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Gut microorganisms modulate host phenotypes and are associated with numerous
health effects in humans, ranging from host responses to cancer immunotherapy to

metabolic disease and obesity. However, difficulty in accurate and high-throughput
functional analysis of human gut microorganisms has hindered efforts to define
mechanistic connections between individual microbial strains and host phenotypes.
One key way in which the gut microbiome influences host physiology is through the
production of small molecules'3, yet progress in elucidating this chemical interplay
has been hindered by limited tools calibrated to detect the products of anaerobic
biochemistry in the gut. Here we construct amicrobiome-focused, integrated
mass-spectrometry pipeline to accelerate the identification of microbiota-dependent
metabolites in diverse sample types. We report the metabolic profiles of 178 gut
microorganism strains using our library of 833 metabolites. Using this metabolomics
resource, we establish deviations in the relationships between phylogeny and
metabolism, use machine learning to discover a previously undescribed type of
metabolism in Bacteroides, and reveal candidate biochemical pathways using
comparative genomics. Microbiota-dependent metabolites can be detected in
diverse biological fluids from gnotobiotic and conventionally colonized mice and
traced back to the corresponding metabolomic profiles of cultured bacteria.
Collectively, our microbiome-focused metabolomics pipeline and interactive
metabolomics profile explorer are a powerful tool for characterizing microorganisms
and interactions between microorganisms and their host.

The human gut microbiota encodes diverse metabolic pathways. Gut
microorganisms, which express numerous anaerobic pathways that
process diverse diet- and host-derived molecules, produce numerous
previously undescribed compounds withrelevance forhumanhealthand
that have untapped therapeutic potential. Many of these microbial prod-
uctsinthe gut subsequently enter the tissue and circulation of the host,
where additional metabolic steps can add to the chemical diversity'>.
Several recent studies have shown that microbiota-dependent metabo-
lites (MDMs) influence immune function*, metabolism>®, cardiovascular
health’, and cognition and behaviour®.Inmany cases, MDMs exert these
effects on host biology by binding to specific host receptors® and acti-
vating downstream signalling pathways'’. Discovery of how individual
prevalent humangut microorganisms mechanistically contribute to host
phenotypes hasbeenhampered by the difficulty in accurately monitoring
thediversity of molecules produced by gut microorganisms. Toaddress
thisgap, recent studies have leveraged improvementsin high-resolution
mass spectrometry™ as well as growing mass-spectrometry and com-
pound databases® (for example, Mass Bank of North America (MoNA),
Metabolite Link (METLIN®), Human Metabolome Database (HMDB*),

andKyoto Encyclopedia of Genes and Genomes (KEGG®). Nevertheless,
because of fundamental differences between anaerobic metabolismin
the gut versus aerobic biochemistry, as well as the underrepresentation
ofanaerobic microbial productsin existing databases, the full metabolic
capability of the microbiota remains understudied. Here we present a
microbiome-focused, integrated mass-spectrometry pipeline tofacilitate
theidentification of MDMsin diverse sample types, and to associate these
metabolites with microbial strains and genetic pathways.

Microbiome-focused metabolomics

To enable the interrogation of microbiome metabolism, we (1) con-
structed a mass-spectrometry-based reference library to detect
anaerobic biochemistry and an analytical pipeline to integrate large
metabolomics datasets; (2) validated our methods to ensure applica-
bility to the broader scientific community; and (3) enabled interac-
tive, public access to our datasets (https:/sonnenburglab.github.io/
Metabolomics_Data_Explorer) (Fig.1, Methods, Extended DataFigs.1-3
and Supplementary Tables 1-4).
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Gut-microorganism-focused metabolomics pipeline
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Fig.1|Amicrobiome-focused metabolomics pipeline enables the
mechanisticinterrogation of microbiome metabolism. Schematic of our
metabolomics workflow, consisting of mass-spectrometry referencelibrary
construction and validation, producingin vitro and in vivo metabolomic

Next, we leveraged thistool to create areference dataset of metabo-
lomic profiles for individual bacterial strains to enable multiple modes
ofanalysis and discovery. We acquired 178 individual prevalent human
gut microorganisms representing 130 species and spanning 6 phyla
from ATCC, DSMZ and BEI (Supplementary Tables 5, 6). To create the
most comparable dataset of metabolism, we cultured all supported
strains (158 out of 178) in mega medium—a rich, undefined medium
known to support the growth of diverse bacteria—and collected
the culture supernatant between the mid-log and stationary phase
(Extended DataFig.4a, b and Supplementary Methods). The remaining
20 strains were grownin9 additional media as described in Supplemen-
tary Table 6, and 29 strains were grown and analysed across multiple
types of media (Extended Data Fig. 4c and Supplementary Table 7).

To assess large-scale metabolite production and consumption pat-
terns, we hierarchically clustered individual bacterial strains (Extended
DataFig.4d-f and Supplementary Table 7). In some cases, two closely
related species exhibited distinct metabolomic profiles punctuated with
metabolite-level similarities (for example, Clostridium sporogenes and
Clostridium cadaveris) (Extended Data Fig. 5a, b). In other cases, phylo-
genetic proximity is accompanied by similarity in metabolic patterns
(for example, four strains of Bacteroides fragilis, Pearson r > 0.80 for
all pairwise comparisons) (Extended Data Fig. 5a, b). Conversely, hier-
archical clustering of species by metabolomic profile distance reveals
unexpectedly shared metabolic patterns among phylogenetically distant
species (forexample by Atopobium parvulum, phylum Actinobacteria, and
Catenibacteriummitsuokai, phylum Firmicutes) (Extended DataFig. 6a—c).

In addition to the large-scale metabolic patterns, we discovered
unique high producers or consumers of specific metabolites within
our strain collection. For example, Enterococcus faecalis and Enterococ-
cusfaeciumproduce high levels of tyramine (Extended Data Fig. 4e)—a
biogenic amine known to modulate host neurological functions'. By
contrast, C. cadaveris consumes high levels of pantothenic acid (vita-
min B5) (Extended Data Fig. 4f), a molecule that is associated with
inflammatory bowel diseases". This large-scale in vitro screen ena-
bles us to identify numerous high-abundance, variably conserved,
microbially derived metabolites that canbe trackedin vitroand in vivo
(Extended DataFig. 6d).

Metabolonomy distinct from phylogeny

We next addressed large-scale relationships between strain metabo-
lism (metabolonomy) and phylogeny—a complex topic that has been
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profilesacross diverse sample types. Our entire dataset is publicly accessible
through aweb-based, interactive Metabolomics Data Explorer (https://
sonnenburglab.github.io/Metabolomics_Data_Explorer).

addressed with different approaches in previous studies™ . Bacte-
rial metabolismis a product of the genetic metabolic toolkit and the
chemical environment of amicroorganism. Comparing metabolomic
and phylogenetic trees for the same set of 158 strains grown in mega
mediumrevealed abroadly conserved topology with the strains most
oftenclustering by phyla (Fig.2a, Extended DataFigs. 6a, 7aand Supple-
mentary Methods). However, this similarity is punctuated by consider-
able divergencesinwhich the relative location of specific strainsin the
two trees differs substantially (magenta and gold coloured branches
in Fig. 2a). Notably, these patterns of clustering are preserved when
metabolites are weighted by chemical similarity (Mantel test, »=0.863,
P=0.001) (Extended Data Fig. 7b, c).

To quantify these differences, we compared the metabolomic dis-
tance between strains to their evolutionary distance (Extended Data
Fig. 7d and Supplementary Table 7). Using a phylogeny derived from
theV416Sregion, therelationship between phylogenetic distance and
metabolomic distanceislinear (=0.30, P<1x107%?) below around 0.11
branch-length units, approximating a difference of taxonomic ‘class’in
ourdata. Aboveabranchlength of 0.11, the 16S distance explains almost
none of the variance in the metabolomic distance (*=0.02, P<1x107°).
These patterns are robust to data transformation and evolutionary
distance derived from full-length16S genes (Extended Data Fig. 7e-j).
Comparingthe metabolic distance of bacteria grouped by taxonomic
rank alone (for example, the distance between different strains of the
same species) reveals a similar pattern of saturation (Extended Data
Fig. 7d and Supplementary Table 7). These data indicate that when
two strains are grown in the same complex medium, differencesinthe
detected microbial metabolism are smaller on average than what would
be extrapolated linearly from evolutionary or taxonomic relationships,
particularly for distantly related bacteria. Notably, the high variance
in metabolic distance between microorganisms of any relatedness
(taxonomic or phylogenetic) reaffirms the use of metabolite profiles
when comparing specific strains.

We next leveraged our strain-resolved metabolomic and genomic
data to examine the correlation between bacterial genetic and meta-
bolic variationsin the context of a single pathway: polyamine biosyn-
thesis (Fig. 2b and Extended Data Fig. 7k). Gut microbially derived
putrescine and its precursor ornithine have both been implicated in
influencing aspects of host physiology?*?, Their biosynthetic enzymes
have been functionally characterized in select bacterial species (for
example, ornithine-producing arc genes* and putrescine-producing
spegenes®).
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Fig.2|Relationships between phylogeny, taxonomy and metabolome.

a, Comparison of tree topology constructed based on phylogenetic (left) and
metabolomic profile (fold-change data, right) distance matrices of 158 strains
grownin megamedium spanning five phyla. Data are from1-3independent
experiments, eachwithn >3 biological replicates. b, Metabolite accumulation
patternsacross all 158 strains grownin mega medium, clustered based on
phylogenetic distance. Dot size, mean production levels of 1-3 independent
experiments, eachwithn >3 biological replicates. For each metabolite, the
largest dot represents the highest production level for that metabolite. Full
names of the bacterial species listed ina: Clostridium saccharolyticum,
Clostridium symbiosum, Bifidobacterium adolescentis, Holdemania filiformis,
andinb: Escherichia coli, Citrobacteryoungae, Enterobacter cancerogenus,
Citrobacter portucalensis, Providencia stuartii, Proteus penneri, Collinsella
aerofaciens, Slackia exigua, Eggerthellalenta, Bacillus sp., Facklamia sp.,
Enterococcusfaecalis, Enterococcus faecium, Lactobacillus reuteri,
Streptococcus parasanguinis, Lactococcus lactis, Fusobacterium nucleatum,
Fusobacterium nucleatum subsp. animalis, Fusobacterium ulcerans, Mitsuokella
multacida, Veillonella sp., Clostridium sporogenes, Clostridium cadaveris,
Clostridium perfringens.

We discovered two groups of phylogenetically distant strains intwo
phyla, Firmicutes and Actinobacteria (Fig. 2b, phyla with orange and
purpleborders, respectively), that accumulate high levels of ornithine

and citrulline in the absence of substantial downstream polyamine
production. We performed comparative genomics starting with the
ornithine-producing arc genes described in Lactococcus lactis and
found their conserved presence (Extended Data Fig. 7k) among the
ornithine-accumulating strains, such as the Lactobacillales (Fig. 2b,
strain names highlighted in orange). Notably, these genes are not
detectable in the non-ornithine-accumulating phylogenetic neigh-
bours in both Lactobacillales and Actinobacteria. These examples
illustrate that, when metabolic phenotypes depart from phylogeny,
orthologous gene-metabolite relationships may be preserved. We
next identified strains that accumulate high levels of downstream
putrescine and/or agmatine within three phyla: Proteobacteria, Fuso-
bacteria and Firmicutes (Fig. 2b, phyla with green, red and orange
borders, respectively). Although several putrescine-accumulating
Proteobacteriastrains (Fig. 2b, strainnames highlightedin green) share
the putrescine-producing spe gene cluster described in Escherichia
coli (Extended Data Fig. 7k), these genes are not detectable in the

Fusobacteria. These data indicate the limited ability of phylogeny- or
genome-based prediction of metabolic functions in bacterial strains

and highlight the utility of measuring metabolic phenotypes to iden-
tify strains and genes that produce specific metabolites that have the
potential to affect host biology.

Metabolic phenotype-to-gene discovery

Metabolite production and consumption have long been used as
mechanisms to group and identify organisms (for example, indole
production). Here, we used our comprehensive metabolomic dataset
constructed from strains grown in mega medium along with simple
machine learning (random forest) models to identify sets of metabo-
lites that could distinguish different taxonomic groups. Simple random
forest models could accurately classify the taxonomic origin of micro-
bial supernatants (Fig.3aand Supplementary Methods). Although the
total metabolome is not clearly predictive of taxonomy (Fig. 2a and
Extended Data Fig. 7d), these random forest models revealed subsets
of'the chemical features that were highly conserved and predictive of
taxonomic identity (Extended Data Fig. 8a).

The most discriminating features selected by the random forest mod-
els for differentiating phylaincluded an overrepresentationin amino
acid metabolism (Extended Data Fig. 8a). Notably, Bacteroidetes were
differentiated by their consumption of most of the glutamine (median
consumption, 83%) and asparagine (median consumption, 96%) in the
mega medium (Fig. 3b). Previous studies showing that Bacteroides
could notuse free amino acids as the sole nitrogen source did not test
asparagine and glutamine?. On the basis of the data from the 60 Bac-
teroidetes taxainthe collection, we hypothesized that glutamine and
asparagine could serve asthe sole nitrogen source. To test this, we grew
all 60 Bacteroides and Parabacteroides species in a minimal medium
thatlacked freeammonium, but contained 10 mM glutamate, glutamine
orasparagine. Notably, asparagine or glutamine sufficed as the nitrogen
source for 50 out of 60 Bacteroidetes taxa tested (Fig. 3c and Extended
Data Fig. 8b, ¢). To determine the genetic basis of asparagine utiliza-
tion, we searched the Bacteroidetes genomes for homologues of E. coli
enzymes that consume asparagine and release ammonia (Fig. 3c, red
rows). For taxawith available genomes, anL-asparaginase Ilhomologue
(ansB; >59% identity) strongly correlated (Pearson r=0.91) with the

maximum optical density when grown on asparagine. Using a transpo-
son mutantin the Bacteroides thetaiotaomicron type strain (B. thetaio-
taomicron VP154822757°39837), we confirmed that this L-asparaginase
Il homologue was necessary for growth with asparagine as the sole
nitrogen source (Fig. 3d). The effect that we observed was not depend-
ent on the presence of cysteine; B. thetaiotaomicron VP1 5482 and
B.thetaiotaomicronVP154822757°3983 both grew with sodium sulfide
substituted as a reduced sulfur source and the pattern of growth was
maintained (Extended Data Fig. 8d). We next examined the amino acid
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Fig.3|Discovery of nitrogen-assimilation strategies in Bacteroides and
previously undescribed gene-phenotyperelationships. a, Classification
accuracy ofrandom forest models at each taxonomiclevel, based on
metabolomic profiles of 158 bacterial strains grownin mega medium from1-3
independent experiments, eachwithn >3 biological replicates. Phylum (n=5),
class (n=11), order (n=15), family (n=27), genus (n=45), species (n=115) and
strain (n=158).b, Amino acid production or consumption levels by
Bacteroidetes strains from1-3independent experiments, eachwithn>3
biological replicates. Datashownare log,-transformed. Only uniquely

consumption patterns of Bacteroides in vivo. In the caecum of mice
monocolonized with B. thetaiotaomicron VP1 5482, asparagine was
the most depleted amino acid (median decrease of 86.9%) compared
with germ-free control mice (Extended Data Fig. 8e). This observation
isconsistent within vivo asparagine utilization by B. thetaiotaomicron,
butdoes not exclude colonization-dependent changesin host aspara-
gine utilization. These findings demonstrate the power of combining
strain-resolved metabolomics with simple statistical models—in this
case, to discover amajor metabolic capacity for nitrogen assimilation
for the most abundant genus in the industrialized microbiota.

Metabolomic effect of community and host

Mechanistic studies in microbiome science can be aided by reverse
translation of findings from complex communities (humans or con-
ventionally colonized animals) into highly controlled (for example,
gnotobiotic) models. We have recently demonstrated the use of our
in vitro strain metabolite profiles in reverse translation by recreat-
ing metabolic phenotypes of interest to study mechanisms involved
in the development of inflammatory bowel disease”. On the basis of
two metabolites detected in human biological fluids (biofluids)*® and
conventionally colonized mice, we asked whether we could reconstitute
the production of microbially derived metabolitesin the host gut and/
or circulation by colonizing mice with the highest in vitro producing
strainin our collection. One candidate, agmatine, is a polyamine with
neuroprotective roles in mammals® and a substrate for transporters
inkidney and liver cells®. The other candidate, a-ketoglutaric acid, is
atricarboxylic acid cycleintermediate that extends the lifespan of the
nematode Caenorhabditis elegans and increases autophagy in mam-
malian cells™.

Consistent with our in vitro observations, agmatine and
a-ketoglutaric acid levels were both significantly increased in the fae-
ces of mice mono-colonized with a highinvitro producer: Citrobacter
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detected (non-co-eluting) amino acids areshown. a, b, Boxes, median, 25th and
75th percentiles; whiskers, Tukey’s method. ¢, Phylogenetic tree of
Bacteroidetes strains, growth curve maximum optical density (OD (600 nm)),
and percentage of protein sequenceidentity for E. coli asparagine-consuming,
ammonium-liberating enzymes. d, Representative growth curves of wild-type
and mutant B. thetaiotaomicron (2757°3983") inmodified Salyer’s minimal
medium from one experiment with n=3biological replicates. c,d, Nitrogen
sourcesincludedammonia (NH,), glutamine (GIn) and asparagine (Asn).

portucalensisand Anaerostipes sp., respectively (Fig. 4a and Extended
Data Fig. 9a). Furthermore, mono-colonization increased the lev-
els of agmatine in the host circulation (for example, urine) relative
to the germ-free control mice (Fig. 4a). These examples provide a
proof-of-concept application of our in vitro dataset to reconstitute
specific microbially derived metabolismin a mouse model, enabling
potential mechanistic studies that are relevant to host physiology.

We leveraged our strain-resolved metabolomic dataset combined
with gnotobiotic colonization (Supplementary Table 8) and asked
whether specific in vivo gut-bacteria-derived metabolites serve as
biomarkers for a given taxonomic group. Among the 34 significantly
produced metabolites in both colonized mice and individual strain
cultures, we found several phylum-specific metabolites (for exam-
ple, 5-aminopentanoic acid and indolepropionic acid by Firmicutes;
malic acid and melatonin by Bacteroidetes) (Extended Data Fig. 9b
and Supplementary Table 9). These data highlight that taxa-specific
metabolites may serve as biomarkers for aspects of microbiome
composition.

We next assessed the extent to which metabolites producedin vitro
arereconstituted ingnotobiotic mice colonized with the same microor-
ganisms. At the metabolomic profile level, faeces and caecal contents
from mice mono-colonized with C. sporogenes or B. thetaiotaomicron
correlated with C. sporogenes or B. thetaiotaomicron in vitro culture
when compared against 158 taxa grown in mega medium (C. sporo-
genes, top 1%; B. thetaiotaomicron, top 10%) (Extended Data Fig. 9¢).
The lack of correlation in serum and urine (average Spearman
p=0.058, Extended DataFig. 9c) is probably due to the inability of the
bacterial culture to recapitulate host-encoded metabolism (for exam-
ple, phasel/llenzymes). At the individual metabolite level, 8 out of 20
(40%, C.sporogenes) and 3 out of 29 (10%, B. thetaiotaomicron) signifi-
cantly produced caecal metabolitesin vivo were also produced by the
same strainin vitro (Extended Data Fig. 9d). Furthermore, when assess-
ing a six-species defined microbiota, 15 out of 46 (33%) significantly
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multi-species community. a, Quantification of agmatine levels. Data are
mean +s.e.m.oftwoindependent experiments, each with n=4 (germ-free) or
n=5(Citrobacter mono-colonized) individual mice. b, Significantly produced
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(C.sporogenes, urine), n=>5 (B. thetaiotaomicron, serum),n=4(B.
thetaiotaomicron, urine), n=7 (six-member, serum), n =6 (six-member, urine)
and n=9 germ-free mice pooled from both mono-colonization (n=4) and
community (n=5) experiments. ¢, Serum metabolite levels in mice colonized

produced caecal metabolites were also produced by one or more of
thesix speciesinvitro (Extended DataFig. 9d). Collectively, these data
illustrate that metabolites produced in a standard rich medium can
inform a portion of the microbially derived metabolites produced in
the gutenvironment.

Tobetter understand whether and how microorganism-dependent
metabolitesinthe gut caninform circulating metabolitesin the host, we
examinedentericand systemic metabolic contributions of C. sporogenes
andB. thetaiotaomicronin the host. We measured metabolite profiles of
four sample types (faeces, caecal contents, serum and urine) in differ-
ent colonization states (Fig. 4b). Principal component analyses reveal
that metabolomic profiles cluster by sample type (for example, caecal
contents versus serum) from mice colonized with the same microor-
ganism, as well as by colonization state (for example, C. sporogenes
mono-colonization versus a C. sporogenes-containing six-member
community) (Extended Data Fig. 9e, f). We identified a distinct set of
known and candidate host-microbial co-metabolites that are signifi-
cantly elevatedinthe serumand/or urine, and are strongly associated
with the presence of either C. sporogenes or B. thetaiotaomicron in
the gut (Fig. 4b and Extended Data Fig. 9g, h). Notably, in both serum
and urine, accumulation of N-(cinnamoyl)glycine is dependent on
C.sporogenes, whereas accumulation ofindoxyl sulfateis dependent on
B.thetaiotaomicron (Fig.4band Extended DataFig.9g, h). Our systematic
and high-throughput detection of microorganism-derived and host-
microorganism metabolites across different sample types (for example,
from caecum to serum) enables the identification of intermediates

with the six-member community (with C. sporogenes (+Cs)) or the five-member
community (without C. sporogenes (—Cs)). Metabolites shown represent a panel
of significantly elevated or reduced metabolites (>4-fold, corrected P<0.05) in
the six-member community. Dataare mean +s.e.m. of one experiment with
n=7(six-member community) and n=8 (five-member community) mice. Venn
diagram of significantly elevated or reduced metabolites in different host
biofluids based onthe same threshold defined above.a-c, Datashownare
log,-transformed. Pvalues were calculated using two-tailed Student’s t-tests
with Benjamini-Hochberg correction for multiple comparisons.*P<0.05,
*P<0.01,**P<0.001.

within known or candidate host-microbial co-metabolism pathways
(Extended Data Fig.10a).

Todetermine whether enteric presence of C. sporogenesis necessary
fortheincrease or decrease in specific metabolitesin the host circula-
tion, we omitted C. sporogenes from the original six-member commu-
nity. Metabolites shown are significantly increased or decreased by at
least fourfold in the serum, urine or caecal contents of mice with the
six-member community, relative to germ-free control mice (Fig.4cand
Extended Data Fig. 10b, c). By contrast, the five-member community
that lacks C. sporogenes either abrogated the production or restored
the depletion of a subset of these metabolites in the serum or urine,
indicating that the enteric presence of C. sporogenes is necessary for
modulating levels of these metabolites in the host circulation (Fig. 4c
and Extended Data Fig. 10b) and illustrating the potential of microbi-
ome editing to alter MDMs that circulate in the host blood.

Discussion

Untargeted metabolomics has led to many discoveries of
microbiota-dependent metabolic pathways®'° and metabolites linked
tohost diseases™?3* yet thereis considerable untapped potential. Here
we present a customizable and expandable method of constructing a
chemical standard library-informed metabolomics pipeline tailored to
detecting products of gut anaerobic biochemistry. Using this method,
we construct an atlas of gut-microbiota-dependent metabolic activi-
ties invitro and in vivo, enabling functional studies of gut microbial
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communities. Complementary to recent studies using phylogenetic
(16S)* or metagenomic comparisons® to predict gene functions, we
used strain-resolved metabolomics to provide expansive biochemical
profiles of individual strains. These profiles demonstrate that substan-
tial metabolic variationis common even between closely related strains.
Our findings, along with emerging studies on microbiome-focused
metabolomics*? and gut microbial metabolism***, reinforce the
limits of phylogeny or genome-scale analysis to provide direct measure-
ment or prediction of metabolic phenotypes and the molecules that
link the microbiota to host physiology. Our existing strain-specific
genome-by-metabolic profile data provides a rich resource for the
comparative discovery of genes and pathways that underlie bacterial
phenotypic variation. Furthermore, these data and thisapproach can
beused asadirectreference or asareadily implemented platform for
improving MDMidentificationin biological samples. Adding previously
undescribed microbially derived metabolites, along with new strains
such as those isolated from diverse human populations, will uncover
new mediators of the interactions between the host and microbiota as
well as molecular targets for therapeutic interventions.
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Methods

Datareporting

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Metabolomics pipeline construction logic

The accurate identification and analysis of diverse small molecules
in complex biological samples (for example, those present in the
mammalian gut) are challenging due to a variety of technical factors,
including chemical structural diversity, matrix effects and linearity
of ion detection. To ensure that our liquid chromatography-mass
spectrometry (LC-MS) pipeline is relevant for biological samples
and thatitis useful to the broader scientific community, we highlight
six key points of our approach: (1) detectability of diverse chemical
classes of compounds that characterize bacterial and host metabo-
lism using three complementary analytical methods**** (Extended
DataFigs.1d, 3a-c); (2) retention time (RT) shifts that occur in diver-
gent matrices (for example, culture supernatant versus host serum)
to determine whether metabolites in a biological sample could be
faithfully identified using RT data from our m/z-RT reference library
(Extended Data Fig. 3d, e and Supplementary Table 2); (3) linear-
ity of signal over alarge range of concentrations, a prerequisite for
performing sample comparisons and determining differences in
the fold change (Extended Data Fig. 3f and Supplementary Table 2);
(4) use of MS/MS fragmentation to validate the high-abundance
metabolites identified in biological samples (Extended Data Fig. 1e
and Supplementary Table 2); (5) construction of an MS/MS refer-
ence library of 750+ authentic standards on two distinct types of
MS instrument (QTOF and Q Exactive) at multiple standard colli-
sionenergies (Supplementary Table 3), enabling level-1confidence
annotation when used in conjunction with our m/z-RT reference
library; and (6) implementation of our m/z-RT reference library on
different types of MS instruments following minimal nonlinear RT
correction** (Extended Data Fig. 3g and Supplementary Table 4). For
data analysis, we constructed an integrated pipeline combining (1)
MS analysis tools* that leverage our reference library for compound
identification (Extended Data Fig. 1f) and (2) a custom bioinformat-
ics pipeline that enables the computation and statistical analysis of
large datasets (Extended Data Fig. 2).

Authentic chemical standard collection

The authentic metabolite standard collection is composed of individu-
ally curated and commercially available standards (Mass Spectrometry
Metabolite Library of Standards, IROA Technologies). Individually
curated metabolites (303 metabolites) were weighed (2 mg minimum)
and transferred from the original manufacturer’s stock bottles (for
example, Sigma, Fisher, Acros and so on) to 2-ml Eppendorftubes and
reconstituted with 50% LC-MS grade methanoltoreach astock concen-
tration of 10 mM. Additional compounds (284 metabolites) were pur-
chased as 10-mg stocks from MetaSci (MetaSci Custom Library). Dried
power from company stock tubes were transferred (2 mg minimum)
into2-mltubes and reconstituted with 50% methanol to a concentration
of10 mM. Metabolites from the IROA metabolite standard library (634
metabolites), which were supplied in much smaller amounts (around
5 pg per well), were reconstituted with various amount of methanol
in water (v/v) as per the manufacturer’s instructions, but owing to
the limited mass, their concentrations were less precise. Individual
pools (12-30) of metabolite standards, which do not share the same
molecular mass, were generated by combining stocks and diluted with
50% methanol to reach a final concentration of 200 uM. A subset of
these pools (377 metabolites) was also serially diluted in 50% methanol.
Individual metabolite pools and dilutions were analysed using three
LC-MS analytical methods.

LC-MS methods

Instrumental and chromatographic settings. Compounds were
separated using an Agilent 1290 Infinity Il UPLC (binary pumps) and
detected using an Agilent 6545 LC-MS Quadrupole Time-of-Flight
(qTOF) instrument equipped with a dual jet stream electrospray ioniza-
tion source (ESI) operating under extended dynamic range (1,700 m/z)
inthe positive (ESI+) or negative (ESI-) ionization modes. Published C18
methods* and HILIC method* were used with minor modifications.
See Supplementary Methods for details.

Sample preparation for metabolomics. Five different sample types
were processed with asimilar sample preparation protocol as described
in the Supplementary Methods. In brief, samples were homogenized
and proteins were precipitated in a methanol-based recovery buffer
that contains the extraction standards. Samples were then centrifuged,
their supernatant was collected and evaporated, and areconstitution
buffer containinginternal standards was added. Reconstituted samples
were filtered and subsequently analysed by three analytical methods
onthe LC-MS-qTOF.

m/z-RT reference library

The exact m/z of each metabolite standard was calculated by combin-
ing the monoisotopic mass of the metabolite (PubChem) and adding
or subtracting the mass of a proton (1.007276 Da) depending on the
defaultadduction ([M+H]*for ESI+and [M -H] for ESI-). The Agilent
MassHunter Qualitative Data Analysis software (Qual, v.B.07.00) was
used tomatchindividual extracted-ion chromatogram peaks withina
+10-ppmwindow from the predicted m/z of each metabolite standard.
Alternative adducts ions were identified using ‘Search by Molecular
Feature’ in Qual; when multiple adducts were identified, the adduct
ion with the greatest area under the curve was used in the reference
library. AnRT was assigned to ametabolite when asingle extracted-ion
chromatogram peak wasidentified. When multiple chromatographic
peaks wereidentified, which probably resulted from degradation prod-
ucts, differentisotopes or adducts of other molecules in the mixture,
asubsequent injection of that metabolite standard alone was con-
ducted to identify the RT for that metabolite. For metabolites runin
dilution series, RTs at all concentrations at which the same metabolite
was detected were used to produce an averaged RT for this metabo-
lite in the reference library. The averaged RT was used to (1) increase
theaccuracy by averaging smallinjection-to-injection variations; and
(2) distinguish the true signal from background noise by validating
the peaks for which the ion counts proportionally increase with the
concentration.

To address how the same reference library performed on different
instruments, we compared two different LC-MS systems: an Agilent
6545 qTOF, the instrument with which the original library was con-
structed, and asecond instrument, an Agilent 6530 qTOF oraThermo
Orbitrap QExactive (QE). Although these differentinstruments shared
the same chromatographic conditions (for example, analytical meth-
ods, solvents and columns), they differed in resolution and ESl ion
source parameters optimized to support each instrument. To com-
pareinter-instrumental RT shifts, a subset of the full reference library
(219 metabolite standards spanning diverse RTs) was reconstructed
on the second qTOF instrument, and 773 metabolite standards were
reconstructed on the QE instrument. For each analytical method, RT
correction was done by cubic polynomial transformation of the origi-
nal library** based on inter-instrumental RT shifts of 10-20 robustly
detected metabolites (for example, internal standards) that span the
detected RT range. For each analytical method, using the corrected
library with a RT tolerance window of 0.2 min, around 99% for the 219
metabolites tested on the second qTOF instrument, and approximately
94% of the 773 metabolites tested on the QE instrument, were correctly
identified.
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MS/MS library construction

MS/MS raw data were collected from individual pools (12-24 com-
pounds per pool) for 833 authentic library standards, using three
liquid chromatography methods applied to two distinct types of MS
instruments (Agilent qTOF 6545 and Thermo Orbitrap QE). For qTOF,
auto-MS/MS-preferred ion settings with an individual input list of
m/zand RT information specific to the compounds in each pool were
used to collect spectra at three collision energies (10 eV, 20 eV and
40 eV). For QE, full MS/dd-MS? settings with a single shared inclusion
list containing the m/z and RT information for all of the compound
poolswere used for data collection at the stepped normalized collision
energy of 20-30-40%. A scan range of 60-900 m/zwas used to collect
centroid type data. On both instruments, +0.5 min was used as an RT
search window for MS1peak selection, based on the RTs provided by the
qTOF reference library. Accurate mass windows were +10 ppm on both
instruments. RTs identified during the MS1 peak selection for the 773
compounds detected onthe QE instrument arereported inthe m/z-RT
library in the ‘QE_rt’ column (Supplementary Table 1).

MS/MS spectra were extracted from MS/MS raw data files (mzml
format) withanautomated Python script (extract_ms2_spectra.ipynb)
using the pymzML parsing library*¢. For each compound, the intensity
of each spectral fragment was normalized to the fragment with the
highest intensity (set to 1,000). Spectral fragments with intensities
below 0.5% relative to the highestintensity fragment were filtered out.
Compound metadata (for example, InChlKey and collision energy)
and fragmentation information (for example, m/z and intensity) are
reported for each compound. Spectra from the same compound col-
lected using different analytical methods (for example, C18-positive
and C18-negative) are all reported. In limited instances, spectra from
the same compound were collected multiple times due to representa-
tion in multiple compound pools. All of the information above was
compiled in Supplementary Table 3, and is publicly available in the
MoNA spectrum database under query phrase ‘Sonnenburg Lab MS2
library’.Insummary, spectra from 750 and 773 unique compounds were
collected on the qTOF and QE instrument, respectively.

MS experimental validations

Linear dynamic range. For large-scale metabolomics experiments,
itis typically assumed that instrument response varies linearly with
analyte concentration. To test the concentration linearity objectively,
we constructed dilution series of 377 metabolites (from pools gener-
ated as above), in threefold serial dilutions spanning five orders of
magnitude (from 1 nM to 200 puM). These diluted compound pools
were then analysed using the three analytical methods. Linear regres-
sion of log-transformed concentrations versus log-transformed ion
counts was performed and the coefficient of determination () was
calculated. Across all metabolites, the average r’and slope (onlog-log
plots) were both very close to1(0.99 and 0.92, respectively), providing
astrongindication of linearity.

Matrix effects. The biochemical complexity of biological samples such
as faeces and serum may alter the RT and/or detected signal of indi-
vidual metabolites. To determine whether accurate identification was
significantly affected by RT shifts in multiple matrices, we spiked in 132
metabolite standardsinto five distinct biological matrices (germ-free
mouse faeces, serum and urine, human charcoal-stripped serum and
megamedium) and alibrary control condition (50% methanol, v/v) at
afinal concentration of 10 pM, and analysed each matrix using all three
analytical methods. Three biological replicates for each matrix were
used, and the RT and ion count for each spiked-in metabolite standardin
eachof these matrices were determined. The difference in RT between
abiological matrix and the library control condition was calculated
(50% methanol in water, v/v) for individual spike-in metabolites. For
all132 metabolites in all five matrices, differences in RTs were minimal,

falling within a conservative +0.1-min window. Changes in total ion
count (area under the curve) between abiological matrix and the library
control condition were determined by first removing matrix-specific
background ion counts for a small number of metabolites presentin
specific matrix before spike-in. Next, the ratio between spike-in me-
tabolite ion counts in biological matrices and those in library blank
controls was calculated (relative fold change, log,-transformed). The
majority of spiked-in metabolites exhibit less than fourfold change in
ion counts relative to those detected at the library control condition
(97% in mouse faeces, 83% in mouse serum, 95% in mouse urine, 88%
in human serum and 71% in mega medium). See code details in ‘calcu-
late_biological_matrix_effect.ipynb’. Therelatively minorinfluence of
different biological matrices on RTs of the reference library metabolites
helpedto establish theidentification parameter (+0.1-min RT window)
for our subsequent biological experiments.

MS/MS validation. To verify the accuracy of compound identifica-
tion obtained by our MS1m/z-RT library built from authentic stand-
ards, we unbiasedly searched MS/MS spectra of m/z-RT-matched
individual metabolites against the MoNA spectrum database.
MoNA-reported similarity scores based on spectrum comparisons
wererecorded (Supplementary Table 2). For each analytical method,
using the auto-MS/MS-preferred ions settings of the qTOF, MS/MS
spectrawere generated at three collision energies (10 eV, 20 eV and
40 eV) from MS1 peaks identified by m/zand RT from our reference
library. For biological samples, MS/MS spectra were collected for
162 high-abundance metabolites identified in quality-control sam-
ples fromin vitro (bacterial supernatants) and in vivo experiments
(B. thetaiotaomicron- and C. sporogenes-mono-colonized mouse
samples: serum, urine and faecal/caecal contents). Quality-control
samples were generated on a per-experiment basis by pooling equal
volumes from each biological replicate from the same experiment
(3-8 biological replicates per condition across the entire 96-well
plate) to provide arepresentation of the highest number of metabo-
lites in that experiment. To establish a baseline of MoNA similarity
scores, MS/MS spectra were also collected from a corresponding set
of library authentic standards.

MS/MS spectra were extracted using an automated Python script
by first extracting MS/MS spectra for individual m/z-RT-matched
metabolites using pymzML*, and then searchingindividual extracted
spectra against the MoNA spectrum database. The search results
were restricted to spectra generated using (1) LC-MS instruments
and (2) ESI" ionization mode (for C18-positive and HILIC-positive
spectra) or ESI-ionization mode (for C18-negative spectra). Each
spectral search used the MoNA-default similarity score threshold of
500, and returned the top-five matches with the highest similarity
scores computed by the built-in MoNA algorithm. Among these top
matches, the highest similarity score with the correct metabolite
namewas recorded (Supplementary Table 2). Because MoNA search
results contained data from various LC-MS instrument platforms
such as qTOF, Orbitrap and Triple-Quadrupole, in some cases there
are data collected from multiple MS platforms or multiple collision
energies, we would opt for the qTOF and a similar collision energy to
our search spectra. Each MS/MS spectral comparison corresponding
to the recorded score was also manually inspected. For individual
metabolites repeatedly detected inthe same sample type (for exam-
ple, bacterial supernatant or faeces) in more than one experiment,
an averaged similarity score among MS/MS spectra for the same
metabolite was calculated and recorded in the summary table (Sup-
plementary Table 2). Collectively, all similarity scores between our
MS/MS spectra and MoNA spectra for the same set of metabolites
have a median score of 992 (library standards, s.d.=36.78) and 923
(biological samples, s.d. =114) relative to a perfect score 0of 1,000,
indicating good agreement between our data and what has previ-
ously beenreported.



Data analysis

MS-DIAL analysis. The MS-DIAL software® (v.3.83) was used for
analysing all in vitro and in vivo data on a per-experimental run and
per-analytical method basis. Quality-control samples from each ex-
perimental run were used for peak alignment. Chemical assignment
of molecular features in samples was performed by comparing the
recorded RT and m/zinformationto our referencelibrary constructed
fromauthentic standards. Tolerance windows were set to 0.1min RT and
0.01Dam/zfor the C18 methods and 0.2 min RT and 0.01Dam/zfor the
HILIC method. When a large RT shift was observed in theinternal stand-
ards (for example, afterinstrument repair), alibrary RT correction was
done before MS-DIAL analysis, through a polynomial transformation
of the library based on inter-instrumental RT shifts of 10-20 robustly
detected metabolites (for example, internal standards). The minimal
peak count (height) filter was set to 3,000 for all experiments except for
selectexperimentsinwhich the MS exhibited reduced sensitivity. The
MS-DIAL analysis generated alist of m/z, RT and ion counts (area under
the curve) for high-confidence annotations (matched to thereference
library) as well as unknown molecular features. On the basis of the
list of annotations for each experiment, each set of aligned peaks was
manually checked using the MS-DIAL graphical user interface. Select
metabolite features were removed from this list when: (1) two adjacent
but distinct peaks were concurrently assigned to a single molecular
feature; (2) odd curvature/shape of the peak led to the integration of
several ‘peaks’ from separate sections of the same peak; or (3) features
were detected only inthe blank controls. Annotated peaks that passed
thisinspection were included in the final output file.

Custom bioinformatics. After MS-DIAL analysis, data were analysed
with a set of custom bioinformatics pipelines. In brief, these pipelines
implemented a set of filtration and normalization procedures with
the goal of reducing technical variability and controlling for batch
effects. The pipelines, including all code for the in vitro and in vivo
sample data cleaning and standardization, are described in the Sup-
plementary Methods.

Distance calculations and classifiers. Comparisons between metabo-
lomic and phylogenetic distances (Fig. 2a and Extended Data Fig. 7)
and metabolite-based classification (Fig. 3aand Extended DataFig. 8a)
were done with custom Python code described in the Supplementary
Methods. For all these analyses, the metabolomic distance matrix used
Euclideandistance generated fromlog,-transformed, medium-blank,
deltaand variance-filtered fold change data. Only the 158 strains that
grew in mega medium were used for these analyses to prevent confla-
tion of metabolic and starting medium differences.

Bacterial culture

Thebacterial strains and associated metadata (such as taxonomy, origi-
nalrepository and16S sequence) used in this work are reported in Sup-
plementary Table 6. Allbacterial inoculation and growth occurredina
Coy Laboratories anaerobic chamber kept at anatmosphere of approxi-
mately 80%:15%:5% (N,:CO,:H,). Allincubations occurred at 37 °C, all
bacterial stocks were stored at =80 °C, and all ODs were recorded at
600 nmusing aBioTek Epoch 2 plate reader.

Stock preparation. Bacterial strains were acquired from various
culture collections including ATCC, DSMZ, NCTC and BEI. Source
cultures were plated on a rich medium, single colonies were picked,
cultured in rich medium and stored as 1-ml frozen cultures (25:25:50
v/vglycerol:H,O:culture) in ThermoFisher Matrix Tubes. The solid and
liquid media used for stock generation are described in Supplementary
Table 6 (worksheet ‘media’). Source cultures that exhibited multiple
morphologies on agar plates were purified and morphologies separated
andretainedifthe 16S sequence matched the expected 16S sequence.

Forall cultures, the purity of the final cultures was checked by 16S rRNA
sequencing (Supplementary Methods).

Bacterial media. All media used in this study are included in Sup-
plementary Table 6 (worksheet ‘media’). Note that in some cases we
grew and recorded metabolites from taxa in multiple media. For the
media used for particular supernatant samples and metabolomics, see
Supplementary Table 7 (worksheet ‘aggregated_md’).

Mega medium was prepared according to the protocol described
inthe Supplementary Methods. The recipe is slightly adapted from a
previous publication*. In our usage of mega medium, each batch was
autoclaved, moved into the anaerobic chamber and allowed to become
anaerobic for at least 24 h before use. For taxa that would not grow in
megamedium, a different mediumwas selected based ontheliterature.
Ineachcase, wereferenced an ATCC, DSMZ or media manufacturer (for
example,Hardy Diagnostics) recipeasoutlinedinSupplementary Table 6
(worksheet ‘media’). In all cases, these media were prepared for use
similarly to mega medium. Specifically, the adjustment of the pH was
done before autoclaving, filter-sterilized vitamins and sterile blood
were added after autoclaving, and media were moved immediately
from the autoclave to the anaerobic chamber and allowed to become
fully anaerobic for at least 24 h before use.

For identification of nitrogen utilization in Bacteroidetes, Salyer’s
minimal medium (SMM) was prepared (Supplementary Methods),
the preparation of which was slightly modified from published proto-
cols®**, In brief, SMM base was prepared (SMM without haematin, nitro-
gensource or reduced sulfur source) and allowed to become anaerobic
infoil-covered bottles. SMM was prepared without nitrogen source to
avoid spontaneous glutamine degradation*’. Immediately before use,
the SMM base was amended with filter-sterilized solutions of haematin
(final concentration 0.5 mg per 100 ml), nitrogen source (glutamine,
asparagine, glutamic acid or ammonium sulfate, final concentration
of 10 mM) and reduced sulfur source (cysteine or sodium sulfide, final
concentration of 4.12 mM). Taxa were plated (mega medium or brain
heartinfusion with blood) and a single colony picked into freshly pre-
pared SMM. Preculture for 24 h was followed by subculture in freshly
prepared SMM for12-36 h. OD readings were taken as described above.

In vitro growth for metabolomics. Bacterial supernatantsincludedin
the in vitro data were generated according to the following protocol.
Cultures were inoculated inanaerobic medium (around 4 pl:1,600 pl)
intriplicate in2-ml 96-well blocks and incubated for 24-72 h depending
onthetaxaselected. Therefore, a single biological replicate from the
bacterial culture experiments represents anindividual well or tube of
bacterial culture growth from anindependent 4-ul aliquot from afrozen
glycerol culture stock. These pre-cultures were subcultured into mega
medium (around 4 pl:1,600 pl) and similarly incubated for 12-60 h.
Then, 200 pl of subculture was incubated in a plate reader so that OD
readings could be taken to monitor growth phase. The remaining cell
cultures were collectd when the OD readings showed the late log or
early stationary phase. The collected culture was immediately removed
from the anaerobic chamber, centrifuged to pellet the cells (5,000g,
10 min) and the cell-free supernatant was either frozen at —80 °C or
immediately extracted as described in the Supplementary Methods.

For details of the purity analysis, sequencing protocol and phyloge-
netic tree reconstruction, see Supplementary Methods.

Mouse experiments

Mouse experiments were performed with gnotobiotic Swiss-Webster
germ-free mice (male, 10-14 weeks of age, n=3-8 per group for all
experiments) or Swiss-Webster excluded flora mice (‘conventional
mice’; male,10-14 weeks of age, n=3 per group) that were maintainedin
asepticisolators and originally obtained from Taconic Bioscience. Mice
were maintained onal2-hlight/dark cycle at 69 °F (20.6 °C) inambient
humidity, fed ad libitu, and maintained in flexible film gnotobiotic
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isolators for the duration of all experiments (Class Biologically Clean).
For mono-colonization experiments, mice were colonized with
B. thetaiotaomicron VPI1 5482, Clostridium sporogenes ATCC 15579,
C. portucalensis BETHM-34 or Anaerostipes sp. BETHM-220 by oral gav-
age (200 pl, around 1x 107 colony-forming units (CFU)) and were main-
tained onastandard chow (LabDiet 5K67). For the defined-community
experiment, mice with asix-member community were colonized with
a200-pl mixture consisting of equal volumes from saturated cultures
of B. thetaiotaomicron VP1 5482 (8.7 x 10° CFU), C. sporogenes ATCC
15579 (1.4 x 108 CFU), Edwardsiella tarda ATCC 23685 (3.6 x 10 CFU),
Collinsella aerofaciens ATCC 25986 (1.4 x 10°), Eubacterium rectale
ATCC 33656 (6.9 x10° CFU) and Parabacteroides distasonis ATCC 8503
(1.5 x10? CFU). Mice with a five-member community were colonized
with all cultures mixed at the same volumes as described above except
for C. sporogenes ATCC 15579, which was not included. Successful
colonization and stable community members were determined by
16S amplicon sequencing of the V4 (515F, 806R) region of microbial
populations that were present in the faeces and caecal contents of
individual mice.

For all experiments, mice were euthanized by CO, asphyxiation
9 days (mono-colonization with C. portucalensis BEl HM-34 or
Anaerostipes sp. BELHM-220) or 4 weeks (all other experiments)
after colonization, and four sample types (serum, urine, faeces and
caecal contents) were collected from each mouse. A single biologi-
cal replicate in the mouse experiments represents a specific sam-
ple type (for example, serum) collected from an individual mouse
(that is, each biological replicate is from a different mouse). Before
euthanization, urine and faeces were collected. Whole blood was
collected by cardiac puncture and serum was obtained using micro-
container serum separator tubes from Becton Dickinson following
the manufacturer’s instructions. The intact caecumwas collected and
snap-frozen in liquid nitrogen. A single caecal sample was obtained
for mono-colonization and conventional experiments, and three
samples at three different sections of the caecum were obtained for
the defined-community experiment. All mouse experiments were
conducted under a protocol approved by the Stanford University
Institutional Animal Care and Use Committee.

Comparative genomics

Genome annotation and database. Bacterial isolates from the cul-
ture collection were manually linked up to their respective NCBI Bio-
Project ID numbers. The Rentrez package (https://cran.r-project.org/
package=rentrez) was used to link BioProject ID numbers with existing
GenBank or RefSeq assemblies or with reads from the Sequence Read
Archive (SRA) for isolates that were previously sequenced but not as-
sembled. Isolates lacking assembly accession numbers (Supplementary
Table 6 (worksheet ‘full_taxonomy’)) were assembled using previously
described methods™. In brief, reads were trimmed using Trimmomatic™
and assembled using SPAdes v.3.9.1% using the following parameters:
k =21,33,55 --careful --cov-cutoff auto. Contigs smaller than 1,500 bp
wereremoved, and assemblies were gene-called and annotated using
prokka v.1.14.5%%. MultiGeneBlast** (v.1.1.13) was used to build a data-
base containing all of the assembled and downloaded genomes listed
inSupplementary Table 6.

Gene and gene cluster searches. The arcgene cluster from Lactococ-
cus lactis and the spe gene cluster from E. coli were used as the query
tosearch publicly available, assembled genomes of strains within our
collection. Comparative genomics analyses were conducted using the
‘Architecture Search’ feature of the MultiGeneBlast software (v.1.1.13)
with default parameters with one modification, which set the ‘maxi-
mumdistance between genesinlocus (kb)'to 40 kb. Foridentification
of Asparaginase-containing genomes, the custom BLAST database
described above was queried for homologues of E. coli genes (ansA,
ansB and aspA) that encode asparagine-consuming enzymes.

Metabolomics Data Explorer

The Metabolomics Data Explorer (https://sonnenburglab.github.io/
Metabolomics_Data_Explorer) was constructed in JavaScript and was
used to generate scatter plots of our in vitro and in vivo fold-change
databased onuser input.Invitroandin vivo metadata and fold-change
datafiles were used as datainput and were parsed using the Papa Parse
library to extract the dataand populate the dropdown menus on each
page. The dropdown menus enable users to pick the desired taxonomy,
metabolite and medium (in vitro), and colonization, metabolite and
sample type (in vivo). The Nivo library was used to render interactive
scatter plots of the fold change data relative to medium blank con-
trols (in vitro) or to germ-free controls (in vivo). Each dot represents
anindependent biological replicate, and all metabolites (uniquely
identified or co-eluting) are shown. Inrare cases, the same metabolite
may appear twice in the scatter plot if it is uniquely identified in one
analytical method while co-eluting with other metabolites inanother
analytical method. The scatter plot presents all biological replicates
from all independent experiments available in the dataset and pro-
vides label details when hovering over the data points to enable easy
identification.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Allraw datafrommetabolomics are publicly available from the Metabo-
lomics Workbench under study number ST001683 for invivo dataand
study number STO01688 for in vitro data. MS/MS libraries generated
usingthe qTOF and QE instruments are publicly accessiblein the MoNA
spectrum database (https://mona.fiehnlab.ucdavis.edu) and can be
queried using the keywords ‘Sonnenburg Lab MS2 Library’.

Code availability

Custom Python code was written to enable the construction of the
MS/MS libraries, the processing and visualization of the in vitro and
in vivo LC-MS data, the optical density and growth curve data, the
bioinformatics analysis of 16S and whole genomes, and the analysis
of the metabolomic data. Full code for each of these steps is available
athttps://doi.org/10.5281/zenodo0.4890994. The JavaScript code sup-
porting the interactive, web-based Metabolomics Data Explorer is
available at https://doi.org/10.5281/zenod0.4890999.

42. Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora
on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698-3703
(2009).

43. Showalter, M. R. et al. Obesogenic diets alter metabolism in mice. PLoS ONE 13,
0190632 (2018).

44. Cajka, T., Smilowitz, J. T. & Fiehn, O. Validating quantitative untargeted lipidomics across
nine liquid chromatography-high-resolution mass spectrometry platforms. Anal. Chem.
89, 12360-12368 (2017).

45. Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive
metabolome analysis. Nat. Methods 12, 523-526 (2015).

46. Kosters, M. et al. pymzML v2.0: introducing a highly compressed and seekable gzip
format. Bioinformatics 34, 2513-2514 (2018).

47.  Wu, M. et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple
human gut Bacteroides. Science 350, aac5992 (2015).

48. Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An
exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557,
434-438 (2018).

49. Tritsch, G. L. & Moore, G. E. Spontaneous decomposition of glutamine in cell culture
media. Exp. Cell Res. 28, 360-364 (1962).

50. Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine
circulating metabolites. Nature 551, 648-652 (2017).

51. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30, 2114-2120 (2014).

52. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to
single-cell sequencing. J. Comput. Biol. 19, 455-477 (2012).


https://cran.r-project.org/package=rentrez
https://cran.r-project.org/package=rentrez
https://sonnenburglab.github.io/Metabolomics_Data_Explorer
https://sonnenburglab.github.io/Metabolomics_Data_Explorer
https://mona.fiehnlab.ucdavis.edu
https://doi.org/10.5281/zenodo.4890994
https://doi.org/10.5281/zenodo.4890999

53. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30,
2068-2069 (2014).

54. Medema, M. H., Takano, E. & Breitling, R. Detecting sequence homology at the gene
cluster level with MultiGeneBlast. Mol. Biol. Evol. 30, 1218-1223 (2013).

Acknowledgements We thank C. Khosla, Y. Dai and the Stanford ChEM-H Metabolomics
Knowledge Center for use of the LC-MS-gTOF instrument; A. Shiver, K. C. Huang and A. Cheng
for sharing bacterial strains; T. Meyers and T. Cowan for sharing chemical standards; H. C.
Wastyk and G. K. Fragiadakis for sharing their metabolite data before publication; J. K. Yang for
consultation on web design tools; and T. Le for discussion on MS methods. This work is
supported by RO1-DK085025, DP1-AT009892, RO1-DK101674, gifts from M. and J. Pasquesi,

H. Buhr and J. Feiber, a Stanford Discovery Innovation Fund Award (J.L.S.), Chan Zuckerberg
Biohub (M.A.F. and J.L.S.), DP1-DK113598 and PO1-HL147823 (M.A.F.), KO8DK110335 (D.D.),
Stanford Dean’s Postdoctoral Fellowship and NRSA F32AG062119 (S.H.), NSF-GRFP DGE-114747
(WVT.) and 5T32A1007328-32 (L.G.).

Author contributions S.H., WVT,, D.D., M.A.F. and J.L.S. designed this study. S.H., WVT. and
S.K.H. performed all bacterial culture and gnotobiotic mouse experiments. S.H. constructed
MS qTOF and QE m/z-RT and MS2 spectrum libraries, performed MS experimental validation
and MS-DIAL data analysis, conducted comparative genomics and metabolomic distance
analyses, constructed the in vivo metabolomics pipeline and database, and designed the

Metabolomics Data Explorer. WVT. constructed the bacterial strain library, performed
phylogenetic analysis, built the in vitro bioinformatics pipeline and database, performed
phylogenetic versus metabolomic distance comparisons, and built random forest models.
C.R.F. and L.G. conducted chemoinformatics analyses of reference library compounds. B.D.M.
built the strain-resolved comparative genomics database. S.H., B.C.D. and J.M.S. developed
gTOF and QE MS2 methods and collected data. D.D., L.A.F. and C.R.F. set up the MS1MS
methods. S.H., D.D. and L.A.F. built the authentic compound collection and developed
metabolomics sample preparation methods. All authors provided intellectual contributions.
S.H., WVT. and J.L.S. wrote the paper, and all authors provided feedback. S.H. and WVT.
contributed equally with author order determined by coin-flip.

Competing interests M.A F. is a co-founder and director of Federation Bio and Viralogic, a
co-founder of Revolution Medicines, and a member of the scientific advisory boards of NGM
Bio and Zymergen.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-021-03707-9.

Correspondence and requests for materials should be addressed to J.L.S., M.A.F. or D.D.

Peer review information Nature thanks Gary Siuzdak and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://doi.org/10.1038/s41586-021-03707-9
http://www.nature.com/reprints

Article

a

Superclass
Alkaloids and derivatives

Benzenoids
Lipids and lipid-like molecules
Nucleosides, nucleotides, and analogues

Organic acids and derivatives

Organic nitrogen compounds
Organic oxygen compounds

Organoheterocyclic compounds
Organometallic compounds

Organosulfur compounds
Phenylpropanoids and polyketides

[ ] .
° .
b c d ]
C18 positive 18 negative HILIC positive A Library compounds
C18 positive C18 negative
800
N 600
& 400
o In vivo
00 compounds
25 HILIC positive
20
@
E 15
g 10 e _ 1000
5 <
5 3 900
o] § High confidence
% 800 match Increasing need for
10 Z visual validation
L 5 S 700 of ms/ms spectra
3 % Good match
s 0 % 600
® 8 . Poor match
-10 g 500+
[<}
S 4004
) 2
S S 3004 ® C18 positive
:’-; 2 C18 negative
g g 200 @ HILIC positive
T 1004
0 25 57510 200400600800 0 10 20 -10 -5 0 5 10 7]
Retentiom time miz O atoms cLogP 0 T T r T T T . . - v
0 100 200 300 400 500 600 700 800 9001000
Similarity score (library standard vs. MoNA)
f

Peak/compound
identification

Instrumentation
LC/MS qTOF

Authentic standard
collection

Internal standard-
based library
correction

m/z-RT reference
library

H m/z, RT

Retention time (min)

lon count

[Compound] Adduct

Measured

%ection
equation

eference retention time (min)

Data collection
(MS1 & MS/MS)

Sample
preparation

cd Ms1

lon count

Retention time (min).._

2%

£1000 Experimental

§ 500

27 Ms/
® Bacterial culture 2 500 s
® Serum $-1000 Reference]
e Urine 60 100 140 180
e Feces e MS1 on all samples
e Cecal contents

e MS/MS on QC pools

Bioinformatics
analysis

Peak/compound
identification

Metabolite A
Metabolite B
‘ | /Metabolite Cc

A

Retention time (min)

lon count

Join experiments
Filter sample/replicates
Normalize data

e MSDIAL-based
e Featurization
e |dentification Collapse data from
® Inspect and filter multiple methods
aligned peaks e Output data matrices

Extended DataFig.1|See next page for caption.



Extended DataFig.1|Summary statistics for the MS reference library
metabolites, their detection and validation. a, Chemical similarity network
ofthecompoundlibrary. Network nodes, library compounds coloured by their
superclasses. Node size, monoisotopic mass. Edges betweennodes,

substructure similarity values above a z-score threshold of 1s.d. from the mean.

b, Scatter plots and histograms of chemical properties of 833 library
metabolites. ¢, Venndiagram of library compounds that are detected by each
ofthe three methods. d, Venn diagram of compounds (by PubChem CID)
identifiedinthe reference compound library (Supplementary Table 1), in vitro
conditions (Supplementary Table 7, ‘count.ps’) and in vivo conditions
(Supplementary Table 8, ‘istd_corr_ion_count_matrix’). In vitro conditions

include allmediumtypes, and in vivo conditions include all sample types:
urine, serum, faeces and caecal contents, and all colonization states.

e, Scatterplot of all pairwise similarity scores (biological sample versuslibrary)
ofthe same compound searched against the MoNA spectrum database. All
library standards (median similarity score =992) and 97.3% of the
corresponding compounds from biological samples (median similarity
score=923) had similarity scores of 2600, and 2.7% of those compounds from
biological samples scored below 600. Confidence levels were determined
based onboth similarity scores and visual validation of the MS/MS spectra.
f,Schematic of the data collection and analysis workflow of the metabolomics
pipeline. Panel created with Biorender.com.
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stepsdetailed here are explainedin depthinthe Supplementary Methods (see
‘Custom bioinformatics: in vitro pipeline’section). Step 1, a database recording
sample metadata (organism, media, growth data, and so on) and MS-DIAL
output filesareintegrated into data matrices that are specific toeach
analyticalmethod. Step 2, alldata are grouped by replicate (biological sample
groups (BSGs)) and analysed to remove replicates with lowintra-replicate

correlation. Replicates are then grouped by experiment (EXPs) to assess
inter-experiment variability. Transformations reducinginter-experiment
variability areidentified and compared. For metabolites that are detected by
multiple methods, theirion counts are compared on a per-replicate and
per-experiment basis to identify one or more methods that consistently detect
these metabolites. Step 3, using aninternal standard-based correction, ion
counts forindividual samples are adjusted and transformed into different
fold-change data matrices. Step 4, data matrices correspondingto each
method are combined into asingle datamatrix representing all detected
metabolites.
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Extended DataFig. 3 | High-throughputidentification and analysis of
diverse metabolitesin complex biological matrices.a, Number of unique
compounds (by PubChem CID) within distinct chemical superclasses detected
inthe m/z-RT referencelibrary (n=815, 11superclasses), in vitro dataset
(n=458,9 superclasses) orinvivo dataset (n=>551, 9 superclasses), excluding
internal standards. Nine of the eleven chemical superclassesinthereference
library arerepresented in the metabolites detected invitroandin vivo. The two
remaining library superclasses (organosulfur and organometallic compounds)
notrepresented in the experimental data contain one compound each.

b, Diverse classes of metabolites identified in the conventional mouse caecum.
Representative metabolites shown are significantly elevated (>4-fold,
corrected P<0.05) in conventional mice versus germ-free controlsinone
experiment with n=3 (conventional) and n=4 (germ-free) mice. Pvalues were
calculated using two-tailed Student’s t-tests with Benjamini-Hochberg
correction for multiple comparisons. ¢, Examples of precursors, intermediates
and products from the tryptophan fermentation pathway that wereidentified
by our methods bothinvitro (C. sporogenes culture supernatant) and in vivo
(C.sporogenes mono-colonization caecal contents). Extractedion
chromatogram peaks representingrelativeion counts for each metabolite are
shown.d, e, Histograms of changes in RT (d) and total ion count (e) for 132
spike-in metabolitesin five complex biological matrices using three analytical
methods. All spiked-in metabolites show minimal change in RT, falling withina
conservative £0.1-min search window from their RTs as determined in the

library control condition (d). The majority of spiked-in metabolites (for
example, 97% in faeces) exhibit less than fourfold changeinion counts relative
tothose detectedinthelibrary control condition (e). Representative examples
of RT shifts (d) and changesin totalion counts (e) inindividual metabolitesin
the mouse faecal matrix are shown. Data are mean +s.e.m. of one experiment
withn=3biological replicates. f, Histograms of linear ranges of 377 reference
library metabolites measuredinserial dilutions. Arepresentative linear range
of 5-hydroxyindole is shown. g, Violin plots (median, quartiles) of differencesin
RTs measured by three analytical methods between distinct MS instruments:
the qTOF 6454, withwhich the library was built, was compared with asecond
instrument: aqTOF 6530 for ashared panel of 219 reference library metabolites
(top) or aOrbitrap QE for ashared panel of 773 reference library metabolites
(bottom). Mean RT differences (in min) between two instruments by each
method (C18-positive, C18-negative, HILIC-positive, respectively) were as
follows: qTOF versus qTOF, pre-correction: 0.238,0.044,-0.110; post-
correction: -0.023,-0.020, 0.015; qTOF versus QE, pre-correction: 0.151,
0.027,0.196; post-correction: -0.040,-0.021,0.026). Per method, RT
correction was performed by polynomial transformation of the library based
oninter-instrumental RT shifts of 10-20 robustly detected metabolites. Per
method, using the corrected library with aRT tolerance window of 0.2 min,
around 99% of the 219 metabolites tested on the second qTOF and about 94% of
the 773 metabolites tested on the QE were correctly identified.
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Extended DataFig.4|Conserved and unique metabolomicsignatures
across bacterial taxa. a, Schematic of our high-throughput bacterial culture
and sample collection workflow. Panel created with Biorender.com. b, Intra-
replicate Pearson correlation coefficients (triplicates and greater) stratified by
fourteenindependentbacterial culture experiments and three analytical
methods. For each experiment, Pearson correlationrvalues were calculated
forall supernatantand mediumsample replicate groups: n=346 (C18-positive),
n=344(C18-negative) and n=344 (HILIC-positive). Totalion count data were
corrected by internal standards and log-transformed, standardized and scaled,
before computing Pearson correlation values. Box, median, 25th and 75th
percentiles; whiskers, Tukey’s method. ¢, Left, number of medium-specific or
common metabolites detected in the same bacterial strain grownin two
different media (29 strains cultured in two or more of the 12 different media).
Eachdotrepresents the total number of metabolites from asingle comparison
betweentwo mediainwhichastrainhasbeengrown:n=>58 (co-detectedintwo

media), n=116 (detected in one of the two media), n=33 (detected in the mega
medium)and n=16 (detected in polyamine-free medium). Box, median, 25th
and 75th percentiles; whiskers, minimum and maximum. Right, agmatine
productionlevels by B. eggerthii. Dataare mean +s.e.m.from 2-3 independent
experiments, eachwith n=3biological replicates. Pvalues, two-tailed t-test
with Benjamini-Hochberg correction for multiple comparisons. d, Heat map of
metabolomic profiles of 158 bacterial strains grownin megamedium,
clustered by 16S phylogenetic distance. Individual metabolites are
hierarchically clustered (Ward’s method) using Euclidean distance between the
fold-change (log,-transformed) values across all taxonomies. Metabolites
shownaredetectedinatleast 50% of the 158 taxonomies to enable Ward
clustering.e, f,Production or consumption patterns of tyramine and
pantothenicacid across 158 strains grownin mega medium. Dataare

mean ts.e.m.from1-3independent experiments (identified by dot colour),
eachwithn>3biological replicates.
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Extended DataFig. 5| Metabolic profile variationamongrelated bacteria.
a, Pairwise metabolomic profile comparisons between two closely related
strains grown in mega medium: C. sporogenes ATCC15579 and C. cadaveris
HM-1039 (subpanel 1), and among four strains of Bacteroides fragilis (subpanels
2-7):HM-710,HM-711, HM-714 and HM-20. Each dot represents an averaged
fold-change value (log,-transformed) from 1-3 independent experiments, each
withn=3biological replicates. Pearson correlationrvalues of pairwise
metabolomic profile comparisons, performed on standardized and scaled
data: ATCC15579 versus HM-1039 (r=0.063), HM-711 versus HM-710 (r=0.859),

HM-714 versus HM-710 (r= 0.866), HM-714 versus HM-711 (r= 0.880), HM-20
versus HM-710 (r=0.829), HM-20 versus HM-711 (r=0.845) and HM-20 versus
HM-714 (r=0.807). b, Metabolic similarities and variations among closely
related species of C. sporogenes and C. cadaveris, and among different strains
ofthe same species of B. fragilis grown in mega medium. Taxonomies shown
areclustered by 16S phylogenetic distance, and are coloured according to the
distinct phyla. Dataaremeants.e.m.from1-3independent experiments, each
withn=3biological replicates.
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Extended DataFig. 6 | Relationships between phylogeny, taxonomy and
metabolome. a, Metabolomic profiles of 158 bacterial strains grown in mega
medium. Individual taxonomies are clustered by metabolomic profile
distances (fold change, log,-transformed) across all metabolites. Individual
metabolites are hierarchically clustered (Ward’s method) using Euclidean
distance between the fold-change (log,-transformed) values across all
taxonomies. Metabolites shownare detected inatleast 50% of the 158
taxonomiesto enable Ward clustering. b, Metabolic similarities between two
phylogenetically distant species grownin mega medium. Taxonomies are
clustered by metabolomic profile distances (fold change, log,-transformed)

across all metabolites. Dataare mean +s.e.m.of one experiment withn=3
biologicalreplicates. ¢, Scatter plot of pairwise metabolomic profile
comparison between two phylogenetically distant species. Each dot
represents anaveraged fold-change value (log,-transformed) of one
experiment with n=3biological replicates. Pearson correlation of pairwise
metabolomic profile comparison between these two species, performed on
standardized and scaled fold-change data, r=0.7090.d, Venn diagram of
unique and overlapping compounds (by PubChem CID) identified in the
culture supernatant of 158 mega-medium grown strains and caecal contents of
conventional mice.
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Extended DataFig.7 | Multiple data transformationsidentify nonlinear
relationship between phylogenetic and metabolomic distance. a, Heat map
showing the comparison of phylogenetic and metabolomic tree topologies.
Cellsrecord the number of tips for which the neighbourhoods share more
overlap thanexpected (P<0.05; one-sided permutation test). Dataare
stratified by fractional overlap of neighbourhoods and permutation
probability (see Supplementary Methods, ‘Distance comparisons’).

b, Histogram of chemical similarity scores (based on Tanimoto 2D structures)
betweeneach unique pair of compounds (by PubChem CID) detected in the
invitro dataset. For this pairwise comparison, 359 non-co-eluting compounds
were used. ¢, Metabolomic distance tree with each metabolite weighted based
ontheir chemical similarity (left) or unweighted control metabolomic distance
tree (right). The weighted and unweighted matrices were calculated using
uniquely detected, non-co-eluting compoundsin thein vitro dataset, for which
aunique PubChem CID identifier can be assigned to each compound. Two-
sided Mantel test for comparison between the weighted and unweighted
distance matrices: r*=0.863,P=0.001.d, Left, correlation of phylogenetic and
metabolomic distance across pairs of strains coloured by lowest shared
taxonomicrank witha LOESS fit shown. Dashed vertical line occursatx=0.11as
referenced in the text. Right, Metabolomic distance between pairs of strains

binned by the lowest shared taxonomic rank. Species (n=111), genus (n=1,386),
family (n=159), order (n=1,222), class (n=34), phylum (n=1,442) and kingdom
(n=8,442). Box, median, 25th and 75th percentiles; whiskers, Tukey’s method.
e-i, Internal-standard-corrected fold-change data (e-g) and internal-standard-
corrected totalion count data (h, i) were log-transformed and used to calculate
pairwise metabolomic distances between microbial taxa. These distances were
compared to the corresponding pairwise phylogenetic distances generated
fromatreebuilt with the V4 region of 16S (left) or the full-length 16S gene
(right). Dataare plotted witha LOESSfit. Set 1, microorganisms grownin at
least one experiment simultaneously. Set2, microorganisms grownin the same
experimentonly.j, Phylogenetic tree constructed using the full 16S sequences
ofasubset of the strains grownin megamedium. Only strains with available full
16Ssequences are shown (Supplementary Table 6). k, Left, schematic of the
pathway that synthesizes citrulline and ornithine, or synthesizes agmatine
and/or putrescine. Right, the top six matches identified by the comparative
genomics tool MultiGeneBlast within a40-kb search window, when searched
against agenomic database of our strain collection with sequenced genomes.
Horizontal dashed lines between genesrepresent multiple other genes present
within the search window.
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Extended DataFig. 8| Asparagine and glutamine canbe used as sole
nitrogensourcesby most tested Bacteroidetes. a, Top, an example decision
tree from aforest that can differentiate Bacteroidetes versus bacteriafromthe
other four represented phylawith >97% accuracy. For each decision node,
phylum-levelincreases and decreases based on metabolite levels are shown
(relative fold change compared to the bacterial medium controls, log,-
transformed). Actinobacteria (n=20), Bacteroidetes (n=57), Firmicutes
(n=83), Fusobacteria (n=3) and Proteobacteria (n=10). Dashedline,
metabolite threshold. Box, median, 25th and 75th percentiles; whiskers:
Tukey’s method. Bottom, the 10 mostimportant features differentiating the
five tested phyla. Dataare shown as median metabolite log,-fold-change values
for each phylum; metabolites and phylaare ordered by Ward linkage distance.
b, Representative growth curves from two independent experiments, each
withn=3biological replicates for a subset of Bacteroides spp. using modified
SMMwith theindicated nitrogen source. Legend colours for the sole nitrogen
sourceare thesameinb-d. ¢, Representative growth curves of one experiment
withn=>5biological replicates for 60 Bacteroidetes using modified SMM with
theindicated nitrogensources.d, Growth curves of wild-type and mutant

B. thetaiotaomicron (Bt) grownin defined minimal media with either cysteine
(top) (one experiment, n=3 biological replicates) or sodiumsulfide (Na,S,
bottom) assole reduced sulfur sources (one experiment, n=3biological
replicates). e, Amino acid production and consumption levelsin gnotobiotic
mice mono-colonized with B. thetaiotaomicron (one experiment, n =5 mice).
Box, median, 25th and 75th percentiles; whiskers, Tukey’s method. Numeric

labelsinband c correspond to the following: 1, B. acidifaciens DSMZ 15896; 2,
B.caccae ATCC43185; 3, B.caccae BEIHM-728; 4, B. cellulosilyticus BELTHM-726;
5, B. cellulosilyticus DSMZ 14838; 6, B. coprophilus DSMZ 18228; 7, B. dorei BEI
HM-29; 8, B.dorei BEIHM-717; 9, B. dorei BEIHM-718; 10, B. dorei BEIHM-719; 11,
B.doreiDSMZ17855;12, B.eggerthii ATCC27754;13, B. eggerthiiDSMZ 20697;
14, B.finegoldiiBEIHM-727;15, B. finegoldii DSMZ 17565; 16, B. fragilis BEIHM-
20;17,B. fragilisBEIHM-710; 18, B. fragilis BEIHM-711; 19, B. fragilis BEHM-714;
20, B. fragilisNCTC 9343; 21, B. intestinalis DSMZ 17393; 22, B. ovatus ATCC
8483;23, B. ovatus BEIHM-222; 24, B. pectinophilus ATCC 43243; 25, B. plebeius
DSMZ17135; 26, B. salyersiae BEIHM-725; 27, Bacteroides sp. BETHM-18; 28,
Bacteroides sp. BEIHM-189; 29, Bacteroides sp. BEITHM-19; 30, Bacteroides sp.
BEIHM-22; 31, Bacteroides sp. BEIHM-23; 32, Bacteroides sp. BELTHM-258; 33,
Bacteroides sp. BEIHM-27; 34, Bacteroides sp. BEIHM-28; 35, Bacteroides sp. BEI
HM-58; 36, B. stercoris ATCC 43183; 37, B. stercoris BEIHM-1036; 38,

B. thetaiotaomicron3730;39, B. thetaiotaomicron 3731; 40, B. thetaiotaomicron
633;41, B. thetaiotaomicron 7330; 42, B. thetaiotaomicron 7853; 43,

B. thetaiotaomicron 8702; 44, B. thetaiotaomicron 8713; 45, B. thetaiotaomicron
8736;46,B. thetaiotaomicron 940; 47, B. thetaiotaomicron VP15482; 48,

B. thetaiotaomicron WH302; 49, B. thetaiotaomicron WH305; 50, B. uniformis
ATCC 8492; 51, B.vulgatus ATCC 8482; 52, B. vulgatus BEITHM-720; 53,
B.xylanisolvens DSMZ 18836; 54, P. distasonis ATCC 8503; 55, P. distasonis BEI
HM-169; 56, P.johnsonii BETHM-731; 57, P. johnsonii DSMZ 18315; 58, P. merdae
ATCC 43184;59, P. merdae BEIHM-729; 60, P. merdae BEIHM-730.
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Extended DataFig.9|Metabolic contribution by individual gut
microorganismsinamulti-species community. a, a-Ketoglutaric acid levels
infaeces of mice mono-colonized with Anaerostipes sp. BETHM-220. Data are
mean ts.e.m.oftwoindependent experiments, each withn=4 mice (germ-
free) orn=>5o0r 7 mice (Anaerostipes mono-colonized). b, Left, MDMs were
associated with specific bacterial phylaleveraging bothinvivoandinvitro
metabolomic data. Right, number of bacterial strains grown inmega medium
by phylum that produce MDMs identified in the caecal contents of mice
colonized with B. thetaiotaomicron (Bt,n=5) or C. sporogenes (Cs, n=3), or with
asix-member community (n=3). Numbers of strains that produce at least one
ofthese metabolitesin vitro by phylum: Bacteroidetes, n=>52; Firmicutes,
n=60; Proteobacteria, n=8; Actinobacteria, n=16; and Fusobacteria, n=3.
Each metabolite shown was significantly produced bothinvitroandinvivo
(>4-fold, corrected P<0.05). Uniquely detected (non-co-eluting) metabolites
areshown (Supplementary Table 9). ¢, Spearman correlation between
metabolomic profiles (standardized and scaled, log,-transformed, fold-change
data) of individual B. thetaiotaomicron- or C. sporogenes-mono-colonizesd host
biofluids (caecal contents, faeces, serum or urine) and individual bacterial
culture (158 strains grown in mega medium). Coloured dots, Spearman’s
pvalues calculated by comparing metabolomic profiles of individual bacterial

culture versusindividual biofluid of either B. thetaiotaomicron- or
C.sporogenes-mono-colonized mice. Black dots, Spearman’s p calculated using
metabolomic profiles of B. thetaiotaomicron or C. sporogenes, the same strains
used for mono-colonizationinmice.d, Venndiagram of overlapping
metabolites that are significantly produced (>4-fold, corrected P<0.05) in
cultureandin the caecum of colonized mice. e, Principal component analysis
separates metabolomic profiles of identified metabolites by sample typein
each colonization state. Pvalues on metabolomic profile comparisons
betweendifferent sample types of the same colonization state were
determined using PERMANOVA: six-member community (P=0.073) and all
other colonization states (P=0.001).f, Principal component analysis separates
metabolomic profiles of identified metabolites by colonization states. Pvalues
onmetabolomic profilecomparisons between different colonization states of
the same sample type were determined using PERMANOVA: P=0.001 for all
foursample types. g, h, Example chemical structures of significantly produced
metabolites (>4-fold, corrected P<0.05) inserum (g) or urine (h) by each
colonizationstate correspondingto Fig.4b.a,b,d, g, h, Pvalues were
determined using two-tailed Student’s t-tests with Benjamini-Hochberg
correction for multiple comparisons.
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Extended DataFig.10|Metabolic contribution of multi-species
communitiesingnotobiotic mice. a, Proposed host-microbial co-
metabolism pathways that could lead to the synthesis of specific host-

microbial co-metabolitesinthe urine and serum of mice colonized with the six-

member community. b, c, Metabolite levelsin urine (b) and caecal contents (c)
of mice colonized with the six-member community (+Cs) or the five-member
community (-Cs). Metabolites shown represent a panel of significantly
elevated or reduced metabolites (>4-fold, corrected P<0.05) in the six-
member community. Superscript ‘1’in metabolite names, co-eluting
metabolitesas annotated in the MSreference library (Supplementary Table 1).
Superscript 2’ in metabolite names, co-eluting isomeric metabolites with

truncated namesin the figure (2-hydroxy-3-methylpentanoicacid, 2-hydroxy-
4-methylpentanoic acid; and a-galactose 1-phosphate, a-glucose 1-phosphate,
glucose-6-phosphate, mannose 6-phosphate). Dataare mean +s.e.m.of one
experiment with n=6 (urine, six-member community), n=7 (urine, five-
member community) and n=3 (caecal, both six-member and five-member
communities). b, ¢, Pvalues were calculated using two-tailed Student’s t-tests
with Benjamini-Hochberg correction for multiple comparisons.*P<0.05,
**P<0.01,***P<0.001.b, Venn diagram (right) of significantly elevated and
reduced metabolitesinindividual host biofluids (caecal contents, serum and
urine) using the same threshold inb (left).
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Software and code

Policy information about availability of computer code

Data collection  Metabolomics data were collected on Agilent QTOF instruments (models 6530 and 6545) using Agilent's LC/MS Data Acquisition software
(version 10.1). Metabolomics data were also collected on the ThermoFisher Q Exactive HF using Thermo Scientific Xcalibur Data Acquisition
software (version 4.3). Optical density data were collected using the BioTek Gen5 software V3.03.

Data analysis Data were analyzed using Agilent Qualitative Analysis (version B.07.00), the MS-DIAL software (version 3.83), Python-based custom code, and
Prism version 8.0. The bioinformatics pipeline for LC/MS MS/MS library construction, in vitro data processing, and in vivo data processing
were done with custom Python-based code available at the Sonnenburg lab Github site (https://github.com/Sonnenburglab/
Han_and_Van_Treuren_et_al_2021). The JavaScript code for the interactive, web-based software (Metabolomics Data Explorer) is also
available at the Sonnenburg lab Github site (https://github.com/Sonnenburglab/Metabolomics_Data_Explorer). The dependencies for the
Python based code can be found in this .yml file (https://github.com/Sonnenburglab/Han_and_Van_Treuren_et_al_2021/blob/master/
environment.yml) and in the specific scripts found at the Sonnenburg lab Github. Bioinformatics processing of 16S gene sequences was done
with QIIME1 (legacy release available via Conda install: http://giime.org/install/install.html). MultiGeneBlast version 1.1.13, SPAdes version
3.9.1, and prokka version 1.14.5 were used for comparative genomics in search of polyamine biosynthetic genes. Custom Python code was
written to enable the construction of the MS/MS spectra library, the processing and visualization of the in vitro and in vivo LC/MS data, the
optical density and growth curve data, the bioinformatic analysis of 16S and whole genomes, and the analysis of the metabolomics data. Full
code for each of these steps is provided at the Sonnenburg lab GitHub site (https://github.com/Sonnenburglab/
Han_and_Van_Treuren_et_al_2021).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All metabolomics raw data are publicly accessible on the Metabolomics Workbench under study number ST001683 for all in vivo data and study number ST001688
for in vitro data. The MS/MS spectra library constructed on the qgTOF and QE instruments are publicly accessible on the MONA spectra database.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes for the microbial culture (in vitro data) were originally chosen as n =5 (5 biological replicates). Initial work identified that
biological triplicates were sufficient to detect outlier samples (e.g. machine injection failures) and these were used subsequently. See
Extended Data Fig. 2 and 4b, and the in vitro bioinformatics pipeline (https://github.com/SonnenburglLab/
Han_and_Van_Treuren_et_al_2021/tree/master/in_vitro_pipeline_and_analysis) for a full description of these outlier detection methods and
results. When a highly variable sample was identified, it was discarded and the microbe was regrown and the new triplicates compared with
the old triplicates. In some cases, microbes were grown repeatedly to verify inter-experimental variability. All metadata associated with
sample sizes and inter-experiment variability repeats can be found in Supplementary Table 5.

Sample sizes for gnotobiotic animals (in vivo data) were determined based on animal housing and experimental design matching constraints.
In particular, n = 5 was chosen for mouse groups because our mouse facility could supply this number of age, sex, and litter-mate matched
mice for most experiments.

Data exclusions  Metabolomics samples went through a rigorous, multi-step process for quality control. Samples were eliminated if internal standards were
detected significantly below expected values, if the correlation with biological replicates was two standard deviations below the mean, and if
a random forest classifier identified a sample as having been produced by a bacterium found in a different phylum than the actual producing
microbe. These steps, and the samples that were excluded because of them, are given completely in the in vitro bioinformatics pipeline
(https://github.com/Sonnenburglab/Han_and_Van_Treuren_et_al_2021/tree/master/in_vitro_pipeline_and_analysis). The criteria for the
exclusion of samples were a mixture of pre-established (internal standard filter, correlation coefficient filter) and post-hoc (random forest
analysis).

Metabolite features detected on the mass spectrometry instrument from all experiments also underwent a quality control filtering process in
the MS-DIAL software (Extended Data Fig. 1f). Based on the list of feature (or peak) identified for each experiment, each set of aligned peaks
was manually checked in MS-DIAL. Select metabolite features were removed from this list based on pre-established criteria for
misidentification, poor peak shapes, or background contamination peaks. Annotated features that passed this inspection were reported in the
final output file. See details in Materials and Methods.

Replication Growth curves (Fig. 3) were repeated in at least three independent experiments. In vitro experiments for metabolomic profiling were
repeated with at least 3 biological replicates (3 independent cultures) in one or more independent experiments. In vivo mouse experiments
for metabolomic profiling were repeated with at least three mice per condition in one or more independent experiments. Please see details
on the number of biological replicates and independent experimental repeats described in relevant figure legends.

Randomization For in vitro studies, randomization of sample injection order was not conducted. Internal standards were monitored for injection-order,
sample storage time, and carry-over effects. No significant effects were found. The injection order of all samples reported in this study can be
found in Supplementary Table 5. The microbes selected for each growth and LC/MS measurement were selected pseudo-randomly; there was
an imbalance of phylogenetic covariates (e.g., some experiments had more Bacteroidetes than others) but inter-experiment replication was
carried out to mitigate any statistical effects.

For mouse experiments (in vivo studies), mice were assigned to treatment groups randomly taking into account age, sex, and litter-mate
matching.

Blinding Mouse experiments (in vivo studies) were not blinded because no subjective measurement modalities were employed (e.g. no tissue histology
scoring). All mouse metabolomic samples were prepared in the same way regardless of group and monitored as described in the “Data
Exclusions” section.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |X| |:| MRI-based neuroimaging
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Dual use research of concern

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mouse experiments were performed on gnotobiotic Swiss Webster germ-free mice (males, 10-14 weeks of age, n = 3-8 per group for
all experiments) or Swiss-Webster Excluded Flora mice (“conventional mice”, males, 10-14 weeks of age, n = 3 per group)
maintained in aseptic isolators, and originally obtained from Taconic Bioscience. Mice were maintained on a 12-hour light/dark cycle
at 69°F in ambient humidity, fed ad libitum, and maintained in flexible film gnotobiotic isolators for the duration of all experiments
(Class Biologically Clean, Madison WI).

Wild animals No wild animals were used in this study.
Field-collected samples  No field-collected samples were used in this study.

Ethics oversight All animal experiments were performed in accordance with the Stanford Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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