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Recent studies have provided insights into the pathology of and immune response to
COVID-19'-8, However, a thorough investigation of the interplay between infected
cellsand theimmune system at sites of infection has been lacking. Here we use
high-parameter imaging mass cytometry® that targets the expression of 36 proteins
toinvestigate the cellular composition and spatial architecture of acute lunginjury in
humans (including injuries derived from SARS-CoV-2 infection) at single-cell
resolution. These spatially resolved single-cell data unravel the disordered structure
of theinfected and injured lung, alongside the distribution of extensive immune
infiltration. Neutrophil and macrophage infiltration are hallmarks of bacterial
pneumonia and COVID-19, respectively. We provide evidence that SARS-CoV-2 infects
predominantly alveolar epithelial cells and induces alocalized hyperinflammatory
cell state thatis associated with lung damage. We leverage the temporal range of fatal
outcomes of COVID-19 inrelation to the onset of symptoms, which reveals increased
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macrophage extravasation and increased numbers of mesenchymal cells and
fibroblasts concomitant with increased proximity between these cell types as the
disease progresses—possibly as a result of attempts to repair the damaged lung tissue.
Our dataenable us to develop a biologically interpretable landscape of lung
pathology from a structural,immunological and clinical standpoint. We use this
landscape to characterize the pathophysiology of the human lung fromits
macroscopic presentation to the single-cell level, which provides animportant basis
for understanding COVID-19 and lung pathology in general.

SARS-CoV-2isthe coronavirusthatcauses COVID-19, whichhasbecomea
global pandemic: as of February 2021, over 100 million people have been
infected and there have been more than 2 million fatalities'®". Agrowing
body of evidence indicates that the severity of COVID-19 is driven by
aninflammatory syndrome caused by hyperactivation of theimmune
system®2in an attempt to clear the virus. Persistent inflammation can
resultin damage to lung tissue®, the exudation of pulmonary-oedema
fluid that leads to dyspnoea, and acute respiratory distress syn-
drome (ARDS)™%. Immune profiling in peripheral blood! >
or bronchoalveolar lavage fluid” have revealed major changes in the
immune system; excessive neutrophil activation'®, lymphopenia®and
aberrant responses of the adaptive immune system? are among the
most prominent changes. However, thorough analysis of infected
tissue and theimmune systeminaspatial context hasonly recently been
started*"?'and s currently lacking for most infected organs, including
the lung. Although most patients with severe COVID-19 develop ARDS,

administering routine clinical supportive care as for other ARDS does
not entirely aid in patient recovery. The degree to which SARS-CoV-2
infection and the immune response to COVID-19 resemble or differ
from other insults in the lung is therefore unclear. To elucidate the
cellular composition, spatial context and interplay betweenimmune
and structural cell types during SARS-CoV-2 infection in the lung, we
performedimaging mass cytometry (IMC) in post-mortem lung tissue
from patients with COVID-19 or with other lung infections that cause
ARDS, and in otherwise-healthy individuals.

Pathophysiology of lungs in patients with COVID-19

Weinvestigated a cohort of 23 patients that included individuals who
died with ARDS after influenza (n=2) or bacterial infection (n=4), with
acutebacterial pneumonia (n=3) or with COVID-19 respiratory distress
syndrome (n=10), as well asindividuals who died without lung disease
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Fig.1|Structural and immunological disorder of lunginfection.

a, Composition of lung-infection cohort, and schematic procedure to acquire
highly multiplexed spatially resolved datawith IMC from post-mortem lung
samples. b, Total lung weight per disease group measured at autopsy.
n=16biologicallyindependentsamples. c, Lacunar space for eachacquired
IMCimage as apercentage ofimage area.d, Fibrosis score for each acquired
IMCimage. e, Representativeimagesillustrating the lacunar and parenchymal
structure of healthy lungs, and lungs from patients with ARDS or COVID-19.

f, Collageninimages from healthy lungs and lungs from patients with ARDS or
COVID-19 and the associated fibrosis score. Images with lowest and highest
fibrosis scores are depicted. g, Uniform manifold approximation and
projection (UMAP) of all cells, and the metacluster of each cell. Centroids are
shownassquares. h, Meanintensity of each markerin each metacluster.
Histogramindicates metacluster abundance. Heat mapsonleftindicate
relative proximity to lung structures or abundance per disease group.AT2,
alveolartype2 cells; KRT8/8, KRT8 and KRT18; NK, natural killer. i, Spatial

(n=4) and from whom post-mortem lung tissue was available (Fig. 1a,
Extended DataFig.1a, b, Supplementary Table 1). To better understand
and capture anatomical manifestations of the progression of lung dis-
ease, we divided patients with COVID-19 into those with ‘early’ and ‘late’
disease, depending on whether death occurred before or after 30 days
fromthestart of respiratory symptoms, respectively (Supplementary
Table1). Tocomprehensively investigate the cellular environment and
spatial organization of the lung, we designed ametal-labelled antibody
panel for IMC that was composed of 36 biomarkers, and used it to gen-
erate 237 highly multiplexed images at 1-pm resolution: in total, we
profiled 332 mm?of tissue and identified 664,006 single cells across all
specimens. IMC leverages laser ablation based oninductively coupled

distribution ofimmune cellsin heathy lungs and lungs from a patient with
COVID-19.j, Left, abundance of neutrophils (top) and macrophages (bottom) in
eachdisease group. Right, macrophages divided into alveolar (top) and
interstitial (bottom) subsets. k, Abundance of mesenchymal cells (left) and
fibroblasts (right) in each disease group.l, Amount of change (effect size)
pairwise between all disease groups (n=15) in MPO (left) and CD163 (right)
markers between IMC (x axis) and immunohistochemistry (IHC) (y axis).

m, Amount of change between late and early COVID-19 groups, pairwise for
eachcelltype (n=24), as estimated by IMC (x axis) and targeted spatial
transcriptomics (yaxis) for the same (left) and independent (right) cohorts.
Forc,d,j,1,m,n,n=237images from 27 biologically independent samples.
**P<0.01;*P<0.05, two-sided Mann-Whitney Utest, pairwise between groups,
Benjamini-Hochberg false-discovery rate (FDR) adjustment.Ino, p, r, Pearson
correlation coefficient; P, two-sided Pvalue; shade indicates 95th confidence
interval.Scalebars,100 pm (e, f, k). Box plots show interquartile range (25th to
75th percentiles) with centre line as the median (50th percentile).

plasma mass spectrometry of lanthanide-metal-tagged antibodies
fromtissues for the quantitative detection of epitope abundanceina
spatially resolved manner (Fig. 1a, Supplementary Table 2). Our panel
included phenotypic markers of endothelial, epithelial, mesenchy-
mal and immune cells, functional markers (activation, inflammation
and cell death), and an antibody specific to the spike (S) protein of
SARS-CoV-2. We used the IMC data to quantify the histopathology of the
lungunderinfection (Methods), as we observed that the post-mortem
lungs showed a considerable increase in weight across all patholo-
gies (Fig. 1b). Consistent with the gain of weight during infection, the
lacunar space of infected lungs was significantly reduced from 41.1%
in the healthy lung to median ranges of 28.72% and 15.3% in the lungs

Nature | Vol 593 | 27 May 2021 | 565



Article

of individuals with influenza and late COVID-19, respectively (Fig. 1c,
e); the most pronounced change was seen in the alveolar epithelium
(Extended DataFig.1c,d). As collagen deposition is aknown mediator of
both normaland dysregulated tissue repair during recovery frominfec-
tion?, we quantified the extent and intensity of collagen depositioninto
afibrosis score that was inspired by the Ashcroft score” (Methods).
The fibrosis score was significantly higher for lung pathologies than
for the healthy lung, especially for the two COVID-19 groups (Fig.1d, f,
Extended DataFig.1e-g). We constructed a spatially resolved single-cell
atlas to understand the cellular composition of the lung during vari-
ousinsults (Methods). We projected the 664,006 single cells from all
disease groups into a two-dimensional space (Fig. 1g, Extended Data
Fig.1h) and clustered them on the basis of their phenotype (Fig. 1h,
Extended Data Fig. 2a), which resulted in asingle-cell phenotypicatlas
for the humanlung. Weidentified 36 clusters, whichwe organized into
17 metaclusters on the basis of predominant markers, overall pheno-
types and proximity to lung structures (Fig. 1h, Extended Data Fig. 2a).
This atlas was dominated by abundant structural cell types, including
KRT8'KRT18" alveolar epithelial cells, a-smooth muscle actin® (aSMA)
cells that line the vasculature and immune cells such as CD15*CD11b*
polymorphonuclear neutrophils and CD68" macrophages (Extended
Data Fig. 2c). Although the broad compartments of lung structural
cellsand immune cells did not show large changes in absolute numbers
between the patient groups, the specific internal composition of the
structural cells of the lung and the immune system differed extensively
(Extended DataFig.2d). We observed increased immune infiltrationin
the lungs of patients with COVID-19 as compared to the healthy lung, but
toadegree that was comparable with other lunginfections (Extended
Data Fig. 2d). Within the specificimmune components, we observed
a prominent increase in infiltration of myeloid cells in the lungs of
patients with COVID-19 (as compared with the healthy lung), butto a
lesser extent than was seenin the lungs of patients with bacterial pneu-
monia (Fig.1i, Extended DataFig. 3a, b). We performed amore detailed
examination of the phenotypic diversity of myeloid cellsinrespect to
theirlocationinthe lung (Extended DataFig. 3c-e), which revealed that
CD14'CD16'CD206°CD163*CD123" interstitial macrophages—which
were probably recruited from peripheral blood—displayed the great-
estincrease in the lungs of patients with COVID-19 (particularly in the
late COVID-19 group) as compared with the healthy lung (Fig. 1j), and
the highest expression of IL-1f in monocytes in the lungs of patientsin
the early COVID-19 group (Extended Data Fig. 3d). Although neutrophil
levels are similar between the lungs of patients in the early COVID-19
group and healthy lungs, they are presentin significantly lower absolute
numbers in late COVID-19 (Fig. 1j, Extended Data Fig. 3a, b); thisisin
stark contrast to the lungs of individuals with bacterial pneumonia,
which contain the highest numbers of neutrophils across all disease
groups. Populations of macrophages were particularly increased in
the lungs of patients with COVID-19, as compared to all other disease
states (Fig. 1j, Extended Data Fig. 3a, b). We also observed that CD8"
T cells were significantly increased in lungs of individuals with ARDS
notassociated with COVID-19, but depleted inbacterial pneumonia, in
comparisonwith the healthy lung (Extended DataFig. 3a, b). To further
functionally characterize theimmune systemin healthy lungs and the
lungs of individuals with COVID-19, we performed IMC with animmune
panel of 39 markers on asubset of samples (2 healthy lungs and 4 lungs
from patients with COVID-19) (Extended Data Fig. 4). In comparison
with healthy lungs, we observed increased levels of the alarmin cal-
protectin (SI00A9) across several cell typesin the lungs of individuals
with COVID-19—most prominently, in macrophages and neutrophils,
butalsoinalveolar epithelial cells (Extended Data Fig. 4d-f). Alveolar
epithelial cells also expressed increased levels of HLA-DR in COVID-19.
Beyond theimmune compartment, we observed ashiftin the stromal
compartment of the lung in COVID-19, with a significant reductionin
absolute numbers of endothelial cells and anincrease in mesenchymal
cells and fibroblasts in lungs of patients in the late COVID-19 group
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(Fig. 1k, Extended DataFig. 3a, b). Theincrease in fibroblast abundance
with COVID-19 is consistent with the increased fibrosis score that we
observed in the lungs of patients with COVID-19 (Fig. 1d, Extended
DataFig. 5a). To orthogonally validate our findings, we performed
immunohistochemical staining of lung tissue from the same donors
for two markers and found excellent agreement between the relative
frequency of cells that were positive for the markers in IMC and immu-
nohistochemistry (Fig.1l, Extended DataFig. 5b-h), as wellin the ability
to estimate the size of the lacunar space of lungsin the various disease
states (Extended Data Fig. 5i-k). We also observed good agreement
between the changesin cell-type composition between disease groups
using targeted spatial transcriptomics®*, both for matched samplesin
the same cohort (Fig. 1m, Extended Data Fig. 6a-d) and samplesinan
independent study® (Fig.1m, Extended Data Fig. 6e-h).

Tissue damage by widespread inflammation

Our phenotypic single-cell atlas of the lung contains clusters that
are defined by cell-identity markers and markers of cell state across
all of the diseases that we evaluated. We developed an unsupervised
classification of cells according to the abundance of each markeras a
complementary approach (Extended Data Fig. 7a), and observed a high
concordance with the phenotypic clusters (Extended Data Fig. 7b).
Using this approach, we observed a high specificity of our SARS-CoV-2S
antibody to tissue samples from patients with COVID-19 (Fig. 2a,
Extended Data Fig. 7c). Among all cell types, alveolar epithelial cells
displayed the highest rate of SARS-CoV-2 S positivity (Fig. 2b). These
alveolar epithelial cells were also highly positive for the phosphorylated
signal transducer and activator of transcription 3 (pSTAT3), therecep-
tor tyrosine kinase and proto-oncogene KIT and contained increased
levels of interleukin 6 (IL-6), arginase 1, the apoptosis marker cleaved
caspase 3 (CASP3) and the assembled complement membrane attack
complex C5b-C9 (Fig.2c, d). Giventhat S~ alveolar epithelial cellsin the
same regions showed no increase in the levels of functional markers,
this probably indicates viral-specific alterations of the cellular state.
Increased IL-6 and pSTAT3 levels were also seenin the lungs of individu-
als withinfluenza and pneumonia as compared with healthy lung, but
were notseenin ARDS that was not associated with COVID-19 (Extended
DataFig.7d). However, highlevels of cleaved CASP3 and C5b-C9 were
exclusive to S"alveolar epithelial cells fromindividuals with COVID-19,
andindicate theinitiation of apoptosis and complement-mediated host
immune defence, respectively, which led to increased damage to the
alveolar lining. Although the alveolar epithelium was the predominant
cell type that was positive for S, we also found that a mean of 7.8% and
2.7% of macrophages and neutrophils, respectively, were positive for S
across allimages of lungs of patients with COVID-19; some regions were
upto38.6%and 43.6%S", respectively (Extended Data Fig. 7e, f). Con-
sistent with our observations in S* epithelial cells, both macrophages
and neutrophils exhibited higher levels of cleaved CASP3, pSTAT3 and
IL-6 but—unlike the alveolar epithelial cells—these cells showed no
positive staining for C5b—C9 (Extended Data Fig. 7g-j). However, KIT
was specifically upregulated in macrophages and not in neutrophils
(Extended DataFig. 7g, h). This non-epithelial cell marker profile phe-
notypeseenin S’ cellswas alsoseeninother cell types, albeit atamuch
lower frequency (Extended Data Fig. 7k). We also observed high het-
erogeneity in the localization of S* cells, often within the same 1-mm?
tissue region (Fig. 2e). Although we observed interactionsbetween S*
epithelial cells and immune and nonimmune cells (Fig. 2e top right),
other S* cells did not interact with these cells at all or seemed to be
encapsulated in structures that precluded interactions with other
cell types (Fig. 2e bottom right). To generate a quantitative map of
cellular interactions, we quantified proximal interactions between
and within cell types for each image and generated disease-specific
interaction maps (Extended Data Fig. 8a-c, Methods). Comparing
interactions between the healthy lung and lungs from patients with
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Fig.2|Cellular tropism of SARS-CoV-2infection. a, Absolute abundance of S*
cells for lungs of patients without COVID-19 (grey) or with COVID-19 (red). b,
Distribution of S* cells across metaclustersin COVID-19. Inset displays intensity
of KRT8/18 and S* for single cells from non-COVID-19 (left) and COVID-19 (right)
groups. ¢, Phenotype of alveolar epithelial cellsin COVID-19, depending on
levels of S.d, Intensity of differential markers between cellsdependenton S
levels. e, Distribution of Ssignalina spatial context. Structural,
cell-type-specificand functional markers are displayed alone orin
combination. Forthe green channelin theimagesin the rightmost column, the
Schannel was multiplied with KRT8/18 or CD68 to highlight T cells that are
positive for both markers. Scale bar,200 pm (main panels), 50 pm (magnified
images onright (unless otherwiseindicated)). f, g, Differentialinteractionsin

COVID-19, we observed increased interactions between neutrophils
and macrophages and decreased interactions within macrophages; in
late COVID-19, the intra-cell-type interactions in macrophages, fibro-
blasts and CD4" T cells decreased further, and were accompanied by
anincrease in interactions between macrophages and fibroblasts or
dendritic cells (Fig. 2f, g). When spatially contextualizing these inter-
actions, we observed that macrophages preferentially interacted with
fibroblastsinthe alveolar walls, which suggests a contribution to fibro-
sisand the thickening of the alveolar wallin late COVID-19 (Fig. 2h). As
epithelial cellsasawhole did not show any particular changeininterac-
tionsin the lungs of patients with COVID-19 as compared with healthy
lung, we investigated whether S* epithelial cells differed in cellular

I Healthy
I Influenza M Pneumonia M COVID-19, late

[ ARDS [ COVID-19, early

C5b-C9 KRT8/18 DNA
healthy lung and lungs of patients with COVID-19 (f) or between early and late
COVID-19 (g). h, Fibroblasts and macrophages from early and late COVID-19.
Scalebars, 200 pm. i,j, Proportion of cleaved CASP3* macrophages (left) or
neutrophils (right) (i), and C5b-C9* epithelial (left) or endothelial (right) cells
(j), foreach disease group. k, Deposition of C5b-C9 in epithelial cells in healthy
lung and lungs from patients with COVID-19. Scale bars, 100 um.Ina, i, j,
n=237images from 27 biologically independent samples; **P<0.01; *P< 0.05,
two-sided Mann-Whitney Utest, pairwise between groups, Benjamini-
Hochberg FDR adjustment.Inf, g, Pvalues are from two-sided Mann-Whitney
Utest with Benjamini-Hochberg FDR adjustment. Box plots show interquartile
range (25th-75th percentiles); centre line is median (50th percentile).

interactionsto theirS™ counterpartsin the lungs of patients with COVID-
19 (Extended DataFig. 8d-i). Across all cell types, there was atrend for S*
cellsto have reduced cellular interactions (Extended Data Fig. 8d-f).S*
alveolar epithelial cellsin particular lacked interactions with other cell
types, ascompared with S™ cells (Extended Data Fig. 8g-i). We observed
progressively more cells with markers of cell death (particularly mac-
rophages and neutrophils with cleaved CASP3) (Fig.2i), whereas epithe-
lial and endothelial cells preferentially had C5b-C9 (Fig. 2j, k)—which
probably indicates alveolar damage. Using spatial transcriptomics
data, we observed that pathways of inflammatory response (such as
interferon and interleukin signalling) were increased in the lungs of
patients with COVID-19 as compared with healthy lung—particularly
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Fig.3|Adata-driven and clinically annotated landscape of lung pathology.
a, Principal component analysis (PCA) of all IMC images. Points represent
images, and are coloured by disease group. Arrows are vectors for each cell
cluster,andindicate the areain which each cell type is most abundant.

b, Microanatomy and immune content of the disease groups. Scale bar, 100 um.
¢, Volcano plotshowing strength of association between clinical parameters
and principal component (PC)1, and significance. WBC, white blood cell.

d, Projections of white blood cell count (measured at admission) (top left), days

inthealveolar and airway compartmentsin early COVID-19 (Extended
DataFig. 9a-e). However, pathways related to angiogenesis, myogen-
esis and the epithelial-to-mesenchymal transition were increased in
thelungs of individuals with COVID-19 as compared with healthy lungs,
whichincreased progressively in late COVID-19 (Extended Data Fig. 9b).
In accordance with the IMC data, we also observed that coagulation,
complement activation and apoptosis pathways were upregulated in
alveolar areas and in blood vessels in late COVID-19 (Extended Data
Fig.9¢). This suggests that, after an early period of disease that is domi-
nated by inflammatory responses to SARS-CoV-2, late COVID-19in the
lung may be driven by pathogen-independent mechanisms that are
aconsequence of animmune response with an aberrant resolution.

Aninterpretable landscape of lung pathology

Building on the cell types we identified, their functional status and
their interactions, we sought to define a landscape of lung pathology
from the data to form an unbiased view of the multicellular architec-
ture of lung tissue during infection (Fig. 3a, Extended Data Fig. 9f-j,
Methods; available at http://covid-imc.eipm-research.org/). The major
axes of thislandscape, whichis based ona principal component analy-
sis, demonstrate the distribution of samples and the major drivers
of the establishment of the landscape. This confers biological inter-
pretability to the landscape, as the underlying cellular composition
ateachgiven pointis readily identifiable. Although the landscape was
determined in anunsupervised manner (without knowledge of sample
groups), it largely recapitulates the disease ontogeny of the samples:
itis dominated by the difference between samples of healthy lung
and lungs of patients with COVID-19 who succumbed after prolonged
disease (Fig. 3a). This is exemplified by the abundance of immune cell
types such as macrophages or neutrophils (which are most abundant
in the lungs of patients with COVID-19 or pneumonia, respectively),
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of disease (top right), lung weight (bottom left) and alveolar type-2 cells with
fibroblasts (bottomright) onto the two-dimensional PCA space. e, Similarity of
landscape of IMC data. Pairwise correlation of demographic, clinical and
pathological variablesin the association with the principal components.
Matrix rows and columns are the same. Highlighted groups of variables

reflect hierarchically clustered groups of variables explaining the IMC data.
Inc-e, anasteriskindicates that the clinical parameter was measured at
admission.

but also by collagen deposition in lungs from patients with COVID-19
(Fig.3b). We largely recapitulated the structure of this landscape when
using complementary methods (Extended Data Fig. 9h—-j). Toadd a
layer of clinical interpretability to the landscape, we performed an
association analysis between its axes and known demographic, clini-
cal and pathological factors of patients with lung infections (Fig. 3¢,
Extended Data Fig.10a-d, Methods). We observed strong associations
primarily between clinical factors and the first principal component
(Extended DataFig.10a): specifically, asignificant positive association
between the distribution of samples in the first principal component
axis with the presence of alveolar type 2 cells with fibroblasts, organ-
izing pneumonia, the number of days that elapsed since beginning of
symptoms, hospitalization and intubation, and lung weight at death
(Fig.3c, Extended DataFig.10a). We also observed a significant associa-
tionbetween areductionin white blood cell counts and the major axis
associated with disease progression (principal component 1) (Fig. 3c,
Extended Data Fig. 10a). The values of clinical factors overlaid with
their respective images in the landscape confer a convenient way of
interpreting the associations, effectively rendering alandscape anno-
tated withclinical information both biologically (Fig.3a) and clinically
interpretable (Fig. 3d, Extended Data Fig. 10e). To develop the clini-
calinterpretation of the landscape, we further related the associated
clinical, demographic and pathological variables by how similar they
are in explaining the IMC data (Fig. 3e, Extended Data Fig. 10b). We
found that variables were organized into three large blocks: (1) high
C-reactive protein and white blood cell count at presentation, as well
as pathology characterized by acute inflammation of the alveolar wall;
(2) high values of IL-6, erythrocyte sedimentation rate and D-dimer at
presentation, comorbidities such as obesity and hypertension, lung
pathology characterized by microthrombiand chronicalveolar inflam-
mation with macrophages, and haemorrhagic stroke as the cause of
death; and (3) prolonged disease and associated interventions such as


http://covid-imc.eipm-research.org/

intubation and treatment, with pathology characterized by squamous
hyperplasia, large thrombi, organizing pneumonia and alveolar type-2
cells associated with fibroblasts. These groups probably represent
a progressive range of pathology that is associated with extremely
acute disease that results in early death (1) to a chronic manifestation
of prolonged disease (3). Beyond these dominant clusters, we found
that demographic and behavioural variables (such as age, gender or
smoking) did not strongly associate with the larger groups, which
suggests they have little influence in the pathology of lethal disease
associated with SARS-CoV-2 lung infection. The similarity between
variables in the IMC data differs considerably from that obtained from
simple co-occurrence of the variables (Extended DataFig.10c, d), which
provides evidence for the added value of high-content multiplexed
imaging of lung tissue in infectious disease.

Discussion

Our spatially resolved single-cell analyses of post-mortem lung tissue
from patients with COVID-19 or other lung infections provides acom-
prehensive examination of the response of the human lung toinfection,
from the macroscopic to the single-cell level. Across all diseases, we
observed a significant reduction in alveolar lacunar space, increased
immune infiltration and cell death by apoptosis, as compared with
healthy lungs. We also noted that neutrophil infiltration—although it
isincreased in the lungs of patients with ARDS or early COVID-19 com-
pared withnormallung—is a hallmark of bacterial pneumonia, and that
ahigh degree ofinflammation, infiltration of interstitial macrophages,
complement activation and fibrosis is particular to the lungs of indi-
viduals with late COVID-19. Our analysis agrees with recent reports that
indicate that the type of pathophysiological response to SARS-CoV-2
infection may not be entirely different from ARDS that is unrelated
to COVID-19%, but contradicts reports that suggest that the hyperin-
flammatory phenotype (as assessed by cytokine levels in peripheral
blood) is not specific to COVID-19%, Our observation that S* alveolar
epithelial cells do not differentially interact with cells of the immune
system (despite extensive immune infiltrationin the lung) potentially
highlights the lack of an ‘on-target’immunological response, and the
high amount of complement activation in lung tissue from patients
with COVID-19 probably results in indiscriminate ‘off-target’ tissue
damage—exacerbating COVID-19 and continuing the cycle of inflam-
mation. The increased presence of IL-13" monocytes in the lungs of
patients with early COVID-19 suggests a mechanism for neutrophil
recruitment to the lung. Neutrophil recruitment was highest in the
lungs of patients with bacterial pneumonia (the only group that we stud-
ied with anactive disease of bacterial pathogen origin). The differential
pathogenrecognition between viraland bacterialinfectioninthe lung
could explain the differences in chemokine secretion in the ensuing
immune response. However, despite sharing a viral pathogenic origin
withinfluenza, COVID-19 (specifically the expansion of mesenchymal
cells and fibroblasts, particularly in late COVID-19) probably reflects
aresponse to the extensive tissue damage from complement activa-
tion. Despite this, the high mortality rate of COVID-19 is at odds with
productiverecovery from tissue damage and healing, which suggests
the need for further investigationinto complement-activation-induced
damage to the lung, additional immunological factors (such as neu-
trophil extracellular traps) and microthrombi formation®. This raises
the possibility that early immunological interventions that suppress
excessive complement activation could have a therapeutic benefit.
Our biologically interpretable and clinically annotated landscape of

lung pathology provides a framework for a data-driven, spatially aware
understanding of lung pathology, and will be an important resource
for the study of COVID-19 and other lung infections.
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Methods

Datareporting

Nostatistical methods were used to predetermine sample size. Image
acquisition, segmentation, quantification and clustering were blinded
to patient identifiers and clinical metadata.

Human studies

Tissue samples were provided by the Weill Cornell Medicine Depart-
ment of Pathology. The Tissue Procurement Facility operates under
Institutional Review Board (IRB) approved protocol and follows
guidelines set by Health Insurance Portability and Accountability Act.
Experiments using samples from human subjects were conducted in
accordance with local regulations and with the approval of the IRB
at the Weill Cornell Medicine. The autopsy samples were collected
under protocol 20-04021814. Autopsy consent was obtained from the
families of the patients.

Tissue section preparation

Lung tissues were fixed via10% neutral buffered formalininflation, sec-
tioned and fixed for 24 hbefore processing and embedding into paraffin
blocks. Freshly cut 5-pum sections were mounted onto charged slides.

Antibody panel design and validation

We designed an antibody panel to capture different immune and
stromal compartments of the lung. Antibody clones were extensively
validated through immunofluorescence and chromogenic staining
and verified by a pathologist. Once the clone was approved, 100 pg
of purified antibody in BSA and azide free format was procured and
conjugated using the MaxPar X8 multimetal labelling kit (Fluidigm)
as per the manufacturer’s protocol. To confirm the antibody binding
specificity after conjugation and to identify the optimal dilution for
each custom conjugated antibody, sections from healthy lung, and
bacterial pneumonia, non-COVID-19 ARDS and SARS-CoV-2-infected
lung were stained. These sections were then ablated on Fluidigm
Hyperion Imaging System and visualized using MCD Viewer for an
expected staining pattern and optimal dilution that presented with
good signal-to-noise ratio for each channel. For channels with visible
spilloverinto the neighbouring channels, a higher dilution factor was
adopted when staining the cohort tissues.

IMC
Onthebasis of the clinical and pathological characteristics and quality
of the preserved tissues, suitable representative fresh cut 4-pm-thick
FFPE sections were acquired from the Department of Pathology of Weill
Cornell Medicine for IMC staining. The tissues were stored at 4 °C for
aday before staining. Slides were first incubated for1hat 60 °Con a
slide warmer followed by dewaxingin fresh CitriSolv (Decon Labs) twice
for10 min, rehydrated in descending series of 100%, 95%, 80% and 75%
ethanol for 5 min each. After 5min of MilliQ water wash, the slides were
treated with antigen retrieval solution (Tris-EDTA pH9.2) for 30 min at
96 °C. Slides were cooled to room temperature, washed twice in TBS
andblocked forl.5hinSuperBlock Solution (ThermoFischer), followed
by overnight incubation at 4 °C with the prepared antibody cocktail
containing all 36 metal-labelled antibodies (Supplementary Table 2).
The next day, slides were washed twice in 0.2% Triton X-100 in PBS and
twice in TBS. DNA staining was performed using Intercalator-Iridium
in PBS solution for 30 min in a humid chamber at room temperature.
Slides were washed with MilliQ water and air-dried before ablation.
The instrument was calibrated using a tuning slide to optimize the
sensitivity of the detection range. Haematoxylin and eosin-stained
slides were used to guide the selection of regions of interest (ROIs) con-
taining alveolar parenchyma, airways and thrombotic vessels to obtain
regions that were representative of the whole range of lung pathol-
ogy. All ablations were performed with a laser frequency of 200 Hz.

Tuning was performed intermittently to ensure the signal detection
integrity was within the detectable range. A total of 240 image stacks
were ablated. The raw MCD files were exported for further downstream
processing.

IHC

Automated IHConalLeicaBond Illinstrument was performed on 5-pm
tissue sections using antibodies for myeloperoxidase (clone 59A5,
Leica ready to use antibody, without antigen retrieval) and CD163
(clone MRQ-26, Leicaready to use antibody, antigen retrieval 20 min,
high pH) using 3,3’ diaminobenzidine chromogen. For each slide, a
grid (5 x5grid, 0.4-cm x 0.4-cm boxes) was placed on the section and
5alveolar, 2 vascular and 2 airway regions were randomly selected
using random number-generated x,y coordinates and that ROI (using
a20x objective) was photographed.

Targeted spatial transcriptomics using GeoMx

In brief, selected cases of lung injury associated with COVID-19
(4 patients with early COVID-19 and 4 patients with late COVID-19),
bacterial pneumonia (2) and healthy lung (3) fromthe IMC cohort were
evaluated using the GeoMx* COVID-19 Immune Response Atlas with
approximately 1,850 RNA targets. Spatial transcriptomics analysis
included up to 24 ROIs per tissue. Alveolar, airway and vascular com-
partments were analysed.

For GeoMx DSPslide preparation, we followed the GeoMx DSP slide
preparation user manual (MAN-10087-04). In brief, tissue slides were
bakedinadryingovenat 60 °Cfor1handthenloadedto LeicaBiosys-
tems BOND RX FFPE for deparaffinization and rehydration. After the
target retrieval step, tissues were treated with proteinase K solution
to expose RNA targets followed by fixation with 10% NBF. After all tis-
sue pretreatments were done, tissue slides were unloaded from the
Leica Biosystems BOND RX and incubated overnight with RNA probe
mix (COVID-19 Immune Response Atlas; a pool of in situ hybridization
probes with UV photocleavable oligonucleotide barcodes). The next
day, tissues were washed and stained with tissue visualization markers:
CD68-647 at 1:400 (Novus Bio, NBP2-34736AF647), CD45-594 at 1:10
(NanoString Technologies), panCK-532 at 1:20 (NanoString Technolo-
gies) and/or SYTO 13 at 1:10 (Thermo Scientific S7575).

For GeoMx DSP sample collections, we followed the GeoMx DSP
instrument user manual (MAN-10088-03). In brief; tissue slides were
loaded on the GeoMx DSP instrument and then scanned to visualize
whole-tissue images. For each tissue sample, aboard-certified patholo-
gist selected 24 total ROIs from 3 types of functional tissue: vascular
zone, large airway and alveoli zone. Each ROl was subdivided into com-
partments on the basis of fluorescent cell-specific markers, and serial
UVillumination of each compartment was used to sequentially collect
the probe barcodes from the different cell types.

Each GeoMx DSP sample plus nontemplate controls (NTCs) was
uniquely indexed using the i5 x i7 dual-indexing system of lllumina.
Four pl of a GeoMx DSP sample was used ina PCR reaction with 1 uM of
i5 primer, 1 uM i7 primer and 1x NSTG PCR Master Mix. Thermocycler
conditions were 37 °C for 30 min, 50 °C for 10 min, 95 °C for 3 min, 18
cyclesof 95°Cfor15s, 65°C for 60 s, 68 °C for 30 s, and final exten-
sion of 68 °C for 5 min. PCR reactions were purified with two rounds
of AMPure XP beads (Beckman Coulter) at 1.2x bead-to-sample ratio.
Libraries were paired-end sequenced (2 x 75) on aNextSeq550 generat-
ing up to 400 million aligned reads in total.

Processing and filtering of the raw next-generation sequencing data
was performed on the DNA sample libraries that were sequenced, pro-
ducing about 1.3 billion reads. NextSeq-derived FASTQ files for each
sample were compiled for each compartment using the bcl2fastq pro-
gram of lllumina, and then demultiplexed and converted to digital
count conversion (DCC) files using the GeoMx DnD pipeline (v.1) of
Nanostring. These DCCfiles were then converted to an expression count
matrix using acustom Python script. Aminimum of10,000 reads were



required for eachnon-NTC sample (2compartments removed). Probes
were checked for outlier status by implementing a global Grubb’s out-
lier test with alpha set to 0.01. The counts for all remaining probes for
agiven target were then collapsed into a single metric by taking the
geometric mean of probe counts. A count of 1was added to any probe
that yielded O counts before the geometric mean was taken. For each
sample, an RNA-probe-pool-specific negative probe normalization
factor was generated on the basis of the geometric mean of negative
probes in each pool. To ensure good data quality, we calculated the
75th percentile of the gene counts (that is, geometric mean across all
non-outlier probes for agiven gene) for each ROI, and normalized to the
geometric mean of the 75th percentile across all ROIs to give the upper
quartile (Q3) normalization factors for each ROI. The distribution of
these Q3 normalization factors were then checked for outliers defined
as any ROl greater than two s.d. from the mean log,-transformed Q3
normalization factor. This criterion removed 15 ROIs that fell below
the range and 1ROl that fell above the range.

Preprocessing IMC data

IMC datawere preprocessed as previously described” with some modi-
fications. In brief,image data were extracted from MCD files acquired
with the Fluidigm Hyperioninstrument. Hot pixels were removed using
afixed threshold, theimage was amplified two times, Gaussian smooth-
ing was applied and, from each image, a square 500-pixel crop was
saved as a HDFS5 file for image segmentation. Segmentation of cells
in the image was performed with ilastik? (version 1.3.3) by manually
labelling pixels as belonging to one of three classes: nuclei (the area
marked by signalin the DNA and histone H3 channels), cytoplasm (the
areaimmediately surrounding the nuclei and overlapping with signalin
cytoplasmic channels) and background (pixels with low signal across all
channels). llastik uses the labelled pixels to train arandom forest classi-
fier using features derived fromtheimage and its derivatives. Features
used were the Laplacian of the Gaussian, Gaussian gradient magnitude,
difference of Gaussians, structure tensor eigenvalues and the Hessian
of Gaussian eigenvalues, each of which had Gaussian kernels of widths
from 0.3t010 (37 featuresin total). The outputs of prediction are class
probabilities for each pixel, which were used to segment the image
using CellProfiler?® (version 3.1.8) with the IdentifyPrimaryObjects
module. This was followed by the IdentifySecondaryObjects module,
inwhich theidentified nuclei are used to seed an expansion of the cell
area to the area with the sum of the nuclear and cytoplasmatic prob-
ability map, and finally gaps in the identified cells are filled.

We assessed the quality of each acquired channel by computing aset
of metrics for each channel across all images: the mean and squared
coefficient of variation of each channel in the wholeimage and, in the
area with cells, a difference between those values in the cells and the
whole image (foreground versus background signal), an estimate of
noise variance®, a robust wavelet-based estimator of Gaussian noise
s.d.?*, the fractal dimension (Minkowski-Bouligand approximation
using the box counting method) and lacunarity of the image®. Across
all 240 ablated images three were discarded based on these metrics
and visual inspection.

Computing lacunarity and fibrosis score

To identify lacunae in the images, we used the mean of all channels in
each image stack after performing histogram equalization per chan-
nel (skimage.exposure.equalize_hist). Images were thresholded with
Otsu’s method (skimage.filters.threshold_otsu), successively dilated
and closed (ski.morphology.binary_dilation/ski.morphology.closing)
with adisk of 5-pm diameter to remove objects without holes and—for
the objects with holes—objects within the hole were removed on the
negative image (scipy.ndimage.binary_fill_holes) and only objects
with area larger than 625 pixels (25%) were kept (skimage.morphology.
remove_small_objects). To provide biological context for the single-cell
clusters we identified, we further classified each of the lacuna of healthy

lungs into one of three classes: blood vessels (arteries and veins), air-
ways and alveoli. Vessels showed a very thin lining of endothelial cells,
followed by a thick layer of smooth muscle cells that are a-SMA*; the
airway epitheliumislined by KRT8'KRT18" cells; and alveoliare covered
inalveolar epithelial cells that have various degrees of CD31, vimentin,
KRT8 and KRT18. On the basis of this, we developed a semisupervised
strategy for lacuna classification that had two stages: first each of the
lacuna objects was dilated by a 15-pixel disk and the mean intensity of
the channels above was quantified only in the dilated area, and these
values were Z-score-transformed per image. We used these values in
three ways, in which each provided a vote towards a lacuna being one
ofthethree classes: absolute intensity, Z-score-transformed intensity,
ratio of a-SMA to KRT8 and KRT18. For each, aset of rules was enforced
inwhichlacunae with higher valuesin a-SMA and low in KRT8 and KRT18
were labelled as vessels, and those with higher KRT8 and KRT18 were
labelled as airways; the remaining lacunae were labelled as alveoli.
Essentially, absolute and relative intensity of the markers determine the
class, and theratio of the two isthe tiebreaker in case of disagreement.
Inasecond phase, the suggested labels were reviewed by anexpertand
overruled if needed. In general, we found that the rules above were
accurate with only a systematic bias to underclassify vessels (hence
the need for supervision).

To develop a score for fibrosis, we were inspired by the Ashcroft
score?inwhich the fraction of fibrotic tissue that occupies each image
is translated into a score in a Likert scale. We quantified the fraction
of the image occupied by collagen type | as thresholded by the Otsu
method (skimage.filters.threshold_otsu), but in addition quantified
the density of collagen per area unit by using the spectral counts given
by the IMC data. The final score is the mean of a Z-score of the fraction
covered by collagen and a Z-score of its intensity.

Cell-type identification

Toidentify cell typesin an unsupervised fashion, we first quantified the
intensity of each channel in each segmented cell that did not overlap
imageborders.Inaddition, for each cell we computed the morphologi-
cal features ‘area’, ‘perimeter’, ‘major_axis_length’, ‘eccentricity’ and
‘solidity’ (skimage.measure.regionprops_table). Values were Z-scored
per image and cells with area values above -1.5, solidity above -1 and
eccentricity below 1 were kept. In addition, we calculated the sum of
log(1+x) signalsin the IMC channels and kept cells with values between
2and 7. We used Scanpy™ (version 1.6.0) to perform a PCA, compute a
neighbour graph on the PCA latent space, compute a UMAP™ embed-
ding (umap package, version 0.4.6) and cluster the cells with the Leiden
algorithm®withresolution1.0 (leidenalg package, version 0.8.1). Each
cluster was manually labelled with abroad ontogeny and the channels
that were most abundant in each cluster. These broad labels formed
thebasis of the metaclusters used to aggregate clusters on the basis of
celltype and regardless of cellular state. Clusters without enrichment
for any particular marker were not aggregated.

To obtain an easy way to quantify the fraction of cells positive for
agiven marker, we used univariate Gaussian mixture models using
scikit-learn®* (version 0.23.0). For each channel, we performed model
selection with models with two to six mixtures, selected the model on
the basis of the Davies-Bouldin index® and labelled a cell as positive
foragiven channelif its value was in the top mixture (in cases in which
the selected model had only two mixtures) or the top two mixtures
(if the selected model had more).

The analysis of theimmune-centric IMC panel was performedin the
same manner as the larger dataset, with the exception that the thresh-
olds for cell filtering based on area, DNA intercalator intensity and
solidity were performed automatically with Gaussian mixture models
asdescribedinthe previous paragraph. Differential marker abundance
was tested with a two-sided Wald test between healthy lung samples
and samples from patients with COVID-19, and adjusted for multiple
comparisons with the Benjamini-Hochberg FDR.
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Quantification of cellular interactions

To quantify the degree and importance of intra- and inter-cell-type
interactions, we started by constructing a region adjacency graph
representing the interactions between cells, in which the edges are
weighted by the Euclidean distances between cells, using scikit-image*
(version 0.17.2). A pairwise adjacency matrix between cell clusters was
computed using networkx® (version 2.5). Toget a degree of confidence
on cellular interactions given the cell type abundance in each image,
we permuted the cell cluster assignments 1,000 times and computed
the difference between the log-normalized frequency of cell-type inter-
actions in the real data versus the permuted (interaction scores). For
visualization, we generated chord plots by aggregating the interaction
scores of theimages from each disease group or subgroups by the frac-
tion ofimages with aninteraction score was higher than 1. To discover
differential interactions specific to asubgroup, we tested whether the
distribution of interaction scores between disease groups or subgroups
for each pairwise cell-type combination was different as described in
‘Analysis of IHC data’.

Analysis of IHC data

IHC images were segmented with Stardist* (version 0.6.1) with the
2D versatile_he pretrained model and normalization to the unit space
after capping theintensity to the 3rd and 98th percentiles. The image
was decomposed into a haematoxylinand diaminobenzidine intensity
channels using a preset colour space for the stains from the scikit-image
package®® (skimage.colour.hdx_from_rgb) and the intensity of each
nuclei in both channels was calculated by a mean reduction. As the
H-DAB and IHC signalingeneral does not linearly reflect the molecular
stoichiometry of chemical reactions, we discretized the signal into
positive and negative fractions per image by using Gaussian mixture
models with model selectionin the same way as for the IMC data. Cells
were declared positive for a stain if they belonged to the group with
highest signal.

For the quantification of image lacunarity in IHC data we first nor-
malized illumination in YCrCb colour space by applying a Gaussian
blur with 5 pixels of s.d. per 300 x 300 size image and subtracting this
background from the brightness channel (Yorluma).Images were con-
verted back to RGB colour space and the inverted mean of the channels
was segmented using the Otsu method. The lacunarity of the image is
the fraction of the image covered in background. This was performed
only for MPO-stained images within the alveolar space and not with
airways or vessels.

Analysis of targeted spatial transcriptomics data using GeoMx
To transform the gene set space into a cell-type space that would be
compatible with the cell types identified in the IMC dataset, we per-
formed single-sample gene set enrichment analysis (ssGSEA) using
GSEAPY (version 0.10.2). For each ROI, gene set signatures used were
from the molecular signatures database (MSigDB, version 7.2); in
particular, the cell-type signature gene sets (group C8) were used.
ssGSEA enrichment values were Z-scored, and signatures containing
the keywords ‘Epithelial’,‘Mesenchym’, ‘Fibroblast’,'Smooth_muscle’,
‘Club’, ‘CD4._T’, ‘CD8_T’, ‘NK _cell’,‘Macrophage’, ‘Monocyte’, ‘Neutro-
phil’, ‘B_cell’, ‘Mast’ and ‘Dendritic’ were grouped and averaged, gen-
erating an enrichment score for each ROl in each cell type. If a group
was composed of less than three signatures it was discarded. For the
pathway-based functional analysis of lung tissue, ssGSEA was per-
formed on the Hallmark group of gene set signatures from MSigDB
(group H) without further aggregation.

PCA of lung pathology and association with clinical parameters

To create the unsupervised landscape of lung pathology, we used PCA
on a matrix of cell counts per cell cluster (features) and per image
(observations), after previous normalization by total, scaling and

centring, using the Scanpy implementation. The feature loadings were
plotted on the same dimensions as the observations by scaling them
by a constant factor of 20. The correlation coefficient between each
principal component and the continuous clinical variables was used as
arelative measure of direction and strength of association. However,
the significance of association was assessed by permuting the clini-
cal variables 10° times and using the mean and s.d. of the correlation
coefficients from the permuted dataaslocation and scale parameters,
respectively, of anormal distribution, from which the 2 x CDF(|x]) was
calculated as a two-tailed empirical Pvalue. All principal components
and clinical factors were permuted and the empirical P values were
adjusted with the Benjamini-Hochberg FDR method. We used the
signed empirical, FDR-corrected P values as an effectively regular-
ized measure of association between principal components and clini-
cal factors. To project the clinical parameters into the PCA space, we
fit Gaussian kernel density estimator functions to the distribution of
the images in the first principal components, in one case without and
another with the numeric values of the clinical variables as weights.
The difference in predicted densities in the two-dimensional space
between the weighted and unweighted kernels was used as a visual aid
to identify regions in the latent space with relatively higher or lower
fraction of samples with that clinical parameter.

Statistics and reproducibility

Unless otherwise stated in the figure legends, statistical testing was
performed pairwise between groups with atwo-sided Mann-Whitney
Utest, and adjusted for multiple comparisons with the Benjamini-
Hochberg FDR method using pingouin® (version 0.3.7). Estimated
values of central tendency, effect sizes and P values are provided in
Supplementary Tables 3, 4. Inthe box plotsin all figures, the boxis the
interquartile range (25thto 75th percentiles) and the centre lineis the
median (50th percentile). Experiments were not repeated indepen-
dently, owing to the use of unique autopsy material.

The following software versions were used: Python, version 3.8.2;
numpy*?, version 1.18.5; scipy*, version 1.4.1; scikit-image®, version
0.17.2; networkx®, version 2.5; Scanpy, version 1.6.0; pingouin®, ver-
sion 0.3.7; CellProfiler?, version 3.1.8; and Stardist*, version 0.6.1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Extended DataFig.1|Macroscopic pathology of the SARS-CoV-2-infected

Images with the lowest, median and highest fibrosisscores are depicted.

lung. a, Heat map depicting the values of each individual for all clinical and
demographic variables. Grey colour indicates missing or non-applicable
values.b, Time of death relative to start of symptoms in patients with COVID-19.
c,d, Percentage of lacunar space attributed to vessel (c) or epithelial (d) space
perimage, grouped by disease. e, Collagen type linimages of healthy lungs or
lungs from patients with lung pathology, and the associated fibrosis score.

f, Percentage of image covered in collagen typelforeachimage, grouped by
disease group. g, Meanintensity of collagen typelinlung IMCimages, grouped
by disease group. h, UMAP projection of all single cells, in which cells are
coloured by theintensity of each channel.Inc,d, f, g, **P<0.01;*P<0.05,
two-sided Mann-Whitney U-test, pairwise between groups, Benjamini—
Hochberg FDR adjustment.
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Extended DataFig. 2| Clustering analysis and quantification of structural
celltypesacrossdisease types. a, Hierarchically clustered heat map of
discovered clusters (rows) and the meanintensity of each channel (columns)
foreach. The histogramon the left represents the absolute abundance of each
clusteracrossallimages. The dot plot represents the relative abundance of
eachclusterineachdisease group.b, Classification of lunglacunae.
Representative images of healthy lung with the mean of all channels, and
channels thatareimportant for discerning between vessels, airways and
alveoli. Therightmost column represents the final classification of lacunae

intoeachofthethreeclasses of structures. ¢, Representative spatial context of
three metaclusters (rows). Left column, spatial distribution of the predominant
marker for each metacluster; right column, segmented cells coloured by the
metacluster to which they were assigned. d, Global abundance of structural
and immune cells. Absolute (top panels) and relative (bottom panels)
abundance of groups of cells, depending on disease group.**P<0.01; *P<0.05,
two-sided Mann-Whitney U-test, pairwise between groups, Benjamini-
Hochberg FDR adjustment.
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c-e, Diversity of myeloid cellsin the lung. c, UMAP representation of myeloid
cellsand the prominent markers associated with them. d, Phenotypic markers,
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myeloid clusters. e, Abundance of each myeloid cluster in the disease
groups. Each pointrepresents the abundance of that clusterinagiven ROI.
Ina,b,e, **P<0.01;*P<0.05, two-sided Mann-Whitney U-test, pairwise
betweengroups, Benjamini-Hochberg FDR adjustment.
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Extended DataFig. 5|See next page for caption.
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Extended DataFig. 5| Validation of IMC findings with IHC. a, Relationship
between fibrosis score and fibroblast metacluster abundance, visualized as a
scatter plot. b, ¢, IHC for two markers across all disease groups. Haematoxylin—
diaminobenzidine staining of CD163 (b) or MPO (c) in tissue from healthy and
diseased lung, matching the patientsin the IMC cohort.Scalebars,200 pm.

d, Analysis of IHC data. Example images demonstrating the process of colour
decomposition that underlies the separation of the haematoxylin (nuclei) and
diaminobenzidine (CD163 or MPO) (H-DAB) in lung tissues. Scale bars, 400 pm
(longbars), 50 pm (shortbars). e, Example images demonstrating the process
of nucleisegmentation. Left column, originalimages in RGB space; middle
column, resulting segmentation inwhich each nucleus hasarandom colour
and the backgroundis black; and right column, borders of segmented nucleiin
red overlainon the originalimage. Scale bars, 200 pm. f, Example image
section, demonstrating the process of quantification of the diaminobenzidine
stain. Top, originalimage in RGB space; second panel, nuclei segmentation;
third panel, numeric value of the DAB stain for each nucleus; and bottom,
histogram of nucleiintensity in DAB stain, modelled as a Gaussian mixture with
two components used to discretize nucleiinto negative or positive for DAB on

thebasis of athreshold thatbest separates the two mixtures. Scale bars, 50 pm.
g, Percentage of cells withinanimage that are positive for the respective DAB
staininIHC (left column) or positive for the respective markerinIMC data
(right column). h, Comparison of the estimated effect sizes of change between
disease groups estimated from IMC (x axis) or IHC (y axis) data for the two
stains. The Pearson correlation coefficient and its significance are indicated.

i, Analysis of lacunae withIHC data. Representative images of the amount of
lacunaspaceinIHC datafor healthy lungs and lungs of patients with late
COVID-19.For eachimage, the originalimage and the segmented background
spaceisshownalongwith a value denoting theamount of lacuna space for the
image (fraction of the image without cells that represents the alveolar or
capillary space). Scalebars, 200 pm. j, Quantification of lacuna space across
MPOimagesinIHC.**P<0.01;*P<0.05, two-sided Mann-Whitney U-test,
pairwise between groups, Benjamini-Hochberg FDR adjustment.

k, Comparison of the estimated effect sizes of change in the amount of lacuna
space between disease groups, estimated from IMC (x axis) or IHC (y-axis) data.
Fora, h,k,r,Pearson coefficient; P, its two-tailed Pvalue.
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Extended DataFig. 6 | See next page for caption.
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Extended DataFig. 6 | Profiling of lung tissue with targeted spatial
transcriptomics using GeoMx. a, Experimental design of GeoMx dataset.

b, Representation of the procedure of choosing a ROl within the lung tissue to
capture with GeoMx. ¢, Enrichment of cell-type-specific gene set signatures
forvarious cell types that match the IMC data, across disease groups.

d, Comparison of the estimated changes in cell-type abundance with IMC
(xaxis) and gene set signaturesin GeoMx (y axis). e, Viralload, dependent on
thetime of deathrelative to the onset of COVID-19 symptomsinan
independent cohort. COVID-19 samples were categorized into ‘early’ or ‘late’
death depending on whether death occurred before or after 15 days after the

onset of symptoms, respectively. f, Schematic of the cohort of patients for
whom GeoMx data are available (in total, 5 patients and 231 ROIs). g, Estimated
fractions of cell-type composition, using the CYBERSORT program, between
early and late COVID-19 from the original publication®. h, Comparison of the
estimated changesin cell-type abundance with IMC (xaxis) and GeoMx (y axis)
betweenlate and early COVID-19.Ind, h, r, Pearson coefficient, P, its two tailed
Pvalue; shaded areaindicates 95th confidenceinterval.Inc, g, **P<0.01;
*P<0.05, two-sided Mann-Whitney U-test, pairwise between groups,
Benjamini-Hochberg FDR adjustment.
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Extended DataFig.7 | Functional state of myeloid cells across disease
cohorts. a, Percentage of cells positive for each IMC channel, as classified by
univariate Gaussian mixture models per disease group. b, Percentage of
channel-positive cells for each metacluster. Values represent a column-wise
Z-score. ¢, Absolute (top) and relative (bottom) frequency of SARS-CoV-2S*
cells per disease group.d, Proportional abundance of SARS-CoV-2S*,1L-6" and
pSTAT3" cellsacross disease groups. e, Proportional amount of SARS-CoV-2S*
cellsgrouped by metacluster and disease group. f, Proportional frequencies of

cells positive for SARS-CoV-2S* cells by metacluster and disease group.

g, h,Heat map of single macrophages or neutrophils (g) (columns) and
functional markers (h) (rows) with cells grouped by SARS-CoV-2 S positivity.

i,j, Intensity of IMC channels persingle cell, depending on SARS-CoV-2S
positivity for macrophages (i) and neutrophils (j). k, Mean channel intensity for
allmetaclusters dependent on SARS-CoV-2S positivity.Inc,d, f, **P<0.01;
*P<0.05, two-sided Mann-Whitney U-test, pairwise between groups,
Benjamini-Hochberg FDR adjustment.
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Extended DataFig. 8|See next page for caption.



Extended DataFig. 8 | Mapping cellularinteractions between SARS-CoV2-
infected and non-infected compartments. a, Example description of the
derivationof aregion adjacency graph foragivenlungIMCimage. Left, DNA
channel that marks nuclei; middle, identified metaclusters; and right, region
adjacency graphrepresented as edges between adjacent cells. Scale bar,

100 pm. b, Observed values of pairwise clusterinteractions over the expected
values for the same cellular interactions for the image in a. ¢, Pairwise
interactions between metaclusters, aggregated by the mean value across
images depending on the disease group. d-f, Pairwise cellularinteractions

between metaclusters, depending on SARS-CoV-2 S positivity in uninfected
cells (d), between SARS-CoV-2S*"and S cells (e) and between infected cells (f).
g-i, Statistical testing of differential interactions of infected cells and other
celltypes, and uninfected cells and other cell types, depending on SARS-CoV-2
Spositivity of thesecond cell type. g, Both SARS-CoV-2S and S* cells. h, Only
SARS-CoV-2S* cells. i, Only SARS-CoV-2 S cells. The rows display a volcano plot
inwhich thexaxis displays the differenceininteractionbetween SARS-CoV-2S*
and S~ cellsand the y axis displays the -log,,-transformed Mann-Whitney U-
test, FDR-adjusted Pvalue.
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Extended DataFig. 9 |Pathway enrichment analysisinspatial
transcriptomics and IMC datasets. a, Enrichment scores for hallmark
pathwaysin MsigDB across allROlsin the GeoMx dataset. b-e, Enrichment
score of selected pathways from a, across disease groups but dependent onthe
location within the lung from which they were obtained. **P<0.01;*P<0.05,

two-sided Mann-Whitney U-test, pairwise between groups, Benjamini-
Hochberg FDR adjustment.f, g, Pairwise Pearson correlation of cell-type
abundancesbetweenIMCsamples (f) or disease groups (g). h-j, UMAP (h),
diffusion map (i) or PCA (j) projection of IMCimages, coloured by disease
group, subgroup or sampleidentifier.
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Extended DataFig.10|Association analysis betweenknown demographic,
clinical and pathological factors of patients with lung infections.

a, Correlation coefficients (left) or FDR-adjusted Pvalues (middle) and signed
p-values (right), demonstrating the association between demographic,
pathological and clinical factors, and principal components. b, Pairwise
correlation of demographic, pathological and clinical factors across all
principal components. Matrix was clustered using average linking and the
Pearson correlation as the distance metric. Values used were signed
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
o]

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
2N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

{| A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

O O OO0 0O Ol

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XOO X X XK

RPN

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  We used the Hyperion CyTOF Software (Fluidigm), version 7.0.8493 and MCDViewer (Fluidigm), version 1.0.560.2.

Data analysis We used Python version 3.8.2, Numpy version 1.18.5, Scipy version 1.4.1, scikit-image 0.17.2, networkx version 2.5, Scanpy version 1.6.0,
pingouin version 0.3.7, CellProfiler version 0.3.1, Stardist version 0.6.1.
Source code of the analysis scripts is available as a Github repository: https://github.com/Elementolab/covid-imc

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Raw imaging mass cytometry data is available in the following Zenodo repository: https://doi.org/10.5281/zenodo.4110560
We used the molecular signatures database (MSigDB) (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp) version 7.2.
We used a dataset of targeted spatial transcriptomics from Desai et al (doi:10.1038/s41467-020-20139-7), available at https://doi.org/10.1038/s41467-020-20139-7
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. This was due to the limited availability of tissue from autopsies. We profiled
available samples which tissue quality was appropriate for imaging mass cytometry, and we imaged a large portion of tissue (332mm2 in total)
in order to increase the robustness of the observations. To account for the temporal axis of COVI-19 disease we profiled 10 patients, whereas
for the other groups which is 2-3 times more than the other groups.
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Data exclusions 3 images out of 240 were excluded due to failing quality control. Images excluded were ROI 1, 9, and 10 from sample
"20200701_COVID_11_LATE".

Replication Due to the use of autopsy tissue, each patient was only profiled once. No replication was performed.

Randomization  Sample allocation to groups was given by the underlying disease for each patient. In the case of COVID-19, two groups were formed
dependent on whether death occurred 14 days before or after 30 days from the start of respiratory symptoms.

Blinding For all experiments, investigators were blinded to patient identifiers during data acquisition and analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
X Antibodies [ ] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern
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Antibodies

Antibodies used Imaging mass cytometry, lung COVID-19 panel:
anti-Alpha-Smooth Muscle Actin, clone 1A4, Fluidigm, cat. num. 3141017D, lot id: 651904; anti-Arginase-1, clone D4E3M, Cell
Signaling Technology, cat. num. 93668BF, lot id: 5; anti-CD117/C-KIT, clone OTI2B12, Novus Biologicals, cat. num. NBP2-71076, lot id:
FOO1; anti-CD11b, clone SP331, Abcam, cat. num. ab238794, lot id: GR3245427-1; anti-CD11c, clone EP1347Y, Abcam, cat. num.
ab216655, lot id: GR3210349-14; anti-CD123, clone IL3RA/2947R, Novus Biologicals, cat. num. NBP2-79851, lot id:
3563-4PABX200206; anti-CD14, clone D7A2T, Cell Signaling Technology, cat. num. 56082BF, lot id: 2; anti-CD15, clone W6D3,
BiolLegend, cat. num. 323035, lot id: B267076; anti-CD16, clone EPR16784, Fluidigm, cat. num. 3146020D, lot id: 1011904, anti-
CD163, clone EDHu-1, Fluidigm, cat. num. 3147021D, lot id: 1631904; anti-CD20, clone L26, Novus Biologicals, cat. num. NBP2-80486,
lot id: 931-2PABX200423; anti-CD206, clone E2L9N, Cell Signaling Technology, cat. num. 91992BF, lot id: 2; anti-CD3, clone
Polyclonal, C-Terminal, Fluidigm, cat. num. 3170019D, lot id: 241809; anti-CD31, clone EP3095, Abcam, cat. num. ab216459, lot id:
GR3296596-1; anti-CD4, clone OTISDY, Novus Biologicals, cat. num. NBP2-70357, lot id: W0O01; anti-CD45, clone D9M8I, Fluidigm, cat.
num. 3152018D, lot id: 2891711; anti-CD56, clone MEM-188, BioLegend, cat. num. 304602, lot id: B245303; anti-CD57, clone HNK-1,
Fluidigm, cat. num. 359602, lot id: B287684; anti-CD68, clone KP1, Abcam, cat. num. ab233172, lot id: GR3290526-3; anti-CD8a,
clone C8/144B, eBioscience, cat. num. 14-0085-82, lot id: 2132595; anti-Cleaved Caspase-3 (Asp175), clone 5A1E, Fluidigm, cat. num.
31720270, lot id: 412006; anti-Collagen type I, clone Polyclonal, Fluidigm, cat. num. 3169023D, lot id: 2501807; anti-Histone H3,
clone D1H2, Cell Signaling Technology, cat. num. 4499BF, lot id: 17; anti-IL-1B, clone 3A6, Cell Signaling Technology, cat. num.
122428BF, lot id: 2; anti-IL-6, clone OTI3G9, Novus Biologicals, cat. num. NBP2-71027, lot id: FOO1; anti-iNOS, clone SP126, Abcam, cat.
num. ab239990, lot id: GR3245763-1; anti-Keratin 8/18, clone C51, Fluidigm, cat. num. 3174022D, lot id: 181806; anti-Ki-67, clone
B56, Fluidigm, cat. num. 3168022D, lot id: 2411806; anti-Mast cell Tryptase, clone AA1, BioLegend, cat. num. 369402, lot id:
B287682; anti-Myeloperoxidase (MPO), clone E1E7I, Cell Signaling Technology, cat. num. 145698BF, lot id: 2; anti-Phospho-CREB
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(Ser133), clone 87G3, Cell Signaling Technology, cat. num. 9198BF, lot id: 17; anti-Phospho-Stat3 (Tyr705), clone D3A7, Cell Signaling
Technology, cat. num. 9145BF, lot id: 39; anti-SARS-CoV 2 Spike S1 protein, clone Rabbit Polyclonal, GeneTex, cat. num. GTX135356,
lot id: 43932; anti-SC5b-9, clone Murine monoclonal, Quidel Corporation, cat. num. A239, lot id: 153280; anti-TTF1, clone 8G7G3/1 +
NX2.1/690, Novus Biologicals, cat. num. NBP2-47773, lot id: 7080-3PABX200409; anti-Vimentin, clone D21H3, Fluidigm, cat. num.
3154014A, lot id: 591704.

Imaging mass cytometry, activation panel:

anti-pHH3s28 (BiolLegend, clone HTA28, cat. num. 641002); anti-cd38 (Abcam, clone EPR4106, cat. num. ab226034); anti-CD45RO
(BioLegend, clone UCHL1, cat. num. 304239); anti-TIM3 (Cell Signaling Technology, clone D5D5R, cat. num. 45208BF); anti-T-bet (Cell
Signaling Technology, clone D6N8B, cat. num. 13232BF); anti-PD-1 (Cell Signaling Technology, clone D4W?2J, cat. num. 86163BF); anti-
CD86 (Cell Signaling Technology, clone E2G8P, cat. num. 91882BF); anti-CD44 (BioLegend, clone IM7, cat. num. 103001); anti-FoxP3
(Invitrogen, clone 236A/E7, cat. num. 1-4777-82); anti-CD161/CCR6 (Abcam, clone OTI1DS8, cat. num. ab273666); anti-CD39 (Abcam,
clone EPR20627, cat. num. ab236038); anti-VISTA (Fluidigm, clone D1L2G, cat. num. 3160025D); anti-GATA3 (Cell Signaling
Technology, clone D13C9, cat. num. 5852BF); anti-HLA-DR (Abcam, clone EPR3692, cat. num. ab215985); anti-p-Nfkb,p65 (BD
Pharmingen, clone pS529, cat. num. 558393); anti-GranzymeB (Fluidigm, clone EPR20129-217, cat. num. 3167021D); anti-CD127
(Fluidigm, clone EPR2955(2), cat. num. 3168026D); anti-CD27 (Abcam, clone EPR8569, cat. num. ab256583); anti-S100A9 (Abcam,
clone EPR3555, cat. num. ab227570); anti-PD-L1 (Abcam, clone SP142, cat. num. ab236238).

Immunohistochemistry:
Myeloperoxidase (Leica, clone 59A5); CD163 (Leica, clone MRQ-26).

Antibody clones compatible for human FFPE tissue processing were chosen based on extensive validation data-sheet from the
manufacturer. In addition, these antibodies were validated post metal-conjugation for expected staining patterns and optimized for
dilutions through a pilot run on IMC on normal lung tissue and COVID lung tissue.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Patient characteristics reflect the age, gender, and race representative of patients admitted with the same conditions.

Patients were cared for at New York Presbyterian/Weill Cornell Medicine Hospital. COVID-19 cases were collected between
the months of April and June 2020. Inclusion criteria were dependent on consent to perform an autopsy and good
preservation of tissue as formalin-fixed paraffin embedded blocks.

Consent for autopsy was obtained from the patients' families. Research was approved by the Institutional Review Board of
Weill Cornell Medical College.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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