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Observation of first and second sound in a 
BKT superfluid
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Superfluidity in its various forms has been of interest since the observation of 
frictionless flow in liquid helium II1,2. In three spatial dimensions it is conceptually 
associated with the emergence of long-range order at a critical temperature. One of 
the hallmarks of superfluidity, as predicted by the two-fluid model3,4 and observed in 
both liquid helium5 and in ultracold atomic gases6,7, is the existence of two kinds of 
sound excitation—the first and second sound. In two-dimensional systems, thermal 
fluctuations preclude long-range order8,9; however, superfluidity nevertheless 
emerges at a non-zero critical temperature through the infinite-order Berezinskii–
Kosterlitz–Thouless (BKT) transition10,11, which is associated with a universal jump12 in 
the superfluid density without any discontinuities in the thermodynamic properties 
of the fluid. BKT superfluids are also predicted to support two sounds, but so far this 
has not been observed experimentally. Here we observe first and second sound in a 
homogeneous two-dimensional atomic Bose gas, and use the two temperature- 
dependent sound speeds to determine the superfluid density of the gas13–16. Our 
results agree with the predictions of BKT theory, including the prediction of a 
universal jump in the superfluid density at the critical temperature.

The hydrodynamic two-fluid theory4 models a fluid below the critical 
temperature, Tc, as a mixture of a superfluid component and a viscous 
normal component that carries all the entropy, and assumes that the 
two are in local thermodynamic equilibrium. The two sounds then cor-
respond to different variations of the total density and the entropy per 
particle. In three dimensions in the nearly incompressible liquid helium, 
the higher-speed first sound is a pure density wave and the lower-speed 
second sound is a pure entropy wave; more generally, both sounds 
can involve variations in both density and entropy17. At temperatures 
greater than Tc, the normal fluid supports just the first-sound density 
wave, and so the appearance of the second sound mode is a clear mani-
festation of superfluidity.

The two-sound phenomenology is also expected to hold for 
two-dimensional superfluids, despite the unconventional nature of 
the infinite-order BKT phase transition. However, in liquid-helium 
films, in which the BKT transition was first observed18, the propaga-
tion of both first and second sound is inhibited because the viscous 
normal component is pinned by the substrate. In two-dimensional 
atomic gases, in which many complementary BKT experiments have 
been performed19–31, only one sound mode has been seen so far. In a 
weakly interacting Bose gas, collisionless sound was observed31–33 (see 
also ref. 34) and showed no discontinuity at Tc, whereas in a strongly 
interacting Fermi gas, one pure density mode was observed35 at tem-
peratures well below Tc.

Here we observe both first and second sound in the long-wavelength 
density response of a homogeneous two-dimensional Bose gas to an 
external driving force (Fig. 1a). In our 39K gas, which has a surface 

density n ≈ 3 μm−2 and is characterized by a dimensionless interaction 
strength24,36 g̃ = 0.64(3) (all uncertainties correspond to one standard 
deviation), the elastic collision rate is sufficiently high for collisional 
hydrodynamic behaviour. Specifically, near Tc it is about four times 
larger than the observed first-sound (angular) frequency ω1; for  
comparison, in the experiment of ref. 31, for an 87Rb gas with a similar 
geometry and larger n (~50 μm−2) but smaller g̃  (0.16), the elastic  
collision rate and the expected16 ω1 were approximately equal near  
the critical point. At the same time, the compressibility of our gas near 
Tc is sufficiently high for our driving force to excite both sounds  
effectively16,17.

Our homogeneous two-dimensional gases are prepared in a node of 
a vertical one-dimensional optical lattice (Fig. 1b, green) with harmonic 
trap frequency ωz/(2π) = 5.5(1) kHz. They are deep in the two-dimensional 
regime; both the interaction and thermal energy per particle are below 
0.3ħωz, where ħ is the reduced Planck’s constant. In the x–y plane, we 
confine the atoms to a rectangular box of size Lx × Ly and potential-energy 
wall height U0 using a hollow laser beam (Fig. 1b, red); we tune U0/kB, 
where kB is the Boltzmann constant, to between 100 and 300 nK to  
vary the gas temperature T (Methods). We control the interaction 
strength g mω ħ a˜ = 8π /z , where m is the atom mass and a the scatter-
ing length24, via a magnetic Feshbach resonance37 at 402.7 G. Our value 
of g̃ corresponds to a relatively high a = 522(23)a0, where a0 is the Bohr 
radius, which results in noticeable three-body losses; during the meas-
urements (such as those in Fig. 1c) the sample slowly decays (without 
heating), but n stays within 15% of its average value and the data are 
fitted well by assuming a steady-state oscillation.
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The driving force Fy = F0 sin(ωt) is aligned along the y direction, 
spatially uniform, and oscillating sinusoidally in time, t. It excites the 
longest-wavelength sound mode(s)38, with wavevector q = π/Ly. The 
resulting density perturbation δn(y, t) is proportional to sin(πy/Ly), 
with y = 0 in the box centre, and we define its oscillating amplitude b(t) 
such that δn(y, t)/n = b(t) sin(πy/Ly). The corresponding displacement 
of the centre of mass of the cloud is then d(t) = 2b(t)Ly/π2. We choose the 

driving-force amplitude F0 so that even for resonant ω the maximal d(t) 
is a few per cent of Ly (Fig. 1c) and fit d(t) = R(ω)sin(ωt) − A(ω)cos(ωt), 
which gives the reactive (R) and absorptive (A) response.

We focus on A(ω), which is proportional to the imaginary part of the 
density response function (Methods) and reveals the phase transition. 
From energy conservation, namely the equality of the excitation energy 
and the energy pumped into the system, it follows that the response 
spectrum A(ω) must satisfy the f sum rule39

∫f ω ω
A ω
F m

= d
π ( )
8 /

= 1 , (1)sum −∞

∞

0

with different excitation modes contributing to fsum according to their 
oscillator strengths. Experimentally verifying that fsum = 1 ensures that 
all modes have been observed. In our case, below Tc the excitation spec-
trum should consist of first and second sound, with contributions f1 
and f2, respectively, to fsum. Above Tc the second-sound mode vanishes 
and a diffusive heat mode should appear; this mode also couples to 
the density and contributes fdiff to fsum (Methods). From A(ω) we also 
obtain the dynamical structure factor17 S(q, ω) = πq2kBTA(ω)/(8ωF0), 
which reveals the qualitative difference between propagating sound 
modes and the diffusive mode40,41—for the former, S(ω) has a maximum 
at non-zero ω, whereas for the latter, the maximum occurs at ω = 0.

Figure 2a, b shows the different responses of the system below and 
above the critical temperature. Here we express all results in dimension-
less form, using the Bogoliubov frequency ωB = cBq, where c ħ ng m= ˜ /B  
≈ 2.3 mm s−1 is the Bogoliubov sound speed. Specifically, we define 
A mω A F˜ = π /(8 )B

2
0 , so ∫f ω ωA ω= d ˜/sum B

2 and S k TA mc ω= ˜/( )B B
2 ; for the 

fitting procedure, see Methods. In Fig. 2a, the two resolved resonances 
observed below Tc correspond to the first and second sound, and the 
resonance frequencies ω1 and ω2 < ω1 give the sound speeds c1,2 = ω1,2/q. 
Above Tc, the sole resonance is attributed to the first sound, whereas 
the low-frequency ‘shoulder’ is attributed to the diffusive mode that 
replaces the second sound. Figure 2b shows the corresponding S(ω), 
and the inset highlights the difference between second sound (c2 > 0) 
and the diffusive mode corresponding to c2 = 0. The width of the dif-
fusive mode gives the thermal diffusivity DT = 5(2)ħ/m. With a caveat 
that our sound resonances might be broadened by the loss-induced 
density drift, their widths imply sound diffusivities Ds,1 = 7(1)ħ/m and 
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Fig. 1 | Sound excitations in a homogeneous two-dimensional Bose gas.  
a, An in-plane, spatially-uniform force Fy(t) = F0sin(ωt), created by a magnetic 
field gradient, is applied on a homogeneous optically trapped two-dimensional 
gas. This excites long-wavelength density modulations with wavevector 
q = π/Ly, which results in a displacement of the cloud’s centre of mass, d(t). On 
resonance, d oscillates π/2 out of phase from Fy. b, Top, outline of the trapping 
setup; bottom, an absorption image of the two-dimensional gas. c, An example 
of d(t) oscillation, for a gas below Tc and ω/(2π) = 25 Hz near the second-sound 
resonance; for comparison, Ly ≈ 33 μm. The green dashed curve indicates the 
phase of Fy(t).
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Fig. 2 | First and second sound. a, Normalized response spectra A ω˜( ) at 0.91Tc 
and 1.17Tc for n ≈ 3 μm−2, Ly ≈ 33 μm and F0/m ≈ 0.074 m s−2. Below Tc (top) we 
observe two resonances corresponding to the first (dotted) and second 
(dashed) sound. Above Tc (bottom) we instead observe just the first-sound 
resonance (dotted), while the second sound is replaced by a diffusive, 
overdamped mode (dashed). b, The corresponding dynamical structure 
factors S(ω). Here the diffusive mode has a maximum at ω = 0, so its distinction 
from the second-sound resonance is clearer. The inset shows the fitted 
contributions to S(ω) from the second sound below Tc (blue) and the diffusive 
mode above Tc (red), omitting for clarity the first-sound contributions S1(ω), 

which are similar at the two temperatures. c, The f sum rule and the critical 
point. Top, the f sum rule is verified over a wide range of temperatures. Bottom, 
f2, the second-sound contribution to the constant fsum, vanishes with increasing 
T and is used to experimentally identify Tc. The blue shading shows the 
theoretical prediction for an infinite dissipationless system, with no free 
parameters. The thickness of the shaded area reflects the theoretical 
variations due to the uncertainty in g̃ . The dashed line indicates the predicted 
discontinuity in f2 at Tc, which arises from the jump in the superfluid density. 
The error bars in all panels show standard fitting errors.
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10(2)ħ/m for the first sound below and above Tc, respectively, and 
Ds,2 = 6(1)ħ/m for the second sound below Tc. For comparison, sound 
diffusivities that are several times lower, at approximately ħ/m, were 
observed in strongly interacting two-dimensional35 and three- 
dimensional42 Fermi gases.

In Fig. 2c we plot the fitted fsum for a range of temperatures, showing 
that it always satisfies the f sum rule. We also show how f2 vanishes with 
increasing T, a finding that we used to experimentally identify Tc. In 
absolute terms, including our systematic uncertainties in n and T (Meth-
ods), Tc = 42(4) nK for n = 3.0(5) μm−2, which is compatible with the BKT 
prediction13 T nħ mk g= 2π /[ ln(380/ ~ )]c

2
B   = 37(6) nK. In a finite-size sys-

tem the transition is rounded-off into a crossover19,43–45 (see also  
refs. 18,34 for non-zero-ω effects), and for our system parameters this 
could indeed increase Tc by approximately 10%; however, within our 
errors this shift is not conclusive.

Figure 3a displays the temperature-dependent speeds of the first and 
second sound, normalized to cB. The solid lines represent values pre-
dicted according to infinite-system theory15,16 without any free param-
eters, and are generally in good agreement with the data. Crucially, these 
theoretical results rely on both thermodynamic calculations and the 
predictions of the superfluid density11,12,14. The relevant thermodynamic 
calculations were performed in ref. 14 assuming g̃  ≪ 1; however, previous 
experiments have verified their applicability for a wide range of interac-
tion strengths22,23,26, including the one used in this work. Regarding the 
superfluid density ns, a key prediction of the infinite-system BKT theory 
is that it exhibits a jump12 at Tc from 0 to 4/λ2, where λ is the thermal 
wavelength. For our value of g̃, the most pronounced effect of this jump 
is a discontinuity in c2 of about 0.45cB, with less pronounced disconti-
nuities in c1 and f2 (see Fig. 2c)15. For our data at T/Tc < 0.75, where the 
expected superfluid fraction is close to 100% and c2 ≈ cB, the predictions 
for c1 are not reliable because they are very sensitive to the exact value 
of the vanishingly small normal-component density16.

Finally, instead of comparing the measured and predicted sound 
speeds, we can combine our measurements of c1,2 and the previously 
verified22,23,26 thermodynamic calculations14 to deduce ns and compare 
it directly with theory12,14 (Methods); a similar procedure was previously 
used for a strongly interacting three-dimensional Fermi superfluid7. 
In Fig. 3b, we plot the deduced superfluid phase-space density n λ=s s

2D  
versus / cD D , where D nλ= 2 is the total phase-space density and cD  is its 
critical value. The solid line is the theoretical prediction14 without any 
free parameters, which shows the universal, g̃-independent jump of 
Ds from 0 to 4 at the critical point.

Our experiments establish the applicability of the two-fluid model 
to unconventional BKT superfluids. We provide the first—to our 

knowledge—measurement of the superfluid density in an atomic 
two-dimensional gas, and experimentally demonstrate the predicted 
universal jump at the critical point. Our measurements also extend into 
the low-temperature regime, in which a complete theoretical picture 
is not yet available. An experimental challenge for future work is to 
explore even lower temperatures, at which hybridization of the first 
and second sound is expected46,47. More generally, establishing meas-
urements of the superfluid density in two-dimensional quantum gases 
provides an invaluable diagnostic tool for many future studies, includ-
ing exploration of non-equilibrium phenomena and of the effects of 
disorder on superfluidity.
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Methods

Optical confinement of the two-dimensional gas
The one-dimensional optical lattice and the rectangular hollow beam 
are blue-detuned from the atomic resonance, and create repulsive 
potentials for the atoms. Both are shaped using digital micromirror 
devices (DMDs). The hollow beam providing the in-plane confinement 
has a wavelength of 760 nm and is created by direct imaging of a DMD 
pattern. The vertical one-dimensional lattice is made of 532-nm light 
and is created by Fourier imaging of a DMD pattern, which allows 
dynamical tuning of the lattice period Δz. Specifically, using a DMD we 
create two horizontal light strips, each of width corresponding to  
50 micromirror pixels, separated vertically by ΔZ, so their interference 
in the Fourier plane creates a lattice with Δz ∝ 1/ΔZ. We additionally 
impose a phase shift of π between the two interfering beams, which 
places the central node of the symmetric interference pattern at z = 0 
independently of the varying Δz. To dynamically change Δz we shift 
the DMD pattern pixel by pixel (moving the two light strips symmetri-
cally in opposite directions) in 25-ms steps. We start with a large  
Δz = 18.5 μm to load a three-dimensional gas, pre-cooled as in ref. 48, 
into a single lattice node. We then reduce Δz over a period of 1.5 s to  
3.3 μm in order to compress the gas into the two-dimensional geom-
etry. In the final two-dimensional configuration, the lattice depth 
around the central node is Uz ≈ 3.0 μK, giving the trap frequency 
ω z U m/(2π) = (Δ ) /(2 )z z

−1  = 5.5 kHz.

Calibration of the experimental parameters
Our absorption imaging system, used to measure the cloud density 
n, is calibrated with a systematic uncertainty of 15% using measure-
ments of the critical temperature for Bose–Einstein condensation in 
a three-dimensional harmonic trap49; this calibration also agrees with 
an independent one that is based on the rates of the density-dependent 
three-body decay50. We assess the absolute gas temperature with a sys-
tematic uncertainty of 10% using measurements of the scale-invariant 
two-dimensional equation of state14,22,23,26, as in ref. 31; we have made 
equation of state measurements for several trap depths U0 and also 
different trap dimensions Lx and Ly, which show linear dependence of 
T on U0. The wavevector q = π/Ly is determined using in situ absorp-
tion images (such as the one shown in Fig. 1b), with a systematic 5% 
error due to the fact that the cloud edges are not infinitely sharp; the 
half-wavelength of the density modulation closely corresponds to the 
length of the region in which the density is greater than 90% of its value 
in the bulk. The driving-force amplitude F0 is calibrated with an error of 
5% by applying a constant force on a cloud released from the trap and 
measuring the resulting centre-of-mass acceleration.

Response function, f sum rule and S(ω)
The density response function is defined in Fourier space as  
χnn(q, ω) = δn(q, ω)/δU(q, ω), where δU(q, ω) is the driving potential. Our 
monochromatic and spatially uniform driving force corresponds to a 
potential −F0 y sin(ωt) for −Ly/2 ≤ y ≤ Ly/2, and Fourier decomposition 
of this gives δU(q = π/Ly, ω) = −4F0Ly/π2. Following our definition of 
A(ω) gives Im[χnn(q = π/Ly, ω)] = −π2nq2A(ω)/(8F0). Inserting this into 
the conventional form of the f sum rule39,

∫ ω ω χ q ω
nq
m

d Im[ ( , )] = −
π

, (2)
∞

−∞
nn

2

gives the dimensionless sum rule in equation (1), which is insensi-
tive to uncertainties and variations in n and q. Our dimensionless 
results in Fig. 2c (and also Fig. 3) are also not affected by changes 
in F0; for these measurements we have varied F0 by a factor of 3. We 
have also varied q by about 50%, by using two different box sizes of  
(Lx, Ly) ≈ (21 μm, 33 μm) and (56 μm, 23 μm). The dynamical structure 
factor is (for kBT ≫ ħω, which is always satisfied in our experiments) 

given by S(q, ω) = −kBT Im[χnn(q, ω)]/(πnω), which is equivalent to the 
form given in the text in terms of A(ω).

Fits of the response spectra
In the two-fluid model, ignoring dissipation, the density response 
function is17

χ q ω
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m
Z

ω c q
Z

ω c q
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2
1
2 2

2
2

2
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with the two poles giving the sound speeds c1,2, and Z1 + Z2 = 1 to satisfy 
the f sum rule. Including linear damping51, we fit the experimental spec-
tra with A(ω) = A1(ω) + A2(ω), where

A ω
x ω Γ ω

ω ω ωΓ
( ) =

( − ) + ( )
. (4)1,2

1,2 1,2
2

1,2
2

1,2
2 2

1,2
2

Here the amplitudes x1,2, resonance frequencies ω1,2 (with ω1 > ω2) and 
damping rates Γ1,2, are fit parameters, and the sound diffusivities are 
then given by Γ1,2/q2. For consistency, we first apply the same fit to the 
data taken at all temperatures, and find that it always captures the data 
well and gives fsum ≈ 1 (Fig. 2c). The first sound is always underdamped 
and the A1 term gives f1, its contribution to fsum. For the spectra identi-
fied as being below Tc (as in the top panel of Fig. 2a), the fit gives that 
the second sound is also underdamped, and its contribution to S(ω) 
peaks at a non-zero ω. In this case A2 gives the non-zero f2 contribution 
to fsum. For the data identified as being above Tc (as in the bottom panel 
of Fig. 2a), the second term in the fit function shows that this mode is 
overdamped, and its contribution to S(ω) peaks at ω = 0. This demon-
strates, in an unbiased way, that the second sound is replaced by the 
diffusive mode. In this case the A2 term gives fdiff, the diffusive-mode 
contribution to fsum, with f1 + fdiff ≈ 1, while f2 = 0. Note that approximat-
ing the diffusive mode by a δ-function response17 at ω = 0 gives fdiff = 0, 
but in reality this mode has a non-zero contribution to the experi-
mental fsum shown in Fig. 2c (top). To quantitatively assess the thermal  
diffusivity DT, following refs. 51,52 we refit the data for T > Tc with A(ω) =  
A1(ω) + AT(ω), where

A ω
x Γ ω

ω Γ
( ) =

+
(5)T

T T
2

T
2

corresponds to a contribution to S(ω) that is a Lorentzian centred at 
ω = 0, and gives DT = ΓT/q2.

Sound speeds and the superfluid density
The theoretical predictions for the two sound speeds, c1 and c2, are the 
solutions of the quartic equation for c:

c c c c c c γ− ( + ) + / = 0, (6)4
10
2

20
2 2

10
2

20
2

where c10
2  = 1/(mnκS) and c 20

2  = Ts2ns/[mcV(n − ns)]; here cV is the specific 
heat per particle at constant volume, s is the entropy per particle and 
γ = κT/κS ≥ 1 is the ratio of the isothermal and isentropic compressibi-
lites17,51. As detailed in equations (2) and (3) of ref. 15, all the relevant 
thermodynamic quantities are linked to the phase-space density cal-
culated in ref. 14 and experimentally verified in refs. 22,23,26. Crucially, in 
addition to these thermodynamic quantities, c20 explicitly depends on 
the superfluid density ns. For γ → 1, which is the case in nearly incom-
pressible superfluids such as three-dimensional liquid helium and 
unitary Fermi gases, c1 → c10 and c2 → c20, so to a good approximation 
only c2 depends on ns. However, when γ is clearly distinct from 1, which 
is typically the case for a Bose gas near Tc, both sound speeds depend 
on ns; for our value of g̃, we find γ ≈ 1.6 at the critical temperature16. The 
theoretical speeds14–16 in Fig. 3a are based on the previously verified 
thermodynamic predictions and the hitherto unverified predictions 
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for ns. Conversely, we can use our measured c1 and c2 (for T < Tc), which 
together give c20, and the established thermodynamic calculations to 
deduce ns; this gives the results shown in Fig. 3b. Note that owing to 
the scale-invariance in two dimensions22,23, for a given g̃ both the super-
fluid fraction and all the thermodynamic quantities depend only  
on T/Tc.
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