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Polygenic risk scores (PRSs), which often aggregate results from genome-wide 
association studies, can bridge the gap between initial discovery efforts and clinical 
applications for the estimation of disease risk using genetics. However, there is 
notable heterogeneity in the application and reporting of these risk scores, which 
hinders the translation of PRSs into clinical care. Here, in a collaboration between the 
Clinical Genome Resource (ClinGen) Complex Disease Working Group and the 
Polygenic Score (PGS) Catalog, we present the Polygenic Risk Score Reporting 
Standards (PRS-RS), in which we update the Genetic Risk Prediction Studies (GRIPS) 
Statement to reflect the present state of the field. Drawing on the input of experts in 
epidemiology, statistics, disease-specific applications, implementation and policy, 
this comprehensive reporting framework defines the minimal information that is 
needed to interpret and evaluate PRSs, especially with respect to downstream clinical 
applications. Items span detailed descriptions of study populations, statistical 
methods for the development and validation of PRSs and considerations for the 
potential limitations of these scores. In addition, we emphasize the need for data 
availability and transparency, and we encourage researchers to deposit and share 
PRSs through the PGS Catalog to facilitate reproducibility and comparative 
benchmarking. By providing these criteria in a structured format that builds on 
existing standards and ontologies, the use of this framework in publishing PRSs will 
facilitate translation into clinical care and progress towards defining best practice.

The predisposition to common diseases and traits arises from a complex 
interaction between genetic and non-genetic factors. In the past decade 
there has been enormous success at discovering disease-associated 
genetic variants, facilitated by many collaborative consortia and large 
cohorts of well-phenotyped individuals with matched genetic informa-
tion1–5. In particular, genome-wide association studies (GWASs) have 
yielded summary statistics that describe the magnitude (effect size) 
and statistical significance of association between an allele and the out-
come of interest4,6. GWASs have been applied to many complex human 
traits and diseases, including height, blood pressure, cardiovascular 
disease, cancer, obesity and Alzheimer’s disease.

The associations identified through GWASs can be combined to 
quantify genetic predisposition to a heritable trait, and this informa-
tion can be used to conduct disease risk stratification or to predict 
prognostic outcomes and response to therapy7,8. Typically, informa-
tion across many variants is combined by means of a weighted sum 
of allele counts, in which the weights reflect the relative magnitude 

of association between variant alleles and the trait or disease. These 
weighted sums can include millions of variants, and are frequently 
referred to as polygenic risk scores (PRSs), or genetic or genomic risk 
scores (GRSs), if they refer to risk estimates of disease outcomes; or, 
more generally, polygenic scores (PGSs) when referring to any outcome 
(Box 1). Although algorithms are actively being developed to decide 
how many and which variants to include and how to weigh them so as to 
maximize the proportion of variance explained or disease discrimina-
tion, there is an emerging consensus that inclusion of variants beyond 
those that meet stringent GWAS significance levels can boost predic-
tive performance9,10. Methodological research has also established 
theoretical limits of the performance of PGSs and PRSs on the basis of 
the genetic architecture and heritability of the trait11–15.

In the last decade, the landscape of genetic prediction studies has 
transformed. Over 900 publications mention PGS or PRS, and there 
have been significant developments in how PRSs are constructed and 
evaluated, as well as many new proposed uses. The data available in the 
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current era of biomedical research are larger and more consolidated 
than ever before. Biobanks and large-scale consortia have become dom-
inant, yet frequently researchers have limited access to individual-level 
data. As individual data are often unavailable, most PRS models are 
developed from summary-level data (for example, GWAS summary 
statistics) in secondary datasets, each of which come with their own 
specific methodological considerations16–18. At the same time, there has 
been a push towards open data sharing as outlined in the FAIR (Find-
able, Accessible, Interoperable and Reusable) Data Principles3,19, with 
an emphasis on ensuring that research is reproducible by all.

The capacity of PRSs to quantify genetic predisposition for many 
clinically relevant traits and diseases has begun to be established, with 
many potential clinical uses in settings related to disease risk stratifi-
cation as well as proposed prognostic uses (for example, predicting 
responses to intervention or treatment). Readiness for implementa-
tion varies by outcome, and mature PRSs with potential clinical util-
ity are available for only a few diseases—for example, coronary heart 
disease (CHD) and breast cancer (Boxes 2 and 3, respectively). There 
has also been a rapid rise of direct-to-consumer assays and for-profit 
companies (23andMe, Color, MyHeritage, and so on) that provide PGS 
and PRS results to customers outside of the traditional patient–pro-
vider framework. These concomitant developments have resulted in 
healthcare systems developing new infrastructures to deliver genetic 
risk information20. Individually and combined, these advances have 
raised substantial challenges for PRS reporting standards—from the 
very basic (for example, reporting performance metrics on an external 
validation dataset) to the complicated (for example, making raw vari-
ant and weight information for a PRS available)—and necessitate the 

updating of existing standards for reporting genetic risk prediction 
studies to convey the increased scope of PRSs and the complexity of 
their clinical applications.

Poorly designed and/or described studies call into question the 
validity of some PRSs to predict their target outcome21,22, and rela-
tively few studies have externally benchmarked the performance of 
multiple scores. At present, there are no best practices for developing 
PRSs that are uniformly agreed upon, nor are there widely adopted 
standards or regulations that are sufficiently tailored to assess the 
eventual clinical readiness of a PRS. There are emerging applications 
of PRSs that further compound the heterogeneity in reporting; for 
example, using PRSs as tools for testing gene–environment interac-
tions or shared aetiology between diseases23–26. The rapid evolution 
in both methodological development and applications of PRSs make 
it challenging to compare or reproduce claims about the predictive 
performance of a PRS for a specific outcome when studies are not 
properly documented. These deficiencies are barriers to PRSs being 
interpreted, compared, and reproduced, and must be addressed to 
enable the application of PRSs to improve clinical practice and public 
health.

Frameworks have been developed to establish standards around 
the transparent, standardized, accurate, complete and meaningful 
reporting of scientific studies. In 2011, an international working group 
published the Genetic Risk Prediction Studies (GRIPS) Statement—a set 
of reporting guidelines for risk prediction models that include genetic 
variants, from genetic mutations to gene scores27. These guidelines 
are analogous to those developed for observational epidemiological 
studies (STROBE28) and genome-wide association studies (STREGA29), 
and are in line with the reporting guidelines for multivariate prediction 
models (TRIPOD30). Adherence to reporting statements has been low, 
and the same holds for GRIPS. One reason might be that researchers feel 
that the GRIPS Statement inadequately addresses PRSs. Researchers 

Box 1

Definitions of relevant genetic 
risk prediction terms
Polygenic score (PGS). a single value that quantifies an individual’s 
genetic predisposition to a trait. Typically calculated by summing 
the number of trait-associated alleles in an individual weighted 
by per-allele effect sizes from a discovery GWAS, and normalized 
using a relevant population distribution. Sometimes referred to as 
a genetic score.

Polygenic risk score (PRS). a subset of PGS that is used to 
estimate the risk of disease or other clinically relevant outcomes 
(binary or discrete). Sometimes referred to as a genetic or genomic 
risk score (GRS). See categories below.

Integrated risk model. a risk model for the outcome of interest 
which combines PRS with other risk factors, such as demographics 
(often age and sex), anthropometrics, biomarkers, and clinical 
measurements.
Categories of use for PRS and/or integrated risk models
The addition of PRSs to existing risk models has several potential 
applications, summarized below. Each aims to improve individual 
or subgroup classification such that there is clinical benefit.
• �Disease risk prediction — estimate an individual’s risk of 

developing a disease, on the basis of certain genetic and/or 
clinical variables.

• �Disease diagnosis — classify whether an individual has a disease, 
or a disease subtype, on the basis of certain genetic and/or 
clinical variables9,37.

• �Disease prognosis — estimate the risk of further adverse 
outcome(s) subsequent to the diagnosis of disease38.

• �Therapeutic — predict the response of a patient or subgroup to a 
particular treatment39.

Box 2

Current CHD PRSs and their 
potential uses
Many PRSs have been developed for CHD, which vary in the 
computational methods used, number of variants included 
(50–6,000,000) and cohorts used for PRS training. For example, 
many of the latest CHD PRSs use GWAS summary statistics from 
the CardiogramPlusC4D study40, and differ by the method of 
selecting and weighting individual variants (including LDpred41,42, 
lassosum43 and meta-scoring approaches44) and how they are 
used in an integrated risk model. These PRSs may provide useful 
information for predicting the risk of CHD that is largely orthogonal 
to conventional risk factors (age, sex, hypertension, cholesterol, 
BMI, diabetes and smoking) as well as family history. Clinical 
applications may include:
• �Improved risk prediction for future adverse cardiovascular 

events when added to conventional risk models (such as the 
Framingham risk score45, pooled cohort equations43,44 and 
QRISK43).

• �Reclassification of risk categories often leading to 
recommendations for risk-reducing treatments like statins45–47.
Although the data for these clinical applications strongly 

suggest CHD PRSs may improve patient outcomes, clinical use 
through randomized clinical trials has yet to be established; 
however, a number of clinical trials are underway (https://
clinicaltrials.gov).

https://clinicaltrials.gov
https://clinicaltrials.gov
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are frequently uncertain as to what precisely should be reported for 
a PRS study to be assessed as rigorous, reproducible and ultimately 
translatable, especially with the increased push for data availability 
and transparency. Most PRS studies follow a prototypical process 
(Fig. 1) that can be used as a template for standardizing reporting and 
benchmarking in the field.

Here, the Clinical Genome Resource (ClinGen) Complex Disease 
Working Group and the Polygenic Score (PGS) Catalog (Supplementary 
Note 1) jointly present the Polygenic Risk Score Reporting Standards 
(PRS-RS), an expanded and updated set of reporting standards for PRSs 
that addresses current research environments with advanced methodo-
logical developments to inform clinically meaningful reporting on the 
development and validation of PRSs in the literature, with an emphasis 
on reproducibility and transparency throughout the development 
process. Additional methods are detailed in Supplementary Note 2.

The PRS-RS
The PRS-RS is a set of standard items specifying the minimal criteria 
that need to be described in a manuscript to accurately interpret a PRS 

and reproduce results throughout the PRS development process31 (see 
Fig. 1 for a brief summary). It applies to PRS development and validation 
studies that aim to predict disease onset, diagnosis and prognosis, as 
well as response to therapies; however, other research uses of PRSs 
have overlapping steps that should be reported in a similar manner. 
Table 1 presents the full PRS-RS, with reporting items organized into 
key components along the developmental pipeline of PRSs for clear 
interpretation and to encourage their documentation from the incep-
tion of the study, well before publication.

Reporting on the background of risk scores
The development and validation of a PRS tests a specific hypothesis with 
a defined outcome and study population. Therefore, authors should 
define a priori (note that in the next few sections, inverted commas are 
used to refer to each of the Reporting Standards referred to in Table 1) 
the ‘study type’ (for example, development and/or validation), ‘risk 
model purpose’ (for example, risk prediction versus prognosis) and 
‘predicted outcome’ (for example, CHD) in enough detail to understand 
why the study population and risk model selected are relevant (for 
example, the value for CHD risk stratification and primary preven-
tion is highest in younger individuals compared to those over 80 with 
lifetime accumulated risk). As the PRS-RS is focused on clinical validity 
and implementation, authors must outline the study and appropriate 
outcomes to understand what risk is measured, what the purpose of 
measuring risk would be and why this purpose may be of clinical rel-
evance. To establish the internal validity of a study, authors should use 
the appropriate data for the intended purpose (for example, prediction 
of incident disease versus prognosis), with adequate documentation 
of dataset characteristics to understand nuances in measured risk.

Reporting on study populations
The applicability of any risk prediction to an external target population 
(the who, where, and when) depends on its similarity to the original 
study populations that were used to derive the risk model. Therefore, 
authors need to define and characterize the details of their study 
population (‘study design and recruitment’), and describe study ‘par-
ticipant demographics’ for key variables (most often age and sex) and 
ancestry. Notably, there are often inconsistent definitions and levels 
of detail associated with ancestry, and the transferability of genetic 
findings between different racial and ethnic groups can be limited1,9,32. 
It is therefore essential for authors to provide a detailed description 
of the genetic ‘ancestry’ of participants—including how ancestry was 
determined—using a common controlled vocabulary where possible 
(for example, the standardized framework developed by the NHGRI-EBI 
GWAS Catalog1). Authors should provide a sufficient level of detailed cri-
teria for defining all of the factors relevant to the ‘outcome of interest’, 
including but not limited to those used in the risk model (‘non-genetic 
variables’). These details should accompany information about how 
the population was genotyped (‘genetic data’), including assays and 
all quality control measures.

Reporting on the development of risk models
At present there are several commonly used methods to select variants 
that constitute the PRS and fine-tune their weights7,16–18,31. Methods 
using GWAS summary statistics should clearly cite the relevant GWAS, 
preferably using unique and persistent study identifiers from the GWAS 
Catalog (GCSTs)33. As the performance and limitations of the combined 
risk model are dependent on methodological considerations, authors 
must provide complete details including the method used and how 
variants are combined into a single PRS (‘PRS construction and estima-
tion’). Apart from genetic data, authors should also describe the defining 
criteria for other demographic and non-genetic predictors (‘non-genetic 
variables’) included in the model. Often authors will iterate through 
numerous models to find the optimal fit. In addition to the estimation 
methods, it is important to detail the ‘integrated risk model(s) fitting’ 

Box 3

Current breast cancer PRSs and 
their potential uses
Many of the most recent and most predictive PRSs for breast 
cancer include a smaller number of variants (usually hundreds 
to thousands), possibly owing to a less polygenic architecture 
and more low-frequency variants having greater effect; 
however, scores composed of millions of variants also exist. PRS 
construction typically includes GWAS summary statistics and 
data from the Breast Cancer Association Consortium (BCAC), then 
variants passing genome-wide significance (lead SNPs), stepwise 
regression, penalized regression on individual-level genotypes48, 
clumping and thresholding41 or Bayesian methods42,49. In contrast 
to CHD, genetics is commonly used to measure breast cancer risk 
vis-à-vis testing for BRCA1 and BRCA2 mutations; however, routine 
screening for breast cancer is often performed in older women 
using non-genetic risk prediction tools, such as mammography. 
Research into PRSs for breast cancer includes multiple potential 
clinical uses and considerations:
• �Multiple PRSs exist to predict risk for subtypes of breast 

cancer (for example, ER-positive or -negative, luminal, and 
triple-negative48,50), which could be used to stratify patients 
according to prognosis or for more beneficial treatments.

• �Integrated risk models which combine PRSs with non-genetic 
risk factors (such as age, family history, mammographic density, 
hormone replacement therapy)51–58.

• �PRSs can provide important stratification of risk among carriers of 
pathogenic variants in genes that are already screened in clinical 
practice (for example, BRCA1, BRCA2, PALB2, CHEK2 and ATM)59 
and thus could improve clinical decision-making42,49,56,60–63.

Indeed, the BOADICEA breast cancer risk prediction model 
includes the effects of common variants (PRS313; ref. 48) as 
well as other rare pathogenic genetic variants56 and has been 
implemented in the CanRisk Tool (www.canrisk.org), which has 
been approved for use by healthcare professionals in the European 
Economic Area. The utility of PRSs has been studied in simulations64 
and is being evaluated in risk-based breast cancer screening trials 
in the US65 and Europe (MyPeBS; https://mypebs.eu).

https://mypebs.eu
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Table 1 | Polygenic Risk Score Reporting Standards (PRS-RS)

Reporting standard Description

Background Study type Specify whether the study aims to develop and/or validate a PRS. When 
externally validating or combining previously published PRSs or integrated 
risk models, include identifier(s) of original PRS (PMID, PGS Catalog ID).

Risk model purpose and predicted 
outcome

Specify what the risk model is intended to predict and the purpose. 
This includes intended use (risk prediction, diagnostic, prognostic, 
or therapeutic modalities), predicted outcome (if a clinical feature or 
endpoint within a specific disease) and the current models available for that 
outcome.

Study population and data Many risk 
score studies involve multiple populations 
and cohorts that can be used in different 
stages of PRS and risk score development 
and evaluation. Each of the populations 
used (for example, training, validation 
and subgroup analysis samples) in the 
manuscript should be defined using this 
common set of descriptors.

Study design and recruitment For each of the datasets describe the study design (for example, cohort, 
case–control, cross-sectional), eligibility criteria, recruitment period and 
setting (for example, method and years) and follow-up. State whether the 
data are primary or secondary data. If secondary analysis, include the full 
reference to the original study.

Participant demographics and 
clinical characteristics

Include the distribution of demographic information in each dataset 
(and the combined total if relevant) used to generate a single risk model 
(whether a single sample set, or the summary of combined samples) 
including the mean, standard deviation and range. This should at minimum 
include age, sex and any other characteristics relevant to describe the 
study population or the performance of the model. Provide demographics 
stratified by case–control status, if applicable.

Ancestry Include the ancestral background distribution of each sample population 
used during PRS development and validation (including those from any 
GWAS summary statistics that were included), and the data source of this 
ancestry information (for example, self-report, genotyping). Ancestry 
information should be reported using the standardized framework 
developed by the NHGRI-EBI GWAS Catalog1 with detailed information 
beyond this when available. When combining samples from multiple 
studies, aggregate ancestral distribution information is sufficient. The 
method of ancestry inference should be provided.

Genetic data Provide the method for acquiring genetic information (for example, 
sequencing, genotyping) in each sample, including information about 
genome build and technical assay details. If imputed, specify the 
imputation panel and give ancestry information. Report any relevant quality 
control, including imputation quality filters to exclude low-quality imputed 
SNPs. If parameters were selected from another study, include reference 
(PMID, GWAS Catalog ID).

Non-genetic variables Define any non-genetic variables that were included in the risk model, 
provide variable definitions and measurement (for example, assay, ICD 
codes, e-phenotyping algorithms, chart review, self-report). Indicate the 
scale of each variable, for example, dichotomous, continuous, categorical 
or ordinal. Explicitly state which variables are included in the final model.

Outcome of interest Define the predicted outcome(s) of interest and report distribution. If 
the predicted outcome is a clinical feature or end-point within a specific 
disease, provide the criteria used to define that disease membership. 
Include details on how information was ascertained (for example, ICD 
codes, e-phenotyping algorithms, chart review, self-report). Transformation 
of continuous data into binary, ordinal, or categorical outcomes should be 
detailed with justification. State whether the predicted phenotype of the 
polygenic score is the same as or different from the predicted outcome of 
the risk model. Provide justification for differences, if applicable.

Missing data State explicitly how missing data were handled for all variables included in 
the model. If imputation was used, include detailed of the approach used 
and any subsequent filtering or post-processing.

Risk model development and application 
Describe methods used to form the final 
PRS and/or risk model. Samples in this 
stage of the analysis should be denoted 
‘Score development’ or ‘Training’, and 
described in ‘Study population and data’.

PRS construction and estimation Describe how genetic data were included in the PRS. Authors should detail 
criteria used to determine inclusion in the model for all variants. Define how 
the variants were selected, weighted and combined into a single score. If 
the PRS was derived from another study include the reference (PMID, PGS 
Catalog Score ID).

Risk model type Detail statistical methods used to estimate risk, either relative or absolute, 
from the continuous risk score distribution. Detail whether risk is cumulative 
or cross-sectional, with appropriate comparison groups if relative risk is 
presented. Report time until predicted risk (for example, 5 years, 10 years, 
lifetime). In an absolute risk model, state the time until the predicted event 
and the prevalence or incidence of the predicted outcome in the general 
population.

Integrated risk model(s) description 
and fitting

State the procedure used to develop the risk models that includes 
non-genetic and/or genetic variables other than the PRS. If the model(s) 
was selected for optimal performance, describe measures used to assess 
performance. Explicitly state all variables used in each risk model.

Continued
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Reporting standard Description

Risk model evaluation Outline results and 
procedures used to evaluate the risk model, 
specifying internal or external validation. 
Performance results should be described 
for both development and validation 
samples. Specify if the application 
of the risk model differs between the 
development and the validation samples.

PRS distribution Include a general description of the distribution of the PRS. This details the 
continuous distribution output directly from the risk score calculation.

Risk model predictive ability Describe and report metrics of overall performance (proportion of variance 
explained; R2) and estimates of risk (such as odds or hazards ratios from 
regression models) used to evaluate the PRS and/or risk models. Describe 
the set of genetic and non-genetic variables included in the analysis.

Risk model discrimination Describe and report metrics (such as AUROC, AUPRC, and—for survival 
models—the C-index) used to assess the discrimination of evaluated 
risk models and whether any non-genetic variables were included 
beyond a PRS in this analysis. Evaluation of the potential clinical utility 
of models requires evaluating tail-based measures, such as proportions 
of populations and cases that exceed specified clinically relevant risk 
thresholds and measures of reclassifications (for example, NRI) at such 
thresholds for comparison of models.

Risk model calibration Describe and report metrics used to assess the calibration of evaluated risk 
scores and models. Describe the set of genetic and non-genetic variables 
included in the analysis.

Subgroup analyses Subgroup size, demographics and clinical characteristics should be given. 
Relevant evaluation methods and measures (distribution, predictive ability, 
discrimination and calibration) should be described for each subgroup 
analysis.

Limitations and clinical implications 
Discuss the broader context of the study 
and risk model.

Risk model interpretation Summarize the risk models in terms of what they predict, how well and in 
whom. Explicitly mention the incremental performance of the PRS and/or 
combined risk model in comparison to conventional risk models, as well as 
the performance of the PRS and risk model alone. Conventional risk models 
might include demographic (age, sex), disease-specific risk factors and/or 
family history of disease.

Limitations Outline limitations of the study with relevance to the results, discuss the 
effects of these limitations on the interpretation of the risk model and any 
downstream replication efforts needed. Common considerations include: 
study design restrictions, use of a surrogate outcome, ascertainment 
biases, the distribution of participant-level traits (ancestry, age, 
comorbidities), accuracy or specificity of outcome data, and any statistical 
considerations. Note and discuss the effects of any unknown reporting 
items from previous sections.

Generalizability Discuss the intended target groups or populations this score may be 
applied to and explicitly address any issues with generalizability beyond the 
included populations. Discuss whether the study externally validates the 
score and/or model, or if the sample is limited with respect to ancestry, age 
or other variables.

Risk model intended uses Discuss whether there is an intended clinical use or utility to the risk model. 
If so, discuss the ‘clinic readiness’ and next steps with respect to the 
interpretation, limitations and generalizability of the model. Discuss how 
the predictive ability of the model compares with current standards of care 
or other published work (such as existing PRSs) on predicting the outcome 
of interest.

Data transparency and availability Information sufficient to calculate the PRS and the risk model(s) on external 
samples should be made freely available. For genetic variables this would 
include information about the variants (for example, rsID, chromosomal 
location, effect allele and the effect weight) that comprise the score; PRSs 
with this information should be deposited in the PGS Catalog for findability 
and to promote reuse and comparison with other established scores. 
Weights for non-genetic variables should also be provided to make the risk 
model calculable.

Further reporting considerations beyond the minimal reporting for PRS-RS items can be found in Supplementary Note 3. A reference of relevant manuscript sections for each item is provided in 
Supplementary Table 4. ICD, International Classification of Diseases; PMID, PubMed ID; rsID, reference SNP cluster ID; SNP, single-nucleotide polymorphism.

procedure, including the measures that were used for the selection of 
the final model. Translating the continuous PRS distribution to a risk 
estimate, whether absolute or relative, is highly dependent on assump-
tions and limitations that are inherent to the specific dataset used. When 
describing the ‘risk model type’, authors should detail the timescale 
used for prediction, or the study period and follow-up time for a relative 
hazard model. Furthermore, if relative risk is estimated, the reference 
group should be well described. These details should be described for 
the training set, as well as for validation and sub-group analyses.

Reporting on the evaluation of risk models
Authors should report estimates for all evaluated models (including the 
methods used to derive them) to equip readers with the information 

necessary to evaluate the relative value of an increase in performance 
against other trade-offs. We recommend that authors provide summary 
information of the ‘PRS distribution’ to aid in model interpretation. 
The ‘predictive ability’, ‘calibration’, and ‘discrimination’ of the risk 
model should also be assessed and detailed with common descriptions 
including the risk score effect size, variance explained (R2), reclassifi-
cation indices and metrics like sensitivity, specificity, positive predic-
tive value (PPV), and negative predictive value (NPV). The risk model 
‘calibration’ and ‘discrimination’ should be described for all analyses, 
although their estimation and interpretation are most relevant for the 
PRS validation sample. It is imperative for the PRS and integrated risk 
models to be evaluated on a population that is external (independent, 
non-overlapping) to the individuals in the study population. The ability 
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of the risk model to classify individuals of interest (‘risk model dis-
crimination’) is commonly described and presented in terms of the area 
under the receiver operating characteristic (AUROC) or precision-recall 
curve (AUPRC), or the concordance statistic (C-index). Any differences 
in variable definitions or performance discrepancies between the train-
ing and validation sets should be described.

Reporting on interpretation
By explicitly describing the ‘risk model interpretation’ and outlining 
potential ‘limitations’ to the ‘generalizability’ of their model, authors 
will empower readers and the wider community to better understand 
the risk score and its relative merits. Authors should justify the clini-
cal relevance and the ‘intended uses’ of the risk model, such as how 
the performance of their PRS compares to other commonly used risk 
models, or previously published PRSs. This may also include compari-
sons to other genetic predictors of disease (for example, mutations in 
high or moderate risk genes associated with Mendelian forms of the 
disease), family history, simple demographic models or conventional 
risk calculators (see Boxes 2 and 3 for disease-specific examples). What 
indicates a ‘good’ prediction can differ between outcomes and intended 

uses, but should be reported with similar metrics to those described 
in the evaluation section.

Reporting on model parameters
The underlying PRS (variant alleles and derived weights) should be made 
publicly available, preferably through direct submission to an indexed 
repository such as the PGS Catalog, to enable others to reuse existing 
models (with known validity) and to facilitate direct benchmarking 
between different PRSs for the same trait (thus promoting ‘data transpar-
ency and availability’). The current mathematical form of most PRSs—a 
linear combination of allele counts—facilitates clear model description 
and reproducibility. Future genomic risk models may have more complex 
forms; for example, allowing for explicit non-linear epistatic and gene–
environment interactions, or deep neural networks of lesser clarity. It will 
be important to describe these models in sufficient detail to allow their 
implementation and evaluation by other researchers and clinical groups.

Supplementary Note 3 provides explanations of reporting considera-
tions in addition to the minimal reporting framework in Table 1. Authors 
intending downstream clinical implementation should aim for the level 
of transparent and comprehensive reporting covered in both Table 1 
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Fig. 1 | Prototype of PRS development and validation process. The 
prototypical steps for PRS construction, risk model development and 
validation of performance are displayed with select aspects of the PRS-RS 
guidelines (labelled in bold). During PRS development, variants associated 
with an outcome of interest, typically identified from a GWAS, are combined as 
a weighted sum of allele counts. Methods for optimizing variant selection  
(PRS construction and estimation) are not shown. To predict the outcome of 
interest the PRS is added to a risk model and may be combined with non-genetic 
variables (for example, age, sex, ancestry or clinical variables; collectively 
referred to as risk model variables). After fitting procedures to select the best 

risk model, this model is validated in an independent sample. The PRS 
distribution should be described, and the performance of the risk model 
demonstrated in terms of its discrimination, predictive ability and calibration. 
Though not displayed in the figure, these same results should also be reported 
for the training sample for comparison to the validation sample. In both 
training and validation cohorts, the outcome of interest criteria, 
demographics, genotyping and non-genetic variables should be reported 
(Table 1) HLA, human leukocyte antigen; HR, hazard ratio; IDI, integrated 
discrimination improvement; IQR, interquartile range; NRI, net reclassification 
improvement; OR, odds ratio; β, effect estimate from linear regression.
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and the Supplementary Notes, especially concerning points related to 
discussing the interpretation, limitations and generalizability of results. 
The proper reporting of the development and performance of PRSs can 
also have implications for seeking regulatory approval of the PRS as a 
clinical test. Although not a comprehensive list of regulatory require-
ments, we highlight aspects of the PRS-RS that would be considered 
evidence of analytical and clinical validity from the perspective of the 
College of American Pathologists (CAP) and the Clinical Laboratory 
Improvement Amendments (CLIA) (Supplementary Table 1). CAP and 
CLIA approvals are additional incentives for the reporting adherence 
of researchers who wish to translate their work to the clinic, as well as 
a caution for researchers who want to avoid their findings being put to 
unintended use. Finally, we reiterate the need for both methodologi-
cal and data transparency, and we encourage the deposition of PRSs 
(variant-level information necessary to recalculate the genetic portion 
of the score) in the PGS Catalog (www.pgscatalog.org34), which provides 
an invaluable resource for the widespread adoption and distribution of 
a published PRS. The PGS Catalog provides access to PGSs and related 
metadata to support the FAIR principles of data stewardship19, enabling 
subsequent applications and assessments of PGS performance and best 
practices (see Supplementary Table 2 for a description of the metadata 
captured in the PGS Catalog and its overlap with the PRS-RS).

Improving PRS research and translation
We surveyed 30 publications (selecting for a range of disease domains, 
risk score categories and populations) to understand how the informa-
tion in the PRS-RS is presented and displayed as part of the larger itera-
tive process to clarify and improve minimal reporting item descriptions. 
For 10 of these publications, we provide detailed annotations using the 
final minimal reporting requirements (Supplementary Table 3) and use 
these annotations to illustrate the detail necessary for each PRS-RS item 
(further described in Supplementary Note 3). The heterogeneity in the 
PRS reporting we observed in this pilot highlights a series of challenges. 
Critical aspects of PRS studies—including ancestry, predictive ability, 
and transparency or availability of information needed to reproduce 
PRSs—were frequently absent or reported in insufficient detail. This 
underscores the need for the PRS-RS to clearly and specifically define 
meaningful aspects of PRS development, testing and intended clinical 
use. However, these deficits in reporting are not unique to PRSs; previ-
ous reports of underreporting have found that 77% of GWAS publica-
tions in 2017 did not share summary statistics35 and 4% of GWASs do 
not report any relevant ancestry information1. In line with the push 
towards a culture of reproducibility and open data in genomics, we as 
the ClinGen Complex Disease Working Group and PGS Catalog joined 
to create this set of reporting standards (Table 1), which is specifically 
tailored to PRS research and adapts the previous standards on the 
basis of the opinions of multidisciplinary and international experts.

Researchers using the PRS-RS may identify fringe cases that are inad-
equately captured by these reporting items, as we have modelled our 
guidelines on prototypical steps for PRS development (Fig. 1). Although 
we anticipate that the field may change further as novel methods and 
technologies are generated, the PRS-RS items can be expanded and 
adapted to encompass new considerations. By updating previous stand-
ards, drawing on the knowledge of leaders in the field and tailoring the 
framework to common barriers observed in recent literature, we aim to 
provide a comprehensive and pragmatic perspective on the topic. In line 
with previous standards, the PRS-RS includes elements related to under-
standing the clinical validity of PRSs and consequent risk models. Items 
such as ‘predicted outcome’ and ‘intended use’ bookend our guidelines 
with the intended clinical framing of PRS reporting. In addition, we have 
modelled the guidelines by steps in experimental design—from hypoth-
esis to interpretation—to more clearly emphasize the importance of 
considering the risk model’s intended purpose in defining what needs 
to be reported and to inform documentation throughout the process. As 

a reference, we have included a guide to where PRS-RS items should be 
reported in a manuscript in Supplementary Table 4. These expansions 
will further facilitate the curation and expert annotation of published 
PRSs as we move towards widespread clinical use.

Although the scope of our work encompasses clinical validity, it does 
not address the additional requirements that are needed to establish the 
clinical or public health utility of a PRS, such as randomized trials with 
clinically meaningful outcomes, health economic evaluations or feasi-
bility studies36. In addition, the translation of structured data elements 
into useful clinical parameters may not be direct. One example is that the 
case definitions used in training or validation in any particular PRS study 
may deviate (sometimes substantially) from those used in any specific 
health system. CHD symptoms commonly include angina (chest pain), 
whereas PRSs are frequently trained on stricter definitions excluding 
angina. Another example is that the definitions used for race or ancestry 
as outlined in the PGS Catalog and the GWAS Catalog1 may differ from 
structured terms used to document ancestry information in the clinic. 
Consistent mappings and potentially parallel analyses may be necessary 
to translate from genetically determined ancestries to those that are rou-
tinely used in clinical care. Such translation issues potentially limit gener-
alizability to target populations and warrant further discussion, and we 
reiterate the need for authors to be mindful of their intended purpose and 
target audience when discussing their findings. Authors’ understanding 
of potential translational barriers can be aided by considering the current 
CAP and CLIA analytical and clinical validity evidence requirements of 
peer-reviewed literature to ensure that the PRS-RS has value in informing 
later steps of the clinical translation spectrum, including clinical utility 
(Supplementary Table 1). Finally, although the principles of this work are 
clear, its scope does not include the complex commercial restrictions—
such as intellectual property—that may be placed on published studies with 
regard to the reporting or distribution of PGSs or the data that underlie 
them. We hope that our work will inform downstream regulation and 
transparency standards for PRS as a commercial clinical tool.

The coordinated efforts of the ClinGen Complex Disease Working 
Group and PGS Catalog provide a set of compatible resources for 
researchers to deposit PGS- and PRS-related information. The PGS 
Catalog (www.PGSCatalog.org) provides an informatics platform, 
with data integration and harmonization to other PGSs as well as the 
source GWAS study through its sister platform, the GWAS Catalog1,34. 
In addition, it provides a structured database of scores (variants and 
effect weights) that can be reused, along with metadata requested in 
the PRS-RS. With these tools, the PRS-RS can be mandated by leading 
peer-reviewed journals and, consequently, the quality and rigour of 
PRS research will be increased to a level that facilitates clinical imple-
mentation. We encourage readers to visit the ClinGen website (https://
clinicalgenome.org/working-groups/complex-disease/) for any future 
changes or amendments to our reporting standards.

Although we have provided explicit recommendations on how to 
acknowledge study design limitations and their effects on the interpre-
tation and generalizability of a PRS, future research should attempt to 
establish best practices to guide the field. Moving forward, supplemen-
tary frameworks should be developed for the reporting of new meth-
ods, such as deep learning, as well as requirements for clinical utility and 
readiness. Together, the PRS-RS enables the rapid development of PRSs 
as potentially powerful tools for the translation of genomic discover-
ies into clinical and public health benefits, and provides a framework 
for PRSs to transform multiple areas of research in human genetics.
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