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A metabolomics pipeline for the mechanistic 
interrogation of the gut microbiome

Shuo Han1,8, Will Van Treuren1,2,8, Curt R. Fischer3,4, Bryan D. Merrill1,2, Brian C. DeFelice4, 
Juan M. Sanchez4, Steven K. Higginbottom1, Leah Guthrie1, Lalla A. Fall3,5, Dylan Dodd1,5 ✉, 
Michael A. Fischbach4,6 ✉ & Justin L. Sonnenburg1,4,7 ✉

Gut microorganisms modulate host phenotypes and are associated with numerous 
health effects in humans, ranging from host responses to cancer immunotherapy to 
metabolic disease and obesity. However, difficulty in accurate and high-throughput 
functional analysis of human gut microorganisms has hindered efforts to define 
mechanistic connections between individual microbial strains and host phenotypes. 
One key way in which the gut microbiome influences host physiology is through the 
production of small molecules1–3, yet progress in elucidating this chemical interplay 
has been hindered by limited tools calibrated to detect the products of anaerobic 
biochemistry in the gut. Here we construct a microbiome-focused, integrated 
mass-spectrometry pipeline to accelerate the identification of microbiota-dependent 
metabolites in diverse sample types. We report the metabolic profiles of 178 gut 
microorganism strains using our library of 833 metabolites. Using this metabolomics 
resource, we establish deviations in the relationships between phylogeny and 
metabolism, use machine learning to discover a previously undescribed type of 
metabolism in Bacteroides, and reveal candidate biochemical pathways using 
comparative genomics. Microbiota-dependent metabolites can be detected in 
diverse biological fluids from gnotobiotic and conventionally colonized mice and 
traced back to the corresponding metabolomic profiles of cultured bacteria. 
Collectively, our microbiome-focused metabolomics pipeline and interactive 
metabolomics profile explorer are a powerful tool for characterizing microorganisms 
and interactions between microorganisms and their host.

The human gut microbiota encodes diverse metabolic pathways. Gut 
microorganisms, which express numerous anaerobic pathways that 
process diverse diet- and host-derived molecules, produce numerous 
previously undescribed compounds with relevance for human health and 
that have untapped therapeutic potential. Many of these microbial prod-
ucts in the gut subsequently enter the tissue and circulation of the host, 
where additional metabolic steps can add to the chemical diversity1–3. 
Several recent studies have shown that microbiota-dependent metabo-
lites (MDMs) influence immune function4, metabolism5,6, cardiovascular 
health7, and cognition and behaviour8. In many cases, MDMs exert these 
effects on host biology by binding to specific host receptors9 and acti-
vating downstream signalling pathways10. Discovery of how individual 
prevalent human gut microorganisms mechanistically contribute to host 
phenotypes has been hampered by the difficulty in accurately monitoring 
the diversity of molecules produced by gut microorganisms. To address 
this gap, recent studies have leveraged improvements in high-resolution 
mass spectrometry11 as well as growing mass-spectrometry and com-
pound databases12 (for example, Mass Bank of North America (MoNA), 
Metabolite Link (METLIN13), Human Metabolome Database (HMDB14), 

and Kyoto Encyclopedia of Genes and Genomes (KEGG15). Nevertheless, 
because of fundamental differences between anaerobic metabolism in 
the gut versus aerobic biochemistry, as well as the underrepresentation 
of anaerobic microbial products in existing databases, the full metabolic 
capability of the microbiota remains understudied. Here we present a 
microbiome-focused, integrated mass-spectrometry pipeline to facilitate 
the identification of MDMs in diverse sample types, and to associate these 
metabolites with microbial strains and genetic pathways.

Microbiome-focused metabolomics
To enable the interrogation of microbiome metabolism, we (1) con-
structed a mass-spectrometry-based reference library to detect 
anaerobic biochemistry and an analytical pipeline to integrate large 
metabolomics datasets; (2) validated our methods to ensure applica-
bility to the broader scientific community; and (3) enabled interac-
tive, public access to our datasets (https://sonnenburglab.github.io/
Metabolomics_Data_Explorer) (Fig. 1, Methods, Extended Data Figs. 1–3 
and Supplementary Tables 1–4).
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Next, we leveraged this tool to create a reference dataset of metabo-
lomic profiles for individual bacterial strains to enable multiple modes 
of analysis and discovery. We acquired 178 individual prevalent human 
gut microorganisms representing 130 species and spanning 6 phyla 
from ATCC, DSMZ and BEI (Supplementary Tables 5, 6). To create the 
most comparable dataset of metabolism, we cultured all supported 
strains (158 out of 178) in mega medium—a rich, undefined medium 
known to support the growth of diverse bacteria—and collected 
the culture supernatant between the mid-log and stationary phase 
(Extended Data Fig. 4a, b and Supplementary Methods). The remaining 
20 strains were grown in 9 additional media as described in Supplemen-
tary Table 6, and 29 strains were grown and analysed across multiple 
types of media (Extended Data Fig. 4c and Supplementary Table 7).

To assess large-scale metabolite production and consumption pat-
terns, we hierarchically clustered individual bacterial strains (Extended 
Data Fig. 4d–f and Supplementary Table 7). In some cases, two closely 
related species exhibited distinct metabolomic profiles punctuated with 
metabolite-level similarities (for example, Clostridium sporogenes and 
Clostridium cadaveris) (Extended Data Fig. 5a, b). In other cases, phylo-
genetic proximity is accompanied by similarity in metabolic patterns 
(for example, four strains of Bacteroides fragilis, Pearson r > 0.80 for 
all pairwise comparisons) (Extended Data Fig. 5a, b). Conversely, hier-
archical clustering of species by metabolomic profile distance reveals 
unexpectedly shared metabolic patterns among phylogenetically distant 
species (for example by Atopobium parvulum, phylum Actinobacteria, and  
Catenibacterium mitsuokai, phylum Firmicutes) (Extended Data Fig. 6a–c).

In addition to the large-scale metabolic patterns, we discovered 
unique high producers or consumers of specific metabolites within 
our strain collection. For example, Enterococcus faecalis and Enterococ-
cus faecium produce high levels of tyramine (Extended Data Fig. 4e)—a 
biogenic amine known to modulate host neurological functions16. By 
contrast, C. cadaveris consumes high levels of pantothenic acid (vita-
min B5) (Extended Data Fig. 4f), a molecule that is associated with 
inflammatory bowel diseases17. This large-scale in vitro screen ena-
bles us to identify numerous high-abundance, variably conserved, 
microbially derived metabolites that can be tracked in vitro and in vivo 
(Extended Data Fig. 6d).

Metabolonomy distinct from phylogeny
We next addressed large-scale relationships between strain metabo-
lism (metabolonomy) and phylogeny—a complex topic that has been 

addressed with different approaches in previous studies18–21. Bacte-
rial metabolism is a product of the genetic metabolic toolkit and the 
chemical environment of a microorganism. Comparing metabolomic 
and phylogenetic trees for the same set of 158 strains grown in mega 
medium revealed a broadly conserved topology with the strains most 
often clustering by phyla (Fig. 2a, Extended Data Figs. 6a, 7a and Supple-
mentary Methods). However, this similarity is punctuated by consider-
able divergences in which the relative location of specific strains in the 
two trees differs substantially (magenta and gold coloured branches 
in Fig. 2a). Notably, these patterns of clustering are preserved when 
metabolites are weighted by chemical similarity (Mantel test, r2 = 0.863, 
P = 0.001) (Extended Data Fig. 7b, c).

To quantify these differences, we compared the metabolomic dis-
tance between strains to their evolutionary distance (Extended Data 
Fig. 7d and Supplementary Table 7). Using a phylogeny derived from 
the V4 16S region, the relationship between phylogenetic distance and 
metabolomic distance is linear (r2 = 0.30, P < 1 × 10−92) below around 0.11 
branch-length units, approximating a difference of taxonomic ‘class’ in 
our data. Above a branch length of 0.11, the 16S distance explains almost 
none of the variance in the metabolomic distance (r2 = 0.02, P < 1 × 10−9). 
These patterns are robust to data transformation and evolutionary 
distance derived from full-length 16S genes (Extended Data Fig. 7e–j). 
Comparing the metabolic distance of bacteria grouped by taxonomic 
rank alone (for example, the distance between different strains of the 
same species) reveals a similar pattern of saturation (Extended Data 
Fig. 7d and Supplementary Table 7). These data indicate that when 
two strains are grown in the same complex medium, differences in the 
detected microbial metabolism are smaller on average than what would 
be extrapolated linearly from evolutionary or taxonomic relationships, 
particularly for distantly related bacteria. Notably, the high variance 
in metabolic distance between microorganisms of any relatedness 
(taxonomic or phylogenetic) reaffirms the use of metabolite profiles 
when comparing specific strains.

We next leveraged our strain-resolved metabolomic and genomic 
data to examine the correlation between bacterial genetic and meta-
bolic variations in the context of a single pathway: polyamine biosyn-
thesis (Fig. 2b and Extended Data Fig. 7k). Gut microbially derived 
putrescine and its precursor ornithine have both been implicated in 
influencing aspects of host physiology22,23. Their biosynthetic enzymes 
have been functionally characterized in select bacterial species (for 
example, ornithine-producing arc genes24 and putrescine-producing 
spe genes25).

In vitro: 6 phyla, 178 strains, 
400+ metabolites, 3,000+ samples
In vivo: 7 colonizations, 4 bio�uids, 
400+ metabolites, 700+ samples
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Fig. 1 | A microbiome-focused metabolomics pipeline enables the 
mechanistic interrogation of microbiome metabolism. Schematic of our 
metabolomics workflow, consisting of mass-spectrometry reference library 
construction and validation, producing in vitro and in vivo metabolomic 

profiles across diverse sample types. Our entire dataset is publicly accessible 
through a web-based, interactive Metabolomics Data Explorer (https://
sonnenburglab.github.io/Metabolomics_Data_Explorer).
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We discovered two groups of phylogenetically distant strains in two 
phyla, Firmicutes and Actinobacteria (Fig. 2b, phyla with orange and 
purple borders, respectively), that accumulate high levels of ornithine 

and citrulline in the absence of substantial downstream polyamine 
production. We performed comparative genomics starting with the 
ornithine-producing arc genes described in Lactococcus lactis and 
found their conserved presence (Extended Data Fig. 7k) among the 
ornithine-accumulating strains, such as the Lactobacillales (Fig. 2b, 
strain names highlighted in orange). Notably, these genes are not 
detectable in the non-ornithine-accumulating phylogenetic neigh-
bours in both Lactobacillales and Actinobacteria. These examples 
illustrate that, when metabolic phenotypes depart from phylogeny, 
orthologous gene–metabolite relationships may be preserved. We 
next identified strains that accumulate high levels of downstream 
putrescine and/or agmatine within three phyla: Proteobacteria, Fuso-
bacteria and Firmicutes (Fig. 2b, phyla with green, red and orange 
borders, respectively). Although several putrescine-accumulating 
Proteobacteria strains (Fig. 2b, strain names highlighted in green) share 
the putrescine-producing spe gene cluster described in Escherichia 
coli (Extended Data Fig. 7k), these genes are not detectable in the 
Fusobacteria. These data indicate the limited ability of phylogeny- or 
genome-based prediction of metabolic functions in bacterial strains 
and highlight the utility of measuring metabolic phenotypes to iden-
tify strains and genes that produce specific metabolites that have the 
potential to affect host biology.

Metabolic phenotype-to-gene discovery
Metabolite production and consumption have long been used as 
mechanisms to group and identify organisms (for example, indole 
production). Here, we used our comprehensive metabolomic dataset 
constructed from strains grown in mega medium along with simple 
machine learning (random forest) models to identify sets of metabo-
lites that could distinguish different taxonomic groups. Simple random 
forest models could accurately classify the taxonomic origin of micro-
bial supernatants (Fig. 3a and Supplementary Methods). Although the 
total metabolome is not clearly predictive of taxonomy (Fig. 2a and 
Extended Data Fig. 7d), these random forest models revealed subsets 
of the chemical features that were highly conserved and predictive of 
taxonomic identity (Extended Data Fig. 8a).

The most discriminating features selected by the random forest mod-
els for differentiating phyla included an overrepresentation in amino 
acid metabolism (Extended Data Fig. 8a). Notably, Bacteroidetes were 
differentiated by their consumption of most of the glutamine (median 
consumption, 83%) and asparagine (median consumption, 96%) in the 
mega medium (Fig. 3b). Previous studies showing that Bacteroides 
could not use free amino acids as the sole nitrogen source did not test 
asparagine and glutamine26. On the basis of the data from the 60 Bac-
teroidetes taxa in the collection, we hypothesized that glutamine and 
asparagine could serve as the sole nitrogen source. To test this, we grew 
all 60 Bacteroides and Parabacteroides species in a minimal medium 
that lacked free ammonium, but contained 10 mM glutamate, glutamine 
or asparagine. Notably, asparagine or glutamine sufficed as the nitrogen 
source for 50 out of 60 Bacteroidetes taxa tested (Fig. 3c and Extended 
Data Fig. 8b, c). To determine the genetic basis of asparagine utiliza-
tion, we searched the Bacteroidetes genomes for homologues of E. coli 
enzymes that consume asparagine and release ammonia (Fig. 3c, red 
rows). For taxa with available genomes, an l-asparaginase II homologue 
(ansB; >59% identity) strongly correlated (Pearson r = 0.91) with the 
maximum optical density when grown on asparagine. Using a transpo-
son mutant in the Bacteroides thetaiotaomicron type strain (B. thetaio-
taomicron VPI 5482 2757−3983−), we confirmed that this l-asparaginase 
II homologue was necessary for growth with asparagine as the sole 
nitrogen source (Fig. 3d). The effect that we observed was not depend-
ent on the presence of cysteine; B. thetaiotaomicron VPI 5482 and  
B. thetaiotaomicron VPI 5482 2757−3983− both grew with sodium sulfide 
substituted as a reduced sulfur source and the pattern of growth was 
maintained (Extended Data Fig. 8d). We next examined the amino acid 
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consumption patterns of Bacteroides in vivo. In the caecum of mice 
monocolonized with B. thetaiotaomicron VPI 5482, asparagine was 
the most depleted amino acid (median decrease of 86.9%) compared 
with germ-free control mice (Extended Data Fig. 8e). This observation 
is consistent with in vivo asparagine utilization by B. thetaiotaomicron, 
but does not exclude colonization-dependent changes in host aspara-
gine utilization. These findings demonstrate the power of combining 
strain-resolved metabolomics with simple statistical models—in this 
case, to discover a major metabolic capacity for nitrogen assimilation 
for the most abundant genus in the industrialized microbiota.

Metabolomic effect of community and host
Mechanistic studies in microbiome science can be aided by reverse 
translation of findings from complex communities (humans or con-
ventionally colonized animals) into highly controlled (for example, 
gnotobiotic) models. We have recently demonstrated the use of our 
in vitro strain metabolite profiles in reverse translation by recreat-
ing metabolic phenotypes of interest to study mechanisms involved 
in the development of inflammatory bowel disease27. On the basis of 
two metabolites detected in human biological fluids (biofluids)28 and 
conventionally colonized mice, we asked whether we could reconstitute 
the production of microbially derived metabolites in the host gut and/
or circulation by colonizing mice with the highest in vitro producing 
strain in our collection. One candidate, agmatine, is a polyamine with 
neuroprotective roles in mammals29 and a substrate for transporters 
in kidney and liver cells30. The other candidate, α-ketoglutaric acid, is 
a tricarboxylic acid cycle intermediate that extends the lifespan of the 
nematode Caenorhabditis elegans and increases autophagy in mam-
malian cells31.

Consistent with our in  vitro observations, agmatine and 
α-ketoglutaric acid levels were both significantly increased in the fae-
ces of mice mono-colonized with a high in vitro producer: Citrobacter 

portucalensis and Anaerostipes sp., respectively (Fig. 4a and Extended 
Data Fig. 9a). Furthermore, mono-colonization increased the lev-
els of agmatine in the host circulation (for example, urine) relative 
to the germ-free control mice (Fig. 4a). These examples provide a 
proof-of-concept application of our in vitro dataset to reconstitute 
specific microbially derived metabolism in a mouse model, enabling 
potential mechanistic studies that are relevant to host physiology.

We leveraged our strain-resolved metabolomic dataset combined 
with gnotobiotic colonization (Supplementary Table 8) and asked 
whether specific in vivo gut-bacteria-derived metabolites serve as 
biomarkers for a given taxonomic group. Among the 34 significantly 
produced metabolites in both colonized mice and individual strain 
cultures, we found several phylum-specific metabolites (for exam-
ple, 5-aminopentanoic acid and indolepropionic acid by Firmicutes; 
malic acid and melatonin by Bacteroidetes) (Extended Data Fig. 9b 
and Supplementary Table 9). These data highlight that taxa-specific 
metabolites may serve as biomarkers for aspects of microbiome 
composition.

We next assessed the extent to which metabolites produced in vitro 
are reconstituted in gnotobiotic mice colonized with the same microor-
ganisms. At the metabolomic profile level, faeces and caecal contents 
from mice mono-colonized with C. sporogenes or B. thetaiotaomicron 
correlated with C. sporogenes or B. thetaiotaomicron in vitro culture 
when compared against 158 taxa grown in mega medium (C. sporo-
genes, top 1%; B. thetaiotaomicron, top 10%) (Extended Data Fig. 9c). 
The lack of correlation in serum and urine (average Spearman  
ρ = 0.058, Extended Data Fig. 9c) is probably due to the inability of the 
bacterial culture to recapitulate host-encoded metabolism (for exam-
ple, phase I/II enzymes). At the individual metabolite level, 8 out of 20 
(40%, C. sporogenes) and 3 out of 29 (10%, B. thetaiotaomicron) signifi-
cantly produced caecal metabolites in vivo were also produced by the 
same strain in vitro (Extended Data Fig. 9d). Furthermore, when assess-
ing a six-species defined microbiota, 15 out of 46 (33%) significantly 
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produced caecal metabolites were also produced by one or more of 
the six species in vitro (Extended Data Fig. 9d). Collectively, these data 
illustrate that metabolites produced in a standard rich medium can 
inform a portion of the microbially derived metabolites produced in 
the gut environment.

To better understand whether and how microorganism-dependent 
metabolites in the gut can inform circulating metabolites in the host, we 
examined enteric and systemic metabolic contributions of C. sporogenes 
and B. thetaiotaomicron in the host. We measured metabolite profiles of 
four sample types (faeces, caecal contents, serum and urine) in differ-
ent colonization states (Fig. 4b). Principal component analyses reveal 
that metabolomic profiles cluster by sample type (for example, caecal 
contents versus serum) from mice colonized with the same microor-
ganism, as well as by colonization state (for example, C. sporogenes  
mono-colonization versus a C. sporogenes-containing six-member 
community) (Extended Data Fig. 9e, f). We identified a distinct set of 
known and candidate host–microbial co-metabolites that are signifi-
cantly elevated in the serum and/or urine, and are strongly associated 
with the presence of either C. sporogenes or B. thetaiotaomicron in 
the gut (Fig. 4b and Extended Data Fig. 9g, h). Notably, in both serum 
and urine, accumulation of N-(cinnamoyl)glycine is dependent on  
C. sporogenes, whereas accumulation of indoxyl sulfate is dependent on 
B. thetaiotaomicron (Fig. 4b and Extended Data Fig. 9g, h). Our systematic 
and high-throughput detection of microorganism-derived and host–
microorganism metabolites across different sample types (for example, 
from caecum to serum) enables the identification of intermediates 

within known or candidate host–microbial co-metabolism pathways 
(Extended Data Fig. 10a).

To determine whether enteric presence of C. sporogenes is necessary 
for the increase or decrease in specific metabolites in the host circula-
tion, we omitted C. sporogenes from the original six-member commu-
nity. Metabolites shown are significantly increased or decreased by at 
least fourfold in the serum, urine or caecal contents of mice with the 
six-member community, relative to germ-free control mice (Fig. 4c and 
Extended Data Fig. 10b, c). By contrast, the five-member community 
that lacks C. sporogenes either abrogated the production or restored 
the depletion of a subset of these metabolites in the serum or urine, 
indicating that the enteric presence of C. sporogenes is necessary for 
modulating levels of these metabolites in the host circulation (Fig. 4c 
and Extended Data Fig. 10b) and illustrating the potential of microbi-
ome editing to alter MDMs that circulate in the host blood.

Discussion
Untargeted metabolomics has led to many discoveries of 
microbiota-dependent metabolic pathways9,10 and metabolites linked 
to host diseases17,32–34, yet there is considerable untapped potential. Here 
we present a customizable and expandable method of constructing a 
chemical standard library-informed metabolomics pipeline tailored to 
detecting products of gut anaerobic biochemistry. Using this method, 
we construct an atlas of gut-microbiota-dependent metabolic activi-
ties in vitro and in vivo, enabling functional studies of gut microbial 
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communities. Complementary to recent studies using phylogenetic 
(16S)35 or metagenomic comparisons36 to predict gene functions, we 
used strain-resolved metabolomics to provide expansive biochemical 
profiles of individual strains. These profiles demonstrate that substan-
tial metabolic variation is common even between closely related strains. 
Our findings, along with emerging studies on microbiome-focused 
metabolomics37–39 and gut microbial metabolism40,41, reinforce the 
limits of phylogeny or genome-scale analysis to provide direct measure-
ment or prediction of metabolic phenotypes and the molecules that 
link the microbiota to host physiology. Our existing strain-specific 
genome-by-metabolic profile data provides a rich resource for the 
comparative discovery of genes and pathways that underlie bacterial 
phenotypic variation. Furthermore, these data and this approach can 
be used as a direct reference or as a readily implemented platform for 
improving MDM identification in biological samples. Adding previously 
undescribed microbially derived metabolites, along with new strains 
such as those isolated from diverse human populations, will uncover 
new mediators of the interactions between the host and microbiota as 
well as molecular targets for therapeutic interventions.
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maries, source data, extended data, supplementary information, 
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tributions and competing interests; and statements of data and code 
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Metabolomics pipeline construction logic
The accurate identification and analysis of diverse small molecules 
in complex biological samples (for example, those present in the 
mammalian gut) are challenging due to a variety of technical factors, 
including chemical structural diversity, matrix effects and linearity 
of ion detection. To ensure that our liquid chromatography–mass 
spectrometry (LC–MS) pipeline is relevant for biological samples 
and that it is useful to the broader scientific community, we highlight 
six key points of our approach: (1) detectability of diverse chemical 
classes of compounds that characterize bacterial and host metabo-
lism using three complementary analytical methods42,43 (Extended 
Data Figs. 1d, 3a–c); (2) retention time (RT) shifts that occur in diver-
gent matrices (for example, culture supernatant versus host serum) 
to determine whether metabolites in a biological sample could be 
faithfully identified using RT data from our m/z-RT reference library 
(Extended Data Fig. 3d, e and Supplementary Table 2); (3) linear-
ity of signal over a large range of concentrations, a prerequisite for 
performing sample comparisons and determining differences in 
the fold change (Extended Data Fig. 3f and Supplementary Table 2);  
(4) use of MS/MS fragmentation to validate the high-abundance 
metabolites identified in biological samples (Extended Data Fig. 1e 
and Supplementary Table 2); (5) construction of an MS/MS refer-
ence library of 750+ authentic standards on two distinct types of 
MS instrument (qTOF and Q Exactive) at multiple standard colli-
sion energies (Supplementary Table 3), enabling level-1 confidence 
annotation when used in conjunction with our m/z-RT reference 
library; and (6) implementation of our m/z-RT reference library on 
different types of MS instruments following minimal nonlinear RT 
correction44 (Extended Data Fig. 3g and Supplementary Table 4). For 
data analysis, we constructed an integrated pipeline combining (1) 
MS analysis tools45 that leverage our reference library for compound 
identification (Extended Data Fig. 1f) and (2) a custom bioinformat-
ics pipeline that enables the computation and statistical analysis of 
large datasets (Extended Data Fig. 2).

Authentic chemical standard collection
The authentic metabolite standard collection is composed of individu-
ally curated and commercially available standards (Mass Spectrometry 
Metabolite Library of Standards, IROA Technologies). Individually 
curated metabolites (303 metabolites) were weighed (2 mg minimum) 
and transferred from the original manufacturer’s stock bottles (for 
example, Sigma, Fisher, Acros and so on) to 2-ml Eppendorf tubes and 
reconstituted with 50% LC–MS grade methanol to reach a stock concen-
tration of 10 mM. Additional compounds (284 metabolites) were pur-
chased as 10-mg stocks from MetaSci (MetaSci Custom Library). Dried 
power from company stock tubes were transferred (2 mg minimum) 
into 2-ml tubes and reconstituted with 50% methanol to a concentration 
of 10 mM. Metabolites from the IROA metabolite standard library (634 
metabolites), which were supplied in much smaller amounts (around 
5 μg per well), were reconstituted with various amount of methanol 
in water (v/v) as per the manufacturer’s instructions, but owing to 
the limited mass, their concentrations were less precise. Individual 
pools (12–30) of metabolite standards, which do not share the same 
molecular mass, were generated by combining stocks and diluted with 
50% methanol to reach a final concentration of 200 μM. A subset of 
these pools (377 metabolites) was also serially diluted in 50% methanol. 
Individual metabolite pools and dilutions were analysed using three 
LC–MS analytical methods.

LC–MS methods
Instrumental and chromatographic settings. Compounds were 
separated using an Agilent 1290 Infinity II UPLC (binary pumps) and 
detected using an Agilent 6545 LC–MS Quadrupole Time-of-Flight 
(qTOF) instrument equipped with a dual jet stream electrospray ioniza-
tion source (ESI) operating under extended dynamic range (1,700 m/z) 
in the positive (ESI+) or negative (ESI−) ionization modes. Published C18 
methods42 and HILIC method43 were used with minor modifications. 
See Supplementary Methods for details.

Sample preparation for metabolomics. Five different sample types 
were processed with a similar sample preparation protocol as described 
in the Supplementary Methods. In brief, samples were homogenized 
and proteins were precipitated in a methanol-based recovery buffer 
that contains the extraction standards. Samples were then centrifuged, 
their supernatant was collected and evaporated, and a reconstitution 
buffer containing internal standards was added. Reconstituted samples 
were filtered and subsequently analysed by three analytical methods 
on the LC–MS-qTOF.

m/z-RT reference library
The exact m/z of each metabolite standard was calculated by combin-
ing the monoisotopic mass of the metabolite (PubChem) and adding 
or subtracting the mass of a proton (1.007276 Da) depending on the 
default adduct ion ([M + H]+ for ESI+ and [M − H]− for ESI−). The Agilent 
MassHunter Qualitative Data Analysis software (Qual, v.B.07.00) was 
used to match individual extracted-ion chromatogram peaks within a 
±10-ppm window from the predicted m/z of each metabolite standard. 
Alternative adducts ions were identified using ‘Search by Molecular 
Feature’ in Qual; when multiple adducts were identified, the adduct 
ion with the greatest area under the curve was used in the reference 
library. An RT was assigned to a metabolite when a single extracted-ion 
chromatogram peak was identified. When multiple chromatographic 
peaks were identified, which probably resulted from degradation prod-
ucts, different isotopes or adducts of other molecules in the mixture, 
a subsequent injection of that metabolite standard alone was con-
ducted to identify the RT for that metabolite. For metabolites run in 
dilution series, RTs at all concentrations at which the same metabolite 
was detected were used to produce an averaged RT for this metabo-
lite in the reference library. The averaged RT was used to (1) increase 
the accuracy by averaging small injection-to-injection variations; and 
(2) distinguish the true signal from background noise by validating 
the peaks for which the ion counts proportionally increase with the 
concentration.

To address how the same reference library performed on different 
instruments, we compared two different LC–MS systems: an Agilent 
6545 qTOF, the instrument with which the original library was con-
structed, and a second instrument, an Agilent 6530 qTOF or a Thermo 
Orbitrap Q Exactive (QE). Although these different instruments shared 
the same chromatographic conditions (for example, analytical meth-
ods, solvents and columns), they differed in resolution and ESI ion 
source parameters optimized to support each instrument. To com-
pare inter-instrumental RT shifts, a subset of the full reference library 
(219 metabolite standards spanning diverse RTs) was reconstructed 
on the second qTOF instrument, and 773 metabolite standards were 
reconstructed on the QE instrument. For each analytical method, RT 
correction was done by cubic polynomial transformation of the origi-
nal library44 based on inter-instrumental RT shifts of 10–20 robustly 
detected metabolites (for example, internal standards) that span the 
detected RT range. For each analytical method, using the corrected 
library with a RT tolerance window of 0.2 min, around 99% for the 219 
metabolites tested on the second qTOF instrument, and approximately 
94% of the 773 metabolites tested on the QE instrument, were correctly 
identified.
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MS/MS library construction
MS/MS raw data were collected from individual pools (12–24 com-
pounds per pool) for 833 authentic library standards, using three 
liquid chromatography methods applied to two distinct types of MS 
instruments (Agilent qTOF 6545 and Thermo Orbitrap QE). For qTOF, 
auto-MS/MS-preferred ion settings with an individual input list of 
m/z and RT information specific to the compounds in each pool were 
used to collect spectra at three collision energies (10 eV, 20 eV and 
40 eV). For QE, full MS/dd-MS2 settings with a single shared inclusion 
list containing the m/z and RT information for all of the compound 
pools were used for data collection at the stepped normalized collision 
energy of 20–30–40%. A scan range of 60–900 m/z was used to collect 
centroid type data. On both instruments, ±0.5 min was used as an RT 
search window for MS1 peak selection, based on the RTs provided by the 
qTOF reference library. Accurate mass windows were ±10 ppm on both 
instruments. RTs identified during the MS1 peak selection for the 773 
compounds detected on the QE instrument are reported in the m/z-RT 
library in the ‘QE_rt’ column (Supplementary Table 1).

MS/MS spectra were extracted from MS/MS raw data files (mzml 
format) with an automated Python script (extract_ms2_spectra.ipynb) 
using the pymzML parsing library46. For each compound, the intensity 
of each spectral fragment was normalized to the fragment with the 
highest intensity (set to 1,000). Spectral fragments with intensities 
below 0.5% relative to the highest intensity fragment were filtered out. 
Compound metadata (for example, InChIKey and collision energy) 
and fragmentation information (for example, m/z and intensity) are 
reported for each compound. Spectra from the same compound col-
lected using different analytical methods (for example, C18-positive 
and C18-negative) are all reported. In limited instances, spectra from 
the same compound were collected multiple times due to representa-
tion in multiple compound pools. All of the information above was 
compiled in Supplementary Table 3, and is publicly available in the 
MoNA spectrum database under query phrase ‘Sonnenburg Lab MS2 
library’. In summary, spectra from 750 and 773 unique compounds were 
collected on the qTOF and QE instrument, respectively.

MS experimental validations
Linear dynamic range. For large-scale metabolomics experiments, 
it is typically assumed that instrument response varies linearly with 
analyte concentration. To test the concentration linearity objectively, 
we constructed dilution series of 377 metabolites (from pools gener-
ated as above), in threefold serial dilutions spanning five orders of 
magnitude (from 1 nM to 200 μM). These diluted compound pools 
were then analysed using the three analytical methods. Linear regres-
sion of log-transformed concentrations versus log-transformed ion 
counts was performed and the coefficient of determination (r2) was 
calculated. Across all metabolites, the average r2 and slope (on log–log 
plots) were both very close to 1 (0.99 and 0.92, respectively), providing 
a strong indication of linearity.

Matrix effects. The biochemical complexity of biological samples such 
as faeces and serum may alter the RT and/or detected signal of indi-
vidual metabolites. To determine whether accurate identification was 
significantly affected by RT shifts in multiple matrices, we spiked in 132 
metabolite standards into five distinct biological matrices (germ-free 
mouse faeces, serum and urine, human charcoal-stripped serum and 
mega medium) and a library control condition (50% methanol, v/v) at 
a final concentration of 10 μM, and analysed each matrix using all three 
analytical methods. Three biological replicates for each matrix were 
used, and the RT and ion count for each spiked-in metabolite standard in 
each of these matrices were determined. The difference in RT between 
a biological matrix and the library control condition was calculated 
(50% methanol in water, v/v) for individual spike-in metabolites. For 
all 132 metabolites in all five matrices, differences in RTs were minimal, 

falling within a conservative ±0.1-min window. Changes in total ion 
count (area under the curve) between a biological matrix and the library 
control condition were determined by first removing matrix-specific 
background ion counts for a small number of metabolites present in 
specific matrix before spike-in. Next, the ratio between spike-in me-
tabolite ion counts in biological matrices and those in library blank 
controls was calculated (relative fold change, log2-transformed). The 
majority of spiked-in metabolites exhibit less than fourfold change in 
ion counts relative to those detected at the library control condition 
(97% in mouse faeces, 83% in mouse serum, 95% in mouse urine, 88% 
in human serum and 71% in mega medium). See code details in ‘calcu-
late_biological_matrix_effect.ipynb’. The relatively minor influence of 
different biological matrices on RTs of the reference library metabolites 
helped to establish the identification parameter (±0.1-min RT window) 
for our subsequent biological experiments.

MS/MS validation. To verify the accuracy of compound identifica-
tion obtained by our MS1 m/z-RT library built from authentic stand-
ards, we unbiasedly searched MS/MS spectra of m/z-RT-matched 
individual metabolites against the MoNA spectrum database. 
MoNA-reported similarity scores based on spectrum comparisons 
were recorded (Supplementary Table 2). For each analytical method, 
using the auto-MS/MS-preferred ions settings of the qTOF, MS/MS 
spectra were generated at three collision energies (10 eV, 20 eV and 
40 eV) from MS1 peaks identified by m/z and RT from our reference 
library. For biological samples, MS/MS spectra were collected for 
162 high-abundance metabolites identified in quality-control sam-
ples from in vitro (bacterial supernatants) and in vivo experiments 
(B. thetaiotaomicron- and C. sporogenes-mono-colonized mouse 
samples: serum, urine and faecal/caecal contents). Quality-control 
samples were generated on a per-experiment basis by pooling equal 
volumes from each biological replicate from the same experiment 
(3–8 biological replicates per condition across the entire 96-well 
plate) to provide a representation of the highest number of metabo-
lites in that experiment. To establish a baseline of MoNA similarity 
scores, MS/MS spectra were also collected from a corresponding set 
of library authentic standards.

MS/MS spectra were extracted using an automated Python script 
by first extracting MS/MS spectra for individual m/z-RT-matched 
metabolites using pymzML46, and then searching individual extracted 
spectra against the MoNA spectrum database. The search results 
were restricted to spectra generated using (1) LC–MS instruments 
and (2) ESI+ ionization mode (for C18-positive and HILIC-positive 
spectra) or ESI− ionization mode (for C18-negative spectra). Each 
spectral search used the MoNA-default similarity score threshold of 
500, and returned the top-five matches with the highest similarity 
scores computed by the built-in MoNA algorithm. Among these top 
matches, the highest similarity score with the correct metabolite 
name was recorded (Supplementary Table 2). Because MoNA search 
results contained data from various LC–MS instrument platforms 
such as qTOF, Orbitrap and Triple-Quadrupole, in some cases there 
are data collected from multiple MS platforms or multiple collision 
energies, we would opt for the qTOF and a similar collision energy to 
our search spectra. Each MS/MS spectral comparison corresponding 
to the recorded score was also manually inspected. For individual 
metabolites repeatedly detected in the same sample type (for exam-
ple, bacterial supernatant or faeces) in more than one experiment, 
an averaged similarity score among MS/MS spectra for the same 
metabolite was calculated and recorded in the summary table (Sup-
plementary Table 2). Collectively, all similarity scores between our 
MS/MS spectra and MoNA spectra for the same set of metabolites 
have a median score of 992 (library standards, s.d. = 36.78) and 923 
(biological samples, s.d. = 114) relative to a perfect score of 1,000, 
indicating good agreement between our data and what has previ-
ously been reported.



Data analysis
MS-DIAL analysis. The MS-DIAL software45 (v.3.83) was used for 
analysing all in vitro and in vivo data on a per-experimental run and 
per-analytical method basis. Quality-control samples from each ex-
perimental run were used for peak alignment. Chemical assignment 
of molecular features in samples was performed by comparing the 
recorded RT and m/z information to our reference library constructed 
from authentic standards. Tolerance windows were set to 0.1 min RT and 
0.01 Da m/z for the C18 methods and 0.2 min RT and 0.01 Da m/z for the 
HILIC method. When a large RT shift was observed in the internal stand-
ards (for example, after instrument repair), a library RT correction was 
done before MS-DIAL analysis, through a polynomial transformation 
of the library based on inter-instrumental RT shifts of 10–20 robustly 
detected metabolites (for example, internal standards). The minimal 
peak count (height) filter was set to 3,000 for all experiments except for 
select experiments in which the MS exhibited reduced sensitivity. The 
MS-DIAL analysis generated a list of m/z, RT and ion counts (area under 
the curve) for high-confidence annotations (matched to the reference 
library) as well as unknown molecular features. On the basis of the 
list of annotations for each experiment, each set of aligned peaks was 
manually checked using the MS-DIAL graphical user interface. Select 
metabolite features were removed from this list when: (1) two adjacent 
but distinct peaks were concurrently assigned to a single molecular 
feature; (2) odd curvature/shape of the peak led to the integration of 
several ‘peaks’ from separate sections of the same peak; or (3) features 
were detected only in the blank controls. Annotated peaks that passed 
this inspection were included in the final output file.

Custom bioinformatics. After MS-DIAL analysis, data were analysed 
with a set of custom bioinformatics pipelines. In brief, these pipelines 
implemented a set of filtration and normalization procedures with 
the goal of reducing technical variability and controlling for batch 
effects. The pipelines, including all code for the in vitro and in vivo 
sample data cleaning and standardization, are described in the Sup-
plementary Methods.

Distance calculations and classifiers. Comparisons between metabo-
lomic and phylogenetic distances (Fig. 2a and Extended Data Fig. 7) 
and metabolite-based classification (Fig. 3a and Extended Data Fig. 8a) 
were done with custom Python code described in the Supplementary 
Methods. For all these analyses, the metabolomic distance matrix used 
Euclidean distance generated from log2-transformed, medium-blank, 
delta and variance-filtered fold change data. Only the 158 strains that 
grew in mega medium were used for these analyses to prevent confla-
tion of metabolic and starting medium differences.

Bacterial culture
The bacterial strains and associated metadata (such as taxonomy, origi-
nal repository and 16S sequence) used in this work are reported in Sup-
plementary Table 6. All bacterial inoculation and growth occurred in a 
Coy Laboratories anaerobic chamber kept at an atmosphere of approxi-
mately 80%:15%:5% (N2:CO2:H2). All incubations occurred at 37 °C, all 
bacterial stocks were stored at −80 °C, and all ODs were recorded at 
600 nm using a BioTek Epoch 2 plate reader.

Stock preparation. Bacterial strains were acquired from various 
culture collections including ATCC, DSMZ, NCTC and BEI. Source 
cultures were plated on a rich medium, single colonies were picked, 
cultured in rich medium and stored as 1-ml frozen cultures (25:25:50 
v/v glycerol:H2O:culture) in ThermoFisher Matrix Tubes. The solid and 
liquid media used for stock generation are described in Supplementary 
Table 6 (worksheet ‘media’). Source cultures that exhibited multiple 
morphologies on agar plates were purified and morphologies separated 
and retained if the 16S sequence matched the expected 16S sequence. 

For all cultures, the purity of the final cultures was checked by 16S rRNA 
sequencing (Supplementary Methods).

Bacterial media. All media used in this study are included in Sup-
plementary Table 6 (worksheet ‘media’). Note that in some cases we 
grew and recorded metabolites from taxa in multiple media. For the 
media used for particular supernatant samples and metabolomics, see  
Supplementary Table 7 (worksheet ‘aggregated_md’).

Mega medium was prepared according to the protocol described 
in the Supplementary Methods. The recipe is slightly adapted from a 
previous publication47. In our usage of mega medium, each batch was 
autoclaved, moved into the anaerobic chamber and allowed to become 
anaerobic for at least 24 h before use. For taxa that would not grow in 
mega medium, a different medium was selected based on the literature. 
In each case, we referenced an ATCC, DSMZ or media manufacturer (for 
example, Hardy Diagnostics) recipe as outlined in Supplementary Table 6  
(worksheet ‘media’). In all cases, these media were prepared for use 
similarly to mega medium. Specifically, the adjustment of the pH was 
done before autoclaving, filter-sterilized vitamins and sterile blood 
were added after autoclaving, and media were moved immediately 
from the autoclave to the anaerobic chamber and allowed to become 
fully anaerobic for at least 24 h before use.

For identification of nitrogen utilization in Bacteroidetes, Salyer’s 
minimal medium (SMM) was prepared (Supplementary Methods), 
the preparation of which was slightly modified from published proto-
cols26,48. In brief, SMM base was prepared (SMM without haematin, nitro-
gen source or reduced sulfur source) and allowed to become anaerobic 
in foil-covered bottles. SMM was prepared without nitrogen source to 
avoid spontaneous glutamine degradation49. Immediately before use, 
the SMM base was amended with filter-sterilized solutions of haematin 
(final concentration 0.5 mg per 100 ml), nitrogen source (glutamine, 
asparagine, glutamic acid or ammonium sulfate, final concentration 
of 10 mM) and reduced sulfur source (cysteine or sodium sulfide, final 
concentration of 4.12 mM). Taxa were plated (mega medium or brain 
heart infusion with blood) and a single colony picked into freshly pre-
pared SMM. Preculture for 24 h was followed by subculture in freshly 
prepared SMM for 12–36 h. OD readings were taken as described above.

In vitro growth for metabolomics. Bacterial supernatants included in 
the in vitro data were generated according to the following protocol. 
Cultures were inoculated in anaerobic medium (around 4 μl:1,600 μl) 
in triplicate in 2-ml 96-well blocks and incubated for 24–72 h depending 
on the taxa selected. Therefore, a single biological replicate from the 
bacterial culture experiments represents an individual well or tube of 
bacterial culture growth from an independent 4-μl aliquot from a frozen 
glycerol culture stock. These pre-cultures were subcultured into mega 
medium (around 4 μl:1,600 μl) and similarly incubated for 12–60 h. 
Then, 200 μl of subculture was incubated in a plate reader so that OD 
readings could be taken to monitor growth phase. The remaining cell 
cultures were collectd when the OD readings showed the late log or 
early stationary phase. The collected culture was immediately removed 
from the anaerobic chamber, centrifuged to pellet the cells (5,000g, 
10 min) and the cell-free supernatant was either frozen at −80 °C or 
immediately extracted as described in the Supplementary Methods.

For details of the purity analysis, sequencing protocol and phyloge-
netic tree reconstruction, see Supplementary Methods.

Mouse experiments
Mouse experiments were performed with gnotobiotic Swiss–Webster 
germ-free mice (male, 10–14 weeks of age, n = 3–8 per group for all 
experiments) or Swiss-Webster excluded flora mice (‘conventional 
mice’; male, 10–14 weeks of age, n = 3 per group) that were maintained in 
aseptic isolators and originally obtained from Taconic Bioscience. Mice 
were maintained on a 12-h light/dark cycle at 69 °F (20.6 °C) in ambient 
humidity, fed ad libitu, and maintained in flexible film gnotobiotic 
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isolators for the duration of all experiments (Class Biologically Clean). 
For mono-colonization experiments, mice were colonized with  
B. thetaiotaomicron VPI 5482, Clostridium sporogenes ATCC 15579,  
C. portucalensis BEI HM-34 or Anaerostipes sp. BEI HM-220 by oral gav-
age (200 μl, around 1 × 107 colony-forming units (CFU)) and were main-
tained on a standard chow (LabDiet 5K67). For the defined-community 
experiment, mice with a six-member community were colonized with 
a 200-μl mixture consisting of equal volumes from saturated cultures 
of B. thetaiotaomicron VPI 5482 (8.7 × 109 CFU), C. sporogenes ATCC 
15579 (1.4 × 108 CFU), Edwardsiella tarda ATCC 23685 (3.6 × 1010 CFU), 
Collinsella aerofaciens ATCC 25986 (1.4 × 109), Eubacterium rectale 
ATCC 33656 (6.9 × 106 CFU) and Parabacteroides distasonis ATCC 8503 
(1.5 × 109 CFU). Mice with a five-member community were colonized 
with all cultures mixed at the same volumes as described above except 
for C. sporogenes ATCC 15579, which was not included. Successful 
colonization and stable community members were determined by 
16S amplicon sequencing of the V4 (515F, 806R) region of microbial 
populations that were present in the faeces and caecal contents of 
individual mice.

For all experiments, mice were euthanized by CO2 asphyxiation 
9  days (mono-colonization with C. portucalensis BEI HM-34 or 
Anaerostipes sp. BEI HM-220) or 4 weeks (all other experiments) 
after colonization, and four sample types (serum, urine, faeces and 
caecal contents) were collected from each mouse. A single biologi-
cal replicate in the mouse experiments represents a specific sam-
ple type (for example, serum) collected from an individual mouse 
(that is, each biological replicate is from a different mouse). Before 
euthanization, urine and faeces were collected. Whole blood was 
collected by cardiac puncture and serum was obtained using micro-
container serum separator tubes from Becton Dickinson following 
the manufacturer’s instructions. The intact caecum was collected and 
snap-frozen in liquid nitrogen. A single caecal sample was obtained 
for mono-colonization and conventional experiments, and three 
samples at three different sections of the caecum were obtained for 
the defined-community experiment. All mouse experiments were 
conducted under a protocol approved by the Stanford University 
Institutional Animal Care and Use Committee.

Comparative genomics
Genome annotation and database. Bacterial isolates from the cul-
ture collection were manually linked up to their respective NCBI Bio-
Project ID numbers. The Rentrez package (https://cran.r-project.org/
package=rentrez) was used to link BioProject ID numbers with existing 
GenBank or RefSeq assemblies or with reads from the Sequence Read 
Archive (SRA) for isolates that were previously sequenced but not as-
sembled. Isolates lacking assembly accession numbers (Supplementary 
Table 6 (worksheet ‘full_taxonomy’)) were assembled using previously 
described methods50. In brief, reads were trimmed using Trimmomatic51 
and assembled using SPAdes v.3.9.152 using the following parameters: 
k = 21,33,55 --careful --cov-cutoff auto. Contigs smaller than 1,500 bp 
were removed, and assemblies were gene-called and annotated using 
prokka v.1.14.553. MultiGeneBlast54 (v.1.1.13) was used to build a data-
base containing all of the assembled and downloaded genomes listed 
in Supplementary Table 6.

Gene and gene cluster searches. The arc gene cluster from Lactococ-
cus lactis and the spe gene cluster from E. coli were used as the query 
to search publicly available, assembled genomes of strains within our 
collection. Comparative genomics analyses were conducted using the 
‘Architecture Search’ feature of the MultiGeneBlast software (v.1.1.13) 
with default parameters with one modification, which set the ‘maxi-
mum distance between genes in locus (kb)’ to 40 kb. For identification 
of Asparaginase-containing genomes, the custom BLAST database 
described above was queried for homologues of E. coli genes (ansA, 
ansB and aspA) that encode asparagine-consuming enzymes.

Metabolomics Data Explorer
The Metabolomics Data Explorer (https://sonnenburglab.github.io/
Metabolomics_Data_Explorer) was constructed in JavaScript and was 
used to generate scatter plots of our in vitro and in vivo fold-change 
data based on user input. In vitro and in vivo metadata and fold-change 
data files were used as data input and were parsed using the Papa Parse 
library to extract the data and populate the dropdown menus on each 
page. The dropdown menus enable users to pick the desired taxonomy, 
metabolite and medium (in vitro), and colonization, metabolite and 
sample type (in vivo). The Nivo library was used to render interactive 
scatter plots of the fold change data relative to medium blank con-
trols (in vitro) or to germ-free controls (in vivo). Each dot represents 
an independent biological replicate, and all metabolites (uniquely 
identified or co-eluting) are shown. In rare cases, the same metabolite 
may appear twice in the scatter plot if it is uniquely identified in one 
analytical method while co-eluting with other metabolites in another 
analytical method. The scatter plot presents all biological replicates 
from all independent experiments available in the dataset and pro-
vides label details when hovering over the data points to enable easy 
identification.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All raw data from metabolomics are publicly available from the Metabo-
lomics Workbench under study number ST001683 for in vivo data and 
study number ST001688 for in vitro data. MS/MS libraries generated 
using the qTOF and QE instruments are publicly accessible in the MoNA 
spectrum database (https://mona.fiehnlab.ucdavis.edu) and can be 
queried using the keywords ‘Sonnenburg Lab MS2 Library’.

Code availability
Custom Python code was written to enable the construction of the 
MS/MS libraries, the processing and visualization of the in vitro and 
in vivo LC–MS data, the optical density and growth curve data, the 
bioinformatics analysis of 16S and whole genomes, and the analysis 
of the metabolomic data. Full code for each of these steps is available 
at https://doi.org/10.5281/zenodo.4890994. The JavaScript code sup-
porting the interactive, web-based Metabolomics Data Explorer is 
available at https://doi.org/10.5281/zenodo.4890999.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Summary statistics for the MS reference library 
metabolites, their detection and validation. a, Chemical similarity network 
of the compound library. Network nodes, library compounds coloured by their 
superclasses. Node size, monoisotopic mass. Edges between nodes, 
substructure similarity values above a z-score threshold of 1 s.d. from the mean. 
b, Scatter plots and histograms of chemical properties of 833 library 
metabolites. c, Venn diagram of library compounds that are detected by each 
of the three methods. d, Venn diagram of compounds (by PubChem CID) 
identified in the reference compound library (Supplementary Table 1), in vitro 
conditions (Supplementary Table 7, ‘count.ps’) and in vivo conditions 
(Supplementary Table 8, ‘istd_corr_ion_count_matrix’). In vitro conditions 

include all medium types, and in vivo conditions include all sample types: 
urine, serum, faeces and caecal contents, and all colonization states.  
e, Scatterplot of all pairwise similarity scores (biological sample versus library) 
of the same compound searched against the MoNA spectrum database. All 
library standards (median similarity score = 992) and 97.3% of the 
corresponding compounds from biological samples (median similarity 
score = 923) had similarity scores of ≥600, and 2.7% of those compounds from 
biological samples scored below 600. Confidence levels were determined 
based on both similarity scores and visual validation of the MS/MS spectra.  
f, Schematic of the data collection and analysis workflow of the metabolomics 
pipeline. Panel created with Biorender.com.
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Extended Data Fig. 2 | Schematic of a custom bioinformatics analysis 
pipeline that generates a metabolite fold-change matrix. The pipeline 
integrates data across multiple experimental runs and minimizes 
intra-replicate, intra-experiment and inter-experiment variability. The four 
steps detailed here are explained in depth in the Supplementary Methods (see 
‘Custom bioinformatics: in vitro pipeline’ section). Step 1, a database recording 
sample metadata (organism, media, growth data, and so on) and MS-DIAL 
output files are integrated into data matrices that are specific to each 
analytical method. Step 2, all data are grouped by replicate (biological sample 
groups (BSGs)) and analysed to remove replicates with low intra-replicate 

correlation. Replicates are then grouped by experiment (EXPs) to assess 
inter-experiment variability. Transformations reducing inter-experiment 
variability are identified and compared. For metabolites that are detected by 
multiple methods, their ion counts are compared on a per-replicate and 
per-experiment basis to identify one or more methods that consistently detect 
these metabolites. Step 3, using an internal standard-based correction, ion 
counts for individual samples are adjusted and transformed into different 
fold-change data matrices. Step 4, data matrices corresponding to each 
method are combined into a single data matrix representing all detected 
metabolites.
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Extended Data Fig. 3 | High-throughput identification and analysis of 
diverse metabolites in complex biological matrices. a, Number of unique 
compounds (by PubChem CID) within distinct chemical superclasses detected 
in the m/z-RT reference library (n = 815, 11 superclasses), in vitro dataset 
(n = 458, 9 superclasses) or in vivo dataset (n = 551, 9 superclasses), excluding 
internal standards. Nine of the eleven chemical superclasses in the reference 
library are represented in the metabolites detected in vitro and in vivo. The two 
remaining library superclasses (organosulfur and organometallic compounds) 
not represented in the experimental data contain one compound each.  
b, Diverse classes of metabolites identified in the conventional mouse caecum. 
Representative metabolites shown are significantly elevated (≥4-fold, 
corrected P < 0.05) in conventional mice versus germ-free controls in one 
experiment with n = 3 (conventional) and n = 4 (germ-free) mice. P values were 
calculated using two-tailed Student’s t-tests with Benjamini–Hochberg 
correction for multiple comparisons. c, Examples of precursors, intermediates 
and products from the tryptophan fermentation pathway that were identified 
by our methods both in vitro (C. sporogenes culture supernatant) and in vivo  
(C. sporogenes mono-colonization caecal contents). Extracted ion 
chromatogram peaks representing relative ion counts for each metabolite are 
shown. d, e, Histograms of changes in RT (d) and total ion count (e) for 132 
spike-in metabolites in five complex biological matrices using three analytical 
methods. All spiked-in metabolites show minimal change in RT, falling within a 
conservative ±0.1-min search window from their RTs as determined in the 

library control condition (d). The majority of spiked-in metabolites (for 
example, 97% in faeces) exhibit less than fourfold change in ion counts relative 
to those detected in the library control condition (e). Representative examples 
of RT shifts (d) and changes in total ion counts (e) in individual metabolites in 
the mouse faecal matrix are shown. Data are mean ± s.e.m. of one experiment 
with n = 3 biological replicates. f, Histograms of linear ranges of 377 reference 
library metabolites measured in serial dilutions. A representative linear range 
of 5-hydroxyindole is shown. g, Violin plots (median, quartiles) of differences in 
RTs measured by three analytical methods between distinct MS instruments: 
the qTOF 6454, with which the library was built, was compared with a second 
instrument: a qTOF 6530 for a shared panel of 219 reference library metabolites 
(top) or a Orbitrap QE for a shared panel of 773 reference library metabolites 
(bottom). Mean RT differences (in min) between two instruments by each 
method (C18-positive, C18-negative, HILIC-positive, respectively) were as 
follows: qTOF versus qTOF, pre-correction: 0.238, 0.044, −0.110; post-
correction: −0.023, −0.020, 0.015; qTOF versus QE, pre-correction: 0.151, 
0.027, 0.196; post-correction: −0.040, −0.021, 0.026). Per method, RT 
correction was performed by polynomial transformation of the library based 
on inter-instrumental RT shifts of 10–20 robustly detected metabolites. Per 
method, using the corrected library with a RT tolerance window of 0.2 min, 
around 99% of the 219 metabolites tested on the second qTOF and about 94% of 
the 773 metabolites tested on the QE were correctly identified.
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Extended Data Fig. 4 | Conserved and unique metabolomic signatures 
across bacterial taxa. a, Schematic of our high-throughput bacterial culture 
and sample collection workflow. Panel created with Biorender.com. b, Intra-
replicate Pearson correlation coefficients (triplicates and greater) stratified by 
fourteen independent bacterial culture experiments and three analytical 
methods. For each experiment, Pearson correlation r values were calculated 
for all supernatant and medium sample replicate groups: n = 346 (C18-positive), 
n = 344 (C18-negative) and n = 344 (HILIC-positive). Total ion count data were 
corrected by internal standards and log-transformed, standardized and scaled, 
before computing Pearson correlation values. Box, median, 25th and 75th 
percentiles; whiskers, Tukey’s method. c, Left, number of medium-specific or 
common metabolites detected in the same bacterial strain grown in two 
different media (29 strains cultured in two or more of the 12 different media). 
Each dot represents the total number of metabolites from a single comparison 
between two media in which a strain has been grown: n = 58 (co-detected in two 

media), n = 116 (detected in one of the two media), n = 33 (detected in the mega 
medium) and n = 16 (detected in polyamine-free medium). Box, median, 25th 
and 75th percentiles; whiskers, minimum and maximum. Right, agmatine 
production levels by B. eggerthii. Data are mean ± s.e.m. from 2–3 independent 
experiments, each with n = 3 biological replicates. P values, two-tailed t-test 
with Benjamini–Hochberg correction for multiple comparisons. d, Heat map of 
metabolomic profiles of 158 bacterial strains grown in mega medium, 
clustered by 16S phylogenetic distance. Individual metabolites are 
hierarchically clustered (Ward’s method) using Euclidean distance between the 
fold-change (log2-transformed) values across all taxonomies. Metabolites 
shown are detected in at least 50% of the 158 taxonomies to enable Ward 
clustering. e, f, Production or consumption patterns of tyramine and 
pantothenic acid across 158 strains grown in mega medium. Data are 
mean ± s.e.m. from 1–3 independent experiments (identified by dot colour), 
each with n ≥ 3 biological replicates.
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Extended Data Fig. 5 | Metabolic profile variation among related bacteria. 
a, Pairwise metabolomic profile comparisons between two closely related 
strains grown in mega medium: C. sporogenes ATCC 15579 and C. cadaveris  
HM-1039 (subpanel 1), and among four strains of Bacteroides fragilis (subpanels 
2–7): HM-710, HM-711, HM-714 and HM-20. Each dot represents an averaged 
fold-change value (log2-transformed) from 1–3 independent experiments, each 
with n = 3 biological replicates. Pearson correlation r values of pairwise 
metabolomic profile comparisons, performed on standardized and scaled 
data: ATCC 15579 versus HM-1039 (r = 0.063), HM-711 versus HM-710 (r = 0.859), 

HM-714 versus HM-710 (r = 0.866), HM-714 versus HM-711 (r = 0.880), HM-20 
versus HM-710 (r = 0.829), HM-20 versus HM-711 (r = 0.845) and HM-20 versus 
HM-714 (r = 0.807). b, Metabolic similarities and variations among closely 
related species of C. sporogenes and C. cadaveris, and among different strains 
of the same species of B. fragilis grown in mega medium. Taxonomies shown 
are clustered by 16S phylogenetic distance, and are coloured according to the 
distinct phyla. Data are mean ± s.e.m. from 1–3 independent experiments, each 
with n = 3 biological replicates.
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Extended Data Fig. 6 | Relationships between phylogeny, taxonomy and 
metabolome. a, Metabolomic profiles of 158 bacterial strains grown in mega 
medium. Individual taxonomies are clustered by metabolomic profile 
distances (fold change, log2-transformed) across all metabolites. Individual 
metabolites are hierarchically clustered (Ward’s method) using Euclidean 
distance between the fold-change (log2-transformed) values across all 
taxonomies. Metabolites shown are detected in at least 50% of the 158 
taxonomies to enable Ward clustering. b, Metabolic similarities between two 
phylogenetically distant species grown in mega medium. Taxonomies are 
clustered by metabolomic profile distances (fold change, log2-transformed) 

across all metabolites. Data are mean ± s.e.m. of one experiment with n = 3 
biological replicates. c, Scatter plot of pairwise metabolomic profile 
comparison between two phylogenetically distant species. Each dot 
represents an averaged fold-change value (log2-transformed) of one 
experiment with n = 3 biological replicates. Pearson correlation of pairwise 
metabolomic profile comparison between these two species, performed on 
standardized and scaled fold-change data, r = 0.7090. d, Venn diagram of 
unique and overlapping compounds (by PubChem CID) identified in the 
culture supernatant of 158 mega-medium grown strains and caecal contents of 
conventional mice.
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Extended Data Fig. 7 | Multiple data transformations identify nonlinear 
relationship between phylogenetic and metabolomic distance. a, Heat map 
showing the comparison of phylogenetic and metabolomic tree topologies. 
Cells record the number of tips for which the neighbourhoods share more 
overlap than expected (P < 0.05; one-sided permutation test). Data are 
stratified by fractional overlap of neighbourhoods and permutation 
probability (see Supplementary Methods, ‘Distance comparisons’).  
b, Histogram of chemical similarity scores (based on Tanimoto 2D structures) 
between each unique pair of compounds (by PubChem CID) detected in the 
in vitro dataset. For this pairwise comparison, 359 non-co-eluting compounds 
were used. c, Metabolomic distance tree with each metabolite weighted based 
on their chemical similarity (left) or unweighted control metabolomic distance 
tree (right). The weighted and unweighted matrices were calculated using 
uniquely detected, non-co-eluting compounds in the in vitro dataset, for which 
a unique PubChem CID identifier can be assigned to each compound. Two-
sided Mantel test for comparison between the weighted and unweighted 
distance matrices: r2 = 0.863, P = 0.001. d, Left, correlation of phylogenetic and 
metabolomic distance across pairs of strains coloured by lowest shared 
taxonomic rank with a LOESS fit shown. Dashed vertical line occurs at x = 0.11 as 
referenced in the text. Right, Metabolomic distance between pairs of strains 

binned by the lowest shared taxonomic rank. Species (n = 111), genus (n = 1,386), 
family (n = 159), order (n = 1,222), class (n = 34), phylum (n = 1,442) and kingdom 
(n = 8,442). Box, median, 25th and 75th percentiles; whiskers, Tukey’s method. 
e–i, Internal-standard-corrected fold-change data (e–g) and internal-standard-
corrected total ion count data (h, i) were log-transformed and used to calculate 
pairwise metabolomic distances between microbial taxa. These distances were 
compared to the corresponding pairwise phylogenetic distances generated 
from a tree built with the V4 region of 16S (left) or the full-length 16S gene 
(right). Data are plotted with a LOESS fit. Set 1, microorganisms grown in at 
least one experiment simultaneously. Set 2, microorganisms grown in the same 
experiment only. j, Phylogenetic tree constructed using the full 16S sequences 
of a subset of the strains grown in mega medium. Only strains with available full 
16S sequences are shown (Supplementary Table 6). k, Left, schematic of the 
pathway that synthesizes citrulline and ornithine, or synthesizes agmatine 
and/or putrescine. Right, the top six matches identified by the comparative 
genomics tool MultiGeneBlast within a 40-kb search window, when searched 
against a genomic database of our strain collection with sequenced genomes. 
Horizontal dashed lines between genes represent multiple other genes present 
within the search window.



Extended Data Fig. 8 | See next page for caption.



Article
Extended Data Fig. 8 | Asparagine and glutamine can be used as sole 
nitrogen sources by most tested Bacteroidetes. a, Top, an example decision 
tree from a forest that can differentiate Bacteroidetes versus bacteria from the 
other four represented phyla with >97% accuracy. For each decision node, 
phylum-level increases and decreases based on metabolite levels are shown 
(relative fold change compared to the bacterial medium controls, log2-
transformed). Actinobacteria (n = 20), Bacteroidetes (n = 57), Firmicutes 
(n = 83), Fusobacteria (n = 3) and Proteobacteria (n = 10). Dashed line, 
metabolite threshold. Box, median, 25th and 75th percentiles; whiskers: 
Tukey’s method. Bottom, the 10 most important features differentiating the 
five tested phyla. Data are shown as median metabolite log2-fold-change values 
for each phylum; metabolites and phyla are ordered by Ward linkage distance. 
b, Representative growth curves from two independent experiments, each 
with n = 3 biological replicates for a subset of Bacteroides spp. using modified 
SMM with the indicated nitrogen source. Legend colours for the sole nitrogen 
source are the same in b–d. c, Representative growth curves of one experiment 
with n = 5 biological replicates for 60 Bacteroidetes using modified SMM with 
the indicated nitrogen sources. d, Growth curves of wild-type and mutant  
B. thetaiotaomicron (Bt) grown in defined minimal media with either cysteine 
(top) (one experiment, n = 3 biological replicates) or sodium sulfide (Na2S, 
bottom) as sole reduced sulfur sources (one experiment, n = 3 biological 
replicates). e, Amino acid production and consumption levels in gnotobiotic 
mice mono-colonized with B. thetaiotaomicron (one experiment, n = 5 mice). 
Box, median, 25th and 75th percentiles; whiskers, Tukey’s method. Numeric 

labels in b and c correspond to the following: 1, B. acidifaciens DSMZ 15896; 2,  
B. caccae ATCC 43185; 3, B. caccae BEI HM-728; 4, B. cellulosilyticus BEI HM-726; 
5, B. cellulosilyticus DSMZ 14838; 6, B. coprophilus DSMZ 18228; 7, B. dorei BEI 
HM-29; 8, B. dorei BEI HM-717; 9, B. dorei BEI HM-718; 10, B. dorei BEI HM-719; 11, 
B. dorei DSMZ 17855; 12, B. eggerthii ATCC 27754; 13, B. eggerthii DSMZ 20697; 
14, B. finegoldii BEI HM-727; 15, B. finegoldii DSMZ 17565; 16, B. fragilis BEI HM-
20; 17, B. fragilis BEI HM-710; 18, B. fragilis BEI HM-711; 19, B. fragilis BEI HM-714; 
20, B. fragilis NCTC 9343; 21, B. intestinalis DSMZ 17393; 22, B. ovatus ATCC 
8483; 23, B. ovatus BEI HM-222; 24, B. pectinophilus ATCC 43243; 25, B. plebeius 
DSMZ 17135; 26, B. salyersiae BEI HM-725; 27, Bacteroides sp. BEI HM-18; 28, 
Bacteroides sp. BEI HM-189; 29, Bacteroides sp. BEI HM-19; 30, Bacteroides sp. 
BEI HM-22; 31, Bacteroides sp. BEI HM-23; 32, Bacteroides sp. BEI HM-258; 33, 
Bacteroides sp. BEI HM-27; 34, Bacteroides sp. BEI HM-28; 35, Bacteroides sp. BEI 
HM-58; 36, B. stercoris ATCC 43183; 37, B. stercoris BEI HM-1036; 38,  
B. thetaiotaomicron 3730; 39, B. thetaiotaomicron 3731; 40, B. thetaiotaomicron 
633; 41, B. thetaiotaomicron 7330; 42, B. thetaiotaomicron 7853; 43,  
B. thetaiotaomicron 8702; 44, B. thetaiotaomicron 8713; 45, B. thetaiotaomicron 
8736; 46, B. thetaiotaomicron 940; 47, B. thetaiotaomicron VPI 5482; 48,  
B. thetaiotaomicron WH302; 49, B. thetaiotaomicron WH305; 50, B. uniformis 
ATCC 8492; 51, B. vulgatus ATCC 8482; 52, B. vulgatus BEI HM-720; 53,  
B. xylanisolvens DSMZ 18836; 54, P. distasonis ATCC 8503; 55, P. distasonis BEI 
HM-169; 56, P. johnsonii BEI HM-731; 57, P. johnsonii DSMZ 18315; 58, P. merdae 
ATCC 43184; 59, P. merdae BEI HM-729; 60, P. merdae BEI HM-730.
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Extended Data Fig. 9 | Metabolic contribution by individual gut 
microorganisms in a multi-species community. a, α-Ketoglutaric acid levels 
in faeces of mice mono-colonized with Anaerostipes sp. BEI HM-220. Data are 
mean ± s.e.m. of two independent experiments, each with n = 4 mice (germ-
free) or n = 5 or 7 mice (Anaerostipes mono-colonized). b, Left, MDMs were 
associated with specific bacterial phyla leveraging both in vivo and in vitro 
metabolomic data. Right, number of bacterial strains grown in mega medium 
by phylum that produce MDMs identified in the caecal contents of mice 
colonized with B. thetaiotaomicron (Bt, n = 5) or C. sporogenes (Cs, n = 3), or with 
a six-member community (n = 3). Numbers of strains that produce at least one 
of these metabolites in vitro by phylum: Bacteroidetes, n = 52; Firmicutes, 
n = 60; Proteobacteria, n = 8; Actinobacteria, n = 16; and Fusobacteria, n = 3. 
Each metabolite shown was significantly produced both in vitro and in vivo 
(≥4-fold, corrected P < 0.05). Uniquely detected (non-co-eluting) metabolites 
are shown (Supplementary Table 9). c, Spearman correlation between 
metabolomic profiles (standardized and scaled, log2-transformed, fold-change 
data) of individual B. thetaiotaomicron- or C. sporogenes-mono-colonizesd host 
biofluids (caecal contents, faeces, serum or urine) and individual bacterial 
culture (158 strains grown in mega medium). Coloured dots, Spearman’s  
ρ values calculated by comparing metabolomic profiles of individual bacterial 

culture versus individual biofluid of either B. thetaiotaomicron- or  
C. sporogenes-mono-colonized mice. Black dots, Spearman’s ρ calculated using 
metabolomic profiles of B. thetaiotaomicron or C. sporogenes, the same strains 
used for mono-colonization in mice. d, Venn diagram of overlapping 
metabolites that are significantly produced (≥4-fold, corrected P < 0.05) in 
culture and in the caecum of colonized mice. e, Principal component analysis 
separates metabolomic profiles of identified metabolites by sample type in 
each colonization state. P values on metabolomic profile comparisons 
between different sample types of the same colonization state were 
determined using PERMANOVA: six-member community (P = 0.073) and all 
other colonization states (P = 0.001). f, Principal component analysis separates 
metabolomic profiles of identified metabolites by colonization states. P values 
on metabolomic profile comparisons between different colonization states of 
the same sample type were determined using PERMANOVA: P = 0.001 for all 
four sample types. g, h, Example chemical structures of significantly produced 
metabolites (≥4-fold, corrected P < 0.05) in serum (g) or urine (h) by each 
colonization state corresponding to Fig. 4b. a, b, d, g, h, P values were 
determined using two-tailed Student’s t-tests with Benjamini–Hochberg 
correction for multiple comparisons.
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Extended Data Fig. 10 | Metabolic contribution of multi-species 
communities in gnotobiotic mice. a, Proposed host–microbial co-
metabolism pathways that could lead to the synthesis of specific host–
microbial co-metabolites in the urine and serum of mice colonized with the six-
member community. b, c, Metabolite levels in urine (b) and caecal contents (c) 
of mice colonized with the six-member community (+Cs) or the five-member 
community (−Cs). Metabolites shown represent a panel of significantly 
elevated or reduced metabolites (≥4-fold, corrected P < 0.05) in the six-
member community. Superscript ‘1’ in metabolite names, co-eluting 
metabolites as annotated in the MS reference library (Supplementary Table 1). 
Superscript ‘2’ in metabolite names, co-eluting isomeric metabolites with 

truncated names in the figure (2-hydroxy-3-methylpentanoic acid, 2-hydroxy-
4-methylpentanoic acid; and α-galactose 1-phosphate, α-glucose 1-phosphate, 
glucose-6-phosphate, mannose 6-phosphate). Data are mean ± s.e.m. of one 
experiment with n = 6 (urine, six-member community), n = 7 (urine, five-
member community) and n = 3 (caecal, both six-member and five-member 
communities). b, c, P values were calculated using two-tailed Student’s t-tests 
with Benjamini–Hochberg correction for multiple comparisons. *P < 0.05, 
**P < 0.01, ***P < 0.001. b, Venn diagram (right) of significantly elevated and 
reduced metabolites in individual host biofluids (caecal contents, serum and 
urine) using the same threshold in b (left).
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection Metabolomics data were collected on Agilent QTOF instruments (models 6530 and 6545) using Agilent's LC/MS Data Acquisition software 
(version 10.1).  Metabolomics data were also collected on the ThermoFisher Q Exactive HF using Thermo Scientific Xcalibur Data Acquisition 
software (version 4.3). Optical density data were collected using the BioTek Gen5 software V3.03.

Data analysis Data were analyzed using Agilent Qualitative Analysis (version B.07.00), the MS-DIAL software (version 3.83), Python-based custom code, and 
Prism version 8.0. The bioinformatics pipeline for LC/MS MS/MS library construction, in vitro data processing, and in vivo data processing 
were done with custom Python-based code available at the Sonnenburg lab Github site (https://github.com/SonnenburgLab/
Han_and_Van_Treuren_et_al_2021). The JavaScript code for the interactive, web-based software (Metabolomics Data Explorer) is also 
available at the Sonnenburg lab Github site (https://github.com/SonnenburgLab/Metabolomics_Data_Explorer). The dependencies for the 
Python based code can be found in this .yml file (https://github.com/SonnenburgLab/Han_and_Van_Treuren_et_al_2021/blob/master/
environment.yml) and in the specific scripts found at the Sonnenburg lab Github. Bioinformatics processing of 16S gene sequences was done 
with QIIME1 (legacy release available via Conda install: http://qiime.org/install/install.html). MultiGeneBlast version 1.1.13, SPAdes version 
3.9.1, and prokka version 1.14.5 were used for comparative genomics in search of polyamine biosynthetic genes. Custom Python code was 
written to enable the construction of the MS/MS spectra library, the processing and visualization of the in vitro and in vivo LC/MS data, the 
optical density and growth curve data, the bioinformatic analysis of 16S and whole genomes, and the analysis of the metabolomics data. Full 
code for each of these steps is provided at the Sonnenburg lab GitHub site (https://github.com/SonnenburgLab/
Han_and_Van_Treuren_et_al_2021).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All metabolomics raw data are publicly accessible on the Metabolomics Workbench under study number ST001683 for all in vivo data and study number ST001688 
for in vitro data. The MS/MS spectra library constructed on the qTOF and QE instruments are publicly accessible on the MONA spectra database. 
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Sample size Sample sizes for the microbial culture (in vitro data) were originally chosen as n = 5 (5 biological replicates). Initial work identified that 
biological triplicates were sufficient to detect outlier samples (e.g. machine injection failures) and these were used subsequently. See 
Extended Data Fig. 2 and 4b, and the in vitro bioinformatics pipeline (https://github.com/SonnenburgLab/
Han_and_Van_Treuren_et_al_2021/tree/master/in_vitro_pipeline_and_analysis) for a full description of these outlier detection methods and 
results. When a highly variable sample was identified, it was discarded and the microbe was regrown and the new triplicates compared with 
the old triplicates. In some cases, microbes were grown repeatedly to verify inter-experimental variability. All metadata associated with 
sample sizes and inter-experiment variability repeats can be found in Supplementary Table 5. 
 
Sample sizes for gnotobiotic animals (in vivo data) were determined based on animal housing and experimental design matching constraints. 
In particular, n = 5 was chosen for mouse groups because our mouse facility could supply this number of age, sex, and litter-mate matched 
mice for most experiments. 

Data exclusions Metabolomics samples went through a rigorous, multi-step process for quality control. Samples were eliminated if internal standards were 
detected significantly below expected values, if the correlation with biological replicates was two standard deviations below the mean, and if 
a random forest classifier identified a sample as having been produced by a bacterium found in a different phylum than the actual producing 
microbe. These steps, and the samples that were excluded because of them, are given completely in the in vitro bioinformatics pipeline 
(https://github.com/SonnenburgLab/Han_and_Van_Treuren_et_al_2021/tree/master/in_vitro_pipeline_and_analysis). The criteria for the 
exclusion of samples were a mixture of pre-established (internal standard filter, correlation coefficient filter) and post-hoc (random forest 
analysis). 
 
Metabolite features detected on the mass spectrometry instrument from all experiments also underwent a quality control filtering process in 
the MS-DIAL software (Extended Data Fig. 1f). Based on the list of feature (or peak) identified for each experiment, each set of aligned peaks 
was manually checked in MS-DIAL. Select metabolite features were removed from this list based on pre-established criteria for 
misidentification, poor peak shapes, or background contamination peaks. Annotated features that passed this inspection were reported in the 
final output file. See details in Materials and Methods.

Replication Growth curves (Fig. 3) were repeated in at least three independent experiments. In vitro experiments for metabolomic profiling were 
repeated with at least 3 biological replicates (3 independent cultures) in one or more independent experiments. In vivo mouse experiments 
for metabolomic profiling were repeated with at least three mice per condition in one or more independent experiments. Please see details 
on the number of biological replicates and independent experimental repeats described in relevant figure legends.

Randomization For in vitro studies, randomization of sample injection order was not conducted. Internal standards were monitored for injection-order, 
sample storage time, and carry-over effects. No significant effects were found. The injection order of all samples reported in this study can be 
found in Supplementary Table 5. The microbes selected for each growth and LC/MS measurement were selected pseudo-randomly; there was 
an imbalance of phylogenetic covariates (e.g., some experiments had more Bacteroidetes than others) but inter-experiment replication was 
carried out to mitigate any statistical effects. 
 
For mouse experiments (in vivo studies), mice were assigned to treatment groups randomly taking into account age, sex, and litter-mate 
matching.

Blinding Mouse experiments (in vivo studies) were not blinded because no subjective measurement modalities were employed (e.g. no tissue histology 
scoring). All mouse metabolomic samples were prepared in the same way regardless of group and monitored as described in the “Data 
Exclusions” section.



3

nature research  |  reporting sum
m

ary
April 2020

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mouse experiments were performed on gnotobiotic Swiss Webster germ-free mice (males, 10-14 weeks of age, n = 3-8 per group for 
all experiments) or Swiss-Webster Excluded Flora mice  (“conventional mice”, males, 10-14 weeks of age, n = 3 per group) 
maintained in aseptic isolators, and originally obtained from Taconic Bioscience. Mice were maintained on a 12-hour light/dark cycle 
at 69  ̊F in ambient humidity, fed ad libitum, and maintained in flexible film gnotobiotic isolators for the duration of all experiments 
(Class Biologically Clean, Madison WI).

Wild animals No wild animals were used in this study.

Field-collected samples No field-collected samples were used in this study.

Ethics oversight  All animal experiments were performed in accordance with the Stanford Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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