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Percolation transitions in compressed SiO2 
glasses

A. Hasmy1,2 ✉, S. Ispas1 & B. Hehlen1 ✉

Amorphous–amorphous transformations under pressure are generally explained by 
changes in the local structure from low- to higher-fold coordinated polyhedra1–4. 
However, as the notion of scale invariance at the critical thresholds has not been 
addressed, it is still unclear whether these transformations behave similarly to true 
phase transitions in related crystals and liquids. Here we report ab initio-based 
calculations of compressed silica (SiO2) glasses, showing that the structural changes 
from low- to high-density amorphous structures occur through a sequence of 
percolation transitions. When the pressure is increased to 82 GPa, a series of 
long-range (‘infinite’) percolating clusters composed of corner- or edge-shared 
tetrahedra, pentahedra and eventually octahedra emerge at critical pressures and 
replace the previous ‘phase’ of lower-fold coordinated polyhedra and lower 
connectivity. This mechanism provides a natural explanation for the well-known 
mechanical anomaly around 3 GPa, as well as the structural irreversibility beyond 
10 GPa, among other features. Some of the amorphous structures that have been 
discovered mimic those of coesite IV and V crystals reported recently5,6, highlighting 
the major role of SiO5 pentahedron-based polyamorphs in the densification process of 
vitreous silica. Our results demonstrate that percolation theory provides a robust 
framework to understand the nature and pathway of amorphous–amorphous 
transformations and open a new avenue to predict unravelled amorphous solid states 
and related liquid phases7,8.

Understanding the physical mechanisms controlling the transforma-
tion from one amorphous 'phase' to another is an open fundamental 
issue in materials science1,2,8,9. The short-range structures of amorphous 
solids such as SiO2, GeO2, Si, Ge and the chalcogenides are very similar 
to those of their crystalline counterparts and it is the random nature 
of the inter-unit connections that produces disorder at long length 
scales. In such systems, it has been argued that amorphous states can 
be described in terms of changes in the electronic and structural prop-
erties at short- and medium-range order. These properties include 
electronic bonding2,4,10, the coordination number1,3,4,11 and the ring 
distribution11,12. However, to describe the passage from one amorphous 
'phase' to another at the critical threshold, an explicit scale-invariant 
quantity (that is, an order parameter) needs to be defined. This concept  
has not been considered for pressure-driven amorphous solid trans-
formations thus far.

When an amorphous solid is pressurized, it is commonly assumed 
that transformations from low to high density occur gradually, with 
coexisting low- and high-fold coordinated polyhedra. This structural 
evolution, sometimes referred to as polyamorphism, differs from the 
polymorphism of crystals, in which transitions occur from a specific 
phase to another at a critical pressure. The change from tetrahedral 
(Si–O coordination number Z = 4) to octahedral (stishovite-like struc-
ture, Z = 6) structures in vitreous silica (v-SiO2) is accompanied by a 
well-known mechanical anomaly at 3 GPa (refs. 13,14), a percolation 

phenomenon at about 7 GPa (ref. 15) and a two-step elastic-to-plastic 
transformation, one around 10 GPa (refs. 12,14,16) and a second around 
20 GPa (ref. 14).

A recent ab initio machine learning method applied in combination 
with empirical force fields in compressed amorphous silicon highlights 
a three-step transformation sequence for amorphous silicon under 
increasing pressure4. However, the passage from one 'phase' to another 
was not addressed. For v-SiO2 at ambient pressure, ab initio methods 
complement experimental data17,18, but, despite many efforts12,19,20, 
application to the above-mentioned issues has been limited due to the 
prohibitive calculation times required for a reliable thermodynamic 
sampling21,22.

We were thus motivated to use an ab initio-based approach, the 
self-consistent-charge density functional-based tight-binding 
(SCC-DFTB) method23. Combined with the molecular dynamics (MD) 
technique, it is able to reproduce many features of crystalline silica 
(c-SiO2) and v-SiO2 with an accuracy similar to those of ab initio meth-
ods, but at least three orders of magnitude faster. This allowed us to 
simulate more than forty SiO2 glasses and explore the full pressure 
range up to 82 GPa at room temperature. We also decompressed the 
samples at 8 GPa and 10 GPa (for details, see Methods). Our samples 
contain 1,008 atoms (336 SiO2 units) and are large enough to observe 
and describe the percolation critical phenomena governing the afore-
mentioned transformations.
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Polyhedra coordination and connectivity
Figure 1a illustrates the v-SiO2 transformation from Z = 4 to 6 with 
increasing pressure p. At ambient temperature and 0 < p < 3 GPa, similar 
to c-SiO2, the Si–O bond of v-SiO2 is characterized by an sp3 hybridization  
that favours the formation of SiO4 tetrahedra. For 3 < p < 10 GPa, the 
densification of v-SiO2 includes changes in the electronic structure,  
with an increase in the Fermi energy and of the atomic charges 
(Extended Data Figs. 1 and 2). These changes produce an increase in the 
Si–O bonding ionicity (Extended Data Fig. 1c), boosting the formation 
of higher-fold coordinated polyhedra (Fig. 1a, b). As a consequence, 
beyond 10 GPa, the inter-polyhedra connectivity changes from purely 
corner-sharing (CS) tetrahedra to a more complex connected network 
(Extended Data Figs. 3 and 4). The latter involves corner-sharing and 
edge-sharing (ES) SiO5–SiO6 and SiO6–SiO6 (Fig. 1a, c) and a lower extent 
of face-sharing (FS) polyhedra (Extended Data Fig. 5).

On increasing the pressure from ambient conditions, c-SiO2 changes 
from a tetrahedral local structure to an octahedral one through  
structural transformations including α-quartz to coesite I (Z = 4) at 
3 GPa, then coesite I to stishovite (rutile structure, Z = 6) at 9 GPa, with a 
higher ionic bonding contribution10. Regarding the local environment 
of the O atoms, CS tetrahedra yield to divalent OSi2 structures, and ES 
octahedra to trivalent OSi3 structures. In the crystalline phase at ambi-
ent pressure, each CS tetrahedron is connected to four neighbouring  
tetrahedra, leading to ZSiSi = 4 and ZOO = 6. In stishovite, each SiO6 is con-
nected to ten octahedra (ZSiSi = 10), two of which are ES and eight CS, 
and ZOO = 12. In v-SiO2, the coordination numbers exhibit similar trends 
with pressure (Fig. 1b), as well as jumps that allow us to identify different 
regimes at intermediate pressures (Fig. 1b, c, top arrows).

For 13 < p < 20 GPa, the compressed glasses contain similar frac-
tions of SiO4, SiO5 and SiO6, with a total number of shared edges per 
polyhedron of nES ≈ 1.4 and a small contribution of FS polyhedra. 
This is similar to the crystalline polymorph discovered recently, the 
so-called coesite IV6, which is rarely observed for high-valence and 
low-coordinated cations in crystals, as it is at odds with the fifth Pauling 

rule24. For 20 < p < 45 GPa, the fraction of SiO6 octahedra increases with 
a jump, while the fraction of SiO4 tetrahedra decreases to almost zero. 
In parallel, nES increases to about 1.7 and a small fraction of FS polyhedra 
persist, which looks similar to coesite V, the second recently discovered 
c-SiO2 polymorph6. For 45 < p < 70 GPa, the network connectivity is fully 
dominated by SiO6 octahedra, either CS or ES, and nES ≃ 2, which reveals 
a stishovite-like 'phase'. For p > 70 GPa, nES > 2 due to the emergence of 
SiO7 polyhedra, suggesting the onset of a post-stishovite-like 'phase'20,25.

Finally, we calculated the fraction of Si polyhedra and the coordina-
tion number for unloadings from 8 GPa and slightly above 10 GPa. In the 
former case, the decompression is reversible, but it is not in the latter 
(Fig. 1b, small symbols). The pressure threshold at which irreversibility 
occurs agrees with experimental observations14. When unloading from 
10 GPa to ambient pressure, a hysteresis is clearly observed due to 
persisting residual SiO5 pentahedra (hence Z ≠ 4, Fig. 1b), confirming 
previous expectations and pointing out the key role of five-fold coordi-
nated polyhedra in the plastic-to-elastic transition of v-SiO2 (refs. 12,14,16).

Percolation transitions
The above observations only include an evaluation of the local and 
medium-range order. However, the nature of the structural transforma-
tions from one ‘phase' to another in compressed v-SiO2 should also be 
substantiated by the structure at a long length scale. Indeed, we found 
that clusters built from SiOn polyhedra (including their mixtures, (SiOn–
SiOm) eventually emerge. One of these becomes dominant and percolates 
by spanning its structure from one side of the simulation box to the other 
(Fig. 2a). This effect has important implications for the glass rigidity15,26 
and can be monitored by calculating the percolation probability, P∞. The 
latter is often used as an order parameter for the analysis of a percolation 
transition. It tends to 1 (or 0) if the largest cluster percolates (or not), 
and the percolating cluster is representative of the new 'phase'27. The 
notation (SiOn–SiOm)∞ used in the following corresponds to a percolating 
cluster composed of alternating n- and m-fold coordinated polyhedra.
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Fig. 1 | v-SiO2 local structures and connectivities. a, Snapshots of the 
simulation boxes showing the evolution from SiOn to SiOn+1 polyhedra, and 
from CS to ES connectivity (insets). The glass samples are pressurized by 
instantaneous reduction of the simulation box followed by a relaxation using 
MD with periodic boundary conditions. b, Fraction of Si polyhedra (top) and 
coordination numbers (bottom) as a function of pressure. Small symbols and 

arrows nearby correspond to unloadings from 8 GPa and slightly above 10 GPa. 
c, Shared corners and shared edges per polyhedron. The bold vertical arrows at 
the top of b and c mark the onset of the different regimes (see text) and the 
dashed vertical line indicates the elastic-to-plastic transition. Note that the 
scale changes at 20 GPa in the x axis. See Methods for calculation details.
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Figure 2b shows the percolation probability, P∞, of the largest cluster 
for connected networks of SiO4, SiO5 and SiO6 polyhedra, and their mix-
tures, as a function of pressure in v-SiO2 (density-dependent P∞ is shown 
in Extended Data Fig. 6a). For the (SiO4–SiO4)∞ cluster, P∞ decreases from 
1 to 0 at 13 GPa. In addition, between 3 and 8 GPa, a percolating cluster 
emerges that is composed of a connected skeleton of alternating tetra-
hedra and pentahedra, (SiO4–SiO5)∞. This coincides with the percolation 
transition observed at 7 GPa (ref. 15). With increasing pressure, two more 
percolating clusters appear at 10 GPa, (SiO5–SiO5)∞ and (SiO5–SiO6)∞, 
coexisting with the first one. The percolating cluster structures contain-
ing a mixture of SiO4 and SiO5 between 8 and 10 GPa, as well SiO6 between 
10 and 13 GPa, recall the pressure-induced post-quartz amorphous 
states28. At 13 GPa, a (SiO6–SiO6)∞ cluster appears and percolates. The 
coexistence of all these percolating clusters beyond 13 GPa is similar 
to coesite IV, the crystalline structure of which combines SiO4–SiO5, 
SiO5–SiO5, SiO5–SiO6 and SiO6–SiO6 planes in different crystallographic 
directions. By analogy, the vitreous state for 13 GPa < p < 20 GPa is 
labelled v-coesite IV in Fig. 2b.

Slightly above 20 GPa, SiO4 tetrahedra vanish and, accordingly, the P∞ 
of the (SiO4–SiO5)∞ cluster decreases to 0. Simultaneously, a percolat-
ing cluster, (SiO6–SiO5,6)∞, emerges, which is composed of ES SiO6–SiO5 
and SiO6–SiO6 polyhedra, together with some FS contribution. In this 
pressure range, the amorphous state (labelled v-coesite V in Fig. 2b) 
possesses the same dominant ES polyhedra connectivity as well as 

alternations of SiOn–SiOm polyhedra equivalent to those in coesite V6. 
Our result correlates with the irreversible structural behavior observed 
experimentally above about 20 GPa in v-SiO2 (ref. 14), suggesting that 
ES structures remain stable during decompression.

Analysis of the percolation probability of a cluster composed of 
pure ES octahedra, similar to stishovite, provides evidence that such 
a cluster percolates around 40 GPa and, accordingly, a v-stishovite 
state replaces the v-coesite V one (Fig. 2a, b). The pressure at which this 
occurs is in good agreement with the value reported for compressed 
v-SiO2 when Z becomes equal to 6 (ref. 25). Therefore, our results dem-
onstrate that, instead of a single and gradual transition, the mechanism 
of the structural transformation from Z = 4 to 6 includes a series of 
percolation transitions between well-defined amorphous states (Fig. 2). 
Moreover, estimation of P∞ as a function of the SiOn fraction shows that 
the critical fractions lie in the range expected from percolation theory, 
that is, around 2/Z (Methods and Extended Data Fig. 6b). Finally, an 
analysis from the viewpoint of O atoms also reveals that OSi2–OSi3 
and OSi3–OSi3 clusters percolate around 3 GPa and 10 GPa, namely, 
at pressures similar to those for the SiOn–SiOm structures (Methods, 
Fig. 2b and Extended Data Fig. 7c).

The correlation length ξ has been estimated in the pressure range 
at which the different percolating clusters appear. This quantity 
accounts for the maximum length at which scale invariance exists. 
At the thermodynamic limit, this quantity is expected to diverge at 
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the critical pressure and it should reach a maximum for finite size sys-
tems, which is indeed the case for the different situations described 
above (Fig. 2c). Beyond 70 GPa, a large cluster of ES (SiO6–SiO7)∞ poly-
hedra starts to grow; this, together with the fact that at this pressure 
the total number of shared edges per Si polyhedron exceeds 2, sup-
ports the post-stishovite 'phase' suggested previously. The jump in 
the percolation probability P∞ from 0 to 1 provides evidence of the 
dominant character of a well-defined amorphous state in a given pres-
sure range. However, the non-negligible partial overlap between the 
ξ curves beyond 3 GPa may indicates a 'phase' coexistence between 
the dominant percolating cluster and a ‘metastable’ emerging state 
(Fig. 2c) when approaching the critical pressures. This is similar to the 
metastability observed in coesite IV and V polymorphs5,6.

When unloading from 8 GPa, the percolating (SiO4–SiO5)∞ cluster 
vanishes at a pressure similar to that at which it percolates during 
compression (Fig. 2b). This confirms the reversible character sug-
gested above by analysis of the local and medium-range structure. 
Conversely, when the sample is decompressed from 10 GPa (dashed 
curve), P∞ exhibits a hysteresis, that is, the (SiO4–SiO5)∞ cluster con-
tinues to percolate at pressures much lower than for the percolating 
compression route (Fig. 2b). A similar plastic behaviour is observed for 
the other percolating clusters, that is, (SiO5–SiO5)∞ and (SiO5–SiO6)∞ 
(data not shown). This demonstrates that the formation of percolating 

clusters containing SiO5 pentahedra for p ≳ 10 GPa prevents recovery 
of the pristine glass structure and probably explains the irreversible 
behaviour.

To explore the impact of these percolation transitions on glass rigid-
ity, we calculated the bulk modulus K of our pressurized silicas (Fig. 2d). 
The increasing connectivity at short and long length scales yields a 
strong increase in K, that is, from approximately 30 GPa at ambient 
conditions up to approximately 375 GPa at p = 82 GPa. Its evolution 
parallels those of its crystalline counterparts: SiO4 polymorphs (except 
coesite I) below 10 GPa, coesite IV and V at intermediate pressures and 
stishovite above 35–40 GPa (refs. 6,29). Our calculations also reproduce 
the well-known minimum around 3 GPa (Fig. 2d, inset) and we associate 
the increased rigidity starting above 4 GPa to the series of percolating 
clusters that emerge with increasing pressure. Finally, our estimation 
of K is very close to high-frequency experimental data except per-
haps around 10 GPa, where the simulations exhibit a minimum, when  
(SiO5–SiO5)∞ and (SiO5–SiO6)∞ clusters emerge. These results sug-
gest that the mechanical properties relate primarily to the peculiar  
connectivity describing the system at all length scales, rather than to 
the crystalline or amorphous nature of the network.

We have also analysed the structure of the percolating clusters at 
the critical pressure thresholds. For this, we expanded these clusters 
out of the box, taking into account the periodic boundary conditions, 
and computed their structure factor S(q). As expected from percolation 
theory, at the critical thresholds the clusters are fractals, that is, 
S q q( ) ∝ D− f at intermediate wavevector q values, with Df ≃ 2.5, in agree-
ment with the value predicted theoretically (Fig. 3).

Conclusions and outlook
The structural transformation from low- to high-density amorphous 
SiO2 solid occurs through a sequence of percolation transitions. Each 
emerging amorphous phase (polyamorph) actually corresponds to a 
state of a megabasin of the configurational energy landscape30, and 
each megabasin is associated with a specific crystalline polymorph 
with the same local structures and connectivities as those of the per-
colating cluster. When the pressure is increased and the energy barrier 
separating two megabasins is overcome, a transformation is induced 
to an amorphous state with higher connectivity. Other pressure- or 
temperature-driven amorphous transformations in oxide glasses, 
chalcogenides and metallic glasses could be explained in these terms. 
A percolation phenomenon has been proposed to explain the transition 
between low- and high-density liquid phases of water31. The same has 
been argued for the glass transition in model systems32–34. Changes in 
the local connectivity similar to those observed here have been demon-
strated in pressurized SiO2, GeO2 and H2O liquids, but for different pres-
sure windows and interpolyhedra distances35–38. The question whether 
amorphous states are related to underlying and unidentified liquid 
phases can now be addressed by considering a scale-invariant quantity 
as the percolation probability. This will help to catalogue amorphous  
solids and unveil their affinities with liquid and crystalline phases.
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Methods

Glass preparation
The initial glass configuration of 1,008 atoms (336 SiO2 units) in a cubic 
simulation box was prepared by carrying out classical MD simulations 
using periodic boundary conditions. We used the melt-and-quench 
approach and the constant volume–constant temperature (NVT) 
ensemble, and the atomic interactions were modelled using the Van 
Beest–Kramer–VanSanten (BKS) pair potential39. We then carried out 
MD simulations within the framework of the SCC-DFTB method for 
the electronic structure calculations23. These calculations were also 
performed using the NVT ensemble. An Andersen thermostat was used 
to maintain room temperature and the samples were relaxed for more 
than 40 ps, with a time step of 2 fs. Within the SCC-DFTB approximation, 
the electronic integrals corresponding to the Hamiltonian matrix ele-
ments were replaced by analytical functions. The coefficients of these 
functions were obtained by fitting DFT calculations corresponding to 
systems obtained at different physico-chemical conditions. We used 
the Periodic Boundary Conditions (PBC)-0-3 set of parameters for SiO2 
(ref. 40). This resulted in an electronic structure calculation method 
at least three orders of magnitude faster than DFT, which is currently 
considered the best-performing ab initio method in materials science.

The orbitals were occupied according to a Fermi–Dirac distribution 
with a temperature of 300 K. We included Broyden charge mixing in the 
SCC cycle with a mixing parameter of 0.1. The Γ-point approximation 
was used for the electronic band structure energy and the projected 
electronic density of states (DOS) calculations. For the latter, a Gaussian 
broadening of 0.4 eV was considered.

Glass compression
At ambient pressure, the glass sample prepared using the above pro-
cedure had a density of 2.3 g cm−3. To mimic quasi-static compres-
sion, the box length was reduced in steps of 1% (and atom positions 
rescaled) every 40 ps, until a pressure of approximately 27 GPa was 
reached. A second series of glasses was obtained by instantaneous 
volume reduction of the sample obtained at 15 GPa, thus yielding seven 
samples at target pressures of up to 82 GPa. Two successive volume 
reductions of 0.125% followed by a 40-ps relaxation were performed 
on six samples from this second series. The largest compression rate 
used here is almost equivalent to 0.02 GPa ps−1. This corresponds to 
a compression velocity at least one order of magnitude slower than 
that used in a previous DFT study of compressed SiO2 at T = 300 K (ref. 
12), while the number of atoms in our calculation box is almost seven 
times larger. To distinguish between the elastic and plastic regime, we 
also decompressed the samples from 8 and 10 GPa. This was done by 
increasing the box length and scaling the atom positions by 1% every 
40 ps, until ambient pressure was reached. The reported structural 
quantities were averaged over all configurations generated in the last 
10 ps of the sample relaxation time.

Electronic structure
For the simulated compressed glasses we analysed the total and pro-
jected DOS, the Fermi energies and the Mulliken atomic charges (QSi for 
Si and QO for O), as well the average Mulliken ionicity κSi–O, calculated as 
done elsewhere41. For the latter, the relation κSi-O = |QSi/vSi – QO/vO|/2 was 
used, where νSi and νO are the valences of Si and O atoms, respectively. 
The total and projected O-2p DOSs of the simulated glass at ambient 
pressure are in good agreement with the experimental and DFT data18 
(Extended Data Fig. 1a). The effect induced by sample densification in the 
total DOS of v-SiO2 also agrees10,19 (Extended Data Fig. 1c, d). Similarly, the 
Si and O Mulliken atomic charges and the Si–O bond ionicity change are 
consistent with previous experimental and DFT findings10,12 (Extended 
Data Fig. 2). This favours the formation of pentahedra and higher-fold 
coordinated Si polyhedra42 (Fig. 1). The maxima reached in the pressure 
range of 10–20 GPa where the SiO5 fraction is dominant (Fig. 1) and the 

slight decreases beyond 20 GPa highlight the large Si–O bonding ionic 
character of SiO5 pentahedra compared to octahedra and tetrahedra.

Structure factor
To compare the structural properties of our samples to experimental 
data, we computed the neutron and X-ray total static structure factors. We 
first computed the partial structure factors Sαβ(q) using the definition43
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Here, α, β = Si, O. Here, fαβ = 1 for α = β and fαβ = 1/2 otherwise, Nα is the 
number of particles of species α and N is the total number of atoms. The 
total structure factors are combinations of partial structure factors. 
For the neutron structure factor, we used the relation43
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with the neutron scattering length bα given by bSi = 4.1491 fm and 
bO = 5.803 fm, respectively44. The X-ray total structure factor SX(q) is 
given by45
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Here fα(s) is the scattering-factor function (also called the form factor), 
computed as a linear combination of five Gaussians using parameters 
derived elsewhere46.

The calculated X-ray SX(q) and neutron SN(q) structure factors are 
compared to experimental data3,11. The calculated SX(q) reproduces 
the decrease and shift of the first sharp diffraction peak (FSDP) due 
to the collapse of the open structure of v-SiO2 at intermediate length 
scales (Extended Data Fig. 3).

Local connectivity
We computed the pair distribution function gαβ(r) for all compressed 
v-SiO2 samples using the definition43
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where ⋅  represents the thermal average, V is the volume of the simu-
lation box and δαβ is the Kronecker delta function. For each of the three 
pairs, the first peak of the corresponding pair distribution function 
corresponds to the distribution of the first-neighbour shell distances 
for Si–O, O–O and Si–Si, respectively. For the Si–O pair, a minimum 
after the first peak located at 2.3 Å defines well the upper limit of this 
distribution at all pressures. We used this value as a cutoff distance to 
estimate the Si–O coordination number and the fraction of SiOn poly-
hedra for the considered pressures. Similarly, a cutoff of 3.5 Å was used 
to identify the first Si–Si neighbours and to estimate the evolution of 
the polyhedra coordination number with pressure (Fig. 1b). Identifica-
tion of the Si–O and Si–Si first neighbours also allowed us to estimate 
the number of O atoms shared by two Si polyhedra neighbours, that 
is, one, two, three or more, corresponding to CS, ES and FS polyhedral 
connectivity, respectively (Fig. 1c and Extended Data Fig. 5). The com-
puted Si–O distances are compared with experimental data in Extended 
Data Fig. 4a. The agreement is remarkable, in particular in view of recent 
X-ray measurements3. In this figure, the O–O and Si–Si distances are 
also shown, for information. The latter are compared to Si–Si distances 
in the crystalline counterparts, showing that the minima around 10 GPa 
arise from the formation of coesite-like structures in the glass, in par-
ticular SiO5 pentahedra.
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The Si–O–Si and O–Si–O bond-angle distributions and their pressure  

dependence are plotted in Extended Data Fig. 4b, c. The above-mentioned 
upshift of the FSDP translates into a fast reduction of the angles up to the 
first plastic transformation around 10 GPa when CS SiO5- and SiO6-based 
percolating clusters emerge. With increasing pressure above 10 GPa, and 
in addition to the primary peak at around 130°, we notice the occurrence 
of two other peaks pointing approximately at 98° and 68°, respectively, 
in the bond-angle distribution of Si–O–Si. The positions of the three 
peaks show a weak pressure dependence, and the two peaks located at 
smaller angles become prominent in the pressure range of v-coesite IV 
and V for the first one and v-stishovite for the second. The Si–O and Si–Si 
bond lengths exhibit anomalies at pressures of approximately 10 GPa and 
20–25 GPa, corresponding to the two stages of plastic transformation, 
and the O–O bond length presents a maximum at a pressure of about 
3 GPa, corresponding to the minimum of the bulk modulus.

To provide more insights into the medium range of the silica network  
with increasing pressure, we computed the ring distributions. No 
changes occur for pressures below 4 GPa. For pressures below 8 GPa, 
we observe a mild increase in small ring sizes (2-, 3- and 4-membered 
ones) accompanied by a decrease in the proportion of large ring sizes 
(7- and 8-membered ones). When approaching the threshold of the plastic 
regime at around 10 GPa, the same pressure dependences are observed, 
but with stronger trends. This increase in small rings at the expense of 
large ones at high pressure confirms previous DFT calculations12.

Cluster analysis
To identify the different clusters with specified polyhedra coordination 
and connectivity, as well the largest cluster, we used a strategy inspired 
by the friends-of-friends algorithm, which is widely used to characterize 
dark-matter halos from N-body simulations47. In our implementation, the 
first nearest neighbours correspond to the specific Si–O coordination 
and polyhedra connectivity we want to analyse. To determine whether 
the largest cluster percolates or not, we first extract all clusters from 
the box, except the largest one. We then replicate the box containing 
this cluster along the three spatial directions. The friends-of-friends 
algorithm is applied again and, if the resulting largest cluster is larger 
than the box size in at least two directions, we assume that the cluster 
percolates. For a given pressure, the above procedure is implemented for 
each possible SiOn–SiOn+1 connectivity, that is, CS, ES and FS polyhedra.

The percolation probability P∞ is defined as the number of times the 
resulting largest cluster percolates during the last 10 ps of the relaxation 
time, normalized by the total number of explored configurations. For dif-
ferent cluster connectivities, Fig. 2b and Extended Data Fig. 6a, b show P∞ 
as a function of pressure, sample density and SiOn fraction, respectively. 
In Extended Data Fig. 6b we plot only the data for the connected poly-
hedra that have the same coordination, otherwise the fraction of mixed 
coordination cannot be properly defined. The critical fractions where CS 
(SiOn–SiOn)∞ (n = Z = 5 and 6) percolating clusters emerge and SiO4–SiO4 
ones disappear are consistent with the expected critical occupation 
probability in bond percolation (Pc ≈ 2/Z). For example, in square lattices 
and diamond networks (Z = 4), Pc is equal to 0.5 and approximately 0.39, 
respectively, and in triangular lattices and simple cubic networks (Z = 6) 
is equal to approximately 0.35 and 0.25, respectively. For ES (SiO6–SiO6)∞, 
the critical fraction of SiO6 is larger than for CS cases. This is because 
only a small number of SiO6 octahedra are ES-connected. Note that ES 
connectivity is similar to a site percolation mechanism presenting a 
larger Pc than the one resulting from bond percolation.

The correlation length ξ was calculated using the definition27
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where the sums run over pairs of Si atoms belonging to each cluster of size s. 
The correlation length ξ is averaged over the last 10 ps of the relaxation time.

Mechanical properties
We estimated the bulk modulus K of the compressed glasses by using the 
relation K = −Vdp/dV, where V is the sample volume and p is the pressure 
averaged over the last 10 ps of the relaxation time. To obtain K, we used 
the central difference scheme, where its error bar is calculated by error 
propagation and the pressure error is estimated from the standard devia-
tion. To minimize errors in the finite difference, when two subsequent 
pressures lie within the estimated error bars, the second is excluded 
from the estimation of K. We recall that volumetric measurements give 
direct access to the static compressibility13, whereas high-frequency 
experiments measure the volumetric variations at the timescale of the 
relaxational processes probed by the instrument14. In compressed v-SiO2, 
the two values are similar in the elastic regime (p < 10 GPa), but strong 
variations have been observed in the plastic case for 10 < p < 55 GPa  
(refs. 14,48,49). Interestingly, above 12 GPa, our calculated K values are much 
closer to the high-frequency data than to the static ones, a behaviour 
that possibly reflects the typical time relaxation (approximately 10 ps, 
corresponding to gigahertz frequencies) and the small volumetric vari-
ation (<0.4 nm3) used for the estimation of K in our MD simulations. For 
p > 55 GPa, the experimental value (static and high-frequency) is around 
420 GPa (refs. 48,49), in good agreement with our calculations.

Affinities with c-SiO2 polymorphs
To identify the SiO2 polymorph most akin to amorphous states, we built 
supercells containing 582 atoms for tridymite, cristobalites, coesites and 
stishovite, and 432 and 486 atoms for β- and α-quartz, respectively. The 
unit cells of the polymorphs were obtained from crystallographic data-
bases under AMCSD codes 0000789 for α-quartz, 0018071 for β-quartz, 
0001629 for α-cristobalite, 0017646 for β-cristobalite, 0000531 for 
tridymite and 0001306 for stishovite50. These supercells were relaxed 
using the Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)  
minimization method implemented in the DFTB+ package23. Only the 
lengths of the lattice vectors were allowed to vary during structure 
optimization (with the exception of coesites IV and V) to preserve the 
same sample densities reported in ref. 6.

The criterion used to define the v-coesite IV 'phase' relies on the 
coexistence of (SiO4–SiO5)∞, (SiO5–SiO5)∞, (SiO5–SiO6)∞ and (SiO6–SiO6) ∞  
percolating clusters. We found that almost all the SiO5–SiO6 and SiO6–
SiO6 are ES, with a weak contribution of FS polyhedra, as in coesites IV 
and V. Indeed, in coesite IV we have validated the coexistence of differ-
ent crystalline planes that have the above-mentioned connectivities.

The ES SiO5–SiO6 and SiO6–SiO6 polyhedra become dominant at a 
pressure of 20 GPa. They are in a similar proportion (around 40%) and 
control the network connectivity as in coesite V. Beyond 40 GPa, the 
fraction of SiO5 starts to decrease and the SiO6–SiO6 connectivity then 
becomes dominant, which allows us to identify the stishovite-like 'phase'.

To validate the above observations, the total DOS, Fermi energy, Mul-
liken atomic charges and bond ionicity were computed and compared to 
the results obtained for c-SiO2 polymorphs (Extended Data Figs. 1 and 2).  
The electronic properties of v-SiO2 appear to be closer to α-quartz than 
to other SiO4-based polymorphs at ambient pressure, as suggested else-
where10. With increasing pressure, the electronic properties of the vitre-
ous polyamorphs—v-coesite IV, v-coesite V and v-stishovite—are also 
compatible with those of coesite IV and V and stishovite crystals, respec-
tively. The ionic character of the Si–O bond is also larger for the five- and 
six-fold Si coordinated polyhedra51. A similar conclusion holds when 
comparing the polyhedra coordination and connectivity with the cor-
responding v-SiO2 percolating clusters, as well as for the calculated bulk 
moduli. The latter agree very well with those of SiO4-tetrahedra-based 



polymorphs at low pressures and to those of coesite IV and V and stishovite  
(Fig. 2d) when the pressure is increased beyond 13 GPa.

Finally, Extended Data Table 1 presents the densities of the crystalline 
polymorphs and the corresponding pressure ranges6,28,52,53. A compari-
son with the corresponding polyamorph states of v-SiO2 is striking. One 
notices, for example, that a small pressure of around 3 GPa is enough 
to compact the open structure of vitreous silica up to a density very 
close to that of α-quartz. At high pressure, the density ranges of the 
polyamorphs follow those of their crystalline counterparts.

Percolating clusters at the critical threshold
We analysed the structures of the percolating clusters around the critical 
pressures. For this, we expanded and extracted the percolating clusters 
out of the box by taking into account the periodic boundary conditions. 
At the critical threshold, these clusters are usually larger than the box 
size because of their branched structure. We computed the structure 
factor S(q) of the isolated clusters by using the corresponding expres-
sion for a diluted system54:
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where N is the number of Si atoms and q is the modulus of the wavevec-
tor. This expression implies that S(0)  = NSi and S(∞) = 1, where NSi is the 
number of polyhedra (Si atoms). For fractal structures, at intermediate 
q values S(q) scales as q D− f , where Df is the fractal dimension. For com-
pressed v-SiO2 near the critical pressures, we have found that Df = 2.5, 
in agreement with the value predicted by percolation theory (Fig. 3).

Connectivity of OSin structures
With increasing pressure, the evolution of the coordination number of the 
O atoms, Z′, parallels that of the Si atoms; that is, Z′ passes from 2 to 3 when 
Si octahedra (Z = 6) replace tetrahedra (Z = 4) (Extended Data Fig. 7a, b).  
The anomalous steep jumps defining the different amorphous states, 
as described in the main text, are also reproduced. From a strictly struc-
tural point of view, these observations suggest that the two approaches 
are similar. The abrupt increase in OSi3 structures around 10 GPa leads 
to the percolation of (OSi3–OSi3)∞ clusters, in line with the percolation 
of (SiOn–SiOm)∞ clusters (n,m = 5,6) between 10 and 13 GPa (Fig. 2b and 
Extended Data Fig. 7c). Interestingly, the pressures at which OSi2–OSi3 
and OSi3–OSi3 structures percolate, approximately 3 GPa and 10 GPa, are 
similar to the characteristic pressures corresponding to the minimum of 
the bulk modulus and the elastic-to-plastic transition, respectively.

The fact that these mechanical properties correlate with the per-
colation of (OSin-OSim)∞ clusters probably underlines the role of the 
Si–Si non-bonded interactions, as stated by O’Keeffe and Hyde in 
their model55,56, based on the observation that the distance between 
non-bonded first-neighbour cations in many non-molecular crystals 
is nearly independent of the bridging atom (anion). When applied to 
silicates, this implies that the structures are constrained by the problem 
of fitting large Si atoms around small O atoms. However, the model 
deserves to be reformulated in view of our results. Indeed, it was devel-
oped for stable crystalline minerals, whereas with pressurized v-SiO2 we 
are facing unrelaxed structures with connectivities that mimic those of 
metastable coesites IV and V. These structures are at odds with the third 
and fifth Pauling rules24 and show non-monotonic behaviour in their 
electronic and structural properties around 10–20 GPa (Extended Data 
Figs. 2 and 4a, respectively). These effects can hardly be accounted for 
by the model in its current formulation. With a view to future develop-
ments, we have noticed that the ratio between the glass density and 
the O–O distance is almost constant over the entire pressure range 
explored, suggesting that the non-bonded O–O distance could be an 
interesting marker to follow.

Data availability
Figures and corresponding datasets (agr format), as well as sample 
trajectories at selected pressures are available at Zenodo (https://doi.
org/10.5281/zenodo.5056541).

Code availability
The DFTB+ code is publicly available at https://dftbplus.org/. Additional 
information may be found there. The percolation code is available 
freely for non-commercial research at Zenodo (https://doi.org/10.5281/
zenodo.5064069). Other codes for structural characterization are 
available from B.H.
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Extended Data Fig. 1 | Electronic structure of compressed v-SiO2. Total DOS 
for a SiO2 glass at ambient pressure, with its corresponding projected DOS  
(a) and compared to different SiO4 crystalline polymorphs (b). Fermi energy  

(c) and total DOS (d) when the pressure increases. The results are compared 
with those corresponding to different SiO2 crystalline polymorphs.
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Extended Data Fig. 2 | Ionic bonding of v-SiO2. Mulliken atomic charges 
for Si (a) and O (b), and the average Mulliken ionicity of the Si-O bond (c) in 
v-SiO2 as a function of pressure. The results (circles) are compared with those 

corresponding to different SiO2 crystalline polymorphs. The error bars in 
(b) correspond to the standard deviation of the average of the charges of all 
O atoms. Similar relative errors were estimated for (a) and (c).
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Extended Data Fig 3 | v-SiO2 atomic structures. (a) SX(q) of our densified vitreous silicas compared to X-ray data reproduced from Prescher et al.3 and (b) Evolution 
of the maximum of the first sharp diffraction peak FSDP. (c) Calculated SN(q) compared to neutron data (black lines) reproduced from Zeidler et al.11.



Extended Data Fig. 4 | v-SiO2 interatomic distances and angles. 
(a) Calculated Si-O, O-O, and Si-Si distances at maximum of the distribution in 
our densified vitreous silicas. Si-O bond length are compared to X-Ray 
(squares) and neutron (+) scattering data. Si-Si distances are compared to those 
in the crystalline polymorphs. For stishovite, the interval corresponds to 

pressures between 10 GPa and 30 GPa. (b) Si-O-Si bond angle distribution (BAD) 
and pressure dependence of the Si-O-Si BAD marked by the arrow. The average 
value has been calculated from 110o to 175o. (c) Pressure dependence of the 
O-Si-O and examples of bond angle distributions (BAD).
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Extended Data Fig 5 | Face-shared SiOn polyhedra. Number of face-sharing per polyhedron unit for dominant SiOn-SiOm connectivities as a function of pressure.



Extended Data Fig. 6 | Percolation transitions. (a) Percolation probability, P∞, versus v-SiO2 density for the different 4-, 5- and 6-folded coordinated Si, and their 
combinations. (b) P∞ versus the fractions of SiOn.
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Extended Data Fig. 7 | OSiZ structures. (a) Coordination numbers Z and Z′ of SiOZ polyhedra and OSiZ′ structures, (b) fraction of OSin, and (c) percolation 
probability of (OSi2-OSi2)∞, (OSi2-OSi3)∞, and (OSi3-OSi3)∞ clusters.



Extended Data Table 1 | Vitreous silica versus crystalline silicas

Correspondence between pressure and density in c-SiO2 polymorphs and comparison with the polyamorph states of v-SiO2 defined in the text.
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