Article

Genetic and epigenetic coordination of
corticalinterneurondevelopment

https://doi.org/10.1038/s41586-021-03933-1
Received: 6 April 2020
Accepted: 18 August 2021

Gord Fishell>*™

Kathryn C. Allaway"**7, Mariano I. Gabitto*’, Orly Wapinski®’, Giuseppe Saldi*>®,
Chen-Yu Wang??, Rachel C. Bandler'??, Sherry Jingjing Wu??, Richard Bonneau®*®> &

Published online: 22 September 2021

M Check for updates

One of the hallmarks of the cerebral cortex is the extreme diversity of interneurons' >,
The two largest subtypes of cortical interneurons, parvalbumin- and

somatostatin-positive cells, are morphologically and functionally distinct in
adulthood but arise from common lineages within the medial ganglionic eminence*™.
This makes them an attractive model for studying the generation of cell diversity.
Here we examine how developmental changes in transcription and chromatin
structure enable these cells to acquire distinct identities in the mouse cortex. Generic
interneuron features are first detected upon cell cycle exit through the opening of
chromatin at distal elements. By constructing cell-type-specific gene regulatory
networks, we observed that parvalbumin- and somatostatin-positive cells initiate
distinct programs upon settling within the cortex. We used these networks to model
the differential transcriptional requirement of a shared regulator, Mef2c, and
confirmed the accuracy of our predictions through experimental loss-of-function
experiments. We therefore reveal how acommon molecular program diverges to
enable these neuronal subtypes to acquire highly specialized properties by
adulthood. Our methods provide aframework for examining the emergence of
cellular diversity, as well as for quantifying and predicting the effect of candidate
genes on cell-type-specific development.

Toinvestigate the establishment of parvalbumin (PV) and somatostatin
(SST) interneuronidentities, we first sought to determine the earliest
timepointat which they canbe distinguished from projection neurons,
the other major derivative in the medial ganglionic eminence (MGE).
Our previous work indicated that, at atranscriptional level, this distinc-
tionis first detectable in postmitotic populations, when cells diverge
into three branches corresponding to specific fates: interneuron pre-
cursors (branch1) and projection-neuron precursors (branches 2 and
3)8. To explore whether there is an earlier chromatin signature that is
indicative of interneuron identity, we compared the RNA expression
and chromatin accessibility in these precursor populations at embry-
onicday (E) 13, the peak of MGE interneuron neurogenesis.

Transcription and chromatin in the MGE

To this end, we performed single-cell RNA sequencing (scRNA-seq),
single-cell assay for transposase-accessible chromatin with sequencing
(ATAC-seq) and multiomic (dual RNA and ATAC) sequencing on the E13
MGE from Dix6a“*;Ail4 mice, using the expression of the DIx6a-based
reporter to discern mitotic progenitors from postmitotic precursors™
(Extended DataFig.1a-h, Supplementary Table1). Diffusion map analy-
sisof EI3MGE scRNA-seq and scATAC-seq datasetsresultedin cellsbeing
orderedintoasingletrajectory,inwhichthe primary source of variability

was maturation state (Fig. 1a, b). Notably, promoter accessibility for
developmentally relevant genes generally increases earlier and persists
longer compared to gene expression (Fig. 1c, d, Extended Data Fig. 1i).

Toidentify the earliest features that are indicative of an interneuron
(branch1)identity, we subsetted postmitotic neurons and used several
maturation trajectory methods to identify the three developmental
branches, using the multiomic dataset to ensure accurate label transfer
between scRNA-seq and scATAC-seq analyses (Fig. 1e, Extended Data
Figs.2a,b,3a-c). Next, we performed differential expression analysis
to identify the earliest branch 1 genes expressed in postmitotic cells.
Toidentify distal chromatin elements associated with these genes, we
collated ATAC-seq peaks surrounding them and trained a classifier to
identify those that were most informative for distinguishing branch
identity (Methods). Further analysis confirmed that these peaks were
predominantly accessible in branch 1 cells (Extended Data Fig. 4a, b,
Supplementary Table 2).

Narrowing our focus to transcription factors, we found that Maf—a
regulator of cell identity®'*—is both highly expressed in branch 1
interneurons and exhibits anenriched DNA-binding motifin their open
chromatin (Extended Data Fig. 3). Examination of chromatin accessibil-
ity surrounding this gene revealed that distal loci become accessible
prior to the initiation of gene expression (Fig. 1f). Similar dynamics
were observed for several other branch-1-specific transcription factors
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Fig.1|Distal chromatin elements provide the earliest markers of
interneuronidentity. a, b, Diffusion maps of MGE cells using scRNA-seq (a)
and scATAC-seq (b). Cells order into amaturation trajectory using both
methods. ¢, d, RNA expression of maturation-relevant genes (c) and the
corresponding promoter accessibility (d) across the maturation trajectory.
Scale denotes normalized row-scaled expression or promoter accessibility.
Arrowheads indicate the mitotic-postmitotic transition. e, Diffusion map
analysis of scRNA-seq data from postmitotic MGE revealed three distinct
branches:branch1,interneurons; branches2and 3, projection neurons.

f, Detailed analysis of the Maflocus for gene expression, promoter and
aggregated accessibility of distal elements shown for early postmitotic (trunk)
and branch-specific cells. The heat maps at the bottom show Maf distal
elements compared for their accessibility across branches. The timeline on the
rightindicates the earliest time at which each branch can be distinguished by
geneexpression. g, Gene expression (red), promoter accessibility (purple), and
aggregated accessibility of distal elements (blue) for four branch 1 marker
genes across the pseudotime.
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(Fig.1g, Extended Data Fig. 4a, b), suggesting that distal elements might
provide the earliest indication of interneuron identity, perhaps as a
form of priming®. We therefore explored the accessibility of these distal
elements prior to cell cycle exit. To this end, we used our classifier to
annotate mitotic and postmitotic cells collected at E13. This failed to
detect branch 1interneurons prior to cell cycle exit (Extended Data
Fig.4c). Therefore, there is no evidence at present of the divergence
of interneurons from projection cells prior to cell cycle exit.

Remodelling upon cortical settling

Toinvestigate how early interneuronidentity diverges, we next collected
scRNA-seq and scATAC-seq datasets from the E18, postnatal day (P) 2,
P10 and P28 cortex of Dix6a™*;INTACT mice (Supplementary Table 1).
In adult cortical interneurons, scRNA-seq and scATAC-seq profiles are
closely correlated' '8, However, our investigation of these populations
at E13 reveals a misalignment between transcriptional and chromatin
signatures in developing cells. To evaluate when during development
they comeinto concordance, we aligned these datasets at each timepoint
using both Seurat canonical correlationanalysis' and Conos® (Fig. 2a-d,
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Extended DataFigs.5-7). Analysis of the more mature populations (P10,
P28) confirmed that cluster labels can be transferred from scRNA-seq to
ScATAC-seqdatawith high confidence (Fig. 2c, d). By contrast, thiswas not
the case at early postnatal or embryonic timepoints (E18, P2) (Fig. 2a, b).

P2isthetimepointat whichinterneurons complete migration, reach
their settling position in the cortex and begin circuitintegration®. Con-
sistent with our RNA/ATAC alignment comparisons, Jaccard analysis of
SCATAC-seq data across development segregates timepoints before
and after P2 (Fig. 2e). To examine the emergence of subtype-specific
features at this transition, we analysed peaks unique to PV (44,322)
or SST (24,428) interneurons at P28 and found that these mature
subtype-specific elements are first detectablein distal loci at P2 (Fig. 2f,
Extended DataFig.8a-d). Therefore, the developmental window during
whichinterneurons settle within cortical layersrepresents a periodin
which chromatin structure undergoes substantial remodelling.

To characterize this transition, we catalogued accessible chromatin
elements specific to PV or SST interneurons at both migratory (E14-
E18) and post-settling (P2-P28) timepoints. Branch-1-specific loci
generally become less accessible at this juncture, which is consistent
with their role in establishing common interneuronidentity (Fig. 2g).
Next, we identified transcription-factor motifs enriched during these
two periods, the majority of which were shared between PV and SST
interneurons: LHX and DLX motifs during migration, and FOS/JUN
motifs post-settling (Supplementary Table 3). By contrast, few tran-
scription factors were cell-type-selective during these periods. InSST
cells, SOX and POU motifs were sequentially enriched during migratory
and post-settling periods, respectively (Fig. 2h). In PV cells, MEF motifs
became enriched at E18 and persisted post-settling. These dynamic
patterns correspond with the known function of these transcription
factors during these phases of interneuron development®? 2,

Our scATAC-seq analysis suggests that certain transcription factors
areutilizedinacell-type-specific manner despite not being selectively
expressed. To investigate this possibility, we performed CUT&RUN
sequencing for MEF2C in the mature PV and SST populations. This
revealed both common and subtype-specific binding of MEF2C, with
more loci specifically bound in PV cells compared to SST cells (Fig. 2i,
Extended DataFig.9a-d). Most of the peaksidentified with CUT&RUN
were also found in our scATAC-seq analysis, although only asubset of
these featured canonical MEF2C-binding motifs (Fig. 2j, Extended Data
Fig.9e). We could therefore use peak co-accessibility to link CUT&RUN
peaks to gene promoters (Fig. 2k). Gene ontology analysis revealed
that these putative MEF2C targets are involved in synapse assembly
and organization (Extended Data Fig. 9j, k).

Divergence of generegulatory networks

Thedivergenceinthegene expressionand chromatin structure of PVand
SST interneurons greatly accelerates upon settling within the cortex. To
characterize these dynamics, we constructed gene regulatory networks
(GRNs) using amultitask inference methodology® and separated shared
regulatory interactions from cell-type-specific ones across development
(E18, P2, and P28) (Fig. 3a, b). Each regulator-target interaction is rep-
resented in our GRNs as an edge linking transcription factors to genes.
The number of detected genes and edges progressively increases at each
sequentialtimepoint (Fig.3c, d). Over development, cell-type-specificedges
replaceshared ones (Fig. 3e, f). Notably, transcription factors co-expressed
within both cell types shift from regulating common to cell-type-specific
genes (Fig. 3g). This observation suggests that the chromatin landscape
hasbeensculpted such that cell-type-specificgene expression can be medi-
ated without arequirement for selective transcription factor expression.

Loss of Mef2c perturbs development

Having developed a comprehensive model of gene regulation in PV
and SST interneurons, we aimed to investigate how the removal of a
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Fig.2|Remodelling ofinterneuron chromatin architecture during
migration and post-settling. a-d, UMAP of co-embedded scRNA-seq and
scATAC-seqdata (top) and prediction scores of scATAC-seq assignment to
scRNA-defined clusters (bottom) at E18 (a), P2 (b), P10 (c), P28 (d). e,Jaccard
distance analysis for PVand SST cell scATAC-seq peaks across timepoints. Ctx,
cortex; ALM, anterior lateral motor cortex; V1, primary visual cortex. f, Average
signal within cell-type-specificaccessible peaksidentified at P28 located for
proximal elements (gene bodies or promoters: TSS+2 kb) or distal elements
across timepoints. SPMR, signal per million reads. g, Aggregated scores (AS)
for branch-specific peaks. h, Motifenrichmentin class-specific lociat each

critical transcription factor affects gene expression and test our ability
to predict these perturbations in silico. In a previous study, we found
that Mef2cis essential for the development of PVinterneurons, resulting
intheir loss after P6%. This is consistent with the enrichment of MEF2C
motifsin PV-specific ATAC-seq peaks (Fig. 2h). However, our CUT&RUN
analysis revealed considerable utilization of MEF2C within both PV
and SST cells (Fig. 2i-k). Thus, Mef2cis anideal exemplar with which to
examine boththe unique and shared aspects of gene regulation across
these developing cell types.

Using an Lhx6'“"* driver to remove Mef2cinboth PV and SST cells, we
examined the effect on gene expression and chromatin structure at P2.
We first integrated scRNA-seq data from these P2 Mef2c conditional
knockout (cKO) mice with that from P2 wild-type (WT) mice. Unbiased
clustering analysis revealed that a greater number of cKO cells colo-
calize with wild-type SST interneurons than with PV cells, indicating
that the loss of Mef2c disproportionately disrupts PV cell maturation

timepoint. Each transcription factor enrichment value is normalized by the
largest enrichment valuein the population. i, Relative distribution of P28
MEF2C CUT&RUN peaksin PV and SSTinterneurons. Peaks represent the
intersection of peaks across two biological replicates for each cell type. j, Peaks
identified exclusively in CUT&RUN (C&R; orange) or jointly in CUT&RUN and
ATAC-seq (green) analyses. k, Number of genes linked to CUT&RUN peaks
found uniquelyin PV cells (blue), SST cells (red) or shared inboth populations
(purple). Peaks were assigned to genes based on scATAC co-accessibility with
promoters.

(Fig.4a-c). The fragility of cKO neurons necessitated collecting single
nucleifor this experiment. To ensure that the differences seen between
cells from WT and cKO mice were not aresult of comparing whole-cell
with nuclear RNA-seq data, we collected an additional nuclear dataset
from P2 WT mice and confirmed that, when compared to cKO, both
the clustering and differential gene expression were highly similar
to the results using whole-cell WT data (Extended Data Fig. 10a-c,
Supplementary Table 4).

Our scATAC-seqanalysis of cKO cells confirmed the strong effect of
Mef2closs on PV cell development, but also revealed the more subtle
effect on SST cells. In clustering analysis of scATAC-seq data, both PV
and SST cKO cells segregate from WT cells (Extended Data Fig.10d-g).
Furthermore, during normal development, cell-type-specific and
shared peaks featuring Mef2c motifs increase in number between
E18 and P2. The overall number of peaks seen in the P2 Mef2c cKO
cells, however, resembles that seen at E18, indicating a delay in their
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Fig.3| The maturation of gene networks is characterized by the emergence
of cell-type-specificregulatoryinteractions. a, Schematicillustrating the
key findings of the GRN analysis. Early in development, shared transcription
factors generally target the same genesinboth PV and SST cells. By adulthood,
cell-type-specific programs take over, with transcription factors regulating
genesinacell-type-specific manner.b, Graphical representation of unique and
common generegulatory edges constructed using GRN analysis. Edges that
explainatleast 0.05% of the target’s variance are included. Each edge (green
line) connectsatranscription factor (black dot) to atarget gene (red dot) or
another transcription factor. ¢, Totalnumber of genes detected in PVand SST
interneurons at each timepoint. For P2 and P28, gene expressionis divided into

maturation (Fig. 4d, e). Notably, the proportion of PV-specific peaks
was selectively reduced in the cKO cells (Fig. 4d, f, Extended Data
Fig.10e). These findings indicate that Mef2c sculpts the chromatin
landscapes of both PV and SST interneurons during early postnatal
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edgesateachtimepoint.Ind-f, the xaxisrepresents the edges that explainup
toacertainvalue of itstarget’s variance. e, Edges shared between PVand SST.
f,Proportion of the GRN unique to PV or SST cellsateach age. g, The proportion
of unique targets of common transcription factors. Transcription factors were
considered commonifthey had an absolute log-transformed fold change <0.25
and were expressed in more than10% of both PV and SST cells. Statistics within
graphsrepresent the mean percentage of unique edges per common
transcriptionfactor.

development, and has a particularly important role in the opening
of PV-specific loci.

To demonstrate that GRNs are more than a static representation
of cell state, we queried whether we could use them to quantitatively

Fig.4|Loss of Mef2cdisproportionately affects the gene regulatory
landscape of PV cells. a, Uniform manifold approximation and projection
(UMAP) ofintegrated E18, P2 and P2 Mef2c cKO scRNA-seq data. b, UMAPina
segregated according to timepoint and colour-coded by cell type. ¢, Cluster
composition delineated by, from top tobottom, marker gene expression, cell
type, timepointand cellnumber.d, Proportion of scATAC-seq peaks with
MEF2C motifsin EI8 WT, P2 WT, and P2 Mef2c cKO datasets. Charts are scaled to
reflectthe totalnumber of peaks. e, Venn diagram showing all peaks with
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predict changes in gene expression. First, we generated simulated
Mef2c knockout neurons (P25™°) by computationally removing Mef2c
inthe P2 GRN. By integrating these cells with the experimental cKO
(P2°%©) and wild-type P2 (P2"") cells, we observed the formation of
clusters primarily composed of P25™<° and P2 cells (Fig. 4g, clusters
4 and 5), confirming that our simulated output matched those seen
in true cKO cells. Next we examined the 364 direct targets of Mef2c
predicted by the GRN, and found that 81% of them were differentially
expressed between P2¥" and P2°° datasets (Supplementary Table 4).
These direct targets included 17 transcription factors. We next itera-
tively calculated the differential expression of their targets (4,205 in
total) and found that 81% of these predicted second-order Mef2c tar-
gets were correctly inferred. The same analysis comparing cKO data
to single-nucleus rather than whole-cell WT data similarly found that
79% of directand 77% of indirect targets were differentially expressed
(Supplementary Table 4). Finally, as anindependent validation of our
P2 GRN, we re-calculated Mef2c transcription-factor activity using gene
expression values measured in the P2°© dataset. This computational
experiment reported a transcription-factor activity centred around
zero, compared to the unaltered P2 values that centre around -0.1;
this validates that removal of Mef2c eliminates its transcription-factor
activity fromthe network. Taken together, these results demonstrate
that, withsufficient scRNA-seq and ATAC-seq data, we are now able to
accurately infer the effects of gene loss in silico.

Discussion

Inthis study, we examined how PV and SST interneurons arise from com-
mon progenitors to become molecularly and functionally distinct by
adulthood. We observed that these cell types initially share amolecular
programthatestablishes ageneralinterneuronidentity before becoming
diversified through the actions of cell-type-specific transcription factors.
Themaintenance of their distinct fatesis stabilized inmature cells through
thecrystallization of unique chromatinlandscapes. Our analysis revealed
that RNA expressiongives aninstantaneous measure of the developmental
state of a cell, whereas chromatin provides both ahistory of the develop-
mental progression of a cell and a predictor of its future identity.

As development proceeds, we found that RNA-seq and ATAC-seq data
remain discordant until interneurons reach their settling positions and
begin terminal differentiation at P2. This represents a critical inflection
pointatwhich cellstransitionfrom having predominantly shared chromatin
architecture to establishing cell-type-specific landscapes. Notably, the
comparisonof GRNs at different developmental timepointsrevealed that, in
adulthood, shared transcriptionfactorsareable todirectcell-type-specific
gene programs. This finding indicates the strong contribution of chro-
matin architecture to the maintenance of adult fate. Indeed, the ability
to reprogram terminally differentiated cells requires the erasure of the
unique chromatin marks that characterize them as mature populations®?~.

Inaddition to providing a global overview of cell-type-specific molecu-
lar programs, GRNs are powerful predictive models. With the anticipated
improvements that will be gained through iterative analysis, this has
far-reachingimplications both for developmental biology and for assess-
ing the effect of candidate genes on cell-type-specific development. In
thisregard, the fact that loss-of-function mutations of MEF2C in humans
resultinautism spectrumdisorder and intellectual disability*®* suggests
thatanalyses such as this have the potential to provideimportant insight
intothe etiology of these disorders. Our work therefore not only reveals
how specific interneuron identities arise but also provides aroadmap
for understanding both normal and pathophysiological development.
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Methods

Mouse lines

Forembryonic timepoints, male hemizygous Dix6a“° mice*® (Jax stock
008199) were crossed with female homozygous Ai9 or Ail4 mice*
(Rosa-LSL-tdTomato, Jax stock 007909 or 007914) and checked daily
for the presence of a vaginal plug, with the morning a plug was found
being considered embryonic day 0. Embryos were screened using a
fluorescence microscope for the presence of tdTomato. For embry-
onic timepoints using wild-type mice, timed pregnant CD-1 mice were
used (Charles River 022). For postnatal timepoints, male hemizygous
DIx6a“ mice were crossed with female homozygous INTACT mice*
(flox-Suni-eGFP,)ax stock 021039) to yield DIx6a“*;INTACT offspring.
In Mef2c conditional knockout experiments, for wild-type controls,
Dlx6a“°males were crossed with female homozygous Ai9 mice to yield
offspring with both alleles collected at P2. For Mef2c conditional knock-
outs, male Lhx6'"?;Mef2c"* mice®>* (Jax stock 026555 and 025556)
were crossed with INTACT;:Mef2c™ females to yield offspring with all
necessary experimental alleles collected at P2. Allmouse colonies were
maintained inaccordance with protocols approved by the Institutional
Animal Care and Use Committees at Harvard Medical School and the
Broad Institute of MIT and Harvard. Both male and female mice were
used for all scATAC-seq and scRNA-seq experiments. Blinding and
randomization of animal experiments were not applied here.

Single-cell preparation for scATAC-seq and scRNA-seq

For both ATAC-seq and RNA-seq library preparation from embryonic
timepoints (E13-E18), embryos were collected from pregnant dams
and relevant brain regions were dissected in ice-cold Leibovitz’s L-15
medium. Pooled tissue from several embryos were dissociated using
the Neural Tissue DissociationKit (T) (Miltyeni Biotec, PN-130-093-231)
according to the manufacturer’s instructions. Dissociated cells were
then filtered through a 70 pum filter, centrifuged at 300g for 5 min at
4 °C and, where cell-sorting was required, resuspended in 1% BSA in
PBS for cell sorting of tdTomato" cells. Sorting was performed on a
Sony SH800S cell sorter with a100 um chip. Cells for scRNA-seq were
then directly used for input to 10x Genomics scCRNA-seq library prep.
For scATAC-seq, nucleiwereisolated from sorted cells as described in
the 10x Genomics demonstrated protocol ‘Nuclei Isolation for Single
Cell ATAC Sequencing’ for input to single-cell ATAC library prepara-
tion. For the P2 whole-cell WT RNA-seq dataset, cell preparation was
performed as described above, except with ACSF used for the dissec-
tion instead of L-15.

For P10 and P28 RNA-seq datasets, as well as the Mef2c cKO P2 data-
set and control wild-type nuclear P2 dataset, nuclei were isolated
as described previously with some modifications®. In brief, brains
were collected, sectioned coronally on a stainless steel mouse brain
slicer (ZivicInstruments), and regions of interest were dissected inice
cold homogenization buffer (HB) (0.25 M sucrose, 25 mM KCI, 5 mM
MgCl,, 20 mM Tricine-KOH, 1 mM DTT, 0.15 mM spermine, 0.5 mM
spermidine). Dissected tissue was then transferred to a2 ml dounce
homogenizer containing HB + 0.3% IGEPAL-CA630 + 0.2 U pl™ RNAse
inhibitor and homogenized with 10 strokes of pestle A and 10 strokes
of pestle B. Nuclei were then filtered through a 30 um filter and cen-
trifuged at 500g for 5 min at 4 °C. The pellet was resuspended in 1%
BSA +0.2 U pl'RNAse inhibitor in PBS and centrifuged again at 500 g
for 5minat 4 °C. The pellet was then again resuspended in 1% BSA +
0.2 U pl™ RNAse inhibitor in PBS and filtered through a 40 um filter
for sorting of GFP* nuclei on a Sony SH800S cell sorter witha100 pm
chip. Nuclei were collected in 1% BSA + 0.2 U pl™ RNAse inhibitor for
input to 10x Genomics scRNA-seq.

For all ATAC-seq postnatal timepoints (P2 WT and cKO, P10, P28),
brains were collected, sectioned coronally on a stainless-steel mouse
brainslicer (Zivic Instruments), and regions of interest were dissected
inice-cold ACSF. Tissue was then transferred to aDounce homogenizer

containing lysis buffer (10 mM Tris-HCI, 10 mM NacCl, 3 mM MgCl,,
0.01% Tween-20, and 0.01% IGEPAL CA-630, 0.001% digitonin). Tissue
was homogenized with10 strokes of pestle A, 10 strokes of pestle B, and
incubated for 5 minonice before beingfiltered through a30 pm filter
and centrifuged at 500gfor 10 minat4 °C. The pellet was resuspended
in1% BSA in PBS for sorting for GFP* nuclei. For all timepoints, cells or
nucleiwere sorted into diluted nuclei buffer (10x Genomics) onaSony
SH800S cell sorter with a100 pm chip.

Single-cell ATAC-seq and RNA-seq library preparation and
sequencing

Single-cell ATAC-seq libraries for all timepoints were prepared on the
10x Genomics platform using the Chromium Single Cell ATAC Library
& Gel Bead Kit v1.0 (PN-1000111), Chromium Chip E Single Cell kit (PN-
1000156) and Chromium i7 Multiplex Kit N, Set A (PN-1000084) as
instructed by the manufacturer. Single-cell RNA-seq libraries for E13,
P2 Mef2c cKO, P10 and P28 datasets were prepared on the 10x Genomics
platform using the Chromium Single Cell 3’Library and Gel Bead Kit
v3.0 (PN-1000075), Chromium Single Cell 3’Library Construction Kit
v3.0 (PN-1000078), Chromium Chip B Single Cell kit (PN-1000154) and
Chromium i7 Multiplex Kit (PN-120262) as instructed by the manufac-
turer. The P2nuclear RNA-seq library was prepared using the Chromium
Single Cell 3’ Library and Gel Bead Kit v3.1 (PN-1000121). Single-cell
RNA-seq libraries for E18 and P2 whole-cell wild-type datasets were
prepared on the 10x Genomics platform using the Chromium Single
Cell3’Library and Gel Bead Kit v2.0 (PN-120237), Chromium Single Cell
3’Library Construction Kit v2 (PN-120267), Chromium Chip A Single
Cell kit (PN-1000009) and Chromium i7 Multiplex Kit (PN-120262) as
instructed by the manufacturer. Libraries were sequenced using the
Nova-Seq100 cyclekit (Ilumina) by Broad Institute Genomic Services.

Single-cell ATAC-seq data processing

Raw scATAC-seq data was processed using the standard CellRanger
ATAC v1.1.0 pipeline (10x Genomics). Reads were aligned to the
GRCm38 (mm10) Mus musculus genome. Peak calling was performed
using ChromA with default parameters “ChromA atac -i <filel> <file2>
-spec mouse”. Peak calling on subpopulations of cells was performed
with ChromA after isolation specific barcodes using “ChromaA filter
-c <cells> -i <file>". Jaccard distance calculation was performed using
bedtoolsjaccard.

Single-cell RNA-seq data processing

Raw scRNA-seq data was processed using the standard CellRanger
v3.0.0 pipeline (10x Genomics). Reads were aligned to the GRCm38
(mm10) M. musculus genome. For single-nuclei RNA-seq datasets, a
custom pre-mRNA reference from the mm10 genome was generated
allowingintronic sequences tobeincludedingene counts. It cannotbe
ruled out that some differences in gene expression could result from
differences in 10x Genomics chemistry (v2 vs v3) or cell preparation
techniques (whole-cell vs nuclear).

E13 Multiome (dual RNA/ATAC) library preparation and data
processing

E13.5embryoswere collected from timed pregnant CD-1 mice and the
MGE was dissected in ice-cold Leibovitz’s L-15 medium. Pooled tis-
sue from several embryos were dissociated using the Neural Tissue
Dissociation Kit (T) (Miltyeni Biotec, PN-130-093-231) according to
the manufacturer’s instructions. Dissociated cells were then filtered
through a 70 um filter, and centrifuged at 300g for 5 min at 4 °C. Nuclei
then were isolated as described in the 10x Genomics demonstrated
protocols ‘Nuclei Isolation from Embryonic Mouse Brain for Single
Cell Multiome ATAC + Gene Expression Sequencing’ for fresh tissue for
input tosingle-cell Multiome library preparation. Single-cell multiomic
(ATAC + Gene Expression) libraries were prepared on the 10x Genom-
ics platform using the Chromium Next GEM Single Cell Multiome



ATAC + Gene Expression Reagent Bundle (PN-1000285), Chromium
Next GEM Chip]J Single Cell Kit (PN-1000230), Single Index Kit N Set A
(Pn-PN-1000212) and Dual Index Kit TT Set A (PN-1000215) as instructed
by the manufacturer. Libraries were sequenced using the Nova-Seq 100
cycle kit (ATAC library) and Next-Seq 150 cycle kit (Gene Expression
library) (Illumina) by Broad Institute Genomic Services.

Raw multiomic data was processed using the Cell Ranger ARCv1.0.0
pipeline (10x Genomics). Reads were aligned to the GRCm38 (mm10)
M. musculus genome.

Assignment of mitotic and postmitotic states

We defined mitotic and postmitotic populations for cells within
scRNA-seq datasets following a previously described procedure®. In
brief, in each cell we compared the sum of phase-specific gene expres-
sion to the distribution of background 100 randomly selected genes.
Phase-specific enrichment was z-scored against the background gene
sets. Finally, the S-phase score and G2/M phase score was subtracted to
createthecell cycle score whichis usedtoselect cycling cells. Cell cycle
signature was calculated using the previously published cell cycle gene
list®. We did not regress out the cell cycle signature. In scATAC-seq data-
sets, cells were assigned adevelopmental phase by extending labels of
multiome experiments. In multiome experiments, the scRNA-seq por-
tionofthe data canbe annotated using the above procedure and these
labels can be propagated to the corresponding scATAC-seq dataset.

Pseudotime trajectory analysis

Branchanalysis for postmitotic cells from the scRNA-seq datasets was
performed as described previously®. In brief, postmitotic cells were
isolated and the Seurat pipeline was run®. Unsupervised clustering
was run using the Leiden algorithm. Next, diffusion map represen-
tation was calculated using the diffusionMap library in R. Finally, 10
principal component analysis components were fed into Palantir®
and pseudotime and branch probabilities were calculated using the
following parameters (num_waypoints=1000, knn=30). Lineages were
defined using slingshot®.

Generation of pseudotime time traces of gene expression and
accessibility

Chromatin accessibility and gene expression time traces were
smoothed over pseudotime with local polynomial regression fitting
inR (loess) separately, then min-max normalized.

Peak gene branch-specific association

To associate chromatin accessibility peaks annotated with ChromA*
to corresponding genes, we treated each gene independently. First,
we selected peaks located within a 500 kb window around the gene
and built a classifier by using these peaks as features in an elasticnet
regularized mutlinomial classification (sklearn SGDClassifier with fol-
lowing parameters class_weight="balanced’, I1_ratio=0.95, loss='log',
penalty="elasticnet’) task set to distinguish cells confidently assigned
to each postmitotic branch using peaks as features. Hyper parameters
were tuned using cross validation, and performances estimated using
an 80% (train) 10% (validation) 10% (test) observation split. Finally, the
most classification-relevant peaks are kept and sorted if their absolute
coefficientis>0. Distal aggregated accessibility score was built by first
performing amin-max normalization of each peak time trace (through
pseudotime). Next, time traces were added and min-max normalized
again. The same classification procedure was used for annotated cells
belonging to each branch or early mitotic cells. Mitotic cells were dis-
tinguished by the mitotic-postmitotic separation. Early mitotic cells
were those mitotic cells that lacked expression of Sp9.

Calculation of ATAC-seq aggregated scores
Aggregated scores were calculated by selecting a subset of peaks that
are differentially accessible in the condition of interest (that is, peaks

for the calculation of branch1aggregated scores are peaks differentially
accessiblein branch1cells compared to branch 2 and 3). Next, library
size was corrected by normalizing the number of readsin each region
by the total number of reads in the cell. The normalized read size was
aggregated by summingreadsin selected regions. Finally, an average
aggregated accessibility was computed.

SCATAC-seq cell-type classification

Cardinal class assignments into PV and SST cell types at P28 and P10 was
performed by analysing clusters for promoter accessibility of cardinal
class marker genes. Next, to transfer labels to E18, we identified mutu-
ally exclusive peaks shared in each cardinal class at P28 and P10 (that
is, running ChromA consensus on datasets from PV cells belonging to
P10 and P28 or SST at the same time points). We used these peaks to
build a classifier identifying cardinal classes and using CGE cells as a
null hypothesis. We repeated the same procedure to transfer labels at
E14 by using mutually exclusive peaks from E18 and P10.

Clustering of scRNA-seq datasets

E18, P2, P10 and P28 scRNA-seq datasets were processed using the Seu-
rat pipeline”. The number of principal components used for clustering
analysis were determined with the EIbowPlot function. Graph-based
clusteringwas thenused as described to assign cells to clusters. Clusters
inthe P28 dataset were then assigned to a cardinal class on the basis of
the expression of marker genes. Cells within P10, P2 and E18 datasets
were assigned to a cardinal class via Seurat canonical correlation analy-
sis (CCA) and label transfer of P28 dataset cardinal class assignments
as described previously?.

Generation of snap objects and integration of scATAC-seq and
scRNA-seq data

The fragments.tsv from the output of the CellRanger ATAC pipeline
were then used to generate snap files for analysis using the snapATAC
package as described previously’. 5 kb bins were used to partition the
genome and create the cell-by-bin matrix. Cells were clustered using
k-nearest-neighbour graph-based clustering (k = 15). For visualization
of marker gene loci, accessibility within gene body regions was calcu-
lated, counts were normalized by RPM, and the resulting cell-by-gene
matrix was smoothed with Magic. Forintegration with scRNA-seq data,
a cell-by-gene matrix was produced for the scATAC-seq dataset with
the same method for all variable genes within the RNA-seq dataset.
The scATAC-seq cell-by-gene matrix was then converted to a Seurat
object using the snapATAC function snapToSeurat. Defining transfer
anchors and alignment of scATAC-seq and scRNA-seq data was then
performed as described previously®.

Generation of accessibility heat maps

Accessibility heat maps (for cardinal-class-specific regions and com-
parison of proximal vs distal elements) were generated using bedtools
computeMatrix and plotHeatmap. Reference files were bed files of
peaks exclusively called within the given cardinal class. For comparison
of proximal and distal elements, proximal elements were defined as
those regions falling within gene bodies or promoter regions (tran-
scription start site (TSS) +2 kb), whereas distal elements comprised
everything outside these regions.

Motif enrichment analysis

Transcription factor motif enrichment analysis was performed on
appropriate bed files using Homer® with the following parameters:
findMotifsGenome.plinput.bed mm10 output -size 200 -len 8. For
identification of branch-specific transcription factors, theintersection
was found between motifs significantly enriched in only one branch
(within branch-exclusive loci) and for which the corresponding tran-
scription factor was differentially expressed within the same branch
compared to the other two branches. In Fig. 2, motif enrichment is
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quantified as the percentage enriched, normalized to the enrichment
ofthe top percentage enriched motifto account for differencesin the
overall number accessible of peaks across developmental datasets.

Mef2c CUT&RUN library preparation

Nuclear isolation was performed as described previously®. The neo-
cortex was dissected from adult Pv*;INTACT and Sst“*;INTACT mice
inice-cold buffer HB (0.25 M sucrose, 25 mM KCI, 5 mM MgCl,,20 mM
Tricine-KOHpH 7.8,1 mM DTT, 0.15 mM spermine, 0.5 mM spermidine,
1X cOmpleteTM, EDTA-free Protease Inhibitor Cocktail (Sigma) and
10 mM sodium butyrate). Cortices were homogenized by a Dounce
homogenizer in the presence of 0.3% IGEPAL. The homogenate was
then filtered through a 30 pum MACS SmartStrainer (Miltenyi Biotec),
mixed with working solution (5 volume of OptiPrep + 1 volume of Dilu-
ent (150 mM KCl, 30 mM MgCl, and 120 mM Tricine-KOH pH 7.8)) at a
1:1ratio, and underlaid with 30% and 40% gradient solution (working
solution diluted by buffer HB). Following ultracentrifugationat10,000g
for18 minat4 °C, nuclei were collected from the interface of 30% and
40% layers and then resuspended in FACS buffer (IX PBS, 1% BSA, 1X
Protease Inhibitor Cocktail and 10 mM sodium butyrate) for sorting
GFP-positive nuclei on aSony SH800S sorter.

CUT&RUN sequencing onsorted nuclei was performed as described
previously*’. Nuclei were resuspended in CUT&RUN wash buffer (20
mMHEPES pH7.5,150 mM NaCl, 0.2% Tween 20, 1mg mI™BSA, 0.5 mM
spermidine, 1X protease inhibitor cocktail,and 10 mM sodium butyrate)
and captured with Concanavalin Abeads (Bangs Laboratories) at room
temperature for 10 min. Bead-bound nuclei were thenincubated with
MEF2C antibody (182901-AP, Proteintech, 1:100) in antibody buffer
(CUT&RUN wash buffer, 0.1% Triton X-100, and 2 mM EDTA) overnight
at 4 °C. The next day, beads were washed twice with antibody buffer
and then incubated with pA-MNase (0.7 pug ml™) in antibody buffer at
4 °Cfor1h. After two washes with Triton wash buffer (CUT&RUN wash
buffer and 0.1% Triton X-100), tethered cleavage was induced by the
addition of CaCl, at afinal concentration of 3mMonice for 30 min. To
release the protein-DNA complex, nuclei were combined with 2X STOP
solution (340 mMNaCl,20 mMEDTA, 4 mMEGTA, 0.04% Triton X-100
and 50 pg mI™ RNase A) atal:1ratioand incubated at 37 °C for 20 min.
Solubilized chromatin was separated from bead-bound nuclei on a
magnetic rack, supplemented with 0.1% SDS, and then digested with
0.2 mg ml™ Proteinase K at 65 °C for 1 h. Released DNA was extracted
with phenol chloroform. CUT&RUN libraries were constructed using
NEBNext UltrallDNA Library Prep Kit as described previously*. Librar-
ies with different barcodes were pooled and sequenced on NextSeq
with NextSeq 500/550 High OutputKitv2 (75 cycles), generating 7-14
million paired-end 42-bp reads per sample.

Mef2c CUT&RUN data processing and analysis

CUT&RUN data were processed as described previously*. In brief,
paired-end reads were trimmed with Trimmomatic to remove adaptor
sequences. Trimmed reads were then aligned to the mm10 genome
using Bowtie2 withthe -dovetail setting enabled. PCR duplicates, mul-
tiple mapped reads and reads overlapping with the blacklist regions
were excluded from downstream analyses. Toensure all libraries were
compared at the same read depth, BAM files were downsampled to 8.5
million reads before peak calling. For each sample, peaks were called
and bigwig files were generated using MACS2 (-f BAMPE -g mm-q 0.05
-B) (v.2.2.7.1; https://github.com/taoliu/MACS). Because the majority
of CUT&RUN peaks overlapped with scATAC-seq peaks, sCATAC-seq
coaccessibility data was used to assign peaks to gene promoters. For
this, the Cicero package* was used to generate co-accessibility scores
(conns) for each peak as described previously for P28 V1 scATAC-seq
data. The resulting table was then filtered for those containing peaks
falling within promoter regions (within 2 kb of a TSS), then for those
connections with a co-accessibility score greater than 0.2. Finally,
the peaks fitting these criteria were filtered for those overlapping

with CUT&RUN peaks. Finally, genes associated with the promoters
co-accessible with these peaks were used for downstream analysis
(comparison of number of genes associated, gene ontology). Gene
ontology analysis was performed using ClusterProfiler (https://github.
com/YuLab-SMU/clusterProfiler).

Generegulatory network inference

Generegulatory network inference was performed using a previously
described multitask learning algorithm® implemented in the infer-
elator pipeline (https://github.com/flatironinstitute/inferelator)*.
In brief, cellular gene expression (in matrix form, dimensions cells
by genes) was represented as a linear multiplication between a tran-
scription factor activity matrix (in matrix form, dimensions cells by
transcription factors) and the gene regulatory network linking genes
to transcription factors (in matrix form, dimensions transcription
factor by genes). First, a prior structure of the gene regulatory net-
work was calculated by using chromatin information to identify the
transcription-factor binding motif and link transcription factors to
nearby genes (inferelator-prior; http://github.com/flatironinstitute/
inferelator-prior). Next, the transcription factor activity matrix was
computed by inverting the linear system, using the already computed
prior network matrix. Finally, gene expression and the activity matrix
were fed into the multitask learning pipeline. Gene regulatory networks
aredisplayed by using jp-gene-viz (https://github.com/simonsfounda-
tion/jp_gene_viz). To simulate Mef2c KO expression data, we set to zero
the Mef2c value in the transcription factor activity matrix and then
multiplied this matrix by the gene regulatory network. These simulated
expression values were then processed through the regular RNA-seq
processing pipeline. Scripts for analysis are available at https://github.
com/marianogabitto/ChromatinDynamics2020-Analysis.

Mef2c cKO RNA-seq data processing

Single-cell RNA-seq datasets collected from the cortex of wild-type
mice at E18 and P2, and from Mef2c conditional knockout mice at P2
(P2Mef2c-KO), were aligned by different methods (Seurat, Conos; using
default parameters), with both algorithms displaying similar results.
The results shown in Fig. 4 represent Seurat alignment after regular
pre-processing.

Mef2c cKO ATAC-seq data processing

TheP2scATAC-seq datafrom Mef2c cKO mice was processed to generate
aSnapATAC object and the cluster the cells as described above. Clusters
were assigned to the PV or SST cardinal class on the basis of the acces-
sibility of marker genes for either class. Peaks were then called for each
class using ChromA®, HOMER analysis was performed as described
above to annotate peaks containing a Mef2c motif for comparison to
E18 and P2 wild-type datasets. The overlap of peaks across datasets or
cell types was determined using bedtools jaccard.

Mef2cinsilico cKO prediction
The P2-Mef2c-simKO dataset reconstructed from our network inference
algorithm (equation 1) was computed in the following way.

X;j=KTFsp, Ay

First, we modelled the expression X of a gene iinasample (X;) as
the weighted sum of the activities of each transcription factor k at
sample; (4,). Magnitude and direction (activation or repression) of
aregulatory interaction (8) between transcription factor kand gene {
were learned by solving for 8. Next, in the A matrix, Mef2c activity was
zeroed for every cell (4*). Finally, the P2-Mef2c-simKO reconstructed
gene expression (X*) matrix was calculated by multiplying 5 by A*. To
calculate knock-out transcription-factor activity, we solved equation1
byinverting therelationship between the network and the transcription
factor activity (A = B0, X"9%0). In this case, we used gene expression
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values belonging to P2-Mef2c-cKO dataset and the network was our
prior network computed from the P2 WT dataset. log fold change was
thencomputed between P2-Mef2c-WT and P2-Mef2c-cKO. For this analy-
sis, PV and SST cells were grouped together and the perturbation was
performed on the population as awhole, and compared to the entire
true KO and WT datasets containing both PV and SST cells.
Inordertopredicttargetsof MEF2C, genes withedges connected directly
to MEF2C were considered direct targets. Of these, 17 were transcription
factors. Genes connected to these 17 transcription factors were considered
indirect targets of MEF2C. To determine the validity of these predicted
targets, they were compared to experimental Mef2c cKO scRNA-seq data
compared to both whole single-cell (WTwc) and single-nuclear (WTnuc)
wild-type scRNA-seqdata.Both comparisons were considered because the
whole-cell WT dataset was used to compute the GRN, but the cKO dataset
was collected using single nuclei and we therefore wanted to ensure that
differentially expressed genes were not a result of comparing whole cell
to nuclear data. To that end, Batchelor and scran were used to preproc-
ess and compute batch-corrected expression matrices. Two alignments
were then computed : WTwc and cKO (WTK); WTnuc and cKO (WTNK).
Eachalignmentwere preprocessed with multiBatchNormusing the genes
intersection between each dataset pair,and corrected expression gener-
ated with fastMNN. The average corrected expression by condition was
then computed. Fold change of average corrected expression was then
computed using the following formula : FC = (A-B)/B. We then scored
each of direct and indirect MEF2C targets identified in the P2 GRN, and
considered our predictionaccurateifthe fold change was >0.5or<-0.25.

Statistics

No statistical methods were used to predetermine sample sizes. Cluster-
ing of scRNA-seq and scATAC-seq data was performed in an unbiased
manner. For motif analysis, a Pvalue of less than 0.01 was considered
significant. Anon-parametric Wilcoxon rank-sum test was used to find
differentially expressed genes between clusters or cell types within
scRNA-seq datasets. For scATAC-seq datasets, ChromA was used to call
peaks within each dataset as described above and peaks called exclu-
sively within a dataset were used to define mutually exclusive peaks.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data Availability

All sequencing data produced for this study are available at the Gene
Expression Omnibus (GEO) at accession number GSE165233.
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Extended DataFig.1|Quality control ofembryonic scRNA-seqsamples and
mitotic versus postmitotic discrimination. a, Number of cellsin DIx6a-and
DIx6a+scRNA-seqdatasets collected from E13 MGE in DIx6a-Cre;Ai9 mice and
multiome datasetin E13 MGE wild type mice. b, Meanreads per cellin DIx6a-,
DIx6a+and multiome scRNA-seq datasets. ¢, Median genes detected per cellin
DIx6a-, DIx6a+and multiome scRNA-seq datasets. d, Fraction of cells scored to
bein G2/Mor S phase of the cycle cycle at each maturationscore. Blueline
indicates cells from the DIx6- dataset, red line indicates cells from the DIx6+
dataset. e, Diffusion map of E13 DIx6a—and DIx6a+ MGE scRNA-seq data color-
coded by assignment to amitotic (red) or postmitotic (blue) state.

f, Percentage of cycling cells as afunction of the position along the maturation
trajectory color-coded by assignment to a mitotic (red) or postmitotic (blue)
statein E13 DIx6a—and DIx6a+ MGE scRNA-seq datasets. g, Diffusion map of
E13 multiome MGE scRNA-seq data color-coded by assignment to a mitotic
(red) or postmitotic (blue) state. h, Percentage of cycling cells as a function of
the position along the maturation trajectory color-coded by assignmenttoa
mitotic (red) or postmitotic (blue) state in E13 multiome MGE scRNA-seq
dataset.i, Line plotsindicating the promoter accessibility (blue) and gene
expression (red) for six developmentally-regulated genes.
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Extended DataFig. 5| Analysis of MGE-derived cortical interneuron
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Extended DataFig. 9| MEF2C CUT&RUNinPVand SST interneurons at P28.
a,Number of peaks called ineach CUT&RUN replicate from PV (blue) and SST
(red) cells, and the number of peaks presentinboth replicates from each cell
type (intersect). b, Percentage of peaks containing a canonical Mef2c motifin
eachreplicate. ¢, Significance (-log p-value) of enrichment of Mef2c motifin
eachreplicate.d, The distribution of CUT&RUN peaks that were also presentin
P28 ATAC peak sets containing MEF2C motifs. For this analysis, the CUT&RUN
replicateintersect peak sets of PV and SST were subsetted for those peaks that
were also presentin the ATAC peaks called for each cell type at P28 and found to
containacanonical MEF2C motif. Of those, they were categorized for those
thatwere presentinboth PVand SST ATAC peak sets or unique to one cell type.
e, Compares peaksidentified in CUT&RUN (orange) or jointlyin CUT & RUN and
ATAC-seqanalyses (green). ATAC-seq peaks used in this analysis were those

identifiedineachcelltype at P28 regardless of presence or absence of a
canonical Mef2c motif. Compare with Fig. 2j which performs the same analysis
butonlyincludes ATAC peaks with aMef2c motif. f, g, HOMER results for
denovomotifdiscoveryinreplicateintersect peak sets for PVand SST cINs.

h, Genomiclocation of each CUT&RUN peakinreplicateintersect peak sets for
PVand SST cINs. i, Integrative Genomics Viewer (IGV) snapshots showing
bigwig files for each CUT&RUN replicate and associated peaks calledinboth
replicates (intersect) for PV and SST cINs. Genomic loci shows are examples of
genes with nearby peaks for commonly expressed genes (Rbfox1, Grin2a) and
PV-enriched genes (Erbb4, Pthlh, PIxcd3).jand k, Gene Ontology (GO) term
analysis. Each CUT&peak was associated with the nearest gene TSS. These lists
of genes for PVand SST cells were then used asinput for GO term analysis,
revealinganenrichment of genes associated with synapse development.
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Extended DataFig.10|Single-cell RNA- and ATAC-seq analysis of Mef2c
cKOinterneurons compared towild-type (WT) cellsat P2.a, UMAP of P2WT
snRNA-seqand P2 Mef2c cKO snRNA-seq dataintegrated using Seurat and
color-coded by cluster identity. WT dataset here was prepared using single
nucleitomatch cKOrather than the whole cell dataset (see Fig.4).b, UMAP in
(a) segregated according to timepoint and color-coded by cell type.c, Cluster
compositiondelineated by (i) marker gene expression (ii) cell type (iii) cell
number. Compare a-c here with Fig. 4 a-c — this figure contains single nucleus
dataforboth WT and cKO while Fig4 WT datais whole cell.d, UMAP of Mef2c
cKO and WT cells color-coded by cluster. e, UMAP of Mef2c cKO and WT cells

color-coded by genotype. f, UMAP of Mef2c cKO and WT cells color-coded by
cardinal class identity. Mef2c cKO identity was determined by the accessibility
of marker genes (see d) and assignment of clusters to the appropriate cardinal
class. g, Gene body accessibility of SST and PV cIN marker genes (SST: Sst,
Grin3a, Elfnl, Cacng3, Grml, Satbl, Tmem91. PV: Tacl, Erbb4). h, Pie chart
representation of scATAC-seq data showing the total number of peaksin E18
WT,P2WT, and P2 Mef2c cKO, subdivided into peaks that are PV or SST cell
specificorshared acrossboth celltypes. Compareto Figure 4d, which shows
similar pie charts but only for peaks with Mef2c motifs.
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Data exclusions  The focus of this study was to investigate cortical interneuron development. Therefore, when small numbers of contaminating cells (i.e.
excitatory neurons (Slc17a7+), or other small, Gad1/2 negative populations) were identified within single-cell RNA or ATAC-seq datasets, these
were excluded from further analysis.

Replication See supplementary table 1 for list of RNA- and ATAC- datasets; for MGE E13, two replicates each for E13 MGE progenitors (DIx6-) and
postmitotic cells (DIx6-) were collected from DIx6a-Cre;Ail4 mice. For CUT&RUN experiments, two replicates were collected for each PV and
SST cells. Results were confirmed to be highly consistent across datasets.

Randomization  Not relevant to this study.

Blinding Not relevant to this study.
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Laboratory animals See 'Mouse lines' sections of methods for full details. Mouse lines used include: CD-1 (Charles River #022), DIx6a-Cre (Jax stock
#008199), Ai9 (Jax stock #007909), Ail4 (Jax stock #007914), INTACT (Jax stock #021039), Lhx6-iCre (Jax stock #026555), and
floxed-Mef2c (Jax stock #025556). Mice were used at the following ages as outlined in the results and methods: E13.5, E14.5,
E18.5, P2, P10, P28.

Wild animals This study did not involve wild animals.
Field-collected samples This study did not involve samples collected from the field.
Ethics oversight All mouse colonies were maintained in accordance with protocols approved by the Institutional Animal Care and Use

Committees at Harvard Medical School and the Broad Institute of MIT and Harvard.
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