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Odoursare transported in turbulent plumes, which result in rapid concentration
fluctuations®* that contain rich information about the olfactory scenery, such as the

composition and location of an odour source**. However, it is unclear whether the
mammalian olfactory system can use the underlying temporal structure to extract
information about the environment. Here we show that ten-millisecond odour pulse
patterns produce distinct responses in olfactory receptor neurons. In operant
conditioning experiments, mice discriminated temporal correlations of rapidly
fluctuating odours at frequencies of up to 40 Hz. Inimaging and electrophysiological
recordings, such correlation information could be readily extracted from the activity
of mitral and tufted cells—the output neurons of the olfactory bulb. Furthermore,
temporal correlation of odour concentrations® reliably predicted whether odorants
emerged from the same or different sources in naturalistic environments with
complex airflow. Experiments in which mice were trained on such tasks and probed
using synthetic correlated stimuli at different frequencies suggest that mice can use
the temporal structure of odours to extract information about space. Thus, the
mammalian olfactory system has access to unexpectedly fast temporal features in
odour stimuli. This endows animals with the capacity to overcome key behavioural
challenges such as odour source separation’, figure-ground segregation® and odour
localization” by extracting information about space from temporal odour dynamics.

The turbulent nature of air**® and water®'° flow results in complex
temporal fluctuations in odour concentration that depend on the
distance and direction of odour sources’*#°, Insects are thought
to use the temporal structure of odour plumes to infer, for example,
the location*”" or composition™™ of an odour source. Mammalian
olfaction, by contrast, has generally been considered a slow sense.
Individual sniffs are thought to be the unit of information'®, imply-
ing that fast changes in odour concentration (at sub-sniff resolution)
should beinaccessible to the mammalian olfactory system. However,
the neural circuitry of, for example, the mouse olfactory bulb (OB) isin
principle capable of millisecond-precise action potential firing™”'%, and
is endowed with rich computational resources that could be used to
extract fine temporal information from dynamicinputs®. Here we show
that the mouse olfactory system has access to fast, sub-sniff temporal
patterns in the odour scenery and that mice can use this information
todetect high-frequency odour correlations, thereby enabling source
separation.

Fast odour dynamics encoded in OB inputs

Normal airflowis characterized by complex, often turbulent, flow pat-
terns and imposes arich temporal structure on odour concentration
profiles, with substantial power in frequencies well above typical sniff

rates (Fig.1a). To assess whether the mouse olfactory system has access
tothisfrequency regime, we designed an odour delivery systemthat can
reliably present odours withabandwidth beyond 50 Hz (Fig. 1b, Supple-
mentary Fig.1). As prototypical, simplistic high-frequency stimuli, we
used two 10-ms square pulses of odour separated by 10 or 25 ms (Fig. 1c).
Olfactory sensory neurons (OSNs) are known to be slow in responding
to odour stimuli?®. Both epithelial mucus and the biochemical transduc-
tion cascade act as low-pass filters'®**?, which suggests that individual
OSNs cannot directly follow rapidly fluctuating odour stimuli. However,
axons from up to tens of thousands of OSNs that express the same
olfactory receptor converge onto one or a few glomeruli in the OB*.
This organization resembles the auditory system, in which—despite
therelatively low temporal resolution of individual cells—population
responses faithfully report high-frequency signals?. Thus, we built a
model of populations of noisy integrate-and-fire neurons with stimu-
lus filtering and neuronal dynamics that matched experimental data
to investigate whether this large convergence could aid in detecting
high-frequency stimuliin OSNs (Extended Data Fig. 1). Our simulation
results suggest that across the thousands of OSNs that express the
same OR—although still not directly following the odour profile—the
population can faithfully discriminate between such 10-ms or 25-ms
stimuli (Extended DataFig.1d, f, h). Key high-frequency informationin
the odour profile might, therefore, be preservedin theinputs tothe OB.
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Fig.1|Sub-sniffdetection of odour signalsin olfactorybulbinputs. a, Left,
example odour plume recorded outdoors under natural, complex airflow
conditions using a photoionization detector (PID). Right, averaged power
spectrumofallrecorded odour plumes (n=37 plumes, mean +s.d. of log
power); dark grey, typical range of mouse sniff frequencies. b, Left,
multi-channel high-bandwidth odour delivery device. Middle, representative
odour pulserecordings at command frequencies between S5and 50 Hz. ppm,
parts per million. Right, relationship of frequency and odour pulse signal
fidelity (Methods; n=>5repeats for each frequency, mean+s.e.m.,
SupplementaryFig.1). c, Left, odour and flow traces of stimuli with paired
pulseinterval (PPI) of 10 ms (top) and 25 ms (bottom); dark grey shading, valve
commands. Right, stimuliare presented during the inhalation phase of the
respiration cycle.d, The two-photonimaging approach. e, GCaMP6f

To test this experimentally, we performed Ca® imaging experiments
in anaesthetized and awake mice expressing the calcium indicator
GCaMPé6fin OSNs (Fig. 1c-i, Extended Data Fig. 2) while we delivered
odour pulseslocked toinhalation (Fig. 1c, d). Overall, responses for all
glomeruli were highly correlated between the two stimuli (Fig. 1f, g).
Glomerular activity did not directly follow the 10-ms or 25-ms pulses
(Fig. 1f). However, in one-third of glomeruli (n =33 of 100, P < 0.01),
responses were consistently and significantly different for the two
stimuli (Fig. 1f-h, Extended Data Fig. 2), mirroring the simulation
results (Extended Data Fig. 1). Notably, just a few dozen randomly
chosen glomeruli were sufficient to discern between the stimuli at
more than 80% success rate with a linear classifier (Fig. 1i, Extended
Data Fig. 1h). Expanding the stimulus set to different concentrations
and multiple pulses (Extended Data Fig. 2) confirmed thatinformation
about concentration and temporal patterns with features exceeding
the 25-ms timescale is reliably and independently preserved in the
population of OSNs.

Discrimination of correlation structure

To investigate whether mice can base their behaviour on such high-
frequency stimuli, we trained mice in an automated go/no-go oper-
ant conditioning system (AutonoMouse?*) (Fig. 2a, Supplementary
Video 1) to discriminate between high-frequency stimuli. To ensure
that the brief odour pulses were delivered during inhalation in freely
moving mice, we opted for 2-s pulse trains at different frequencies with
constant airflow (Fig. 2b). Mice could discriminate whether an odour
was presented at, for example, 4 Hz or 20 Hz, but the apparent ‘criti-
cal flicker frequency’ (Fig. 2c, Extended Data Fig. 3) was significantly
lower than frequencies that are readily represented by OSNs (Fig. 1,
Extended DataFigs.1,2). However, in both visual and auditory systems,
conventional flicker fusion frequency or gap detection thresholds
substantially underestimate the temporal sensitivity, particularly for
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fluorescence recorded in OB glomeruli (maximum projection of 8,200 frames,
numbered glomerulicorrespond to exampletracesinf).Scalebar, 50 pm.

f, Top, example calcium traces in response to odour stimuli with PPIs of 10 or
25ms (meanoftentrials £s.e.m., unpaired two-sided t-test for 2-sresponse
integral from odour onset). Bottom, examplerespiration trace. g, Calcium
transients as colour maps for odour stimuliwith PPI10 ms or 25 ms, and the
difference between the two. Glomeruliare sorted by response magnitude to
the PPI110-ms stimulus. h, Glomerular responses sorted by magnitude of
differenceinresponse to PP110 ms and PP125 ms. i, Classifier accuracy over all
glomeruliwhenalinear classifier was trained on several response windows
(colours; black, shuffled control) to stimuli with PP110 ms versus 25 ms (n=up
to100 glomerulifrom 5 mice; mean +s.d. of 500 repetitions). Throughout,
ethylbutyrate was used as the odour stimulus.

tasks with multiple stimuli present®??: In vision, for example, flicker
fusion frequency is around 60 Hz, whereas thresholds for detecting
synchrony between stimuli have been reported to be 3 ms?. Therefore,
we wanted to probe whether olfactory tasks involving multiple odours
could also reveal behavioural access to higher frequencies. We pre-
sented stimuli composed of two odours that fluctuatedin a correlated
or anti-correlated manner as the rewarded and unrewarded stimulus,
respectively (and vice versa) (Fig. 2d-f). Mice readily learned to respond
differentially to correlated or anti-correlated odours (Fig. 2h-k). A
gradualincreaseinthe correlation frequency showed that mice could
reliably detect the correlation structure of stimuli at frequencies of
up to 40 Hz (Fig. 2h, j, k). As a population, performance decreased by
approximately 5% per octave, with performance significantly above
chance at frequencies of up to 40 Hz (n =33 mice in two cohorts of
14 and 19 mice) (Fig. 2k). To mitigate the risk of mice using unintended
cues for discrimination, odours were presented from changing valve
combinations (Fig.2g, Extended DataFig.4), and odour flow was care-
fully calibrated (Fig. 2e, Extended DataFig. 4d, e) and varied randomly
between trials so that neither flow, valve clicking noises nor average
concentration provided any information about the nature of the stimu-
lus (Extended Data Fig.4d-h). Consistent with this, when valve identi-
ties were scrambled, mice performed at chance (Fig. 2k). Finally, when
odour presentation was changed to a new set of valves, performance
levels were maintained (Fig.2g-i, Extended Data Fig. 4i-k), indicating
thatonly intended cues (the temporal structures of odours) were used
for discrimination. Performance was independent of the odour pair
used (Extended Data Fig. 3g) and was maintained for tasks in which
the mice had to distinguish correlated from uncorrelated (rather than
anti-correlated) odours (Extended DataFig. 3e, f).

Mice tended to take more time to detect the correlation structure of
stimuli with higher fluctuation frequencies (Extended Data Fig. 5j-1).
This was most pronounced for mice with higher overall performance
(Extended DataFig. 5j). Accuracy strongly correlated with reactiontime
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Fig.2|Mice candiscriminate odour correlationstructure at frequencies up
to40Hz.a, Theautomated operant conditioning system (AutonoMouse)
housing cohorts of up to 25 animals. b, Left, representative trace of a20-Hz
odour pulse train (top) and corresponding stable airflow (bottom). Right,
relationship between frequency and totalamount of odour released (n=5
repeats for each frequency, mean +s.e.m.).c, Group accuracy in frequency
discrimination task (n=10 mice, P<0.001 for all stimuli compared to chance
(paired two-sided t-test); Extended DataFig. 3). Thick lines, medians; boxes,
25th-75th percentiles; whiskers, most extreme data points not considered
outliers (Methods). d, Left, valve commands to release two odours fluctuating
at20Hzinacorrelated (top) or anti-correlated (bottom) manner. Right,
resulting odour concentration changes measured using dual-energy PIDs
(Supplementary Fig.2). e, Odour (left) and flow (right) signals for correlated
and anti-correlated stimuli fluctuating at 20 Hz (n = 60 trials for each condition;
odour, P=0.19; flow, P=0.23; unpaired two-sided t-test). Black dots, medians;

acrossall stimuliand mice (Extended Data Fig. 5k), despite the fact that
totaltime of odour delivery was the same across all trials regardless of
stimulus frequency. Consequently, when analysis was restricted to trials
inwhich mice sampled the stimuli for long enough—for example, for at
least 750 ms—performance significantly increased across frequencies
(Extended DataFig. 51). Thisindicates that the measured performance
might not be the psychophysical limit for discrimination of fluctuating
odour stimuli. Furthermore, this suggests that mice integrate informa-
tion across large portions of the presented stimuli, rather than, for
example, detecting simultaneity of odour onset* to determine whether
odourswere correlated or not. Todirectly test this possible strategy, we
interleaved training trials with probe trials in which the onset charac-
teristics were flipped (Extended Data Fig. 5f-i). Notably, performance
did not drop substantially (Extended Data Fig. 5h, i), consistent witha
strategy thatrelies primarily ondiscerning the high-frequency correla-
tion structure of the stimulus over several hundreds of milliseconds,
rather thanthe onset only (Extended DataFig. 5f, g, i). Sniffrate, in turn,
was independent of the correlation frequency of stimuli presented
(Extended Data Fig. 5a-e).

Odour correlation encoded in OB output

To assess how this high-frequency information is represented and
reformatted in the olfactory system, we imaged neural activity in
response to high-frequency stimuli (Fig. 3). Ca*" imaging of OSN
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Task Hz
black bar, second and third quartiles. f, Discrimination stimuli; mice were
trained to discriminate between two odours presented simultaneously in
eitheracorrelated (top) or anti-correlated (bottom) fashioninastandard
go/no-go paradigm. g, Valve combinations for stimulus production. Train: six
valves are used to produce the stimulus through varying valve combinations.
Switch control: two extravalves are introduced and odour presentation is
switched over to the newly introduced valves. h, Data for example mouse
performingthe correlation discrimination task at different frequencies.
1,1, time of newvalveintroductionasini.i, Trial response maps before and
after switchto control valves (n=12trials before and 12 trials after new valve
introduction; Extended DataFig. 4).j, Accuracy of three representative mice
when stimulus pulse frequency israndomized from trial to trial. k, Group
accuracy for the experimentinj (n =33 training mice, n=5control mice,
n=9.3x10°trials). Throughout, isoamyl acetate and ethyl butyrate were used
asodour stimuli.

responses to correlated and anti-correlated stimuli showed that—unlike
for two pulses with variable gaps (Fig. 1)—the correlation structure
of odour pulse trains was difficult to discern on the level of inputs to
the OB using simple linear classifiers (Extended Data Fig. 6). Directly
imaging from the output neurons of the OB—mitral and tufted cells
(M/TCs) (Fig. 3a-g, Extended Data Fig. 7)—showed that overall,
M/TCsalsoresponded similarly to correlated and anti-correlated stim-
uli (Extended DataFig. 7j-1). However, 17% of all M/TCs showed signifi-
cantly different integral responses (0-5 s after odour onset, P< 0.01)
tothe two stimuli (114 of 680 regions of interest (ROIs)) (Fig. 3d-f). As
aresult, correlated and anti-correlated odours were reliably discrimi-
nated by alinear classifier using the M/TC population responses (Fig. 3g
(somatic response), Extended Data Fig. 7d, i (dendritic response)), in
contrast to the OSN population response (Extended DataFig. 6k, 1). This
finding is consistent with the idea that the OB circuitry implements a
nonlinear transformation of OSNinput such that the representation of
correlation becomes more readily accessible in the OB output.

We used odour stimuli that fluctuated rapidly at frequencies that
substantially exceeded the temporal resolution of Ca** imaging, which
captures alow-pass filtered signal of neural activity. Although the Ca*'
signal does not follow individual stimulus frequencies, the M/TC popu-
lation response contained enoughinformation to determine whether
acorrelated or anti-correlated stimulus was presented. Toinvestigate
whether additional information about stimuliis presentin the output
ofthe OB at finer time scales, we turned to extracellular unit recordings
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Fig.3|Odour correlationstructure is encoded by OB output neurons.

a, Thetwo-photonimaging approach (Extended DataFig. 7e). b, Coronal OB
section showing GCaMP6f (green) expressed in projection neurons. Scale bar,
20 pm.c, GCaMPé6f fluorescence from mitral and tufted cells (maximum
projection of 8,000 frames). Responses from ROl marked with asterisk ininset
lareshownind.Scalebar,20 pm.d, e, Example traces of ROls that show
differential response kinetics to correlated (black) and anti-correlated (red)
20-Hz stimulationin anaesthetized (d; mean +s.e.m. of 24 trials, unpaired
two-sided t-tests on 5-s response integrals) and awake mice (e; mean +s.e.m. of
16 trials, unpaired two-sided t-tests). Light blue, odour presentation. f, Calcium
transients as colour maps for correlated and anti-correlated averaged trials
and for the difference between the two for the 5% of ROIs with the largest
differential responses. g, Accuracy of linear classifier trained on several
response windows (colours; black, shuffle control) to correlated versus
anti-correlated stimuliat 20 Hz (n=up to 680 ROIs from 6 mice; mean +s.d. of
500repetitions). h, The extracellular recording approach.i, Example single
unitresponse to correlated and anti-correlated stimulishown as raster plot
(top) and peristimulus time histogram (PSTH) (mean +s.e.m.) of spike times
binned every 50 ms (bottom); inset, average spike waveform (black) and 1,000
individual spike events (grey). Scale bars, 100 pV, 1 ms. Light blue, odour
presentation. Two-sided Mann-Whitney Utest comparing spike time
distributions of correlated and anti-correlated trials during 4 s after odour
onset. j, Binned spike discharge over time shown as colour maps for all units
(correlated, anti-correlated and the difference between the two). k, Accuracy
oflinear classifier trained on the average 2-s response to correlated versus
anti-correlated stimuliat 20 Hz (yellow) (n=up to 97 units from 6 mice;

mean +s.d.of1,000 classifier repetitions; Methods, Extended DataFig. 8).

(Fig. 3h-k, Extended Data Fig. 8) and whole-cell patch-clamp record-
ings (Extended DataFig.9). Despite the kilohertztemporal resolution,
single units also did not directly follow high-frequency stimuli. Average
activity (summed spike count during 500 ms after odour onset) was,
however, significantly different between correlated and anti-correlated
stimuliin 24% of single units (23 of 97; P< 0.01, Mann-Whitney Utest)

(Fig. 3i, j, Extended Data Fig. 8b), consistent with the Ca*" imaging
results. As few as 60 randomly selected units were sufficient to clas-
sify the odour stimuli with more than 80% accuracy (Fig. 3k). Addi-
tional information was contained at finer time scales, as increasing
the temporal resolution of analysis improved discriminability (Fig. 3k,
Extended Data Fig. 8e-g). Together, these results demonstrate that
information about high-frequency correlation structure in odours is
accessible to animals for behavioural decisions and readily available
inthe output of the OB.

Correlations allow source separation

We next considered what the detection of high-frequency correlations
could be useful for. Natural odours consist of multiple different types
of molecules, and atypical olfactory scene contains several sources®.
To make sense of the olfactory environment, the brain must be able to
separate odour sources, attributing the various chemicals present to
the same or different objects®. Motivated by the turbulent nature of
odour transport, Hopfield suggested that the temporal structure of
odour concentration fluctuations might contain information about
the locations of odour sources®—that is, that chemicals belonging
to the same source would co-fluctuate in concentration. Detecting
correlations in odour fluctuations would thus allow mice to discern
which odours arise from the same object. To experimentally probe
the potential of odour correlation structure to facilitate odour source
separationin air, we devised a dual-energy fast photoionization detec-
tion method to simultaneously measure the odour concentrations
of two odours with high temporal bandwidth (Methods; Fig. 4a, b,
Extended Data Fig. 10a—-e, Supplementary Fig. 2). When an odour
was presented in a laboratory environment with artificially gener-
ated complex airflow patterns (Fig. 4a), to mimic the outdoor meas-
urements (Fig. 1a), odour concentration fluctuated with a spectrum
extending beyond 40 Hz (Extended Data Fig.10a). When two odours
were presented from the same source, these fluctuations were highly
correlated (Fig. 4a, b, Extended Data Fig. 10b). When we separated
odour sources and presented the two odours 50 cm apart, odour
dynamics were uncorrelated (Fig. 4a, b) with intermediate correla-
tions for closer distances (Fig. 4b). This pattern of almost perfect
correlation for the same source and virtually uncorrelated dynamics
for separated sources was maintained at closer and farther distances
between odour source and sensor (Extended Data Fig.10d), independ-
ent of the odours used (Extended Data Fig. 10c), and was mirrored
outdoors (Extended Data Fig. 10e). Thus, the correlation structure
of odorant concentration fluctuations contains reliable information
aboutodour objects—for example, whether odours emerge from the
same or different sources.

Toinvestigate whether mice can make use of this information, we
trained a new cohort of mice in a modified AutonoMouse setting,
presenting odours that corresponded to the ‘same source’ or ‘source
separated’ cases as rewarded or unrewarded stimuli (Fig. 4c, d,
Extended DataFig.10). Mice could learn to discriminate these stimuli
(Fig. 4d, e). Once the mice had acquired the task, we probed their
performance with artificially generated stimuli (Extended Data
Fig. 10f-k) that were derived from previous measurements with
natural airflow but were perfectly correlated (Fig. 4e). Notably, the
micereliably responded to these probe trials with correlated stimuli
as they did to the ‘same source’ stimuli they had been trained on
(Fig.4e, Extended Data Fig.10m). To further ascertain that the mice
were using the correlation structure to make these decisions, we
probed them with artificial square pulse stimuli (as in Fig. 2, 3) at
different frequencies. Mice performed significantly above chance
in probe trials at frequencies of up to 40 Hz (Fig. 4e, Extended Data
Fig.10s), whichimplies that learning about source separation stimuli
directly translates to distinguishing temporal features in correlated
or uncorrelated stimuli.
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fluctuations. a, Simultaneous measurement of two odours (odour 1:
o-terpinene (AT); odour 2, ethyl butyrate (EB)) using a dual-energy PID
(Extended DataFig.10a-e, Supplementary Fig.2) atd=40 cm, presented from
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thelaboratory. b, Correlation coefficients over all recordings for odours from
thesame source or from two sources separated by s=10-50 cm (EB versus AT;
n=6lforonesource,n=71foreachindividual distance; unpaired two-sided
t-test). Thick lines, medians; boxes, 25th-75th percentiles; whiskers, most
extreme data points not considered outliers (Methods). ¢, Example plumes
used for training mice on avirtual source separation task todiscriminate
between odour stimuliderived from the same source (unrewarded, S-) and
fromseparated sources (rewarded, S+).d, Example learning curve for amouse
trained to performthe virtual source separation task.Isoamylacetate and ethyl
butyrate were used as odour stimuli. e, Average accuracy over different
variants of the task, calculated over the last 2,400 trials of virtual source
separation training (n=11mice, P<0.0001, unpaired t-test,compared to
chance performance), and subsequent stages in which probe trials containing
novel plumetypes wereinterleaved with the training set. Responses are
compared between probe and training trials within each stage. Probe plumes:
odours fluctuateina perfectly correlated manner, with anovel temporal
structure (120 probe trialsinasegment of 2,400 trials, n=11 mice, paired
t-test). Probe2Hz,20 Hz, 40 Hz: correlated or anti-correlated square pulse
trains (50 probe trials per frequency inasegment of 1,650 trials, n=9 mice).
Responsesto2Hz,20 Hzand 40 Hz probe trials were shuffled 10,000 times to
calculate chance performance; dataare mean +s.d.; unpaired two-sided t-test.

Discussion

We have shown that the mammalian olfactory system has access to
temporal features of odour stimuli at frequencies of at least up to
40 Hz. We have demonstrated that mice have access to information
in rapid odour fluctuations using different behavioural experiments
(Figs. 2, 4). We have shown reliable decoding from imaging and unit
recordings from different stages of the olfactory system using both
correlated odour concentration fluctuations (Fig. 3, Extended Data
Figs. 7, 8a-g) and simplistic paired pulse stimuli with gaps as small as
25 ms (Fig. 1, Extended Data Figs. 2, 8h-I), corroborated by computa-
tional modelling (Extended Data Fig.1). Our results are consistent with
previous findings that the olfactory bulb circuitry not only enables
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highly precise odour responses'® but also enables the detection
of optogenetically evoked inputs with a precision of 10-30 ms¥ %,
with different projection neurons displaying distinct firing patterns
in response to optogenetic stimulation®. Although behavioural and
physiological responses to precisely timed odour stimuli have been
observed ininsects™"?*°, in mammals the complex shape of the nasal
cavity was generally thought to low-pass filter any temporal structure
oftheincoming odour plume. Our results show that while the low-pass
filtering in the nose and by OSNs might reduce the ability of neurons
todirectly follow high-frequency stimuli, sufficientinformation about
high-frequency content is preserved and available that mice can readily
make use of this information.

We considered what such high bandwidth could be useful for. We
have shown that odour sources even in close proximity differ in their
temporal correlation structure. Thus, the ability to detect whether
odorants are temporally correlated could allow mice to perform source
separation, solving the ‘olfactory cocktail party problem™® without
prior knowledge about the odour scenery. We show that mice can
indeed discriminate between stimuli derived from a single source or
separated sources. They readily translate this discrimination to artifi-
cial, correlated pulse trains, thereby demonstrating that they are using
correlation structure to make this distinction. Distinguishing between
other environmental features, such as the distance or direction of an
odoursource, could also be achieved by extracting temporal features
from odour fluctuations'® possibly in combination with strategies
that compare information reaching the brain through the two nares®,

We also considered how exactly this temporal information
is extracted. Although insects can detect the simultaneity of onset of
two odours™**3* this strategy is unlikely to be the dominant means that
mice use todetect correlation (Extended Data Fig. 5). Similarly, mice do
not show adjustment of sniff strategies to discriminate high-frequency
odour correlations (Extended Data Fig. 5, Supplementary Video 2).
Although individual mammalian OSNs are thought to be quite slow and
unreliable?, the large convergence of OSN axons provides a substrate
to create the needed high temporal bandwidth® (Extended Data Fig. 1).
Biophysical heterogeneity of OSNs might improve how the population
encodes temporally structured stimuli**¥, Intrinsic cellular biophysics
(Extended DataFig.9), local interneurons or long-range lateral inhibi-
tion>*® might permit the extraction of temporal correlation within
the olfactory bulb circuitry and possibly resultin tuning of individual
projection neurons to specific temporal structures.

The turbulence of odour plumes has often been viewed as a source
of noise for mammals. By contrast, we find that the mouse olfactory
system has access to high-frequency temporal featuresin odour stimuli.
This opens up anew perspective on how mice could make use of natural
turbulence to obtaininformationabout their spatial environment. This
in turn provides new computational challenges for the mammalian
olfactory system and an entry pointinto how information about space
is extracted from sensory inputs.
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Methods

Ethical compliance

All animal procedures performed in this study were approved by the
UK government (Home Office) and by the Crick Institutional Animal
Welfare Ethical Review Panel.

Mice

All mice used for behavioural experiments were C57/Bl6 males, as
long-term group housing precluded the use of mixed-sex cohorts
(Figs. 2, 4, Extended Data Figs. 3-5,10). In vivo imaging experiments
were performed in 12-20-week-old heterozygous OMP-cre® (JAX
stock no. 006668; Fig. 1, Extended Data Figs. 2, 6) or Tbet-cre*® (Jax
stock no. 024507; Fig. 3, Extended Data Fig. 7) mice crossed with the
Ai95(RCL-GCaMP6f)-D line* (JAX stock no. 028865) of either sex. Extra-
cellular unit (Fig. 3, Extended Data Fig. 8) and whole-cell patch-clamp
recordings (Extended Data Fig. 9) were performed in 5-8-week-old C57/
Blé males. Mice were housed up to 5 per cage under a12-12 hlight-dark
cycle. Food and water were provided ad libitum.

Reagents

Allodours were obtained in their pure form from Sigma-Aldrich. Unless
otherwise specified, odours were diluted 1/5 with mineral oil in 15-ml
glass vials (27160-U, Sigma-Aldrich).

Statistical analysis and data display

Totest for statistical significance between groups where appropriate we
used either paired or non-paired student ¢-tests or, for non-parametric
data, the Mann-Whitney U'test, or the Kolmogorov-Smirnov test to
test the equality of probability distributions. Statistical test details
and Pvalues are provided in figures and/or legends. Unless specified
otherwise, boxplots were plotted using the MATLAB boxplot function
with the median depicted as a thick line and default maximal whisker
length of 1.5 x (q3 — ql) where q3 and ql indicate the 75th and 25th
percentile, respectively. If points were located outside this whisker
range they were displayed individually as outliers. Violin plots show the
medianasablack dotand the second and third quartiles by the bounds
of black bars. Mouse cartoons were adapted from https://scidraw.io/
drawing/123 and https://scidraw.io/drawing/49.

High-speed odour delivery device

Theodour delivery device was based on amodular design of four sepa-
rate odour channels, and consisted of an odour manifold for odour
storage, a valve manifold for control of odour release and hardware
for controlling and directing airflow through the system (Fig.1b). The
odour manifold was a12.2 x 3.2 x 1.5-cm?stainless steel block with four
milled circularindentations (1-cmradius). Within each of theseinden-
tations was a threaded through-hole for installation of an input flow
controller (AS1211F-M5-04, SMC) and an output filter INMX0350000A,
The Lee Company). For eachinset, the cap of a15-ml glass vial (27160-U,
Sigma-Aldrich) with the centre removed was pushed inand sealed with
epoxy resin (Araldite Rapid, Huntsman Advanced Materials). This
meant that glass vials could be screwed in and out of the insets for
rapid replacement.

Solenoid valves typically limit high-fidelity odour stimulation,
resulting in odour rise times of several tens of milliseconds under
optimal conditions*2. We therefore used high-speed micro-dispense
valves with custom electronics for pulse-width modulation to maxi-
mize bandwidth: four VHS valves (INKX0514750A, The Lee Company)
were installed in a four-position manifold INMA0601340B, The Lee
Company) with standard mounting ports (IKTX0322170A, The Lee
Company). Each valve was connected to a corresponding odour posi-
tionin the odour manifold with 10-cm Teflon tubing (TUTC3216905L,
The Lee Company). Each valve was controlled by digital commands
via a spike-and-hold driver. Each digital pulse delivered to the

spike-and-hold driver delivered a 0.5-ms, 24-V pulse to the valve
(to open it), followed by a 3.3-V holding pulse lasting the rest of the
duration of the digital pulse. This spike-and-hold input allowed fast
cycling of the valve without switching between 0 and 24 V at high
frequencies, to prevent overheating of the valve. Each valve was con-
trolled by anindividual spike-and-hold driver. Up to four drivers could
be controlled and powered with a custom-made power supply unit
consisting of a 24-V power input and a linear regulator to split the
voltages into 24-V and 3.3-V lines, as well as control inputs that take
digital signalinput and routeit to the appropriate valve. Pulse profiles
for calibration and stimulus production were generated with custom
Python software (PyPulse, PulseBoy; https://github.com/RoboDoig),
allowing us to define pulse parameters across multiple valves using a
graphical user interface.

To generate airflow through the olfactometer, a pressurised air
source was connected to a demister (AME250C-F02, SMC) and filter
(AMF250CF02, SMC) and then split into two separate lines, the input
lineand carrier line. Both lines were then connected to a pressure regu-
lator (AR20-FO1BG-8, SMC) and flow controller (FR2A13BVBN, Brooks
Instrument). The main line was then connected to the input of the valve
manifold. The input line was split into four separate lines and connected
totheinput flow controllers (set to 0.251/min) on each odour position
of the odour manifold. The output of the valve manifold was fitted
with MINSTAC tubing (TUTC3216905L, The Lee Company). Where the
design was scaled up (for example, to include eight odour positions)
the valve manifold outputs were connected and consolidated to asingle
output with three-way connectors (QSMY-6-4, Festo). The shape and
reliability of odour pulses depended strongly onlow volume headspace
and low pressure levels (0.05 MPa). Flow change due to odour pulses
was always compensated by mineral oil presentation (for example,
light grey in Fig. 1c).

Odour characterization. Signal fidelities were calculated by first sub-
tracting the average amplitude of troughs from the average ampli-
tude of peaks during a pulse train and then subsequently dividing this
peak-to-trough value by the difference in the average peak amplitude
subtracted by baseline amplitude (SignalFidelity =(meanPeak —meanT-
rough)/(meanPeak - baseline)). This results in a value between 0 and
1, with1being perfectly modulated odour pulses.

Behaviour

Automated operant conditioning of cohorts of mice (Autono-
Mouse). In AutonoMouse, groups of mice (up to 25) implanted with
aradiofrequency identification (RFID) chip are housed inacommon
home cage? (Fig. 2a). Within the common home cage of AutonoMouse,
mice have free access tofood, social interaction and environmental en-
richment. Water is not freely available in the system, but canbe gained
at any time by completion of an operant conditioning go/no-go task.
Toaccess these behavioural tasks, mice mustleave the home cage and
enter a behavioural area. This behavioural area contains the odour
portandalick portthroughwhichwater rewards canbereleased. The
lick portisalso connectedtoalick sensor, whichregisters the animal’s
response (its lick rate) in response to the task stimuli. As animals can
gain their daily water intake only by completing behavioural tasks, mice
are motivated to complete long sequences of trials without manual
water restriction. Sample sizes for each cohort were determined by the
availability of simultaneously weaned male mice to be group-housed.
The minimum sample size for each cohort was determined by requiring
atleast three mice in each subgroup. Mice were randomly assigned to
different test subgroups based on their performance during aninitial
simple odour discrimination task until performance levels between the
subgroups were statistically indistinguishable by a one-way ANOVA.
After this initial allocation, the experimenter was blinded as to which
group mice belonged to since the only distinguishing feature between
mice was their RFID chip code.
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Training on temporally structured odours. We aimed to probe wheth-
er mice could perceive a particular temporal feature of naturally oc-
curring odour signals: temporal correlations between odour signals.
In particular, we aimed to investigate this question with the simplest
possible case: whether mice could discriminate perfectly correlated
from perfectly anti-correlated odour stimuli.

Alltasks followed a standard go/no-go training paradigm. Mice were
presented with two odours presented in either a correlated pattern
or an anti-correlated pattern (Fig. 2d, Extended Data Fig. 4a-c). For
roughly half of all mice, the correlated pattern was S+ (rewarded) and
the anti-correlated pattern was S— (unrewarded); in the other half of
the group this reward valence was reversed. All stimuli were 2 s long.
Awater reward could be gained by licking so that licking was detected
foratleast10% of the stimulus time during an S+ presentation (a ‘Hit’).
Licking for the same amount of time during S— presentation resulted
inatimeoutinterval of 7 s. In all other response cases, the inter-trial
interval was 3 s and no water reward was delivered.

Stimulus structure. All anti-correlated and correlated stimuli on
each trial followed a common pattern in their construction. Gener-
ally, wherever an odour positionis inactivated a blank position should
be activated to compensate for flow change. There should also be no
consistent differences in the amount of odour or flow released dur-
ing the stimulus between correlated and anti-correlated stimuli. The
detailed algorithm for stimulus generation is as follows:

I. Correlated or anti-correlated/uncorrelated odour pulses (Fig. 2d, k,
Extended Data Figs. 3, 5)

1. The stimulusis chosen to be correlated or anti-correlated/uncor-
related.

2. A set of 1-2 positions each for odour 1and odour 2 and 2-3 posi-
tions for blank are randomly chosen from a pre-defined subset of 6 of
the 8 total positions. Forexample, a valid combination could be odour
1at position 1, 2; odour 2 at position 5; and blank at position 3 and 7
(Fig.2g, Extended Data Fig. 4b).

3. Aguide pulse is created at the desired frequency (for example,
2-Hz pulse with 50% duty; Supplementary Fig. 1c) for all positions that
follows the chosen stimulus structure.

4. The relative contributions of each position to the total stimulus
arerandomly generated. At each time pointin the stimulus, only two
positiontypes should be active (for example, odour1andblank for an
anti-correlated stimulus) so the maximum contribution for any position
typeis 50% of the total release amount. Where two positions have been
chosen for a position type, their relative contributions should add to
50% (Extended Data Fig. 4b).

5.Theguide pulses are pulse-width modulated according to therela-
tive contributions of each position (Supplementary Fig. 1c). Pulse-width
modulation (PWM) is at 500 Hz with some added jitter in the duty to
avoid strong tone generation.

6.Foruncorrelated pulses, temporal offsets are added in one channel
accordingtoadistribution of time delays that follow the desired correla-
tionstructure between the two odour pulses (Extended Data Fig. 3e, f).
II. ‘One source’ and ‘source separated’ naturalistic plumes (Fig. 4c-e,
Extended Data Fig. 10)

1. The stimulus is chosen to be ‘one source’ or ‘source separated’.

2. Aplumebank of plume pairs obtained from indoor PID recordings
is created. Each trial will contain two plumes, each representing one
odour recording originating from one source or from sources posi-
tioned 50 cm apart. To maintain consistency in trial length between
behaviour experiments, a 2-s time window from each plume was
selected from the middle of each 5-s recording, such that odour was
always presentin the first 500 ms of the trial. Trials where the correla-
tion of the 2-s window was vastly different from the original 5 s were
excluded from the plume bank. This procedure resulted in a plume
bank containing 72 plume pairs for the separated source condition
and 48 plume pairs for the one source condition.

3. An odour plume pair is randomly selected from the plume bank,
fromthe corresponding category.

4. The odour that will be used to replicate each plume in a pair and
the positions in the odour delivery device that will be used for that
purpose are randomly assigned, as described previously. For each
odour valve active, a blank valve will also be activated to produce an
‘anti-plume’ structure, to compensate for the changes in flow created
by odour delivery.

5.Plumes arerecreated from the chosen PID recordings. Each trace
isnormalized to between 0 and 1, and then converted into a series of
binary opening and closing times. The length of the openings and clos-
ings relate directly to the value of the normalized signal: avalue of one
translates to a continuous opening, and a value of zero translates to
continuously closed. This series of openings and closings are relayed
to the valves and the resulting output resembles the original plume.
111 Perfectly correlated plume trials (probe trials, Fig. 4e)

1. A2-s window is chosen from the source separated plume bank
(plume structures previously associated with opposite reward valence;
5trials) or fromindependent plume recordings obtained in a different
environment than the original recordings (completely novel plume
structures; 10 trials).

2.The chosen plumestructureis replicated using both odour chan-
nels, resulting in a plume where both odour components fluctuate in
aperfectly correlated manner.

IV.Frequency discrimination pulses (Fig. 2c, Extended Data Fig. 3a-d)

1. Two frequencies are chosen for discrimination (for example, 2
Hz versus 20 Hz).

2.For each trial one of the frequencies is chosen for presentation.

3. Valves are selected for presentation of both odours.

4. A guide pulse is created for each odour channel that pulses at
the desired trial frequency with 50% duty, such that pulse alternates
between channels at the given frequency.

5. Guide pulses are pulse-width-modulated as for correlated and
anti-correlated stimuli.

Task structure for the correlation experiment. This is relevant to
Fig. 2d-k, Extended Data Figs. 3-5. Task frequency was randomized
fromtrialtotrialinarangebetween 2 and 81 Hz. The choice of frequency
waswith weighted probability divided into three frequency bands. For
example, this task could be arranged such that 2-20 Hz would be chosen
with P=0.6,21-40 Hzwith P=0.3 and 41-81 Hz with P=0.1. Within each
ofthese frequency bands, the choice of individual task frequency was
based on a uniform distribution. Thus, few trials were performed for
frequencies exceeding 40 Hz, resulting in more ‘noisy’ behavioural
performance datain Fig. 2k.

Onset detection. For the onset detection experiments (Extended Data
Fig. 5f-i), mice were trained to discriminate perfectly correlated (for
example, S+) from perfectly anti-correlated stimuli (for example, S-)
and probed with partially altered stimuli where the onset (first cycle)
ofthe probe S+ stimuli was anti-correlated and probe S—stimuli where
the onset (first cycle) was correlated. Performance during these probe
trials was then compared to the average performance during training
(perftrain)~

We calculated the expected average mouse performance on the
probe trials based on two models (prediction data, Extended Data
Fig.5f,g). Model1assumed the mice were taking any part of the stimulus
into account equally when making a decision. Model 2 assumed that
only the onset of the stimulus would contribute to discrimination. Thus,
for Model1,astimulus of frequency f(for example, 10 Hz) that was sam-
pledfor timet,,,,. consisted of a‘shifted’ onset component of one cycle
for S+ (1/f) and halfa cycle for S-(0.5/f) corresponding to a fraction of
fraconsec = 1/f/ toample Of the entire stimulus and a‘normal’ residual (frac,,
=1-frac,ns)- Thus, the predicted probe trial performance would be:
predicted probe trial perf, ;e = perfyqin X frac.s + (1 - perfy i) X fraconger
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InExtended Data Fig. 5i, this prediction was calculated for the follow-
ing parameters: sniff frequency, 6 Hz; inhalation fraction, 0.2; stimulus
samplingtime, 0.7s.In Extended Data Fig. 5g, sampling time was varied
asindicated.

For Model 2, ignoring inhalation timing, the prediction would be
that preference would be reversed (as onset correlations during probe
trials are reversed). However, this ignores the fact that odour stimuli
during the exhalation period might not be detected. Thus, to more
accurately predict the performance of mice for Model 2, we assume
that the part of the stimulus that is detected as the ‘onset’ is the first
odour pulse during an inhalation phase. During the probe trial, this
willbe the ‘inverted’ first cycleif the stimulus begins either during the
inhalation phase or at most 1/fbefore the inhalation (then inhalation
would start during theinverted first cycle of the probetrial). The prob-
ability of this occurring is perf,,... = (dur;,, + 1/)/dur, with dur,,, and
dur,,being the inhalation and sniff durations, respectively (provided
dur,,, +1/f<dur,). Predicted probe trial performance for an ‘onset
only’ model would therefore be: predicted probe trial perf, .= perfi.in
X (1= perfonged) + (1= perfiin) X perfing.

Extended Data Figure 5f, g displays the predictions of these two
models in comparison to the experimental data for a broad range of
respiration patterns. The ‘prediction data’in Extended DataFig. 5i show
model predictions assuming typical sniff and sampling parameters as
indicated above (sniff frequency, 6 Hz; inhalation fraction, 0.2; stimulus
sampling time, 0.7 s).

Controls. Control valves could be automatically added to the random
frequency task. These tasks produced their stimuli based on a subset
of six valves and control valves could be added automatically after a
set period of trials to force the algorithm to produce stimuli from all
eight valves (Fig. 2g, i, Extended Data Fig. 4i-k).

A subgroup of mice was created in which the valve map was scram-
bled, as an ongoing control against mice learning extraneous variables
inthe task (Fig. 2k). The valve map was scrambled in the following way:
oneblankto odour1,one odour2toblank, one odour1toodour2and
one odour1toblank.Everyfew daysall odour bottles were cleaned and
replaced, odour positions changed and valves re-assigned*.

Airflow and sound recordings. Airflow and sound were recorded in
AutonoMouse during trials at different frequencies to ensure that the
temporal structure of the odour was the only parameter that varied
over trialsand that no tactile or auditory cues were presentin the stimu-
lus. A flow sensor (AWM5101VN, Honeywell, USA) and a microphone
(NTG1, RODE) were placed in close proximity to the AutonoMouse
odour port. In total, 286 trials were recorded (2 Hz: n = 75 correlated,
n=70anti-correlated; 40 Hz: n= 69 correlated, n =72 anti-correlated)
using Audacity for sound and Spike2 (Cambridge Electronic Design)
for flow signals. Airflow and sound signals underwent spectral analysis
(Fourier transform), as well as linear classification analysis (Extended
DataFig.4d-g).

Training on naturalistic plumes. One group of mice (n=12) were
trained to discriminate between plumes derived from stimuli origi-
nating from one source (S—, unrewarded) or from separated sources
(S+, rewarded), using 2-s-long stimuli produced as described above
from the recordings shown in Fig. 4a. An additional 12 mice trained
simultaneously on the reverse reward valence did not pass the per-
formance criterion within the given timeframe and were not carried
forward to probe trials.

To test whether correlation structure was a feature used by mice to
perform the virtual source separation task, probe trials were intro-
duced randomly atafrequency of approximately 1in11trials, withevery
instance of aprobetrial repeated every 330 trials. Probe trials consisted
of perfectly correlated plumes or correlated or uncorrelated square
pulses produced as described above, presented at three frequencies:

2Hz,20 Hz, 40 Hz. The feedback for probe trials was the same as for a
training trial, withareward or time-out given based on the response of
the mouse. No change in performance across repeated presentation of
the probe trials was observed, indicating that performance was not due
to putative rapid re-learning. Of the 12 mice exposed to this protocol,
atotal of 9 mice reached all phases of the experiment.

Cohorts. The correlation discrimination experiment was performedin
three separate experimental cohorts (Fig. 2, Extended Data Figs. 3-5:
group1,n=14;group 2, n=25 (one mouse did not successfully pass the
pre-training); Fig. 4, Extended Data Fig.10: group 3, n=24, see above).
Each cohort was organized into several subgroups, which performed
slight variations of the behavioural tasks in terms of reward valence
and valves used, but with the same underlying task aim. Half of the
mice in each subgroup were trained on correlated stimuli as the S+ re-
warded condition, with the other half trained on anti-correlated stimuli
as rewarded. Mice were further subdivided into groups, which were
trained on different subsets of valves as standard in the eight-channel
olfactometer. For each cohort, mice were once assigned to each of these
subgroups based on performance in a simple pure odour discrimina-
tion at the beginning of the experiment—group membership was ran-
domized until no significant (ANOVA, Tukey-Kramer) differences in
performance could be extracted between these subgroups on this task.

Data analysis. AutonoMouse behavioural data were converted to
MATLAB data format using the Conversion module of the Python
autonomouse-control package (https://github.com/RoboDoig). All
subsequent analysis was performed with custom-written MATLAB
scripts unless otherwise specified.

All behavioural performance within a specified trial bin was calcu-
lated as a weighted average of S+ versus S— performance:

(Hit/S+) + (CR/S-)

performance = 2

inwhich S+is the totalnumber of rewarded trials, S—is the total number
ofunrewarded trials, Hitis the total number of rewarded trialsinwhich
alick response was detected, and CR (correct rejection) is the total
number of unrewarded trials in which no lick response was detected.

For random stimulus pulse frequency experiments (for example,
Fig.2j, k), trials were binned approximately by half-octave for perfor-
mance analysis. The exact intervals were f(Hz) = [2, 3, 4, 5, 6:7, 8:10,
11:13,14:17,18:22, 23:29, 30:37, 38:48, 49:62, 63:81]. Reaction time
(Extended Data Fig. 5) was calculated from S+ trials for each mouse
as the time to the first lick after stimulus onset. For presentation of
learning curves (Figs. 2h, 4d) accuracy was calculated over 100-trial
sliding windows.

Motion magnification of the respiration camera video recordings
(Extended Data Fig. 5, Supplementary Video 2) was performed with
phase-based video motion processing with correction for large body
movements based on MATLAB scripts* (phaseAmplifyLargeMotions).
Parameters for phase amplification were: blurring 6 =1, magnification
a =50, amplification in frequency band between 2 and 13 Hz. Follow-
ing magnification, static ROIs for each video were selected in Bonsai*
(http://www.kampff-lab.org/bonsai/) over the mouse flank. An adaptive
binary threshold was applied to the ROI to segment the mouse body
from the video background. Respiration rate was extracted from the
total size of the ROl occupied by the body over time.

Olfactory sensory neuron population model

Overview. We modelled the OSN population as noisy integrate-and-fire
neurons integrating a filtered odour pulse and with independent
(cell-specific) noise to qualitatively match experimental data*. The
square of the resulting mean population firing rate was convolved with
a calcium imaging filter to produce a model of the observed calcium
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imagingsignal. Allcode and related data for the model can be found at
https://github.com/stootoon/crick-osn-model-release.

Odour input current. The olfactory input current /,to each OSN was
modelled asafiltered version of the odour pulseinput O, with filter time
constant 7. (encompassing, for example, filtering of the nasal cavity as
well as olfactory transduction):

df,
TCE =- It+ Ot

This models filtering by the nasal cavity, transport through the
mucous, and chemical transduction from odour concentration to
receptor channel opening.

Olfactory sensory neurons. Each OSN was modelled as a noisy
integrate-and-fire neuron. Each OSN membrane performs a noisy in-
tegration of the olfactory input current/,so that the membrane voltage
V,satisfies the following stochastic differential equation: 7,dV,= (/.- V,)
dt +odB,. Here, B, is standard Brownian motion and o is the standard
deviation of the membrane voltage noise. The OSN generates a spike
whenever its membrane voltage exceeds a spiking threshold 6:

1 1rvze;
" 10 otherwise.

Uponspiking, the membrane voltage is clamped to arefractory volt-
age V,foraperiod of t,.;seconds. The mean instantaneous firing rate
of a population of Nneurons is computed as

1 N
S== Y St
t N ot t
in which S7 is the spiking activity of OSN n.

Calcium imaging signal. To model the calcium imaging signal, the
mean firing rate is squared and convolved with the imaging kernel A,
toformthe calciumimaging signal C:C, = (§t2)*ht.The calciumimaging
kernelis an alpha function: h, =t e™/%,

Alist of parameters is given in Supplementary Table 1. All param-
eters were fit manually: parameters 7., 7,and o were set to produce a
qualitative matchin time courses between model membrane voltage
traces and the suction current traces in figure 2 of ref. *. The remain-
ing parameters were adjusted to produce a qualitative fit between
the model and the dynamics of the observed calcium imaging traces.

Generating model glomeruli

Overview. We generated 100 model glomeruli by randomly vary-
ing a subset of the model OSN parameters described in the previous
section (1, ., 0, 6, a). Specifically, we picked the parameters of each
glomerulus by selecting uniformly within + 25% of the centre value of
each parameter. All 5,000 OSNs within each glomerulus had the same
parameters, and differed only because of the random noise applied
to their membrane voltages. The range of variation is shown in Sup-
plementary Table 2.

The effect of concentration was modelled by linear scaling of the
input waveforms. For each setting of PPland concentration, the model
was run to simulate 25 consecutive trials of length 2.5 s each, with the
odouronsetat0.1sinto each trial. The first five trials of data were dis-
cardedto allow the model to ‘settle’, yielding 20 trials for each condition
that were used insubsequent analyses (Extended DataFigs.1g, h, 2j, k).

Classifying glomerular outputs
Predictors. The predictors used for classification were the response
integrals for eachglomerulus, defined as the instantaneous mean firing

rate of the OSNs in the glomerulus, filtered by the Ca*" imaging filter
(seesection ‘Olfactory sensory neuron populationmodel’) and summed
over the 2 s following odour onset in each trial. As the scale of the re-
sponses is arbitrary, we scaled the response integrals by their overall
standard deviation, computed over glomeruliand trials.

Labels. Trials were labelled by their PPI, or a combination of PPl and
concentration, depending on the task.

Classifiers. The classifiers used were support vector machines with
linear kernels and I12 regularization asimplemented by the LinearSVC
function of the Python scikit-learn library. The setting of the penalty
parameter Cand whether or nottolearnanintercept were determined
by cross-validation with scikit-learn’s GridSearchCV. The values of C
considered ranged in powers of 10 from 10 to 10*.

Computing decoding accuracy. The decoding accuracy for a given
subset of n glomeruli was computed as the average accuracy over
10 cross-validation trials for the results in Extended Data Fig. 1h, and
40 cross-validation trials for the results in Extended Data Fig. 2j, k. In
each cross-validation trial, the classifier was trained onarandom 90% of
thetrialsandtested onthe remaining10%, and the accuracy recorded.
The random subsets were stratified; that is, constrained to have the
same fraction of trials from each class as the full dataset when possible.
The mean accuracy across cross-validation trials was recorded as the
accuracy for that subset. To compute the shuffled performance, the la-
bels of the training and test trials were shuffled in each cross-validation
trial before the classifier accuracy was computed.

Decoding PPI from the responses of model glomeruli. To determine
how decoding accuracy was affected by the size of the population used
weselected arandomsubset of nglomeruliand computed the decoding
accuracy asdescribed above. This was repeated for 256 random subsets
of nglomeruli, generating 256 unshuffled and 256 shuffled accuracies.
The subset size nwas varied from1 (using only a single glomerulus) to
100 (using the full population; Extended Data Fig. 1h). For n>99,some
subsets are likely to have been repeated because there are fewer than
256 possible subsets of size 99 and 100. The observed variability in ac-
curacy inthose casesis then due mainly to the random determination
of training and testing trials.

Decoding PPl and concentration from the responses of model
glomeruli. To compute the decoding accuracy when decoding PPI
and concentration, we followed a very similar procedure to the previ-
ous section, but fixed the population size at the maximum of 100 and
varied the stimulus concentration from 0.5to 5in steps of 0.5to cover
afactor of 10 range in concentration as used in the experimental data
(Extended Data Fig. 2j-m). For comparison, the resultsin Extended Data
Fig.1hwere for a concentration of 1. Decoders were trained to extract
just concentration, or PPl and concentration.

Invivo two-photonimaging

Surgical and experimental procedures. Before surgery, allused sur-
faces and apparatus were sterilized with 1% trigene. Mice were anaes-
thetized using a mixture of fentanyl, midazolam and medetomidine
(0.05mg/kg, 5mg/kgand 0.5 mg/kg, respectively). Depth of anaesthe-
siawas monitored throughout the procedure by testing the toe-pinch
reflex. The fur over the skull and at the base of the neck was shaved away
and the skin cleaned with1% chlorhexidine scrub. Mice were then placed
onathermoregulator (DC Temperature Controller, FHC) heat pad con-
trolled by atemperature probe inserted rectally. While on the heat pad,
the head of the mouse was held in place with aset of ear bars. The scalp
was incised and pulled away from the skull with four arterial clamps
ateach corner of the incision. A custom head-fixation implant was at-
tached to the base of the skull with medical super glue (Vetbond, 3M)
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suchthatits mostanterior point rested approximately 0.5 mm posterior
to the bregma line. Dental cement (Paladur, Heraeus Kulzer; Simplex
Rapid Liquid, Associated Dental Products) was then applied around the
edges oftheimplantto ensure firmadhesion to the skull. A craniotomy
over theleft OB (approximately 2 x 2 mm) was made with a dental drill
(Success 40, Osada) and thenimmersed in artificial cerebrospinal fluid
(ACSF: NaCl (125 mM), KCI (5 mM), HEPES (10 mM), pH adjusted to 7.4
with NaOH, MgS0,.7H,0 (2mM), CaCl,.2H,0 (2mM), glucose (10 mM))
before the skull was removed with forceps. The dura was then peeled
back using fine forceps. A layer of 2% low-melt agarose diluted in ACSF
was applied over the exposed brain surface before a glass window cut
from a cover slip (borosilicate glass 1.0 thickness) using a diamond
knife (Sigma-Aldrich) was placed over the craniotomy. The edges of
the window were then glued with medical super glue (Vetbond, 3M)
to the skull.

Following surgery, mice were placed in acustom head-fixation appa-
ratus and transferred to a two-photon microscope rig along with the
heat pad. The microscope (Scientifica Multiphoton VivoScope) was
coupled with aMaiTai DeepSee laser (Spectra Physics) tuned to 940 nm
(<50 mW average power on the sample) for imaging. Images (512 x
512 pixels) were acquired in SciScan (Scientifica) with a resonant
scanner at a frame rate of 30 Hz using a 16x 0.8 NA water-immersion
objective (Nikon). The output of a four-channel version of the tem-
poral olfactometer described above was adjusted to approximately
1cm away from the ipsilateral nostril to the imaging window, and a
flow sensor was placed next to the contralateral nostril for continuous
respiration recording.

Awake recordings. For implantation of the head-plate, mice were
anaesthetized withisoflurane in 95% oxygen (5% for induction, 1.5-3%
for maintenance). Local (mepivacaine, 0.5% subcutaneously (s.c.)) and
general analgesics (carprofen 5mg/kgs.c.) were applied immediately
at the onset of surgery. After surgery, mice were allowed to recover
for 7 days with access to wet diet and, after recovery, habituated to
the head-fixed situation for at least 15 min on three consecutive days
preceding the imaging experiment.

Odour stimulation. For paired-pulse experiments, ethyl butyrate was
diluted in mineral oil at a ratio of 1:5 and installed into a four-channel
version of the high-speed odour delivery device (15 ml per vial) along
withtwo blank positions (15 ml mineral oil). Odour concentration range
was adjusted over 10 steps on a logarithmic scale with a factor of 1.25
by modulating odour pulse-width.

For correlated versus anti-correlated stimulus experiments, stimuli
were generated from mixtures of physically mixed monomolecular
odorants to ensure a high probability of finding odour-responsive
cells in the dorsal OB using custom Python software (PulseBoy).
Binary mixtures were diluted in mineral oil at aratio of 1:5and installed
into a four-channel version of the high-speed odour delivery device
(15 ml per vial) along with two blank positions (15 ml mineral oil). Mix 1:
ethyl butyrate + 2-hexanone, mix 2: isoamyl acetate + cineole. During
glomerular imaging experiments (Extended Data Fig. 6), six odours
(A-F) were presented either individually or in pairs: A (ethyl butyrate),
B (2-hexanone), C (isoamyl acetate), D (cineol), E (ethyl tiglate) and F
((+)-fenchone). For all stimuli, odour valve offsets were compensated
by opening a corresponding blank position valve to ensure no global
flow changes occurred over the course of the stimulus. All stimuli were
repeated between16 and 50 times withatleast15sinter-stimulusinterval.

Data analysis. For M/TC imaging, motion correction, segmentation
and trace extraction were performed using the Suite2p package*’
(https://github.com/MouseLand/suite2p). Putative neuronal somata
and dendritic segments were automatically identified by segmenta-
tion and curated manually. Soma and neuropil fluorescence traces
were extracted and neuropil fluorescence was subtracted from the

corresponding somatrace. Further analysis was performed with custom
written scriptsin MATLAB.

M/TCs were recorded in 17 fields of view (FOV) from 6 individual
Thet-cre: Ai95(RCL-GCaMPe6f)-D mice, with40 +9.23 (mean +s.d.; range
27-48) cells per FOV and 30.25+12.97 (mean £ s.d.; range 7-53) M/TC
dendrites,

For glomerularimaging experiments, ROIs corresponding to glomer-
uli were manually delineated based on the mean fluorescence image.
Fluorescence signal from all pixels within each ROl was averaged and
extracted astimeseries. AF/F=(F-F,)/F,, inwhich Fisraw fluorescence
and F, was the median of the fluorescence signal distribution.

Glomerular signals from a total of 15 individual OMP-cre:
Ai95(RCL-GCaMP6f)-D mice wererecorded with 28 +4.34 (mean s.d.;
range 20-36) glomeruli per mouse (Extended Data Fig. 6a).

Giventhe nature of these populationimaging experiments, sample
size was not pre-determined and the investigators were not blinded to
study conditions. Odour stimulus sequence was pseudo-randomized
within experiments.

Where the odour stimulus was notinhalation-triggered, traces were
post hoc aligned to the first inhalation after odour onset. Calcium
response integrals were calculated for a range of window durations
starting from odour onset (100-5,000 ms). To analyse how well odour
responses predicted stimulus correlation on a trial-to-trial basis, we
generated alinear discriminant classifier fromthe dataset and analysed
prediction accuracy. For the classifier, we performed 50% holdout
validation, splitting the datarandomly into atraining set and a test set
withequal numbers of samples. We then performed linear discriminant
analysis on the training dataset to determine the best linear bound-
ary between 10 versus 25 ms pulse interval stimulations or correlated
versus anti-correlated data. Classifier performance was then validated
onthetest dataset. To determine the effect of the number of ROIs used
on classifier performance, we iteratively trained multiple classifiers
on random subsets of ROIs with increasing numbers of ROIs within
eachset. For each ROl subsetsize, 100 classifiers were trained and the
mean +s.d. of their performance accuracy was calculated. All classifier
analysis was performed on individual, unaveraged trials.

Glomerularimaging classifiers. The classifiers used in Extended Data
Fig. 6k, were trained separately for each odour pair, each frequency,
and eachtime window. Theinputs for classification were the averaged
responses of the 145 glomeruli in a given time window for 24 odour
presentation trials, where the odours were fluctuating in a correlated
manner in half of the trials, and in an anti-correlated manner in the
remaining half. Within the correlated and anti-correlated subsets of
trials, half had the first odour in the pair phase-shifted by 180° and the
remaining halfhad no phase shift. The classification task was to deter-
mine whether the glomerular responsesinagiven trial were evoked by
correlated or anti-correlated odour fluctuations.

Because we had far fewer trials (24) thanglomeruli (145) it wasimpor-
tant to use regularized classifiers to avoid overfitting. To promote
interpretability of the decision boundaries learned by the classifiers,
we opted for sparsity-promoting regularizers and settled on the Lasso,
evaluated as aclassifier by taking the sign of its output computed after
the addition of asmall amount of noise (to decide ambiguous classifi-
cations). The implementation of the Lasso we used was LassoLarsCV
provided by the Pythonscikit-learn library because it converged readily,
gave very good classification performance, and automatically tuned the
weighting of the sparsity penalty. Inputs to the classifier were standard-
ized to have mean zero and unit variance across trials. We found that
it was important to learn the classification weights without intercept
to avoid overfitting.

The performance of a classifier was determined by cross-validation,
where in each cross-validation iteration, the classifier was trained on
arandom approximately 90% of the trials (21 trials) and tested on the
remaining approximately 10% (3 trials), and the test accuracy recorded.
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Therandomsubsets were selected in a stratified manner, meaning that
the fractions of correlated and anti-correlated trials in the subset were
kept as close as possible to their fractions in the full dataset (50/50).
This meant that 10 of the 21 training trials were of one type and 11 of
the other. This procedure was performed for ten cross-validationitera-
tions, and the average performance over these repeats was recorded
as the performance of the classifier. The shuffled performance was
computed the same way but with training and test labels shuffled in
each iteration. The entire procedure was then repeated for each of
100 differentrandom seeds to produce adistribution of classification
accuracies, the means and standard deviations of which are plotted in
Extended Data Fig. 6k, .

Because we used a sparsity-promoting classifier, it was straightfor-
ward to determine which glomeruli were contributing to a particular
classification decision. We found thatif we used all 145 glomeruli avail-
able thenfrequently glomeruliwould be selected for noisy fluctuations
of their responses that were by chance ‘informative’ for the classifica-
tion. To avoid the inclusion of such noisy responses, we filtered glo-
merulifor responsivity. To determine the responsivity of aglomerulus,
the mean X paseline @Nd standard deviation Gy om paseline Of its
responses pooled across all baseline bins (defined as the 3 s before
odour onset) and across all trials for the given odour pair and frequency
were first computed. A Z-score was then computed for its averaged
response for the given time bin and for each trial by comparing this
response to the baseline activity according to

X, X,

7 _ “‘glom,trial ~ “*glom,baseline
glom, trial — 4
oglom,baseline/x/ Nyng

inwhich X o, i is the response of the glomerulusin the given time win-
dow and n,,,4is the number of time bins constituting the window. The
scaling of the baseline standard deviation is to account for the reduc-
tion in variance due to the averaging over time bins used to compute
theresponse. A glomerulus was considered responsive in a given trial
ifthe absolute value of its Z-score as computed above was greater than
lonthree-quarters or more of the trials. Such a thresholding ensured
thatthe number of responsive glomeruli was almost always zero before
odour onset, but rose to a peak of approximately 125 of the 145 glo-
meruli available when 2-s windows were used. Reducing the window
size reduced the peak number of glomeruli, but at least 25 glomeruli
were used during the peak responsive periodinall cases, and frequently
many more. This filtering also meant that some time windows late
in the response contained no responsive glomeruli for some window
sizes, which explains the ‘patchiness’ observed in Extended Data
Fig. 6k, 1.

Extracellular recordings

Surgical and experimental procedures. We anaesthetized
5-8-week-old C57BL/6Jax mice using a mixture of ketamine and xyla-
zine (100 mg/kg and 10 mg/kg, respectively) by intraperitoneal (i.p.)
injection. Ani.p. line was inserted after the initial injection to allow
easier and more regular subsequentinjections of anaesthetics. Surgery
was carried out as described above for two-photon imaging, up until
the application of agar and cranial window.

Following surgery, the mice and custom platform were transferred
tothe extracellularrecordingset up. A flow sensor (A3100, Honeywell)
was placed in front of the contralateral nostril while an output from
the temporal olfactometer was positioned in front of the ipsilateral
nostril. An Ag/Ag’Cl reference coil was immersed in the well, over
the left hemisphere of the skull. The reference wire was connected to
boththereference and ground of the amplifier board (RHD2132, intan),
which was connected (Omnetics) to a head-stage adaptor (A32-OM32,
NeuroNexus). A 32-channel probe (A32-Poly3, NeuroNexus) was con-
nected to the adaptor, and the tip of the probe was manoeuvred to
be positioned 1-2 cm above the craniotomy. The adaptor and probe

were held above the craniotomy using amicromanipulator (PatchStar,
Scientifica) setat 90° to the surface of the brain. The probe was moved
towards the surface of the OB, while being observed through asurgical
microscope. Once the probe was in contact with the surface, but had
notentered the brain, the manipulator’s Zposition was set to zero. The
signal from the probe was streamed through OpenEphys acquisition
board and software (OpenEphys). The probe was inserted at <4 um/s
until the number and amplitudes of spikes began to decrease on deeper
channels, indicating that the tip of the probe was exiting the MClayer.
This was found to be between 400 and 600 pm from the surface of
the OB. From here, the probe was left for 10 min for neural activity to
stabilize before recording began.

Odour stimulation. Odours were presented using an eight-channel
version of the high-speed odour delivery device, four of which con-
tained odours (A: ethyl butyrate, B: 2-hexanone, C: isoamyl acetate,
D: eucalyptol) and four contained blank (mineral oil) which were used
to compensate for flow changes. Trials paired either A and B or C and
D together. Stimuli were repeated 64 times and had an 8-s inter-trial
interval. The onset of odour was recorded using TTL pulses passed
through additional channelsin the OpenEphys acquisition board. Trial
starts were triggered on inhalation as detected by the flowmeter.

Data analysis. Spikes were sorted using Kilosort2* (github.com/Mou-
seLand/Kilosort2) and classified as ‘good’ whenthey displayed astrong
refractory period visiblein their auto-correlogram, atypical waveform
and astable firing rate, as ‘MUA’ (multi-unit activity) if they presented
atypical waveform but a weak refractory period, or as ‘noise’ if they
were suspected of being electrical or mechanical interference. For a
first-pass analysis, units were classified as ‘differentially responding’
to correlated and anti-correlated stimuli if units were found to have
significantly (P< 0.01, Mann-Whitney Utest) different spike time dis-
tributions during the 4 s after odour onset. However, the cut-off for
such distinction will always be somewhat arbitrary. For the majority
ofthe analysis, we therefore pooled all good units across experiments
inapseudo-population. All classifiers used for unit recording analysis
were support vector machines (SVMs) with linear kernels with a low
regularization parameter, which translates to greater freedom for a
classifier to vary weights for any given component. Data were splitinto
training and test sets before classification. Test sets consisted of either
26 trials (summed spike classifiers for correlated versus anti-correlated)
or 2trials (PCA classifiers and short odour pulse combinations). Data
passed to the summed spike classifiers were pre-processed in one of
two ways before classification.

First, arolling sum of detected spikes within variable window sizes
was used. The window sizes varied from 10 ms t0 2,000 ms. Inaddition
towindow size, window starts were also varied. Each window size was tri-
alled with every possible window start fromzero to four seconds minus
the window size from odour onset, with 10-ms incremental changes.
For example, a 500-ms window was tested with starts varying from
003,500 ms after odour onset.

Second, the coefficients of principal components (PCs) for unitsin
eachtrial were used for classification. The PCs were found by applying
principal component analysis (PCA) across all units and all training
trials. Each PC represented a time series and hence the coefficients
signify the strength at which that time series was followed by a given
unit for a given trial. The two holdout trials were not used to find the
PCs but were then projected onto them and their coefficients used as
the test for the classifiers. All classifiers were repeated 1,000 times
with arandom selection of holdout trials each time.

Finally, for the short odour pulse classification, classifiers were
trained on summed spikes in windows of 500 ms after odour onset.
Each classifier was trained on all but two hold-out trials. To account
for avarying number of trials between mice, training data were boot-
strappedto1,000 trials of each type. Each trial was randomly selected
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fromthe initial pool of training trials, and each unit was bootstrapped
independently. These classifiers were tested on the initial two hold-out
trials. This was repeated 1,000 times with different bootstrapped data-
sets and different hold-out trials.

Training datafor all classifiers were scaled such that each feature (unit
spike count/PC coefficient) had a mean value of zero and a standard
deviation of one using the following equation: z= (x - u)/s, in which x
is the initial value of the feature, u is the mean, sis the standard devia-
tion, and zis the scaled value. Means and standard deviations were
calculated using the training data so no information from the testing
data could influence the scaling. The testing data were scaled using
the same values as for the training. Scaling was applied during every
repeatin this manner.

Whole-cell patch-clamp recordings

Experimental procedures. Whole-cell recordings were performed
as previously described®*°. Borosilicate pipettes (2 x 1.5 mm) were
pulled and filled with (in mM) KMeSO, (130), HEPES (10), KCI (7),
ATP-Na, (2), ATP-Mg (2), GTP-Nax (0.5), EGTA (0.05) (pH = 7.3, osmo-
larity about 290 mOsm/kg). The OB surface was submerged with ACSF
containing (in mM) NacCl (135), KCI (5.4), HEPES (5), MgCl, (1), CaCl,
(1.8) (pH = 7.4 and about 300 mOsm/kg). Signals were amplified and
low-pass filtered at 10 kHz using an Axoclamp 2B amplifier (Molecular
Devices) and digitized at 40 kHz using aMicro 1401 analogue-to-digital
converter (Cambridge Electronic Design).

After zeroing the pipette tip position at the OB surface, the tip was
advancedtoreachadepth ofabout 200 pum fromthe surface. Whole-cell
patch-clamp recordings were obtained as described®. Series resist-
ance was compensated and monitored continuously during recording.
Neurons showing series resistance >25MQwere discarded from further
analysis. To estimate the input resistance, a =50 pA current step was
delivered at the start and end of each recording.

The vertical depth of recorded neurons was calculated as the verti-
cal distance from the brain surface. Respiration was recorded using a
mass flow sensor (A3100, Honeywell) and digitized at 10 kHz. Odours
were prepared and delivered as described above and triggered to the
beginning of inhalation.

Data analysis. Changein membrane potential. Recordings were spike-
clipped using acustomscript written in Spike2 (Cambridge Electronic
Design) and analysed in MATLAB (Mathworks). All recordings were
baseline subtracted as previously described®. The average change in
membrane potential was defined as the difference between the aver-
age membrane potential over a2 s period before odour onset and the
average membrane potential in the first 500 ms (about 2 sniffs) after
odour onset.

Changeinspikefrequency. Action potentials were counted from raw
traces, converted into spike frequency in 50-ms bins and plotted as
PSTHs. The net change in spike frequency was defined as the difference
in the average spike frequency between 2 s before onset and 500 ms
after onset.

Arithmetic sum.Baseline-subtracted traces obtained fromindepend-
ent component odour (A and B) presentations were either summed
and averaged in an in-phase manner to generate the arithmetic sum
equivalent of the correlated response or phase-shifted to generate the
equivalent of the anti-correlated response.

Arithmetic sum (correlated) = (Vmygoura + VMogours)/2

Arithmetic sum (anticorrelated) = (Vi goura + shifted Vm, g, + shifted
VmodourA + VmodcurB)/4

Dual-energy fast photoionization detection (defPID)

Two PIDs (200B miniPID, Aurora Scientific; Supplementary Fig. 2) fitted
with UVlamps of emission energy10.6 eV (PID high) and 8.4 eV (PID low)
were used to discriminate ethyl butyrate (EB, ionization energy =9.9 eV)
from a-terpinene (AT, ionization energy = 7.6 eV) or ethyl valerate

(EV, ionization energy =10.0 eV) from tripropyl amine (TA, ionization
energy = 7.2 eV). To accommodate the lower-voltage UV lamp, reso-
nance circuitry inthe PID headstage electronics was adjusted according
tothe manufacturer’s recommendations. Specifically, potentiometer
‘PT1’was adjusted up to the point where the 8.4 eVlamp began to glow.
Further, we tested whether the now converted PID low was now sensi-
tive to only AT and TA while not detecting EB and EV. The PID inlets
were connected with a three-way connector to detectincoming odours
by both PIDs simultaneously from acommon point. PID heads were held
on lab stands with the PID inlet at approximately 4 cm above ground
level.

Odour delivery. Odours were held in ceramic crucibles (5cm diameter,
6 ml volume) covered in an air-tight fashion using glass lids. Odours
werereleased for 5swithaninter-trialinterval of 15s by Arduino-based
robots programmed to lift the lids from the crucibles using a servo
motor (TowerPro SG-5010, Adafruit). Lid lifting events were triggered
by the Arduino board, recorded in Spike2 and defined as the onset of
odour for analysis. Both the Arduino board and Spike2 were controlled
by aportable computer and used the same clock for synchronization.
Experiments were carried outinalarge open space, bothindoors and
outdoors (Supplementary Fig. 2f, g).

Outdoors, PIDs and the odour delivery system as described above
were used to record for multiple trials in different conditions on aday
with low wind (about 8-12 mph = 3-5m/s, recorded with a two-axis
ultrasonic wind sensor (Gill Instruments)). Outdoor experiments were
performed on a~6 m x 10 m wooden patio structure surrounded by
trees. Measurement of odour correlationsin the outdoor setting were
complicated by the presence of background odours: if background
odours are detectable by both PIDs, measured correlation will be arti-
ficially inflated; if they can be ionized only by the PIDhigh, they will
artificially decrease the measured correlation.

Indoors, a digitally controlled fan (2214F/2TDHO, ebm-papst) was
placed at a distance of 325 cm facing the PID inlet. An exhaust line
was situated behind the PID inlet to ensure the flow of air from the fan
towards the PID inlet. During arecording, the fan was set to maximum
speed such that it pushed approximately 550 cf/min (cubic feet per
minute, about 260 I/s) of air towards the PID inlet. A 25 x 25 x 25-cm
Thermocool box was placed 200 cm downwind of the fan to act as
an obstacle to air movement, promoting complex air movement pat-
terns at the PID inlet. The pump at each PID was set to about 0.02 1/s
suction speed, which is unlikely to perturb overall airflow dynamics
substantially.

Recording conditions. We placed 6 ml of the desired odour(s) in two
crucibles and placed them in different locations based on the experi-
mental conditions as described below.

1. Low energy only: the ‘low-energy odour’ (AT or TA) was placed
40 cm (radial distance d) away from the PID inlet, and displaced either
25cm left or 25 cm right of the midline (the line between the PID inlet
and the centre of the fan). The odour source was alternated between
leftand right positioning relative to the midline to remove any possible
bias from positioning in the air stream. The purpose of this recording
condition was to generate data to calculate the linear transformation
from the low energy signal to the high energy signal (Supplementary
Fig.2c,d).

2. Mix: 3 ml EB + 3 ml AT (or 3 ml EV + 3 ml TA) was pipetted into
onecrucible and placed either 25 cm left or 25 cmright of the midline
at radial distances of 20 cm, 40 cm and 60 cm. The purpose of this
recording condition was to determine how the temporal structure of
individual odours in a plume behaved when the odours were emitted
from the same source.

3.Separate: 3 ml EB and 3 ml AT (or 3 ml EV and 3 ml TA) were indi-
vidually pipetted into two different crucibles and placed at a radial
distance of 40 cm fromthe PID inlet. For the s=50 cm apart condition,



one odour source was placed 25 cm left of the midline while the other
was 25 cm on the right of the midline and vice-versa (equal number
of trials for both cases), separating the odour sources by 50 cm. This
procedure was repeated for lateral distances of s=30 cmands=10cm.
The ‘50 cmapart’ case was repeated for radial distances of d=20 cmand
d=60cm. The purpose of this recording condition was to determine
how the temporal structure of individual odours in a plume behaved
when the odours were emitted from separated sources but were still
free to mixin air.

Data analysis. For the decomposition procedure, we recorded the
low energy odour (AT) using both PIDs as described above. Assuming
alinear relation between the recorded signals from the two PIDs, we
plotted therecorded events with alinear regression fit (Supplementary
Fig. 2c) and calculated slope and R* value of the fit. The scaling factor
(6.82+0.356, mean + s.d.) was calculated as the average slope of all
linear fits for R>>0.9.

The ‘PID low’ traces were multiplied by this scaling factor, which
was termed ‘estimated low energy odour’ (Supplementary Fig. 2e).
The ‘estimated high energy odour’ was calculated by subtracting the
estimated low energy odour from the ‘PID high’ traces.

For correlation calculation, custom-written scriptsin MATLAB (Math-
works) were used to calculate the correlation coefficient between the
estimated low energy odour and the estimated high energy odour for
all conditions. Box plots were obtained from these values using Igor
Pro 6 (WaveMetrics, USA).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Datarelated to the OSN model (Extended Data Fig. 1) are available at
https://github.com/stootoon/crick-osn-model-release. Data related to
the glomerular classifier analysis (Extended Data Fig. 6) are available at
https://github.com/stootoon/crick-osn-decoding-release. The remain-
ing data that support the findings of this study will be made available
by the authors upon request.

Code availability

All custom Python scripts to generate pulses (PyPulse, PulseBoy)
are available at https://github.com/RoboDoig and https://github.
com/warnerwarner. Code for controlling AutonoMouse is avail-
able at https://figshare.com/articles/AutonoMouse_Code/7616090.
Code related to the OSN model is available at https://github.com/
stootoon/crick-osn-model-release. Code related to the glomeru-
lar classifier analysis is available at https://github.com/stootoon/
crick-osn-decoding-release.
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Extended DataFig.1|Distinguishing fast odour stimuli with slow OSNs.

a, Membrane voltagerelative to baseline of asingle model OSNinresponsetoa
10-ms odour pulse. Black traces are individual trials; red trace is average over
20 trials. OSN spike threshold has been set high enough to prevent spiking to
illustrate the subthreshold voltage time course. b, Membrane voltages (grey
traces) of ten OSNs from a population of 5,000 in response to a paired odour
pulse with pulse width10 ms and PPl of 25 ms. The voltage time course for one
example OSNisinblack.Several OSNs reach the OSN spike threshold (dashed
redline) and are temporarily reset to therefractory voltage of -1. The
population average membrane voltage (red) reveals membrane chargingin
response to odour stimulation and the subsequent discharging and refractory
period. ¢, Raster showing the spike times (dots) of the full population fromb

Glomerulus count

andthe corresponding mean firing rate (trace) estimated in1-ms bins.d, Mean
firing rates computed over 20 trialsin response to paired odour pulses of width
10 ms and PPIs of 10 ms (green) and 25 ms (black). e, Model calcium signals are
produced by squaring the instantaneous mean firing rate and filtering the
resultwith a calciumimaging kernel. f, Model calcium responses to the paired
odour stimulus witha PPIof 10 ms (green) and 25 ms (black). Thintraces are
single trials, thick traces are averages over 15 trials. g, Schematic of the OSN
model. Variablesindashed bounding boxes are changed for each glomerulus
(Methods). h, Linear classifier analysis over anincreasing subset size of
glomeruli (1-100; plotted is mean + s.d., 256 repeats for random subsets of
nglomeruligenerating 256 unshuffled and 256 shuffled accuracies).
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Extended DataFig.2|See next page for caption.
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Extended DataFig. 2| Sub-sniffodour informationin the olfactory bulb
inputlayer.a, GCaMPé6f fluorescencerecordedin OB glomeruliinan
anaesthetized OMP-cre: Ai95(RCL-GCaMPé6f)-D mouse (maximum projection of
8,200 frames, glomerulus marked with red asterisk corresponds to first
exampletraceshowninb).Scalebar, 50 pm. b, Example calciumtracesin
responseto 10 and 25ms PPlodour stimuli (mean of 50 trials+s.e.m.). Bottom,
examplerespirationtraces. Pvalues derived from unpaired two-sided t-tests
comparingresponses of individual trials integrated over 2-s windows to paired
odour pulse stimulation. ¢, Classifier accuracy over anincreasing number of
glomeruliwhen alinear classifier was trained on several response windows

(colour-coded; black, shuffle control) to PP110 versus 25 ms stimuli (mean +s.d.

ofup to 93 glomerulifrom 4 individual animals; 500 repetitions). d;, Classifier
accuracy whentrained onallglomeruliinresponse to PP110 versus 25ms
stimulirecorded inanaesthetized animals (n =93 glomeruli, mean t+s.d.from 4
individual animals) with asliding window of different durations (colour-coded;
black, shuffle control; 100 repetitions) starting at 2 s before odour onset (left)
and time period between-0.5and 0.5s from odour onset shown at higher
maghnification (right). d;, Same as d; for awake animals (n=100 glomeruli,
mean +s.d. from Sindividual animals). e, f, Odour (e) and flow (f) signals
integrated over 2s for PP110 ms and PPI125 ms stimuli (10 repeats each; odour,
P=0.1841; flow, P=0.1786; unpaired two-sided t-test). g, Correlation
coefficients of glomerular calciumresponses to PP110 versus 25 msin
anaesthetized (n=93 glomeruli from 4 individual animals) and awake (n=100
glomerulifrom5individual animals) mice (P=0.3187, unpaired two-sided
t-test, measured asin Fig.1from OMP-Cre: Ai95(RCL-GCaMP6f)-D mice). Violin
plots show the median as ablack dot and the first and third quartiles by the
bounds of theblackbar. h;, Examplerespirationtracesrecorded using a flow
sensor from awake mice. Inhalation goesin the upwards direction, exhalation
downwards. h;, Average instantaneous sniff frequency from one example
animal plotted asafunction of time (n =24 trials, mean +s.e.m.). The odour
stimulus consisted of two 10-ms odour pulses either 10 or 25 ms apart (Fig. 1c).
h;;, Distribution of sniffintervals duringa2-swindow before (grey) and a 5-s
window after (blue) odour stimulus onset (P=1.02 x10™%°, two-sample
Kolmogorov-Smirnov test). h;,_;, Same as top row but for the anaesthetized
condition (P=0.3952, two-sample Kolmogorov-Smirnov test).i, Mean odour
signal for PP110 and 25 ms for 10 increasing concentration steps defined by

modulating valve pulse duty (Methods and Supplementary Fig.1). There were
nosignificant differencesin odour concentration between both stimuli
(unpaired two-sided t-tests). j, Modelled response integrals to PPI10 versus 25
ms stimulations over a tenfold concentration range pooled over all 20 trials and
100 glomeruli (Methods). Box plots show median and extend from the 25th to
75th percentiles, whiskers extend to the 5th and 95th percentiles. k;, Confusion
matrix of SVM-based classification results of modelled glomerular signalsin
responseto arange of ten odour concentrations ranked and colour-coded
(n=100 glomeruli). k;;, Shuffle control with labels assigned randomly. ky;,
Confusion matrix showing the ranked and colour-coded results of glomerular
responsesindependently classified for 10 ms versus 25ms PPland across the
range of ten odour concentrations. k;,, shuffle control for k;; with labels
assigned randomly. I, Asinjbut with 2-sresponse integrals derived from Ca**
imaging data (10 repeats for each concentration). m, Asin k for Ca* imaging
data (n=57 glomeruli, from 2individual animals, 10 repeats for each
concentration). Note that 10 ms PPl could be reliably distinguished from 25 ms
PPIwith only fewinstances where aresponse to, for example,a10 ms PPI
stimulus was misclassified as 25 ms or vice versa (compare light red quadrants
tolight green quadrants). n, Shifting the position of 10 ms PPl within asingle
inhalation. PPI10 ms at position1(n;) or at position 2 (n;) of three 10-ms odour
pulses.Odour pulses asrecorded withaPID showninred, valve commands are
shownindarkgrey. Light grey areashows additional compensatory blank valve
command to keep the flow profile indistinguishable between stimuli. n;, Total
odour concentrationwas independent of the pulse profile (10 repeats, P=0.57,
unpaired two-sided t-test). 0, The 10 ms PPlat both position 1(e;) and position 2
(0;;) are presented during theinhalation phase (respiration showninblack,
inhalation upwards, exhalation downwards). p, Example calciumtracesin
response to10 ms PPl at position1(black) and position 2 (red), shownis the
meanof10trials+s.e.m. Pvalues derived from unpaired t-tests comparing 2 s
integrated responses of individual trials to odour pulses. q, Classifier accuracy
overincreasing number of glomeruliwhenalinear classifier was trained on the
2-sresponse to PPI10 msat position1versus position2 (mean+s.d.of upto 57
glomeruli, from2individual animals, 500 repetitions; blue: PPI10 ms at
position1versus position 2; black: shuffle control). For box plots, boxes
indicate 25th-75th percentiles, thick line is median, whiskers are most extreme
data points not considered outliers (Methods).
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Extended DataFig.3|See next page for caption.




Article

Extended DataFig. 3 | Frequency discrimination experiments. a, Frequency
discrimination stimuli are produced by alternating presentation of two odours
togenerate adesired odour change frequency. During odour delivery, valves
arenotheld openbutrather arerandomly opened and closed over time to
produceslight variationin odour amplitude for each pulse. This means that
odour concentration cannotbe used asacuetolearnthe taskand odour
switching frequency is the primary stimulus signal. Furthermore, valve clicking
israndomized to minimize any acoustic cues. b, Replacing one odour channel
with blank, un-odourized air and recording the frequency stimuliwith a PID
reveals thatthe desired odour pulse frequency is being produced. ¢, Mice
readily learnto discriminate 2 versus 20 Hz pulse frequency stimuliin ago/no-
gotask. Replacing the odours withblank channels resultsin chance-level
performance (no odour), which recovers when odours are replaced (recovery),
showing that mice were probably discriminating the odour switching
frequency rather than any extraneous cues such as valve noise. The order of
odour presentationin the stimuli had no effect onbehaviour aswhenit was
shifted (phase switch) no decrease in performance was observed. Additionally,
performance was dependent onthe alternation between different odours, as
whenthe experiment was repeated with the same odoursineach channel
(equal odours) performance was at chancelevel.d, Todetermine the
perceptual limit of frequency discrimination, the floor frequency used in the
task over successive experiments wasincreased such that the differencein

frequency between the stimuli progressively narrowed. Overall performance
decreased as the difference in frequency grew smaller, reaching near-chance
level with a frequency difference of 10 Hz (10 versus 20 Hz). Switching back to
the original discrimination (2 versus 20 Hz) recovered performance quickly,
showingthat the dropin discrimination ability was truly due to the frequency
difference rather than general deterioration of performance over time.

e;, Example uncorrelated stimuli. Combinations of odour1 (red) and odour

2 (blue) valves are opened with temporal offsets and randomized pulse timing
resultinginacorrelation of 0 (Methods). Blank (black) valves are used to keep
total airflow constant throughout the stimulus. e;, Higher magnification of the
areashadedingrey.f, Animals show similar average accuracy as shownin Fig. 2k
when probed to discriminate correlated fromuncorrelated odour pulses

at10 Hz (n=19 mice, mean +s.e.m. of average accuracy =0.6506 + 0.0016; after
scrambling stimulusidentity: 0.4997 + 0.0032; P=0.0175, unpaired two-sided
t-test). g, Animals show similar average accuracy when discriminating the
correlationstructure of adifferent odour pair (acetophenone versus cineol) at
10 Hz (n=19 mice, mean +s.e.m. of average accuracy = 0.6558 + 0.0026; after
scrambling stimulusidentity: 0.5165 + 0.0048; P=0.0129, unpaired two-sided
t-test). Grey dots mark average performance of individual animals. Boxes in
f,gindicate 25th-75th percentiles, thick lineis median, whiskers are most
extreme data points not considered outliers (Methods).
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Extended DataFig. 4| AutonoMouse stimulus and experimental design.

a, Detailed schematic of stimulus production; odour presentation (odour 1:
blue, odour 2:red) is always offset by cleanair (mineral oil: grey) valves at the
same flow levels, to ensure that total flow during the stimulus is constant.

b, Schematic of the use of valve subsets to produce the desired stimulus. t;and
t,representvalve openings at the corresponding time points shownin

a.c, (left) and c, (middle) represent two possible configurations that could be
used to produce the sameresulting stimulus at the two time points. Opacity in
the coloursrepresents total concentration contributionto theresulting
stimulus at the time point. For example, to produce the dual odour pulse at t,,
configuration c,canbe used where odour1(blue) isdelivered from one valve
and odour 2 (red) from another valve. During t, two valves contribute clean air.
Alternatively, configuration c,canbe used in which duringt,odour1(blue) is
generated by 50% opening of two valves, withodour 2 (red) produced by 70%-
30% opening of two other valves. Right, scramble control: valve maps
(represented by arrow colour) are maintained compared to the training
conditionbut odour vial positions are scrambled resulting in odour stimuli that
areuninformative about reward association while maintaining any non-odour
cue such as putative sound or flow contributions. ¢, Predicted accuracy for
animalsinthe case that they use solely olfactory temporal correlations (black)
andinthe case that they use extraneous non-olfactory cues or non-intended
olfactory cues (for example, contaminations, clicking noises) (violet). Note
that when switching stimulus preparations to anew set of valves (as in Fig. 2i
andi-k), suchnon-intended cues would not provide any information about
stimulus-reward association, so accuracy would transiently drop back to
chance. d;, Average flow recordings (mean +s.d.) of 2Hz correlated (black,
n=75)and anti-correlated (red, n="70) trials taken from the AutonoMouse
odour port.d;;, Fourier transform of the flow plots fromd;, showing the power
ofthesignal overarange of 1kHz. d;;, An expanded view over the range of 10 Hz
indicated by the dotted box ind;;. d;,, Mean accuracy of aseries of linear
classifiers trained onanincreasing window of the integrated signal starting
from1sbeforetrial shownind,. Classifiers were tested on two withheld trials,
onecorrelated and one anti-correlated, and repeated 100 times. e, Asind but
for40Hztrials (n=69 correlated and n=72 anti-correlated). f;, Average audio
recordingtrace (mean ts.d.) of 2 Hz stimuli using amicrophone placedin close
proximity to the AutonoMouse odour port. f, f;, Fourier transforms of the
audio signal from f;. Note, although there are notable peaks at specific
frequencies, these are presentinboth correlated and anti-correlated trials.

f,, Accuracy of aseries of linear classifiers as shownind but using the modulus
oftheaudiosignal.g, Asinfbut for 40 Hz trials. Note, whereas the sound
profileand the Fourier transforms are different between2and 40 Hz, there is
no difference detectable between correlated and anti-correlated trials.

h, Example traces of odour signal (ethyl butyrate, isoamyl acetate, PID
recorded) during correlated (top) and anti-correlated trials (middle).
Simulated maximum accuracy based on differences in mean odour signal
(bottom). Simulated accuracy was calculated as the fraction of trials correctly
identified as correlated or anti-correlated based on adecision threshold set at
some level between the minimum and maximum mean signal. Simulated
accuracy was calculated for multiple decision thresholds, increasing the
decision threshold from minimum odour signal to maximum odour signalin
steps of1/5,000th of the range between minimum and maximum. i, Detailed
schematic of correlated (top left) and anti-correlated (top right) stimulus
production before (middle) and after (bottom) switching valves. For the switch
control, asetof previously unused odour valvesisintroduced to rule out
potential bias towards a specific valve combination when performing the
odour correlation discrimination task. j, Trial map of five representative
animals during 2 Hz (j;) and 12 Hz (j;;) correlation discrimination tasks before
and after theintroduction of control valves (n=12trials before and 12 trials
after new valveintroduction, whichisindicated by black vertical dotted line.
Eachrow corresponds toananimal, each columnrepresentsatrial. Light green:
hit, dark green: correctrejection, light red: false alarm, dark red: miss.k;,
Boxplots of meanaccuracy for animals (n=5 mice) pre- and post-control for 2
Hz (left) and 12 Hz (right). Box indicates 25th-75th percentiles, thick line is
median, whiskers are most extreme data points not considered outliers;
Methods. Pvalues derived from unpaired t-tests. k;, Summary histograms of
performance change for all animals during all ‘valve switch’ control tests
(Methods), indicating that discrimination accuracy was based onintended
olfactory cues. The five animals with the best performance before the valve
switch orbottle change (and thus the largest potential to drop in performance)
were analysed.l, Discriminationaccuracy (n=33 animals, mean +s.e.m.) for
rewarded S+ (left) and unrewarded S- (right) trials when odours were
presented using standard training valve configurations (black) and scrambled
valve identity (red), data from Fig. 2k. Note that frequencies above 40 Hz were
presented predominantly inthe last block of the training schedule and reduced
licking in the control group (decreased S+ performance and increased
S-performance) might be due to decreased motivation at that point.
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Extended DataFig. 5| Respirationrecordings, stimulus onset model and
reaction time for correlation discrimination experiments. a, An overhead
camerawas used toimage a head-fixed mouse during asequence of odour
presentations. Simultaneously, a flow sensor was placed close to one nostril to
monitor respiration to establish the validity of motionimaging-based
respiration recording. Phase-based motion amplification was used to magnify
motion on the animal’s flank to capture body movements associated with
respiration. Right, example of simultaneous respiration measurement with
motionimaging (red) and flow sensor (black; Methods and Supplementary
Video2).b, Three further example trials with respiration rate extracted from
motionimaging (red) and simultaneous flow sensor recording (black). Below,
instantaneous sniff frequencies calculated from either sensor were tightly
correlated. ¢, Correlation between respiration traces extracted from motion
imaging and respiration captured by flow sensor (n=26 trials, 10 s duration
each). Violin plot shows the medianasablack dot and the first and third
quartiles by thebounds of the black bar. d, e, Probability distributions of inter-
sniffintervals for odour presentations (isoamyl acetate versus ethyl butyrate,
2Hzand 20 Hz) for freely moving animals in AutonoMouse before stimulus
onset (d) and during 2 s odour stimulation (e; n= 605 sniffs for2Hzand n=668
sniffs for 20 Hz, two-sample Kolmogorov-Smirnov test). f, Heat map of
accuracy difference between amodel in which animals rely on onset
information only (Methods) and actual animal accuracies across a range of sniff
frequencies and inhalation fractions (n =10 mice). No matter the assumed sniff
frequency and inhalation frequency, the ‘onset model’ deviates substantially
fromtheaccuracy measuredinthebehaviouralexperiments (h, i).

g, Difference between a model in which animals use the entire stimulus
structure (Methods) and actual behavioural accuracies across different
stimulus sampling times (n=10 repeats, mean +s.d.). The ‘whole stimulus’
model accurately describes animal behaviour, indicating that mice do not base
adecisionabout the correlation structure of astimulus predominantly on the
onset. Note the differentscalesinfand g. h, Schematic of experimental stimuli

inwhichthe first stimulus pulse was disrupted when presented on probe trials.
Top, normal stimulus design; bottom, ‘onset disrupt’ stimuli, in which the first
pulseinacorrelated stimulusis disrupted to be anti-correlated; and vice versa
forananti-correlated stimulus. i, Animals were trained on standard (non-
probe) correlation discrimination stimuli (f=10 Hz) but onset disrupt (probe)
stimuli were presented randomly on probe trials with a1/10 probability.
Accuracy was only slightly degraded on probe trials (mean +s.d. of accuracy for
non-probe trials 75.8 + 4.4%; for probe trials 67.8 + 6.1%; P=0.001, paired two-
sided t-test, n=9 mice) but did not drop below chance (P=7.3 x10°¢, paired
t-test). Notably, accuracy on probe trials was consistent with whole-structure
prediction (70.3 £3.5%, P=0.13, paired t-test of comparison to probe trials) and
differed significantly from the accuracy of onset-only prediction (41.6 +1.5%;
P=1.02x107%, paired t-test of comparison to probe trials). j, Mean reaction time
(time from stimulus onset to first lickin S+ trials) plotted as a function of
stimulus pulse frequency for the three animals with the best (left) and the worst
(right) global accuracy (meanaccuracy across all trials). Better-performing
animals tend toincrease their reaction time as stimulus pulse frequency
increases.k, Scatter plot of meanaccuracy versus meanreaction time for each
animal and stimulus pulse frequency condition (averaged over blocks of 100
trials). Points are colour-coded according to stimulus pulse frequency.
Accuracy was significantly positively correlated with reaction time, suggesting
that mice that sampled agreater portion of the stimulus made more accurate
decisions aboutits correlationstructure (Pearson correlation coefficient
R=0.49,P<1.1x10™).1, Accuracy (mean +s.e.m.) is plotted asin Fig. 2k, but
only trial blocks with reaction times above or below a certain threshold (colour
code) areincluded inthe analysis. Where only longer reaction times are
considered, global performance s higher than the case in which only shorter
reactiontimesareincluded, again suggesting that longer stimulus sampling
improves discrimination of odour correlation structure across all stimulus
pulse frequencies.
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Extended DataFig. 6| OSNimaginginresponseto correlated versus anti-
correlated odour stimulation. a;,, Four example fields of view (FOVs) recorded
fromthe dorsal olfactory bulb of individual mice. a;, Number of individual
glomeruliper FOVinallexperimental mice (n=15). The number of individually
delineated glomeruliranges from20 to36 with an average of 28 glomeruli per
FOV.Labelled data points (1-4) correspond to FOVsshownin a;. Scale bars,

50 um. Centrelineis median, the edges of the box are the 25th and 75th
percentiles, and the whiskers extend to the most extreme data points not
considered as outliers; Methods. b, Example glomerulus response from OMP-
Cre: Ai95(RCL-GCaMP6f)-D mice to presentation of individual odours plotted
pairwise (AB, CD, EF; mean +s.e.m. of 6 trials). Stimulation period (1s) is
indicated by vertical bar (blue, green and yellow). Bottom, typical example
respirationtrace. Pvalues derived from unpaired two-sided t-tests comparing
2-sintegrated responses between paired odours. ¢, Averaged calcium
transients from all glomeruli (n=145from Sindividual animals) inresponse to
individual odours, plotted as colour maps sorted by response magnitude.

d, Difference between glomerulus responses to individual odours plotted
pairwise as colour maps. Glomeruliare sorted by average magnitude of
response difference. e, Example glomerulus response to presentation of
correlated versus anti-correlated odour pairs fluctuating at2Hz (mean +s.e.m.
of12trials). Bottom, typical example respiration trace. Pvalues derived from
unpaired two-sided t-tests comparing 2-sintegrated responses of individual
trials to correlated and anti-correlated odour stimulation. f, Difference
betweenglomerulusresponsesto2Hz correlated and anti-correlated odours

ascolourmaps, sortedasind. g, h,Asine, fbut for 20 Hz correlated versus anti-
correlated stimuli. Example glomerulus fromb, e, gindicated with an asterisk
incolourmapsinc,d,f, h.i, Left, Pvalues derived from comparing trials of the
summed 2-sresponse to correlated versus anti-correlated odour stimulation at
2Hz (unpaired two-sided t-tests) for three odour pairs (colour-coded) as a
function of glomerulus selectivity toindividual odours (n=145 glomeruli).
Selectivity is calculated as the difference between the absolute response to
single odours scaled by the summed absolute response. A threshold issetat 0.5
to define glomerulias low- or high-selective. Dot size represents magnitude of
thesummed response. Middle, comparison of Pvalues between low-and high-
selective glomeruli (P<0.05, unpaired two-sided t-test). Violin plots show the
medianasawhite dotand the first and third quartiles by the bounds of the grey
bar.Right, cumulative distribution function of Pvalues for low- and high-
selective glomeruli (P<0.01for all pairwise comparisons, two-sample
Kolmogorov-Smirnov test).j, Asinibut for 20 Hz (n =145 glomeruli). k, Top,
mean *s.d. of classifier accuracy over 100 repetitions when trained on all
responsive glomeruli (n=145available, from Sindividual animals, Methods) to
discriminate 2Hz correlated versus anti-correlated stimuli, trained separately
foreach ofthe three odour pairs and within sliding windows of different widths
(colours); x-coordinates indicate latest extent of each window. Bottom, same as
top row but withlabels shuffled as control.l, Asink for 20 Hz correlated versus
anti-correlated odours.Some data pointsink, lare absentbecause not all time
points had responsive ROIs for every window size (Methods).
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Extended DataFig.7| Odour correlationstructureis encodedin dendrites
of olfactorybulb output neurons. a, GCaMPé6f fluorescence from mitral and
tufted cells and their dendrites recorded in the dorsal portion of the olfactory
bulb of a Thet-cre: Ai95(RCL-GCaMP6f)-D mouse (maximum projection of 8,000
frames). Dendritic ROls are superimposed in colour. Four dendritic segments
(1-4) are shown in higher magnification; scale bars, 20 pm. b, Four example
calciumtraces extracted from dendritic segments showninathat show
differential responsekinetics to correlated (black) and anti-correlated (red)
stimulation (mean +s.e.m. of 24 trials, f=20 Hz). In total, 24% of dendritic
segments showed significantly differentintegral responses (0-5s after odour
onset, P<0.01, unpaired two-sided t-test; 121/514) to the two stimuli. c, Average
calcium transients as colour maps for correlated (left) and anti-correlated
stimuli (middle) and the difference between the two (right) of all analysed
dendriticsegments (n=>514, from 6 individual animals). d, Classifier accuracy
over anincreasing number of dendritic ROIs trained on several response
windows (colour-coded) to discriminate correlated versus anti-correlated
stimuliat20 Hz (n=up to 514, mean = s.d. from 6 individual animals, black:
shuffle control). e, Method of aligning calcium traces to first inhalation after
odour stimulus onset. e;, Representative respiration tracesrecorded using a
flowsensor placed in front of the nostril contralateral to the imaging window.

Thefirstinhalation peaks were detected and the time (A¢) to the firstinhalation
after odour onset was calculated for each trialindividually. e;, Representative
calciumtransients in response to asingle odour presentation (here: 20 Hz
correlated). e;;, Transients are shifted according to At. e;,, Individual calcium
transients (faint colours, 24 trials) in response to 20 Hz correlated odour
presentations with the average calcium signal (thick traces) superimposed.
Top, before aligning to firstinhalation after odour onset; bottom, after
alignment. Blue bar represents the odour presentation phase (approximate for
thealigned data). f, Distribution of odour response integrals fromall recorded
ROIs (n=514) for correlated (grey) and anti-correlated (red) stimulation. Box
indicates 25th-75th percentiles, thick lineis median, whiskers are most
extreme data points not considered outliers; Methods. g, Histogram of the
difference between correlated and anti-correlated odour responses. Box plot
asinf.h, Comparison of correlated and anti-correlated odour responses of all
dendritic ROIs (f=20Hz, n=514 dendrites). i, Classifier accuracy when trained
onalldendriticROIsrecorded with asliding window of different durations
starting 2 s before odour onset (colour-coded; black, shuffle control; n =514
from 6 individual animals; mean +s.d., 100 repetitions). j-m, Asin f-ibut for
projection neuron somata (f=20Hz, n=680 cells; Fig. 3).
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Extended DataFig. 8| Projection neuronunitrecordingsinresponse to
correlated versus anti-correlated stimulation and short odour pulse
combinations. a, Datafromunit recordingsasin Fig. 3h-k. Average waveforms
acrossall channels of twoisolated units showninb, ;. Each waveform
represents the average waveform for the unit onaspecific channel. Red
waveformindicates the channel with the largest average waveform for the unit.
Scalebars, 100 pV (vertically) and 1ms (horizontally). b, Additional example
single unitodour responses to correlated (black) and anti-correlated (red)
stimulishown asraster plots (top) and PSTHs (mean s.e.m. of 64 trials for each
condition) of spike times before (second from top) and after baseline
subtraction (second from bottom), and the differential PSTHs for correlated
and anti-correlated stimuli (bottom, blue). Average spike waveforms shown as
insetsinb, ;. Duration of odour presentation (2s) isindicated in light blue.
Pvalues derived fromatwo-sided Mann-Whitney Utest comparing the spike
time distributions of correlated and anti-correlated trials during the 4 s after
odour onset.c, Average baseline firing rate for all units (n=97 from 6 individual
animals). Baseline firing rates were calculated from 4 s to O s before odour
onset foreach of the 1,312 trials presented during all recordings. Violin plot
shows the medianasablack dotand the first and third quartiles by the bounds
oftheblackbar.d;, Classifier accuracy when trained on all baseline-subtracted
unitsinresponseto 20 Hz correlated versus anti-correlated stimulation

(n=97 units, mean +s.d. from 6 individual animals) with a sliding window of
different durations (colour-coded; black, shuffle control; 100 repetitions)
starting at 2s before odour onset. Time along the x-axis represents the end time
ofthe window. d;;, Time period between-0.5and 0.5s from odour onset shown
athigher magnification (n=97 units, mean +s.d. from 6 individual animals).

e, Totake theentire temporal structure of responsesintoaccountwe
performedaPCAonthetemporal evolution of the firing rate responses
(Methods). Shown hereistheaccuracy for linear SVM classifiers (mean +s.d.)
trained onincreasing numbers of PCs. Classifiers were trained on all but two
trials (one correlated, one anti-correlated). Training and testing were repeated
1,000 times. The colour code represents the same windowssizes asind.f, The
first (f;), second (f;;), and third (f;) PCs found from PCA for different rolling
window sizes (colour code asind). Inthe second and third PCs, the windows
have beensplitastobetter compare the similarities in PCs for different window

sizes. g, Average classifier accuracy of a set of classifiers trained on the PC
weights of increasing number of units. Classifiers were trained on all but two
trials (one correlated, one anti-correlated). The number of PCs used for each
window was selected by the peak accuraciesin e (colour-coded; n=up to 97
units from 6 individual animals; mean +s.d. of 1,000 classifier repetitions).

h, Schematic of odour pulse stimulus timingsin relation to the respiration
cycle. Three combinations were presented, with each trial 120 msinlength. For
example, 11000 (top) consisted of a40-ms odour pulse (light blue) followed by
80 msofblank odourless air (grey). All trials were triggered at the onset of
inhalation. i, PSTHs from four example units (i; ;,) showing their average firing
ratebefore, during, and after odour presentation (light blue vertical bar).
Responsesareto either 11000 trial (black) or 10100 odour presentation (red).
Theinstantaneous firing rate was calculated by summing the number of
detected spikesin10-mswindows and multiplying the value by 100 to get Hz.
j.Accuracy of linear classifiers as afunction of the number of units available for
training or testing (mean s.d. of n=up to 145 units from 8 individual
anaesthetized animals). Each classifier was trained on the summed spike count
oftheavailable unitsinawindow of 500 msstarting at odour onset. The
classifiers were trained on all but two trials (one 11000 and one 10100 trial) and
the number of repeats between animals varied between 11and 30. To account
for thisand to minimize the variability of the training set, trial number was
bootstrapped to1,000 repeats. This was achieved by randomly selecting a
repetition for each unitindependently. The test set was isolated from the
responses before bootstrapping and thus was not seen by the classifier until it
wastested onit. Each classification was repeated 500 times with a different
selection of units, and adifferent test set. The shuffled control (black) was
accomplished by shuffling the training labels during eachiteration of the
classifier without shuffling testlabels. k, Asinjbut classifying all three odour
pulse combinations showninh.l, Confusion matrix showing the fractions that
eachtrialtype was classified as (n =145 units from 8 individual animals). True
labels are shown on the x-axis and labels predicted by the classifier on the
y-axis. Accuracies correspond to maximum unit countshowninc,d. The
classifiers canreadily separate between trials containing a single 40-ms odour
pulse.Accuracy islower when distinguishing between anintermission of 20 or
40 msbutremains above chance (chance=0.33).
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Extended DataFig.9|Whole-cell recordings of projection neuronsin
response to correlated versus anti-correlated odour stimulation.

a, Schematic of the whole-cell patch-clamp recording approach.

b, ¢, Distributions of input resistance (b) and recording depth (c) as measured
fromallrecorded projectionneurons (n=31).d, Left,example recordings from
single cells with consecutive presentations of correlated (black) and
anti-correlated (red) odour stimulus at 2 Hz. Duration of odour presentation
(2s)isindicatedinlight blue. Right, baseline-subtracted and spike-clipped
subthreshold voltage response from asingle cellto odour1(green) and odour
2 (blue) for2Hz. e, Asindbut for 20 Hz odour stimulation. f, Voltage response
fromthree example cells for correlated (black) and anti-correlated (red) odour
stimulifor 2Hz (top) and 20 Hz (bottom). The cell showninf;corresponds to the
cellshownind, e. Thegrey overlaid traces correspond to thearithmetic sum
estimated from the response toindividual odours. Bottom, linear prediction
histogram calculated by thresholding the arithmetic sum of the subthreshold
responses to theindividual odours. Differences here suggest that correlation

(20 Hz Correlated)
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Firing rate (Hz)
(20 Hz Correlated) 94%
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84%

canbecalculated atthe single-cell levelif the two individual odours engage
overlapping OSN populations. Pvalues are derived from a paired two-sided
t-testof the membrane potential and the firing rate in the first 500 ms after
odouronset. g, h, Average change in voltage (g;) and ininstantaneous spike
frequency (g;) in the first 500 ms after odour onset frombaseline membrane
potential for2Hz (g) and 20 Hz (h) correlated versus anti-correlated odour
presentation. Each marker correspondsto asingle cell; error bars represent
s.e.m.Datapointsinblack represent cellswhere P<0.05between correlated
and anti-correlated conditions. Pvalues are derived from a paired ¢-test of the
membrane potential and the firing rate in the first 500 ms after odour onset.
Indicatorsi, iiandiiirepresent cellsshowninf.1i, Pie charts depicting the
proportions of cells showing significant difference as described above (blue) in
subthreshold membrane potential (left) and spike frequency (right) forall2Hz
(top) and 20 Hz (bottom) cells. Pvalues are derived from a paired t-test of the
membrane potential and the firing rate in the first 500 ms after odour onset.
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Extended DataFig.10|Odour plume generation and additional analysis of
source separation experiments. a, Power spectrumofallrecorded odour
plumes (mean +s.d.of log power, n=132 plumes). b, Cross-correlation of all
recordings at different lateral separation distances. ¢, Correlation coefficients
over allrecordings for odours from the same source and for odour sources
separated by 50 cminacontrolled laboratory environment with complex
airflow (indoors; ethyl valerate (EV) versus tripropylamine (TPA); n=25 for
samesource, n=27 for sources separated by 50 cm; P<0.0001, unpaired two-
sided t-test). Box indicates 25th-75th percentiles, thick lineis median, whiskers
aremost extreme data points not considered outliers; Methods.d, Asin Fig. 4b
(for a-terpinene and ethyl butyrate) but for radial distances to the PID of 20 cm
and 60 cm (P<0.0001, unpaired two-sided t-test). e, Asind but measured
outdoors (n=7forsame source, 10 for sources separated by 50 cm; P<0.001,
unpaired t-test; indoors versus outdoors, one source: P=0.0060,s=50 cm:
P=0.0632, unpaired two-sided t-test). f, Example plume structures originating
fromthe same source or separated sources asrecorded with a PID (blue) and
replayed with the multi-channel high bandwidth odour delivery device
(orange). g, Correlation coefficients over all recordings of replayed plumes for
onesource (n=53plumes) and forsources separated by 50 cm from each other
(n=74plumes; P=2.27 x10™*, unpaired two-sided t-test). h, Odour signals
integrated over 2sforallrecordings of replayed plumes for one source (n=53
plumes) and for sources separated by 50 cm (n=74 plumes; P=0.75, unpaired
two-sided t-test). i, Odour plume signalsintegrated over 2 s for rewarded and
unrewarded trials (n=150 trials each; odour1: P=0.4739, odour 2: P=0.0923,
unpaired two-sided t-test). j, Overlaid power spectra (mean +s.d. of log power)
ofall plumes (n=127 plumes) recorded in complex, natural airflow conditions
(blue) and replayed plumes (orange). k, Schematic of plume reproduction.
First,a2-swindowis selected from the PID recording, startingaround the
middleof the trace and such that odouris present during the first 500 ms.
Second, the traceis normalized between O and 1. Third, the traceis converted
intoaseries of binary opening and closing commands directly related to the
value of the normalized signal. A value of 1 translates to a continuous opening,
and avalue of O translates to continuously closed. This series of commands is
relayed toanodour valve and aninverted version of the commandsis relayed to
amineral oil valve to generate acompensatory airflow. The resulting output
resembles the original plume, as measured with a PID, and there is constant
airflow throughout the trial, as measured with aflow meter. The same
procedureisthenapplied totheaccompanyingodour, to create both plumes
needed foreachtrial.l, Group learning curves (mean +s.d.) for the two groups
of animals trained onthe virtual source separation task, but on different sets of
valves. Group1(n=6mice, blue) were trained on the task from the start,

whereasgroup 2 (n=6 mice, cyan) were first exposed toascrambled version of
the task and were later transferred to the same plumes as group 1. This served
asacontrol thatthe cuerequired forlearningisindeed olfactory information
contained inthe odour plumes. For the third stage of learning, the plumes were
refined to ensure odour was always present in the first 500 ms of the trialand
performance stabilized for the two groups. Mice progressed through these
learning stagesasagroup, based ontime elapsed from the beginning of
training. Therefore, some mice performed more trials than others. The last trial
performed by amousein each phaseisrepresented by a colour-coded circle
abovethe plot. Accuracy is calculated over al00-trial sliding window.

m, Rejection fraction (fraction of trials the mouse abstained from licking)
calculated for each plume pair plottedin relation to the correlation between
thetwo odour tracesin that plume pair. Animals are trained to lick (expected
low rejection fraction) for source-separated trials (low correlation) and abstain
fromlicking (highrejection fraction) for one-source trials (high correlation).

n, Differenceinlick ratesinresponse to source-separation training trials
(n=9mice, mean ts.d.), calculated for each mouse as lick rate (licks per 100 ms)
inresponseto S+trialsminus the lick rate in response to S-trials, normalized to
averaged lick rate for all trials across the corresponding time period.

o, Reaction times for each mouse, calculated as the time point when the
differenceinlick rate for each mouse crossed a threshold (mean+3s.d. over the
baseline, defined as the first 200 ms of the trace, when odour was not present).
Boxindicates 25th-75th percentiles, thick lineis median, whiskers are most
extreme data points not considered outliers; Methods. p, Trial map of all
animals duringvirtual source separation tasks before and after introduction of
control valves similar to Extended DataFig. 4 (n=40 trials before and 40 trials
after new valve introduction, whichisindicated by black vertical line). Each row
corresponds toananimal, each columnrepresentsatrial. Light green, hit; dark
green, correctrejection;lightred, false alarm; dark red, miss. q, Mean
performance of animals (n=11mice) thatreached performance criterion
duringtraining during before and after control. r, Discrimination accuracy split
by stimulus valence (green, S+; black, S-) for odour correlation fluctuation
frequencies 2,20 and 40 Hz (Fig. 4e; n=9 mice, dataare mean +s.d., unpaired
two-sided t-test).s, Group performance for the square pulse probe trials at
different frequencies, inanimals trained on the source separation task (blue
dots, n=9 mice,dataaremean ts.d.),compared to group performance where
animals were trained on correlated and anti-correlated square pulse trains
(from Fig. 2k, blacklineand s.e.m.band, n=33 mice; 2Hz: P=0.0018,20 Hz:
P=0.19,40Hz: P=0.94, unpaired two-sided t-test). Violin plotsin g-ishow the
medianasablack dot and the first and third quartiles by the bounds of the black
bar.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code

Policy information about availability of computer code

Data collection  Odour transmission data was collected with commercially available Spike 2 software (Version 8.10).
Behavioral data was collected with custom open-source Python (3.6) code that controlled the automated behavior system: github.com/
RoboDoig/autonomouse-control, with Qt5 as the framework for GUI generation.
Other custom Python modules used to run this software are also availale at github.com/RoboDoig.
2-photon data was acquired with commercially available Scientifica software (SciScan 1.3).
Extracellular unit recordings data was collected using the Open Ephys system (Version 0.5.3.1) and analysed using Kilosort 2.
Experiment control and odour stimulation in 2-photon and electrophysiology experiments was orchestrated with custom open-source Python
software: github.com/RoboDoig/PulseBoy and http://github.com/warnerwarner/PulseBoy
Sound recordings were acquired via a Focusrite Scarlett 18i8 USB audio interface and saved using Audacity 2.4.2.
Code and related data for the OSN model can be found at https://github.com/stootoon/crick-osn-model-release.

Data analysis All data analysis was performed with Python (3.6 and 3.8), ImageJ (1.52), suite2p, Igor Pro 6 or MATLAB (2017b-2020a). Code related to the
glomerular classifier analysis is available at https://github.com/stootoon/crick-osn-decoding-release.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Data related to the OSN model is available at https://github.com/stootoon/crick-osn-model-release.
Data related to the glomerular classifier analysis is available at https://github.com/stootoon/crick-osn-decoding-release.
The remaining data that support the findings of this study are available from the corresponding author upon reasonable request.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

PX] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Maximum sample sizes for each cohort were determined by the availability of simultaneously weaned mice to allow for large groups of male
mice to be housed simultaneously for long periods of time without significant aggression within the group. Minimum sample sizes for each
cohort were determined by requiring 3+ mice be in each subgroup within a cohort.

Three separate experimental cohorts of mice were used for AutonoMouse experiments (correlation discrimination: cohort 1: n = 14 mice,
cohort 2: n = 25 mice; cohort 3: plume discrimination: n = 24 mice).

For physiological experiments a total of 49 mice were used (glomerular imaging: n = 9 mice, Mitra I/Tufted cell imaging: 9 mice, extracellular
unit: n = 6 mice and whole-cell patch clamp recordings n = 25 mice). We found that due to the consistency in the structure of odour
representations apparent across individuals, the number of animals sufficed for each experimental approach.

Data exclusions  For behavioral experiments, in the case that animals did not complete the pre-training phase (did not learn to gain sufficient daily water
through self-initiated tasks) they were removed from the experiment. This was a pre-determined condition for experimental animal removal.
For correlation discrimination experiments, one animal did not successfully pass the pre-training (1/39). For plume discrimination
experiments, the second half of the cohort (n = 12/24 mice) with reversed valence (one source (S+, unrewarded), from separated sources (S-,
rewarded) were not included in the analysis or carried forward to probe trials as they did not pass the performance criterion within the given
timeframe.

For imaging experiments, exclusion criteria were pre-established to select for experiments where fields of view could be imaged continuously
for at least 2 hours with minimal drift and motion artifacts and where odour-evoked activity could be detected over the course of the entire
imaging session. For extracellular recordings, units were classified as 'good' if they displayed a well defined inter-spike interval, a stable
waveform, and a minimally varying baseline firing rate over at least half of the recording. Units were not selected by their odour
responsiveness. For whole-cell patch recordings, cells with series resistance <25 MOhm were used for further analysis.

No other data was excluded from our analyses.

Replication For the odour transmission data, results were gathered from 3 environmental scenarios over 3 separate days and experiments. The principle
result was confirmed across all these experiments and was reproducible from day-to-day. In the behavioral experiments, many of the key
results (correlation detection, psychophysical threshold for correlation detection) were initially reported in one cohort of mice and then
confirmed in an entirely separate cohort containing more animals and more detailed controls. Evidence for olfactory bulb input and output
responses encoding odour correlation structure or paired pulses was found in 49 animals (imaging: n = 18 mice, extracellular recordings: n = 6
mice, whole-cell patch recordings: n = 25 mice) across 49 independent experiments.

Randomization  In all behavioural experiments, animals were first trained on a simple odour discrimination go/no-go task. Based on the performance levels in
this task, animals were randomly assigned to different test subgroups until performance levels between the subgroups were statistically
indistinguishable by a 1-way ANOVA.

Blinding Due to the group selection method, experimenters could not be completely blinded to group allocation, as different experimental parameters
had to be manually assigned to different animals based on their subgroup, in particular for test vs. control (scramble) mice. However, group
allocation was fixed at the start of the experiment based on performance in a simple go/no-go task, and investigators did not move mice
between groups after this initial choice. Also, since trial allocation was done entirely in software and the only distinguishing feature between
mice was their RFID chip code (which could only be viewed in software), there was no possibility of investigators handling or otherwise
treating mice differently due to their group selection. Therefore, although investigators could read-out the identity of the mice in the groups,
it is very unlikely that this had any effect on subgroup differences.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals All mice used for behavioural experiments were 6-8 week old C57/BI6 males at experiment initiation, and were used in the
experiment for a maximum of 78 weeks. All mice used for in vivo calcium imaging experiments were 12-20 week old Thet-cre
(Haddad et al., 2013) or OMP-cre (Ishii et al., 2003) mice crossed with a GCaMP6f reporter line (Otazu et al., 2015) of either sex. All
mice used for extracellular and whole-cell recordings were 5-8 week old C57 /BI6 males. Mice were housed up to 5 per cage in a
12/12h light/dark cycle with food and water provided ad libitum.

Wild animals The study did not involve wild animals.
Field-collected samples  The study did not involve field-collected samples.

Ethics oversight All animal procedures performed in this study were approved by the UK government (Home Office) and by the Institutional Animal
Welfare Ethical Review Panel.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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