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The growth equation of cities

Vincent Verbavatz1,2 & Marc Barthelemy1,3 ✉

The science of cities seeks to understand and explain regularities observed in the 
world’s major urban systems. Modelling the population evolution of cities is at the 
core of this science and of all urban studies. Quantitatively, the most fundamental 
problem is to understand the hierarchical organization of city population and the 
statistical occurrence of megacities. This was first thought to be described by a 
universal principle known as Zipf’s law1,2; however, the validity of this model has 
been challenged by recent empirical studies3,4. A theoretical model must also be 
able to explain the relatively frequent rises and falls of cities and civilizations5, but 
despite many attempts6–10 these fundamental questions have not yet been 
satisfactorily answered. Here we introduce a stochastic equation for modelling 
population growth in cities, constructed from an empirical analysis of recent 
datasets (for Canada, France, the UK and the USA). This model reveals how rare, but 
large, interurban migratory shocks dominate city growth. This equation predicts a 
complex shape for the distribution of city populations and shows that, owing to 
finite-time effects, Zipf’s law does not hold in general, implying a more complex 
organization of cities. It also predicts the existence of multiple temporal variations 
in the city hierarchy, in agreement with observations5. Our result underlines the 
importance of rare events in the evolution of complex systems11 and, at a more 
practical level, in urban planning.

Constructing a science of cities has become a crucial task for our socie-
ties, which are growing ever more concentrated in urban systems. Better 
planning could be achieved with a better understanding of city growth 
and how it affects society and the environment12. Various important 
aspects of cities such as urban sprawl, infrastructure development or 
transport planning depend on the population evolution over time, and 
multiple theoretical attempts have been made in order to understand 
this crucial phenomenon.

Growth of cities and Zipf ’s law
So far, most research in city growth has been done with the idea that 
the stationary state for a set of cities is described by Zipf’s law. This law 
is considered to be a cornerstone of urban economics and geography3, 
and states that the population distribution of urban areas in a given 
territory (or country) displays a Pareto law with exponent equal to 2 
or, equivalently, that the city populations sorted in decreasing order 
versus their ranks follow a power law with exponent 1. This alleged 
regularity through time and space is probably the most striking fact in 
the science of cities and for more than a century has triggered intense 
debate and many studies1,2,5,10,13–28. This result characterizes the hierar-
chical organization of cities, and in particular it quantifies the statistical 
occurrence of large cities. Zipf’s law implies that in any country, the city 
with the largest population is generally twice as large as the next largest, 
and so on. It is a signature of the very large heterogeneity of city sizes 
and shows that cities are not governed by optimal considerations that 
would lead to one unique size but, on the contrary, that city sizes are 
broadly distributed and follow some sort of hierarchy16. The empirical 

value of the Pareto exponent informs us about the hierarchical degree 
of a system of cities: a large value of the exponent corresponds to a 
more equally distributed population among cities, and, vice versa, 
for small exponent values the corresponding system of cities is very 
heterogeneous with a few megacities.

Studies in economics have suggested that Zipf’s law is the result of 
economic shocks and random growth processes6–8. Gabaix10 proved in 
a seminal paper that Gibrat’s law of random growth9—which assumes a 
population growth rate independent of the size of the city—can lead to 
a Zipf law with exponent 1, at the expense of the additional and untested 
assumption that cities cannot become too small. This model remains 
the most accepted paradigm to understand city growth. Since then, it 
has also been understood using simplified theoretical models (without 
any empirical arguments) that migrations from other cities or countries 
are determinant in explaining random growth29. However, although 
most of these theoretical approaches focus on explaining Zipf’s law 
with exponent 1, recent empirical studies3,4, supported by an increas-
ing number of data sources, have questioned the existence of such 
a universal power law and have shown that Zipf’s exponent can vary 
around 1 depending on the country, the time period, the definition of 
cities used or the fitting method13,21,30,31 (we illustrate this in Extended 
Data Fig. 1, showing that no universal result for the population distribu-
tion is observed), leading to the idea that there is no reason to think 
that Zipf’s law holds in all cases32.

Beyond understanding the stationary distribution of urban pop-
ulations lies the problem of their temporal evolution. As already 
noted5, the huge number of studies regarding population distribu-
tion contrasts with the few analyses of the time evolution of cities. 
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As discussed in that same work5, cities and civilizations rise and fall 
many times on a large range of time scales, and Gabaix’s model is 
both quantitatively and qualitatively unable to explain these specific 
chaotic dynamics.

Therefore, a model able to simultaneously explain observations 
about the stationary population distribution and the temporal 
dynamics of systems of cities is missing. In particular, we are not at 
this point able to identify the causes of the diversity of empirical 
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Fig. 1 | Migration flow analysis. a–d, Analysis for France (a), the USA (b), the UK 
(c) and Canada (d). Left, migration-rate ratio versus the ratio of populations. 
The straight line is a power-law fit that gives an exponent equal to one. Right, 
empirical right-cumulative distribution function of renormalized migrations 

flows ζi compared to Lévy (continuous red lines) and normal distributions 
(green dashed lines). See Extended Data Fig. 4 for the left-cumulative 
distribution function.
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observations about the hierarchical organization of cities, the occurrence  
of megacities, and the empirical instability in city dynamics seen in the 
births and deaths of large cities on short time scales. In this respect, 
we do not need just a quantitative improvement of models but a shift 
of paradigm.

In this paper, we show that city growth is dominated by rare events—
namely large interurban migratory shocks—rather than by the average 
growth rate. Rare but large positive or negative migratory flows can 
destabilize the hierarchy and the dynamics of a city on very short time 
scales, leading to the disordered dynamics of cities observed through-
out history. On the basis of an empirical analysis of migrations flows in 
four countries, in the following we derive a stochastic equation of city 
growth that is able to explain empirical observations of the statistics 
and temporal dynamics of cities.

Deriving the equation of city growth
To understand city growth, we require a robust, bottom-up approach, 
starting from elementary mechanisms governing the evolution of cit-
ies. Without loss of generality, the growth dynamics of a system (such 
as a country) of cities i of size Si can be decomposed into the sum of an 
interurban migration term between metropolitan areas and an 
‘out-of-system’ term that combines other sources of growth: natural 
growth (births and deaths) and migrations that do not occur within 
the system of cities (international migrations and exchanges with 
smaller towns). We denote by N(i) the set of neighbours of city i, that 
is, those that exchange a non-zero number of inhabitants. Using the 
four recent datasets of migrations that we use here (USA, 2012–2017; 
France, 2003–2008; England and Wales (for simplicity, UK), 2012–2016; 
Canada, 2012–2016) we find for France and the USA that |N(i)| ∝ Si

γ, 
where γ ≈ 0.5 (Extended Data Fig. 2). The British and Canadian datasets 
are fully connected, leading to γ = 0. The time (t) evolution of the pop-
ulation size Si can then be written as

∑S
t

η S J J
∂
∂

= + − , (1)
i

i i
j N i

j i i j
∈ ( )

→ →

where the quantity ηi is a random variable accounting for 
the ‘out-of-system’ growth of city  i; the data show that ηi is 
Gaussian-distributed (Extended Data Fig. 3). The flow Ji→j is the num-
ber of individuals moving from city i to city j during a period of time dt. 
If there is an exact balance of migration flows ( Ji→j = Jj→i), the equation 
becomes equivalent to Gibrat’s model9, which predicts a log-normal 
distribution of populations.

Starting from this general equation (1) is very natural as it amounts 
to writing the balance of births, deaths and migrations; however—as 
is often the case when using very general, basic equations—it is difficult 
to use for making predictions. Simplifications of this equation have 
been proposed29, wherein various assumptions (such as the gravity 
model for migration, for example) lead to Gibrat’s model, but miss the 
very large fluctuations of migrations—as we will see below, this is a 
crucial ingredient. We also note that this general stochastic equation (1) 
was discussed in another context33 and is a central object in the 

statistical physics of disordered systems. With regard to cities, the 
migration flow Ji→j depends a priori (and at least) on the populations Si 
and Sj and the distance dij between cities i and j. Using a standard grav-
itational model34,35, we show that for France and the USA, the dominant 
contribution to Ji→j comes from the populations and that the role of 
distance appears as a second-order effect (see Supplementary Informa-
tion for details). This result suggests that the Ji→j term can be represented 
by a variable of the form I S S xi

μ
j

ν
ij0 , where the random variables xij have 

an average equal to 1 and encode the noise as well as multiple other 
effects, including distance. We denote by Iji = Ji→j/Si the probability per 
unit time and per capita of moving from city i to city j. The left panel of 
Fig. 1 shows that the ratio Iij/Iji versus the ratio of populations Si/Sj dis-
plays, on average, linear behaviour. This implies that μ = ν, and that we 
have, on average, a sort of detailed balance ⟨ Ji→j⟩ = ⟨ Jj→i⟩ (where the angled 
brackets here denote the average over cities), but that crucially, fluc-
tuations are non-zero. More precisely, if we denote by 
X J J I S= ( − )/ij j i i j i

ν
→ → 0  , we observe that these random variables Xij are 

heavy-tailed—that is, they are distributed according to a broad law that 
decreases asymptotically as a power law with exponent α < 2 (see Sup-
plementary Information for more details and empirical evidence). The 
sum in the second term of the right-hand side of equation (1) can then 
be rewritten as

∑ ∑J J I S X− = , (2)
j N i

j i i j i
ν

j N i
ij

∈ ( )
→ → 0

∈ ( )

and, according to the generalized version of the central limit theorem36 
(assuming that correlations between the variables Xij are negligible), 
the random variable

∑ζ
N i

X=
1

| ( )|i α
j N i

ij1/
∈ ( )

follows a Lévy stable law Lα with parameter α (for large enough N(i)). 
This is empirically confirmed in Fig. 1 (right panel): French, US, British 
and Canadian data are better fitted by a Lévy stable law than by any 
other distribution and the estimates of α (using different methods) 
are given in Table 1. We are led to the conclusion that the growth of 
systems of cities is governed by a stochastic differential equation with 
two independent noises, which reads as follows

S
t

η S D S ζ
∂
∂

= + , (3)i
i i i

β
i

where D ∝ I0, β = ν + γ/α and ηi is a Gaussian noise with mean the average 
growth rate r and a dispersion σ. This is the growth equation of cities 
that governs the dynamics of large urban populations; it is our main 
result here. In equation (3) both noises are uncorrelated and multipli-
cative, and Itô’s convention here seems to be more appropriate than 
Stratonovich’s37 because population sizes at time t are computed inde-
pendently from interurban migration terms at time t + dt. Estimates 
for the various parameters together with the prediction for the value 
of β are given in Table 2.

Table 1 | Estimates of parameter α

Dataset MLE Kolmogorov–
Smirnov test

Log-moments Hill

France, 2003–2008 1.43 ± 0.07 1.2 < α < 1.8 1.3 1.4 ± 0.3

USA, 2013–2017 1.27 ± 0.07 1.15 < α < 1.20 1.2 Inconclusive

UK, 2012–2016 1.32 ± 0.26 Inconclusive 1.0 1.2 ± 0.8

Canada, 2012–2016 1.69 ± 0.12 Inconclusive 1.9 1.4 ± 0.6

We used four different methods of estimation: maximum-likelihood estimation, Kolmogorov–
Smirnov test, log-moments and Hill estimates (see, for example, ref. 42).

Table 2 | Estimates of parameters for the four datasets

Dataset γ ν β = ν + γ/α βmeasured

France, 2003–2008 0.55 ± 0.06 0.4 ± 0.3 0.8 ± 0.4 0.75 ± 0.07

USA, 2013–2017 0.41 ± 0.05 0.4 ± 0.4 0.7 ± 0.5 0.93 ± 0.07

UK, 2012–2016 0 0.7 ± 0.3 0.7 ± 0.3 0.51 ± 0.05

Canada, 2012–2016 0 0.5 ± 0.4 0.5 ± 0.4 0.78 ± 0.06

We observe good agreement between the measured and predicted values of β in the USA and 
France (see Supplementary Information for details about these estimates). The British and 
Canadian datasets are small and hence fully connected (implying γ = 0), and are very noisy.



400 | Nature | Vol 587 | 19 November 2020

Article

The central limit theorem, together with the broadness of interurban 
migration flow, enables us to show that many details in equation (1) 
are unnecessary and that the dynamics can be described by the more 
universal equation (3). We conclude that starting from equation (1) is 
thus less useful than previously thought. The importance of migrations 
has been previously noted29, but in that work the authors derived a 
stochastic differential equation with multiplicative Gaussian noise, 
which we show here to be incorrect: we indeed have a first term with 
multiplicative noise but also, crucially, we obtain another term that is a 
multiplicative Lévy noise with zero average. This is a major theoretical 
shift that is not included in previous studies on urban growth and which 
has many crucial implications in understanding both the stationary 
and dynamic properties of cities.

No stationary distribution for cities
Equation (3) governs the evolution of urban populations and analys-
ing it at large times gives indications about the stationary distribu-
tion of cities. To discuss the analytical properties of equation (3), we 
assume that Gaussian fluctuations are negligible compared to the Lévy 
noise and write ηi ≈ r (see Extended Data Fig. 5). The corresponding  
Fokker–Planck equation (with Itô’s convention) can be solved using 
the formalism of fractional-order derivatives and Fox functions38–41, 
leading to the general distribution at time t that can be expanded in 
powers of S as (see Supplementary Information for derivation and 
complete expressions of all terms):

∑P S t C
a t

S
( , ) =

( )
(4)

k
k

αβ α β k

αβ α β k
=1

∞ − − (1− )

1+ + (1− )

where Ck is a prefactor that is a function of α, β and k and independent 

of t and S, and where 





a t( ) ∝ r D
α β

/

(e − 1)

1/ (1− )α

rα β t(1− )
 decreases exponentially 

at large times. This expansion shows that the probability distribution 
of city sizes is dominated at large S by the order k = 1 and converges 
towards a Pareto distribution with exponent α ≠ 1. The speed of conver-
gence towards this power law can be estimated with the ratio λ(S, t) of 
the first and second terms of the expansion equation (4) and leads to:

λ S t
D

r
S t

S
( , ) =

( ) (5)
α α β(1− )










where S t( ) is the mean city size. If λ(S) ≳ 1, the α-exponent regime is not 
valid in the right tail with threshold S at time t. Estimates of α and β for 
the four datasets show that finite-time effects are very important in all 
cases and that a power-law regime is only reached for unrealistically 
large city sizes (see discussion in Supplementary Information). Hence, 
the range of city sizes for which we can observe a power-law distribu-
tion may not exist in practice and there is no reason in general to observe 

Zipf’s law or any other stationary distribution. We also note that from 

equation (4) there is a scaling of the form ( )P S t F( , ) = S
S

S t
1

¯( )
 with a scal-

ing function F that depends on the country. We confirmed this scaling 
form for France (the only country for which we had sufficient data); 
details can be found in Supplementary Information (see also Extended 
Data Fig. 6).

In addition, if we perform a power-law fit of the expansion (equa-
tion (4)), the upper tail of the city-size distributions may be mistaken for 
a Pareto tail with a spurious exponent that changes with the definition 
of the upper tail (Extended Data Fig. 7). This might explain the discrep-
ancies observed in the literature on Zipf’s law. As city sizes increase, 
the apparent exponent changes and can dramatically deviate from 1, as 
we initially observe in Extended Data Fig. 1. Following our analysis, the 
apparent exponent should converge towards the value given by α, as is 
indeed observed in, for example, France (α = 1.4) and the USA (α = 1.3).

Dynamics: splendour and decline of cities
The validity of our model (equation (3)) can be further tested on the 
dynamics of systems of cities over large periods of time. This can be 
done by following the populations and ranks of the system’s cities at 
different times with the help of ‘rank clocks’, as previously proposed5. 
In that work, it was proven that the micro-dynamics of cities is very tur-
bulent, with many rises and falls of entire cities that cannot result from 
Gabaix’s model (which is, in essence, Gibrat’s model with a non-zero 
minimum for city sizes). We show in Fig. 2 the empirical rank clock for 
France (from 1876 to 2015) and for the results obtained with Gabaix’s 
model and ours (for the other countries, see Extended Data Fig. 8).

We see that in Gabaix’s model (middle), the city rank is stable on 
average, and not turbulent: the rank trajectories are concentric and 
the rank of a city oscillates around its average position. In the real 
dynamics (left), cities can emerge or die. Very fast changes in rank order 
can occur, leading to much more turbulent behaviour. In our model 
(right), the large fluctuations of Lévy noise are able to statistically 
reproduce such ebbs and flows of cities. More quantitatively, we first 
compare the average shift per time d r t r t NT= (∑ ∑ | ( ) − ( − 1)|)/t i

N
i i=1  over 

T years and for N cities in the three cases (Table 3) and look at the sta-
tistical fluctuations of the rank (see Extended Data Fig. 9): we note that 
Lévy fluctuations are much more able to reproduce the turbulent prop-
erties of the dynamics of cities through time. Indeed, the fast births 
and deaths of cities—due, for example, to wars, discoveries of new 
resources, incentive settlement policies, and so on—are statistically 
explained by broadly distributed migrations and are incompatible with 
a Gaussian noise. Second, we can compare with the empirical data the 
predictions of the different models for the time needed to make the 
largest rank jump (see Extended Data Fig. 10 for France, which typically 
predicts a duration of order 80 years to make a very large jump). We 
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Fig. 2 | Rank clocks for France. We compare the real dynamics of the 500 
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line represents a city rank over time where the radius is given by the rank and 
the angle by time. In this representation, the largest city is at the centre and the 
smallest at the edge of the disk.
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confirm that Gabaix’s model is unable to reproduce these very large 
fluctuations and that our equation agrees very well with the data.

A new paradigm
In this Article, we build a stochastic equation of growth for cities on 
the basis of microlevel considerations that is empirically sound and 
that challenges the paradigm of Zipf’s law and current models of urban 
growth. We show that microscopic details are irrelevant and that the 
growth equation obtained is universal. A crucial point in this reason-
ing is that, although we have on average a sort of detailed balance 
that would lead to a Gaussian multiplicative-growth process, it is the 
existence of non-universal and broadly distributed fluctuations of 
the microscopic migration flows between cities that govern the sta-
tistics of city populations. We introduce here a stochastic equation 
that describes city growth that includes two sources of noise and that 
predicts an asymptotic power-law regime. However, this stationary 
regime is not generally reached and finite-time effects cannot be dis-
carded. Our model is also able to statistically reproduce the turbulent 
micro-dynamics of cities that rapidly rise and fall, in contrast with previ-
ous Gaussian-based models of growth5.

In addition, our fundamental result exhibits an interesting connec-
tion between the behaviour of complex systems and non-equilibrium 
statistical physics for which microscopic currents and the violation of 
detailed balance seem to be the rule rather than the exception11. At a 
practical level, this result also highlights the critical effect of not only 
interurban migration flows (an ingredient that is not generally con-
sidered in urban-planning theories), but also, more importantly, their 
large fluctuations—which are ultimately connected to the capacity of 
a city to attract a large number of new citizens. Our approach, which 
relies in essence on the population budget description and empirical 
results, provides a solid ground for future research on the temporal 
evolution of cities, a central problem in urban science.
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Table 3 | Average rank shift per unit time, d

Average shift per unit time, d Real Lévy Gabaix

France, 1876–2015 6.0 6.1 8.0

USA, 1790–1990 4.7 16 27

UK, 1861–1991 4.8 16 25

Parameters for the Lévy model and the Gaussian noise are fitted on the France 2003–2008, 
USA 2013–2017 and UK 2012–2016 datasets, respectively. The most complete dataset is the 
French one, with total population for all cities at all times. In the US and UK datasets, only the 
populations of the largest cities are recorded (top 100 in the USA and top 40 in the UK). This 
can explain the large discrepancies observed, considering the distance d in both countries. 
Extended Data Fig. 10 investigates the distribution and fluctuations of the rank over time.
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Methods

For each of the four countries we build a graph of migration flows 
between metropolitan areas. We have (1) the populations of metro-
politan areas and (2) the migration flows between metropolitan areas 
(described in more detail below).

US migrations
Data of migrations in the USA are taken from the 2013–2017 American 
Community Survey (ACS)43. Aggregated metro-area-to-metro-area 
migration flows and counterflows are directly given between 389 met-
ropolitan statistical areas in the USA. More precisely, the ACS asked 
respondents whether they lived in the same residence one year ago; for 
people who lived in a different residence, the location of their previous 
residence was collected.

French interurban migrations
Data of migrations in France are taken from the 2008 INSEE report for 
residential migrations at the town (commune) level for each individual 
household44. The main residence in 2008 is compared to the main resi-
dence in 2003. In order to work at the urban area level, we used the 1999 
INSEE list of urban areas and aggregate residential migrations at the 
metropolitan level, enabling us to analyse migration flows between 
the 500 largest urban areas in France.

UK interurban migrations
Data of migrations in the UK are taken from 2012–2016 ONS reports on 
internal migration between English and Welsh local authorities, giving 
the square matrix of moves each year45. In order to work at the urban 
area level, we used the list of local authorities by OECD functional urban 
areas and aggregate residential migrations at the metropolitan level, 
enabling us to analyse migration flows between the 41 largest urban 
areas in England and Wales.

Canadian interurban migrations
Data of migrations in Canada are taken from 2012–2016 census reports 
on internal migration between Canadian metropolitan areas46. Flows 

between these areas are given city-to-city for each year between 2012 
and 2016 for the top-160 largest cities in Canada.

Data availability
The datasets used in this study are freely available from public reposi-
tories43–46.
 
43. United States Census Bureau. Metro area-to-metro area migration flows: 2013–2017 

American Community Survey; https://www.census.gov/data/tables/2017/demo/
geographic-mobility/metro-to-metro-migration.html (United States Census Bureau,  
2019).

44. INSEE. Migrations résidentielles en 2008: lieu de résidence actuelle – lieu de résidence 
antérieure; https://www.insee.fr/fr/statistiques/2022291 (INSEE, 2011).

45. Park, N. Internal migration: matrices of moves by local authority and region (countries of 
the UK) 2012–2016; https://www.ons.gov.uk/peoplepopulationandcommunity/population 
andmigration/migrationwithintheuk/datasets/matricesofinternalmigrationmovesbetween 
localauthoritiesandregionsincludingthecountriesofwalesscotlandandnorthernireland 
(Office for National Statistics, 2019).

46. Statistics Canada. Interprovincial and intraprovincial migrants, by census metropolitan 
area of origin and destination for the period from July 1 to June 30; https://doi.org/ 
10.25318/1710008701-eng (Statistics Canada, 2020).
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Extended Data Fig. 1 | No universal exponent. We show here the measured 
Pareto exponent of the upper tail of city-size distributions as a function of the 
lower threshold defining the tail for the largest cities of eight different 

countries. The exponents are obtained with a maximum-likelihood estimate 
(data from https://simplemaps.com/data/world-cities).

https://simplemaps.com/data/world-cities
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Extended Data Fig. 2 | In- and out-neighbours. a, b, Number of in- and 
out-neighbours (in the sense of graph theory) for the USA (a) and France (b). 
The red lines correspond to the equality Nin = Nout. In the UK and Canada, we 
have a fully connected dataset and Nin = Nout = constant. c, d, Number of 

neighbours for each city as a function of population for the USA (c) and France 
(d). The dotted red lines indicate the power-law fit |Ni| ∝ Si

γ. In the UK and 
Canada, we have a variance of the normalized quantity fully connected dataset 
and γ = 0.



Extended Data Fig. 3 | Density function of the out-of-system growth rate. 
Natural growth and out-of-system migrations include international migrations 
and exchanges with small towns. The data shown are for US cities in 2013–2017 
(top) and French cities (bottom) in 2003–2008, compared to a normal 

distribution. We note that a power-law fit of the right or the left tail would lead 
to a Pareto exponent of β ≫ 1. For French cities, we extrapolated the 2003 
population in each city from the 1999 and 2006 censuses to test our 
assumption on the period 2003–2008.
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Extended Data Fig. 4 | Migration-flow analysis. Complementary figure to 
Fig. 2. Empirical left-cumulative distribution function of renormalized 
migration flows compared to Lévy (continuous red line) and normal  

(green dashed lines) distributions. Clockwise from top left, distributions are 
given for France, the USA, Canada and the UK.



Extended Data Fig. 5 | Average distribution of city sizes. Data obtained by 10 
numerical runs of the stochastic differential equation (10) with a Gaussian 
noise with finite variance ση, compared with the numerical solution of 

equation (10) where η = ⟨η⟩ = r. Parameters here are α = 1.3, β = 0.8, r = 0.01, 
ση = 0.06, D = 0.06 and t = 500.
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Extended Data Fig. 6 | Scatterplot of the quantity P(S, t) × S versus the ratio 
for France’s top-500 largest cities between 1875 and 2016. Each colour is a 
different year. We observe that the plots of all years collapse towards a unique 

universal function of the ratio in agreement with the result of equation (33) 
in Supplementary Information.



Extended Data Fig. 7 | Power-law fit of the expansion with α = 1.3, as a 
function of the lower threshold of city sizes, Smin. The expansion is described 
in equation (25) in Supplementary Information. The fit gives an apparent 
exponent α(Smin) with very good quality (R2 ≈ 1), although the expansion itself is 

not a power law. The apparent exponent is smaller than α, but slowly converges 
towards α = 1.3 as the value of the threshold Smin increases. Parameters here are 
α = 1.3, β = 0.8, r = 0.01, D = 0.06 and t = 500.
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Extended Data Fig. 8 | Rank clocks of the USA and the UK. Top, USA; bottom, 
UK. The left panels display real data, the middle panels show Gabaix’s model of 
growth and the right panels give our model of growth. Parallel lines for earlier 

years are spurious effects resulting from the absence of data for cities out of 
the top-100 largest in the USA or the top-40 largest in the UK (for these rank 
clocks, we assigned a random increasing radius to cities without data).



Extended Data Fig. 9 | Microdynamics of city rank through time for the 
largest cities in France, the USA and the UK. Data is given for the 500 largest 
cities in France between 1875 and 2016 (top), the 100 largest cities in the United 
States between 1790 and 1990 (middle) and the 40 largest cities in the UK 
between 1861 and 1991 (bottom). The left panels display the right-cumulative 
distribution of the maximal variation of the rank ri(t) for city, that is, the 

difference between the highest and the lowest rank in population for each city. 
The right panels display the typical fluctuations of the rank ri(t) through time. 
In the three cases, the Lévy model is able to predict rare but non-negligible 
large variations of rank such as the sudden birth or death of city, in contrast to 
Gabaix’s model or Gibrat’s model for growth, for which large fluctuations of 
rank order do not occur.
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Extended Data Fig. 10 | Average number of years (and standard dispersion) taken to observe the maximal rank variation ∆r as a function of ∆r. Although the 
dispersion is large, Lévy’s model is compatible with real data, in contrast to Gabaix’s model of growth.


	The growth equation of cities
	Growth of cities and Zipf’s law
	Deriving the equation of city growth
	No stationary distribution for cities
	Dynamics: splendour and decline of cities
	A new paradigm
	Online content
	Fig. 1 Migration flow analysis.
	Fig. 2 Rank clocks for France.
	Extended Data Fig. 1 No universal exponent.
	Extended Data Fig. 2 In- and out-neighbours.
	Extended Data Fig. 3 Density function of the out-of-system growth rate.
	Extended Data Fig. 4 Migration-flow analysis.
	Extended Data Fig. 5 Average distribution of city sizes.
	Extended Data Fig. 6 Scatterplot of the quantity P(S, t) × S versus the ratio for France’s top-500 largest cities between 1875 and 2016.
	Extended Data Fig. 7 Power-law fit of the expansion with α = 1.
	Extended Data Fig. 8 Rank clocks of the USA and the UK.
	Extended Data Fig. 9 Microdynamics of city rank through time for the largest cities in France, the USA and the UK.
	Extended Data Fig. 10 Average number of years (and standard dispersion) taken to observe the maximal rank variation ∆r as a function of ∆r.
	Table 1 Estimates of parameter α.
	Table 2 Estimates of parameters for the four datasets.
	Table 3 Average rank shift per unit time, d.




