts to the verifiers getting no knowledge whatsoever upon inter-
action with the provers. The above protocol satisfies this property14.

From the cases described above, we get the main features of a good 
strategy for the verifiers to detect cheating provers. Typically, asking 
edges with no vertex in common is of no interest and the two tests 
described above should be somehow balanced. When we fix the strat-
egy adopted by the provers, the probability for cheating provers to 
pass one round can be computed and from there the number of rounds 
required to reach a given security level. In a similar fashion to ref. 14 we 
used the subsequent strategy for the verifiers. First the edge i j{ , } and 
the bit b are chosen (uniformly) at random. Then with probabilities 1/5, 
2/5 and 2/5 (respectively), one of the three following options is chosen: 
(1) the edges are chosen to be equal and the bits opposite, that is, 
i j i j{ ′, ′} = { , } and b b′ ≠ ; (2) the bits are chosen to be equal and the second 

edge randomly among those containing i, that is, b b′ = , i i′ =  and 
i j E{ ′, ′} ∈ ; (3) the bits are chosen to be equal and the second edge ran-

domly among those containing j, that is, b b′ = , j j′ =  and i j E{ ′, ′} ∈ . With 
this strategy, when the number of rounds is E k5| | , where E| | is the num-
ber of edges in the graph, classically correlated provers can dishonestly 
pass the soundness tests with probability at most e k− .

Note that the amount of data exchanged is very small compared to 
previous protocols: in ref. 23 this quantity is polynomial in the number 
V| | of vertices while here it is only logarithmic in V| |. This feature allows 
for short distances between the verifier–prover pairs since the  
communication time is short, even for large graphs.

Graph generation
In this section we describe how we construct large three-colourable 
graphs which are hard to colour together with a three-colouring.

In ref. 15 Mizuno and Nishihara give (1) seven small graphs that are 
four-critical, that is, not three-colourable but such that any graph 
obtained by deleting any edge is three-colourable, and (2) a procedure 
to assemble two four-critical graphs into a (bigger) four-critical graph. 
Typically, the method consists in replacing one edge of the first graph 
by the second one. Importantly, the small and assembled graphs do not 
contain any near-four-clique, that is, any subgraph with four vertices 
all connected to one another except for one pair, for example, ⧄. Such 
structures indeed appear as weaknesses exploitable by algorithms 
looking for a three-colouring and should thus be avoided. With their 
procedure they experimentally demonstrated using various software 
that the complexity of the resulting instances was exponential in the 
number of vertices.

However, they do not include any algorithm to keep track of the 
three-colourings that arise upon removal of an edge. We developed 
such a method to build large graphs that are very hard to three-colour 
together with a three-colouring.

Hardware
For the implementation, the verifiers consist of a standard computer 
(Intel Core i3 processor with 4 GB of RAM) and an FPGA development 
board (Xilinx SP605 evaluation board featuring Spartan-6 XC6SLX45T), 
the two being connected through a PCI Express link; the provers con-
sist only of the same FPGA development board. Within each verifier–
prover pair, FPGA boards are communicating with each other through a 
2.5 Gbit/small form-factor pluggable (SFP) optical link. On the provers’ 
side the main data (graph, colouring) is stored in memories available 
in the FPGA (block RAM of about 2 Mbit) and the random data on Flash 
memories available on the FPGA development board (32 MB), the latter 
being slower than the former. This shared randomness was generated 
by means of the quantum random number generator (QRNG) Quantis 
by IDQuantique.

GPS version. A schematic view of the setup in this case is depicted on 
Extended Data Fig. 2a. The verifiers’ FPGAs are synchronized to the 
coordinated universal time (utcGPS clock, that is, a GPS receiver and 
an oven-controlled quartz-crystal oscillator (OCXO) that creates a 
sinusoidal wave with a frequency of 10 MHz. This OCXO signal, locked 
to an electronic pulse per second (PPS) delivered by the GPS with a 
precision of 150 ns, is sent to the verifiers’ FPGAs where its frequency is 
multiplied to a 125 MHz signal through a phase-locked loop. Eventually 
this 125 MHz signal is used as a time reference for the computations 
performed on the FPGAs, which also receive the PPS signal to check 
the synchronization with the GPS clock. Specifically, we verified that 
there were 1.25 × 106 ±1 cycles between two successive PPS signals, fix-
ing the cycle duration to 8 ns. This shows that the inaccuracy added by 
the generation of the 125 MHz clock would be below 24 ns. Therefore, 
since the PPS signals are also labelled with a universal time stamp, the 
verifiers are able to synchronize their questions with an accuracy of 
150 + 24 = 174.
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Triggered version. A schematic view of the setup in this case is depicted 
on Extended Data Fig. 2b. The verifiers’ FPGAs are connected to one 
another with an SFP optical link, this link is used to synchronize the 
questions sent to the provers. The FPGAs run at a base clock frequency 
of 125 MHz. The first verifier generates a stream of triggers at a rate of 
about 3 MHz. These impulsions are transferred to the second verifier 
through a fibre channel of 62 m connecting both devices to trigger the 
challenges sent to the prover. On the first verifier this trigger is delayed 
by 440 ns to compensate for the delay in the fibre and the latency of 
the electronics. With an oscilloscope we measured that the imprecision 
between the delayed trigger and the trigger sent through the optical 
fibre does not exceed three cycles, that is, 24 ns. Moreover the total 
time of the exchange in the verifiers’ FPGA is inferior to 35 cycles but 
we determined that the verifiers internal latency, that is, the time when 
the data is still in the FPGA plus the time the answer is already back,  
accounts to at least 14 cycles, thus reducing this time to 21 cycles. Note 
that this time arises from the conversion from electronic to optical 
signals. When adding the imprecision of the trigger, we get that a round 
is achieved in a maximum of 24 cycles, that is, 192 ns, thus constraining 
the verifier to be at a minimal distance of 57.6 m.

Shared randomness
In the protocol presented in the ‘Protocol’ section of the Methods the 
two provers need to have access to a common source of random informa-
tion that they can use to share, in each round, their random colouring 
and randomizers. For speed mostly (but also simplicity and elegance), 
it is preferable to have them store this shared randomness. Given the 
high number of rounds needed to reach a satisfying security and the 
relatively low memory of the FPGAs, a frugal approach is mandatory. In 
this section we give the details of our implementation with this regard.

For the colouring, it is easy to see that there is a thrifty option: stor-
ing a fixed one and only drawing a random permutation of the colours. 
The ‘randomness cost’ of this part is therefore of one bit and one trit 
in each round.

For the randomizers, a naive approach would demand one random trit 
per vertex each time, thus requiring far too much memory given the high 
number of rounds. Noting that only four of them are actually used in each 
round (two per prover), we apply a radically more affordable alternative: 
storing V| | (the number of vertices) fixed trits and drawing 2m + 1 trits, 
where m is the number of digits of V| | in base three. The idea is to expand 
randomness by assigning in advance a small ternary vector (of 2m + 1 
trits) to each node; then each randomizer is simply chosen by computing 
the scalar product with a common random ternary vector (of 2m + 1 trits). 
The subtle point to take care of is the independence of the resulting ran-
dom variables, which amounts to the linear independence of the vectors 
assigned to the nodes. As only four randomizers are consumed in each 
round, we want all sets of four such vectors to be free. The literature luck-
ily offers an elegant solution to this problem via ternary cyclic linear 
codes with minimum Hamming distance of five18. The parity check matrix 
of a linear code with minimum Hamming distance d is indeed such that 
all sets of d – 1 of its columns are linearly independent; see, for example, 
ref. 19, lemma 3.5. Moreover, the cyclicity of the code used allows one to 
store only one trit per node and to use it together with the ones of the 
next 2m nodes (in numerical order) to create its ternary vector.

Quantum provers
In this section we describe two adaptations of our protocol that are 
provably secure against quantum provers: one with a third verifier–
prover pair23 and one extending the size of the graph under study24. 
At the moment, these adaptations are not amenable to an experiment 
like ours; we discuss this point more precisely below.

Already in ref. 14 the possibility of extending the protocol therein to 
three verifier–prover pairs following ref. 23 is investigated. Here we sum-
marize the arguments, which are essentially similar for our simplified 

protocol. The idea is to involve a third prover, also relativistically sepa-
rated from the other two, and whose task will be to mimic one of them, 
randomly chosen by the verifiers. It is easy to see that honest provers 
have no problem passing this new version, as the added prover can sim-
ply share the same labellings and use them to answer exactly as before. 
For dishonest provers trying to beat the protocol by means of quantum 
resources, the crucial point that prevents them from cheating rests on 
the monogamy of entanglement, namely, a fundamental trade-off among 
the amounts of entanglement a quantum system can have with others.

Unfortunately, the number of rounds for which security can currently 
be proven for this protocol is about E k(11| |)4 , which is completely 
unpractical for graphs of reasonable size: 2 × 1018 rounds in our case, 
thus taking millennia! Also, we should mention that, with three provers, 
up to six vertices can be unveiled by the verifiers in every round, so that 
the storage of shared randomness would need a ternary code with a 
minimum Hamming distance of seven, for which the literature does 
not provide a solution as elegant as in the ‘Shared randomness’ section 
of the Methods.

Another alternative can be found in ref. 24, where Ji suggests inflating 
the graph into a bigger one for which security against quantum provers 
can be demonstrated. The way to extend the graph is schematically the 
following: for all pairs of nonadjacent vertices, add four vertices fol-
lowing a certain pattern that Ji calls a commutative gadget. This little 
subgraph added this way is indeed such that it enforces the strategy 
to involve commuting variables, and thus to be classical.

However, even though the increase is now only quadratic, classical 
and quantum security are not linked in ref. 24 so that the number of 
rounds required remains unknown. Note also that memory may become 
an issue if the graph is too large, as this impacts not only the number 
of rounds, but also the amount of memory required in each round.

In summary, the adaptations of the protocol mentioned above are at 
the moment unable to provide a practical protocol sound against quan-
tum provers. Theoretical improvements following one of these direc-
tions, a combination of them, or a new one, would then be desirable 
to bring the number of rounds down to something practical. Note that 
our protocol as it is might also be proven to be secure against quantum 
provers.
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Extended Data Fig. 1 | Illustration of a round of the protocol. The colours are 
consistent with those of Fig. 1a and depict a typical round where the verifiers 
ask the same edge to the provers, here {1, 2}, but where b b≠ ′ so that they  
check in the end that a a+ '0 0 ≢ a a+ ' (mod 3)1 1 . In this example we have 
ℓ ℓ ℓ ℓ= 2, = 1, = 0, = 11
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1 ; note that, despite the adjacency of the vertices 1 and 2, 

the equality ℓ ℓ=1
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1  is legal as the labellings ℓ k

b do not need to be colourings.
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Extended Data Fig. 2 | Illustration of the hardware used in our two 
implementations. a, b, The GPS version (a) and the triggered version  
(b). The essential difference is the method used for synchronizing the verifiers’ 
questions. In a the connection is wireless as it uses communication with 
satellites at the expense of a higher imprecision thus further verifier–prover 

pairs. In b the connection is physical and oriented from the first to the second 
verifier; the former sends a trigger through the fibre and delays their action by 
the time needed for this signal to reach the latter. With a better accuracy this 
second method allows for shorter distances between the verifier–prover pairs, 
here 60 m but arguably improvable.
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