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Viperinis aninterferon-induced cellular protein that is conserved in animals®. It
has previously been shown to inhibit the replication of multiple viruses by producing
theribonucleotide 3’-deoxy-3’,4’-didehydro (ddh)-cytidine triphosphate (ddhCTP),

which acts as a chain terminator for viral RNA polymerase?. Here we show that
eukaryotic viperin originated from a clade of bacterial and archaeal proteins that
protect against phage infection. Prokaryotic viperins produce a set of modified
ribonucleotides that include ddhCTP, ddh-guanosine triphosphate (ddhGTP) and
ddh-uridine triphosphate (ddhUTP). We further show that prokaryotic viperins
protect against T7 phage infection by inhibiting viral polymerase-dependent
transcription, suggesting that it has an antiviral mechanism of action similar to that of
animal viperin. Our results reveal a class of potential natural antiviral compounds
produced by bacterialimmune systems.

Viperin is an antiviral protein that becomes highly expressed in cells
stimulated by interferons'. Inhumans, this protein has broad antiviral
activity against DNA and RNA viruses, including human cytomegalovi-
rus, West Nile virus, dengue virus, hepatitis C virus and HIV*>. Viperin
was recently shown to catalyse the conversion of CTP to ddhCTP2. This
modified nucleotide lacks a hydroxyl group at the 3’ carbon of the
ribose, and when the viral polymerase incorporates it into the nas-
cent chain of the viral RNA, it acts as a chain terminator that does not
allow further polymerization of the RNA chain?. Thus, ddhCTP directly
inhibits the RNA-dependent replication of RNA viruses such as Zika
virusinvivo.

Somebacteriaand archaeaencode genes that have marked sequence
similarity to vertebrate viperins, although their roles have remained
unknown*¢, We set out to examine whether prokaryotic homologues
of human viperin participate in defence against phages. We first per-
formed a profile-based search for viperinhomologues in a database of
more than 38,000 bacterial and archaeal genomes. This search yielded
1,724 genes (1,112 non-redundant sequences) homologous to the human
viperingene (RSAD2), whichwe aggregated into 17 clusters on the basis
of sequence similarity (Methods) (Supplementary Table1).

Viperin is amember of the radical S-adenosyl-methionine (SAM)
family of enzymes, and shows both sequence and structural homology
to other members of that family, particularly the housekeeping molyb-
denum cofactor biosynthesis enzyme MoaA*. To differentiate between
viperin homologues with housekeeping properties and homologues
that may participate in defence against phages, we took advantage of
the fact that, in prokaryotes, genes involved in antiviral activity tend
to colocalize next to one another on the genome, forming ‘defence
islands”®, Most clusters of viperinhomologues did not show a tendency
to colocalize with defence genes (Supplementary Table 1). However,
in one of the clusters, 60% of the genes were found in the vicinity of
CRISPR-cas systems, restriction-modification systems and other bacte-
rial defence genes (Fig.1a). This high propensity for colocalization with

genesinvolvedin defence systems is astrong predictor that the genesin
thecluster havearole in phage resistance®’. We denoted the genesin the
defensive cluster pVips (for prokaryotic viperin homologues). As pVips
arerelatively rarein prokaryotic genomes (164 genesin the cluster), we
performed an online homology search with additional genomes that
were not included in our original database, retrieving 86 additional
such genes, resulting in a total of 250 pVips (Supplementary Table 2).

Todetermine whether pVips can defend against phages, we selected
59 genes that span the space of the pVip sequence diversity (Supple-
mentary Table 2) and cloned them in Escherichia coli under the con-
trol of aninducible promoter. Similarly, we also cloned GFP and the
MoaA gene from E. coli as negative controls. We then challenged the
pVip-expressing bacteria with an array of phages spanning several
major phage families (Myoviridae: P1; Siphoviridae: lambda, SECphié6,
SECphil8 and SECphi27; Podoviridae: T7; Leviviridae: MS2 and Q)
(Fig.1b, c, Extended Data Fig.1).

Around half of the tested pVips conferred clearly identifiable activ-
ity against phages. Most of these protected against T7, as evidenced
by plaque assays (up to tenfold reduction in T7 plaque sizes) (Fig. 1b)
and by a delay or absence of culture collapse in T7 infection assays in
liquid culture (Fig. 1c, Extended Data Fig. 2a). Mutationsin the cysteine
residues predicted to coordinate the iron-sulfur cluster in the Cxxx-
CxxC motifin pVips resulted in loss of defensive capacity against T7,
suggesting that the catalytic activity of pVipsis necessary for defence
(Extended Data Fig. 2b). A subset of the pVips also protected against
P1, lambda, SECphi6 and SECphil8 phages, reducing the observed
number of plaques by between 10-fold and 10,000-fold (Extended
Data Fig.1). Of note, when the human viperin gene was cloned and
expressed in E. coliunder the same conditions, it protected against T7
infection in a similar manner to that observed for many pVips (Fig. 1,
Extended Data Figs. 1, 2).

The pVips that we identified are present in phylogenetically dis-
tant organisms, suggesting an ancient evolutionary origin, frequent
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Fig.1|pVips and human viperin exhibit antiviral activity in bacteria.

a, Representative instances of pVip genes and their genomic neighbourhoods.
Homologues of humanviperinareshowninred, genes annotated as nucleotide
kinase arebrown, genesknowntobeinvolvedin defence are yellow and genes
withmobile geneticelements are dark grey. RM, restriction modification; TA,
toxin-antitoxin; Gabijais arecently described defence system®. The bacterial
species,and the accession of the relevant genomic scaffold in the Integrated
Microbial Genomes (IMG) database?, are indicated on the left. b, Sizes of
plaques caused by T7 phage infecting E. coli strains that express different
viperins. Bacteria expressing pVips, negative controls (GFP or MoaA) or human

horizontal gene transfer or both. We found pVipsin176 species overall,
belonging to 14 bacterial and archaeal phyla that include Proteobacte-
ria, Firmicutes, Cyanobacteria, Actinobacteria, Bacteriodetes, Euryar-
chaeotaand others (Supplementary Table 2). To better understand their
diversity and phylogenetic distribution, we generated a phylogenetic
tree of the viperin family, including pVips and eukaryotic viperins (Fig. 2,
Supplementary Table 3). MoaA genes from bacteria and eukaryotes
were added to thetree asan outgroup. We found that pVips are grouped
into seven major clades that partially follow the phyletic grouping of
the encoding microorganisms (Fig. 2). All eukaryotic viperins form a
monophyletic clade withinthe tree, with the closest common ancestor
predicted tolocalize to pVip clade 2, which is mostly composed of pVips
from archaeal species. The clear monophyletic organization of the
eukaryotic viperin clade and its position within the pVips tree suggest
thatthe eukaryotic viperin was acquired from prokaryotes, viaasingle
eventin the ancient history of the eukaryotic lineage.

In vertebrate genomes, the viperin gene is frequently located adja-
cent to a cytidylate kinase gene that is co-expressed with the viperin

viperinwere grown on agar plates and phage lysate was added onto the plates.
Graphsshow mean of three replicates with individual data points overlaid.
Asterisksindicate statistically significant differences compared with the GFP
negative control. Two-sided t-test; *P<0.0001 except for pVip46 (P=0.0034)).
¢, Growth curves for E. colistrains expressing viperins that were infected with
phage T7. Negative controls are GFP-expressing cells and are the same in all
fourgraphs. Eachgrowth curverepresents the mean of 3 biological replicates,
eachwithanaverage of 2 technical replicates, and the shaded area corresponds
tothe 95% confidenceinterval.

during the interferon response?'™°. This kinase phosphorylates cyti-
dinemonophosphate to CTP, thus generating the substrate for viperin
activity’. We found that 47 of the 250 pVips (19%) genes were adjacent
to genes annotated as a nucleotide kinase in their genome of origin
(Fig.1a, Fig.2) and that,in some cases, the kinase was fused to the pVip
gene (Fig. 2, Supplementary Table 2). This further strengthens the
hypothesis that the pVip substrateis a triphosphorylated nucleotide.
Whereas some pVip-associated kinases were annotated as cytidylate
kinases, as in vertebrates®, others were annotated as thymidylate or
other kinases, suggesting that the substrates of some pVips might be
triphosphorylated nucleotides other than CTP.

The animal viperin catalyses the production of ddhCTP2. We there-
foreinvestigated whether pVips produce ddhCTP and/or other modi-
fied nucleotides. We expressed pVips in E. coli and then extracted the
fraction containing small molecules from the cell lysates, presuming
that the product of the pVips would be in this fraction. We analysed
these lysates using liquid chromatography followed by mass spectrom-
etry (LC-MS) with an untargeted approach. As a positive control, we
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Fig.2|Phylogenetictree of the viperin family. Branches are coloured
according to major clades. Bootstrap values (derived from the ultrafast
bootstrap functioninIQtree?) are indicated for major nodes. The presence
ofanucleotidekinasein the genomic vicinity of the pVipis shown by abrown
rectangleinthesurroundingring (oradark grey rectangle, in casesinwhich
thekinaseis fusedtothe pVip gene). Triangles correspond to the type of
ddh-nucleotide derivative produced by a specific pVip, as determined by
mass spectrometry. The phylogenetic tree was generated using aset of 205
non-redundant pVip sequences.

analysed cell lysates from cells expressing the human viperin protein.
Asexpected,acompound consistent with the mass of ddhCTP was read-
ily detected in lysates from cells expressing human viperin, but notin
negative-control lysates derived from MoaA-expressing cells (Extended
Data Figs. 3, 4). Other compounds found in the human viperin sam-
ple matched the masses of ddh-cytidine (ddhC) and ddh-cytidine
monophosphate (ddhCMP), possibly derived from natural decay of
ddhCTP, as reported to occur for CTP at neutral or acidic pH™. Analysis
of fragmentions using tandem mass spectrometry (MS/MS) provided
further evidence that the identified masses were probably derivatives
of ddhCTP, which was additionally confirmed by analysing a ddhC
standard using MS/MS (Extended Data Figs. 3a, 4a, 5). These results
confirm that human viperin produces ddhCTP when expressed in
E. coli, explaining its observed antiphage activity (Fig. 1).

We then analysed the small-molecule fraction from lysates of
cells expressing 27 pVips that were found to have antiphage activity.
Derivatives of ddhCTP (including ddhC, as verified by LC-MS with
the synthesized ddhC chemical standard) were detected by LC-MSin
the lysate of pVip50 (Fig. 3a, Extended Data Fig. 4), a protein derived
from a methanogenic archaeon that is localized in clade 2 of the pVip
tree, verifying that pVips areindeed functional homologues of human
viperin. Derivatives of ddhCTP were detected in lysates of cells express-
ing several additional pVips, but for most pVips we could not detect
ddhCTP or its derivatives in cell lysates expressing them. We there-
fore searched for other compounds that were markedly enriched in
lysates of cells expressing pVips and absent from the negative-control
lysate. For ten of the pVips we found masses that conform with ddh-
GTP and ddh-guanosine monophosphate (ddhGMP) (Fig. 3, Extended
Data Fig. 4). In addition, for 15 pVips we found other molecules with
masses matching ddhUTP and ddh-uridine monophosphate (ddhUMP)
(Fig. 3, Extended Data Fig.4). MS/MS analysis of fragment ions from the
masses predicted asddhGTP, ddhUTP and their monophosphorylated
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derivatives further supported that they most probably correspond to
these molecules (Extended Data Fig. 5).

To confirm that pVips convert the nucleotide substrates CTP, GTP
and UTP to their ddh variants, we performed in vitro biochemical
assays with purified pVip enzymes. Threeisolated recombinant pVips,
pVip6, pVip8 and pVip56 were incubated with the SAM cofactor and
anucleotide substrate, in the presence of an artificial electron donor
(dithionite). LC-MS analysis confirmed the appearance of the expected
ddh-ribonucleotide products (ddhCTP,ddhUTP and ddhGTP for pVip6,
pVip8 and pVip56, respectively) in the reaction samples relative to
control reactions without nucleotide substrate (Fig. 3c). Detailed analy-
sis of the MS-MS fragmentation spectra of each compound further
supported that these products correspond to ddh-ribonucleotides
(Extended DataFig. 6). Together, these results suggest that pVips pro-
duce antiviral ribonucleotides.

For most pVips, predicted derivatives of only one modified nucleo-
tidewere observedinthelysate (either ddhCTP, ddhGTP or ddhUTP).
However, 11 pVips were found to produce derivatives of multiple
ddh-ribonucleotides (Fig. 3). For five of the tested pVips, we did not
detect any ddh-nucleotide or derivatives in the cell lysates, despite
these pVips conferring antiviral activity to the bacteria that express
them (Extended DataFig. 1, Fig. 3). These pVips may produce a different
antiviral molecule that could not be detected with our LC-MS protocol
or could have evolved to confer defence by amechanism that does not
involve the production of antiviral molecules.

pVips produce ddh-ribonucleotides, but also protect against phages
that have double-stranded DNA genomes (for example, T7) (Fig. 1).
We therefore hypothesized that the products of these pVips affect
phage-dependent transcription rather than DNA replication. In support
of this hypothesis, it was previously shown that in mammalian cells,
T7 RNA polymerase-dependent transcription of GFP was impaired if
human viperin was co-expressed in the same cells'2. We thus sought to
examine whether T7 polymerase-dependent RNA synthesis is affected
by pVips. We transformed E. coli BL21 DE3 with a plasmid that encodes
a GFP reporter gene under the control of a T7 promoter (Fig. 4a). As
expected, induction of the T7 RNA polymerase in these cells using
isopropyl -D-1-thiogalactopyranoside (IPTG) led to accumulation of
afluorescent GFP signal (Fig. 4b). When pVips or human viperin were
co-expressed inthe same cells, the GFP signal was repressed (Fig. 4c—f).
Repression of GFP expression mediated by T7 RNA polymerase was
observed upon expression of pVips producing ddhGTP (pVip60),
ddhUTPand ddhCTP (pVip8 and pVip9), or ddhCTP (the humanviperin)
suggesting that T7 RNA polymerase is sensitive to multiple types of
modified ribonucleotides.

Notably, when the above experiments were conducted with pVips
mutated to inactivate their active sites, no repression of GFP expres-
sionwas observed, implying that the catalyticactivity of pVips and the
production of the ddh-ribonucleotide products is required to inhibit
T7 RNA polymerase-dependent expression (Extended Data Fig. 7a).

To more directly confirm that the effect of pVipson T7 polymerase-
dependent GFP expression was caused by reduced RNA synthesis, we
investigated GFP RNA levels using RNA sequencing (RNA-seq). RNA
was extracted 1 h after T7-mediated induction of GFP expressionin
cells that co-express pVips or human viperin. We observed significant
reductions in GFP RNA expression (as measured by RPKM) (Methods)
when the pVips or human viperin were expressed in the cell, compared
with control cells that expressed MoaA (Fig. 4g). The expression levels
of genes driven by induced endogenous promoters (specifically, the
T7RNA polymerase geneitself) (Extended Data Fig. 7b) did not show
marked changes during pVip expression, further supporting theidea
that pVips specifically target transcription by the phage polymerase.
Together, these results suggest that pVips defend against phage T7 by
suppressing transcription by the viral RNA polymerase, presumably
because their products form RNA chain terminators. Notably, expres-
sion of pVips does not appear to be toxic to E. coli (Extended Data
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structures of ddh derivatives. Rrepresents H, monophosphate or
triphosphate. Bottom, extracted-ion chromatograms for selected pVip lysates
analysed by LC-MS. Chromatograms show singly charged masses with a
precision of +5 ppm corresponding to ddhC (m/z226.0822, retention time
(RT) of 2.2 min), ddhCMP (m/2306.0486, RT 9.7 min), ddhCTP (m/z465.9812,
RT10.7 min), ddhUMP (m/z307.0326,RT 8.7 min), ddhUTP (m/z466.9652,RT
9.9 min), ddhGMP (m/z346.0547,RT 9.8 min) and ddhGTP (m/z505.9874, RT
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ddh-nucleotides areinblack. Peaks thatappearin the negative controlsand are

Fig.8), indicating that bacterial RNA polymerase may be less sensitive
than T7 RNA polymerase to ddh-ribonucleotides. Similarly, ddhCTP
produced by human viperin was previously shown to be non-toxic to
human cells®.

Bacterial antiphage defence mechanisms frequently occur as
multi-gene defence systems, with some genes in the system being
responsible for identifying the invading phage and others function-
ingin mitigating the infection®"*, Most of the pVips that we examined
formed part of a conserved cassette of genes (Extended Data Fig. 9).
The most common configuration included two other genes in addi-
tion to pVip: agene comprising an ankyrin repeat domain and agene
encodinga predicted HicA-like RNase (Extended Data Fig. 9). Ankyrin
repeat domains are common biological recognition motifs involvedin
protein-proteininteractions, and the ankyrin repeat domain may serve
asasensor for phage infection. Itis possible that, following phage sens-
ing, the protein containing the ankyrin repeats could activate expres-
sion of pVip in amanner conceptually similar to interferon-mediated
activation of human viperin expression. The associated RNase may be

RT (min)

notassigned toddh-nucleotides areingrey. Results are representative of three
replicates. b, Production of ddh-nucleotide derivatives by pVips. Coloured
boxes depict compounds detected in the small-molecule fraction of lysates
of E. coliexpressing pVips. Coloured rectangles on the left and associated
numbersrepresent the clade of pVips as described in Fig. 2. Euk, eukaryote.

¢, Chromatograms of ddh-nucleotides detected inreactions performedin vitro
with purified pVips. The presence of a product corresponding to ddhCTP,
ddhUTPand ddhGTPisobservedinsamplesinwhichapVip wasincubated with
SAM, dithionite and the respective nucleotide substrate. Results
representative of two replicates.

responsible for degradation of prematurely terminated phage RNAs
or some other auxiliary function.

Our datasuggest that pVips protect against T7 infection by inhibiting
transcription from the viral RNA polymerase. However, some pVips
protectagainst lambdaand P1 phages, which do notencode their own
RNA polymerase and rely on the host polymerase for transcription®. It is
possible that pVipsinhibit phage lambdain amanner thatisindepend-
ent of the production of ddh-nucleotides, as suggested for viperinin
the context of human viral infection’.

Small molecules of the anthracycline family, produced by Strepto-
myces species, have been shown to possess antiphage properties and
efficiently inhibit phage replication, presumably throughintercalation
into phage DNAY. The identification of pVips reveals another strategy
of chemical defence against phages and suggests that the use of small
molecules for defence against phages may be amore common antiviral
strategy than previously anticipated.

Many of the most potent antiviral drugs used in the clinic are syn-
thetic nucleoside chain terminators. These include aciclovir, a drug
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DE3 encodes achromosomal T7RNA polymerase (T7 RNAP) under the control
ofanIPTG-inducible promoter. A reporter plasmid encodes GFP under the
control ofa T7 promoter. Upon IPTGinduction, the T7RNA polymeraseis
expressed and drives the expression of GFP. The pVip (or MoaA control) is
encoded onasecond plasmid under the control of an arabinose (Ara)
promoter. b-f, Application of the reporter assay for strains expressing MoaA
(negative control), humanviperinand pVips. Strains were firstinduced with
arabinose for 45minto express the pVip. At¢t=0,IPTGwas added toinduce GFP
expression. Curves show GFP fluorescence/optical density over time. Each
curve shows the mean of two technical replicates and the shaded area shows
the 95% confidence interval. Representative of two biological replicates. g, GFP
expression measured by RNA-seq. GFP expressioninreads per kilobase of
transcript per million mapped reads (RPKM) in cells expressing viperins was
compared to thatincells expressing the MoaA negative control. Datarepresent
GFP expression as a percentage of GFP expressionin cells expressing MoaA.
Thegraphshows the average of two biological replicates, withindividual data
pointsoverlaid.

commonly used against herpes viruses'®, 3"-azido-3’-deoxythymidine
(AZT),ananti-HIV drugused clinically since the 1980s'8, and sofosbuvir,
whichis part of asuccessful treatment for hepatitis C*°. The chain termi-
nators described in our study could potentially be adopted for clinical
treatment of human viruses. Moreover, if pVips turn out to be just one
example of a chemical defence strategy widely used in bacteria, then
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bacteriamay prove to host arepository of diverse antiviral molecules
that could be adopted for clinical use. Thus environmental bacteria,
which have long been used in the discovery of novel antibiotics, may
once again serve in the battle against human pathogens.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized. The investigators were not blinded
to allocation during experiments and outcome assessment.

Asearch for viperin homologues in prokaryotic genomes

The human viperin protein sequence (NCBlaccession NP_542388.2) was
searched against the protein sequences of all genes in 38,167 bacterial
and archaeal genomes downloaded from the IMG database? in Octo-
ber 2017, using the ‘search’ option in the MMseqs2 package? (release
6-f5alc) with default parameters (3iterations), as previously described’.
Hits with an e-value higher than 10~ were discarded. The resulting set
of proteins was clustered using the ‘cluster’ option of MMseqs2 release
v.6-f5alc, with sensitivity parameter of -s 7.5’, coverage parameter 60%
and the remaining parameters being the default parameters (Supple-
mentary Table 1). For each cluster, the fraction of genes associated
with known defence genes was computed as previously described®.
Additional candidate prokaryotic viperin homologues (pVips) were
searched manually using the ‘top IMG homologs’ function in IMG for
the identified genes in the cluster of pVips.

Togenerate the phylogentictree, the protein sequences of prokary-
otic viperins, eukaryotic viperins and MoaA sequences were aligned
using mafft® (v.7.402, default parameters). The sequences of the
eukaryotic viperins and MoaA proteins used in the tree are provided
inSupplementary Table 3. The tree was computed with IQ-TREF? multi-
corev.1.6.5 (option-m TESTNEW in IQ-TREE). The phylogenetic model
LG+R6was used because it gave the lowest Bayesianinformation crite-
rion among all models available for the tree. One thousand ultra-fast
bootstraps were performed to evaluate node support (options -bb
1000 -wbtlin IQ-TREE). The online tool iTOL?* (v.5) was used for tree
visualization.

Eukaryotic viperin sequences used in the phylogenetic tree were
chosen as follows. A homology based-search was performed on the
non-redundant eukaryotic proteins database of NCBI using HMMER
3.2.1% in the MPI bioinformatics toolkit?® with 205 non redundant
pVips as a seed. This search yielded 4,915 hits that were used to build
aninitial phylogenetic tree. The sequences of pVips, MoaA and these
hits were aligned using mafft* (v.7.402, default parameters). The tree
was computed with IQ-TREE* multicore v.1.6.5 (option -m TESTNEW
inIQ-TREE). On this tree, all the pVips were found in a monophyletic
cladethatalso comprised 1,298 eukaryotic sequences (Extended Data
Fig.10). These 1,298 eukaryotic protein sequences were then used to
build asecond phylogenetic tree. Sequences of these 1,298 eukaryotic
proteins, pVips and MoaA were aligned using mafft? (v.7.402, default
parameters). The tree was computed with IQ-TREE* multicore v.1.6.5
(option-mTESTNEW inIQ-TREE). All the eukaryotic viperin sequences
represented amonophyletic clade thatisinternal to the pVips clades.
Representative eukaryotic sequences for the tree in Fig. 2 were then
chosen to span the diversity of the eukaryotic viperin homologues,
including sequences from mammals (human, dog and bat), animals
such as mollusca and fungi (Extended Data Fig. 10).

Bacterial strains and growth conditions

E. colistrains (MG1655, Keio AiscR¥, Keio AiscR-F+, DH5a, BL21 DE3, BL21
AiscR) were grown in LB or LB agar at 37 °C unless mentioned other-
wise. Whenever applicable, media were supplemented with ampicillin
(100 pg ml™), kanamycin (50 pg ml™), chloramphenicol (30 pg ml™?)
or tetracycline (10 pg ml™) to ensure the maintenance of plasmids.

Plasmids and strain construction

Primers used in this study are shown in Supplementary Table 4.
pVip genes were codon-optimized for expression in £. coli and
synthetized by Twist Bioscience (pVips 1-14) or by Genscript
(pVips 15-63, MoaA control and human viperin). Synthetized pVip

sequences are indicated in Supplementary Table 2. Each candidate
sequence was cloned in plasmid pBad/His A (Thermofisher, Catalog
number 43001). For pVips 1-14, flanking sequences were added to
the synthesis for cloning purposes (upstream: GGATCCTACCTGACG
CTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTGGGCT
AACAGGAGGAATTAACC, downstream: TAAGAATTCCCAGGCATC
AAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTG
TTGTTTGTCGGTGAACGCTCTCCAGCTGGTACCATATGG) the vector
fragment was generated by PCR (template pBad/His A, primer AB1
and AB2), and for each pVip, overhang sequences (matching primers
AB3 and AB4) overlapping the plasmid backbone were added to allow
Gibson assembly. pVips 1-14 were amplified by PCR (using the tem-
plate of synthetized DNA, primers AB3 and AB4), and PCR fragments
of pVip and plasmid backbone were joined using Gibson assembly. For
pVips 15-63 and the MoaA, DNA synthesis and cloning into pBad/His
Awas performed by Genscript. The codon-optimized protein-coding
sequence of the human viperinwas synthesized and cloned into pBad/
His Aby Genscript. The sequence was then modified by PCR and Gibson
assembly to remove the endoplasmic-reticulum-targeting sequence of
the human viperin protein (residues 1-50, primers AB86, AB87, AB88
and AB89). All experiments involving human viperin were performed
with this shortened version.

All of the pVip plasmids were initially cloned and propagated in
E. coli DH5a and then purified and transformed into the Keio AiscR”
strain. Because pVips areiron-sulfur cluster proteins, they necessitate
active production of iron-sulfur clusters for their enzymatic activity?.
We therefore conducted the experiments in E. coli strains deleted for
iscR, arepressor of iron-sulfur cluster production in E. coli?®?, For
experimentsinvolving phages Q3 and MS2, the F plasmid isnecessary
forinfection. Thus, the Keio AiscR F+strain was constructed by conju-
gation of strain Keio AiscR with strain top10 F+ and then later used as
the relevant genetic background.

For protein purification, codon-optimized pVip genes were ampli-
fiedby PCR (Supplementary Table 4) and cloned into the aTc-inducible
expression vector pASG-IBA143 (IBA Lifesciences, pIBA143_vector_F,
pIBA143_vector_R), for fusion of a Twin-Strep-tag to the C terminus
of the pVips (pIBA143_VipX_F, pIBA143_VipX_R). To construct the suf
operon expression vector pSuf, the complete suf operon (sufABCDSE)
was amplified from E. coli MG1655 genomic DNA, and was cloned into
the pACYC-184 (NEB) backbone (Suf_operonF, Suf_operonR) together
with the arabinose expression system from pBad/His A vector (Ther-
mofisher, Catalognumber43001). Tagged pVip8 and pVip56 were trans-
formedin BL21 AiscR and tagged pVip6 was transformed in BL21 pSuf.

For experimentsinvolving the GFP reporter assay, strains were con-
structed as follows. BL21 DE3 was knocked out for the iscR gene through
P1transduction, with P1-AiscR phages propagated from strain Keio
AiscR? followed by kanamycin selection. The final reporter plasmid,
pAB151, was constructed to encode: (1) GFP under the control of T7
promoter; (2) a gene cassette encoding the T7 lysozyme to limit the
activity of T7 RNA polymerase; (3) an insulator sequence between
the chloramphenicol resistance gene and the GFP gene. pAB151 was
constructed through three consecutive Gibson assemblies, each of
which used two PCR fragments as described below. The first reaction
used insert template pDR111 (provided by I. Kolodkin-Gal (Weizmann
Institute of Science)) with primers 0G630 and 0G631, and vector tem-
plate pACYC (Novagene), and primers 0G629 and 0G628, to generate
plasmid pAB137. The second Gibson reaction usedinsert template pLysS
(Novagene) with primers AB55and AB56, and vector template pAB137
with primers AB53 and AB54, to generate pAB138. The third reaction
used insert template pSG1® with primers AB121and AB122, and vector
template pAB138 with primers AB119 and AB120, to generate pAB151
(Supplementary Table 4).

For the design of the inactive mutants of human viperin, pVip8,
pVip9 and pVip60, the conserved closely spaced cysteine residues in
the CxxxCxxC motif, which coordinate the iron-sulfur cluster®®, were
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mutated (Humanviperin C32A, C36A, C39A; pVip8: C22A, C26A, C29A;
pVip9:C17A, C21A, C24A; pVip60: C192A, C196A, C199A). Mutants were
constructed using QS5 Site directed Mutagenesis kit (NEB) using primers
presented in Supplementary Table 4 (AB156-AB163).

Plaque assays

Phages were propagated on E. coliMG1655 using the plate lysate method
as previously described®. Lysate titre was determined using the small
drop plaque assay method as previously described®. Phages used in
this study are presented in Supplementary Table 5.

Plaque assays were performed as previously described®. Bacteria
from overnight cultures were mixed with MMB agar (LB, 0.1mM Mn(Cl,,
5 mM MgCl, and 0.5% agar) supplemented with arabinose (final con-
centration 0.004%) for induction of pVip expression. Serial dilutions
of phage lysate in MMB were dropped on top of the agar plates. After
the drops dried up, plates were incubated at 37 °C overnight.

Infection dynamicsin liquid medium

Overnight cultures were diluted 1:100 in MMB medium and incubated
at 37 °C with shaking at 250 rpm for 45 min, at which point arabinose
was added to a final concentration of 0.2%. Cells were then incubated
at 37 °C with shaking at 250 r.p.m. for 45 min. A 180-pl aliquot of the
diluted cultures was transferred into wells in a 96-well plate contain-
ing 20 pl of phage lysate for a final multiplicity of infection (MOI) of
0.001. Infections were performed with technical duplicates and OD,,
was monitored usinga TECAN Infinite 200 plate reader with measure-
ments every 5 min.

Colony-forming unit (CFU) counts were measured using the same
experimental setup and time points as above. Ten microlitres of cells
were takenright after dilution (time 0), before induction (45 min), and
45 and 90 min after induction of pVip expression, serially diluted and
plated on selective agar plates. CFUs were counted after overnight
incubation at 37 °C.

Celllysates preparation

Overnight cultures of E. coliKeio AiscR encoding pVips, humanviperin,
and MoaA and GFP negative controls were diluted 1:100 in 100 mI LB
medium and grown at 37 °C (250 rpm) for 1 h 45 min. The expression
of viperin or MoaA was induced by the addition of arabinose (final
concentration 0.2%) and cells were further incubated at 37 °C (250 rpm)
for1h. Cellswerethen centrifuged at 3,900 rpm for 10 minat4 °Cand
samples kept on ice throughout the cell lysate preparation. Pellets
were resuspended in 600 pl PBS buffer containing 100 mM sodium
phosphate (pH7.4). Theresuspended pellet was supplemented with 1l
ofhen egglysozyme (Merck) (final hen egg lysozyme concentration of
10 pgml™). The resuspended cells were then mixed with Lysing matrix
B (MP Biomedicals) and beads and cells were disrupted mechanically
using a FastPrep-24 bead-beater device (MP Biomedicals) (2 cycles of
40s,6ms™,at4 °C).Celllysateswerethencentrifugedat12,000gfor10 min
at 4 °C and the supernatant was loaded onto a 3-kDa filter Amicon
Ultra-0.5 centrifugal filter unit (Merck) and centrifuged at 14,000g for
30 min at 4 °C. The resulting flow-through, containing substances
smaller than 3 kDa, was used as the lysate sample for evaluating the
presence of ddh-nucleotides by LC-MS.

Detection of ddh-nucleotides in cell lysates

Sample analysis was carried out by MS-Omics (Vedbeaek) as follows.
Samples were diluted 1:1in 10% ultra-pure water and 90% acetonitrile
containing 10 mM ammonium acetate at pH 9 then filtered through
a Costar Spin-X centrifuge tube filter 0.22-pm nylon membrane. The
analysis was carried out using a UHPLC system (Vanquish, Thermo
Fisher Scientific) coupled with a high-resolution quadrupole-orbitrap
mass spectrometer (Q Exactive HF Hybrid Quadrupole-Orbitrap,
Thermo Fisher Scientific) at a resolution of 120,000 (at 200 m/z).
An electrospray-ionization interface was used as ionization source.

Analysis was performed in positive ionization mode from 200 to1,000
my/zatascanrate of 3Hz. The UPLC was performed using a slightly modi-
fied version of the previously described protocol®. Peak areas were
extracted using Compound Discoverer 3.0 (Thermo Fisher Scientific).

MS/MS of ddh-nucleotides was acquired using the same instrument
withaninclusionlist of the different ddh-nucleotide and ddh-nucleoside
masses at a resolution of 30,000. Fragmentation was done through a
higher-energy collisional dissociation cell using a normalized colli-
sion energy of 20,40 and 60 eV in which the spectrum is the sum of
each collision energy. Intensity threshold was set to 2 x 10*, isolation
window of 0.4 m/z and injection time of 100 ms. Analysis of ddhCTP
and ddhGTP derivatives was performed in positive ionization mode,
and for ddhUTP derivatives in negative ionization mode.

Raw datafiles were processed by Compound Discoverer 3.0 software.
Unknown compounds were detected with a3 ppmmass tolerance, signal
tonoiseratio of 3,30% of relative intensity tolerance for isotope search,
and minimum peak intensity of 5 x 10°. The compounds were grouped
witha5 ppmmassand 0.2 min retention time tolerances. Blank samples
were used to remove background noise, and annotated peaks that were
5 times higher than the blanks were kept. Metabolites identified were
searched against ChemSpider chemical structure database with 3 ppm
mass tolerance, mzCloud spectral library with a precursor and fragment
mass tolerance of 3 and 5 ppm respectively, and an internal MS/MS
library through mzVault with the same tolerance asmzCloud. Two data
sources were searched in the ChemSpider database: Human Metabo-
lome Database (HMDB) and E. coli Metabolome Database (ECMDB).

The raw datafiles for the MS and MS/MS datain this section, as well as
additional technical details, are available for download on the Metabo-
lights repository under study number MTBLS1750.

Quantification of ddhC

The ddhC molecule was synthesized by Jena Bioscience at a purity of
97.5% and was used as astandard for ddhC quantificationin cell lysates
using LC-MS. Sample analysis was carried out by MS-Omics as fol-
lows. Samples were diluted 1:1in 10 mM ammonium formate and 0.1%
formic acid in ultrapure water. The analysis was carried out using the
LC-MSsetup described above. An electrospray ionizationinterface was
used asionization source performedin positiveionization mode. The
UHPLC methodisbased on Waters Application note 2011,720004042en
(Waters). Peak areas of ddhC were extracted using Trace Finder v.4.1
(Thermo Fisher Scientific) and quantified using an external calibration
with the standard.

pVips purification and in vitro enzymatic assays

Overnight cultures of BL21-AiscR (pVip8 and pVip56) or BL21 pSuf
(pVipé) cells freshly transformed with plasmids encoding the tagged
pVip, were seeded at an initial OD,, of ~0.06 in 1-2 | of selective LB
medium. pSufexpressionwasinduced at OD,,0.2-0.3 (0.2% arabinose,
100 pMFeCl;, 100 pM L-cysteine). pVip expression was induced at OD,,
0.6-0.8 (50 ng ml*anhydrotetracycline (aTc)) and incubated at 37 °C
with shaking for 3-4 h. Pellets were then collected by centrifugation
and stored at —20 °C.

Frozen cell pellets were resuspended in cold lysis buffer (50 mM
Tris-HCI, 500 mM NaCland 5mM dithiothreitol (DTT), 0.5Marginine,
and 20% glycerol), and sonicated with a Branson Sonifier (15son,45s
off, 10 min total on, 30% amplitude) on ice. Lysates were subjected to
centrifugation for 30 min at 17,000g and 4 °C. The lysate was loaded
ontoaStrepTactin Superflow High Capacity (IBA Lifesciences) column,
previously equilibrated with 20 column volumes of buffer W (100 mM
Tris-HCIpH 8,300 mM NaCl,5mM DTT, 10% glycerol). The column was
washed twice with 10 column volumes of buffer W and eluted with buffer
E (50 mM Tris-HCIpH 8,300 mM NaCl, 5mM DTT, 2.5 mM desthiobio-
tin, 20% glycerol). The presence of the pVip proteins in the resulting
fractions was confirmed by SDS-PAGE. Purified proteins were frozen
inliquid nitrogen and stored at - 80 °C.



Protein reconstitution. Purified protein solutions were thawed onice
and introduced into in an MBraun anaerobic chamber maintained at
<0.1 ppm oxygen. All subsequent steps were performed in anaerobic
conditions at 12 °C. Purified pVips were incubated for 1 h with 50 mM
DTT with gentle shaking. Protein solutions were supplemented with
eightfold molar excess Fe(NH,),(SO,),, incubated for 15 min with gen-
tle shaking, followed by the addition eightfold molar excess of Na,S
droplet by droplet. After incubation for 3-4 h to overnight with slow
shaking, the reconstituted pVips were transferred to the Reaction Buffer
(50 MM HEPES pH7.5,150 mMKCI, 5mM DTT, 20% glycerol) using PD-10
desalting columns (GE Healthcare) and concentrated usingan Amicon
Ultracentrifugal10-kDafiltertoafinal proteinconcentrationof20-50 uM.
Proteins were then flash-frozen with liquid nitrogen and stored at
-80°C.

In vitro enzymatic assays. For pVip6 and pVip8, reactions were per-
formedinatotal volume of100 pl containing: 20-50 pM reconstituted
enzymeinreactionbuffer 2 mMSAM,1mM of nucleotide substrate and
SmMsodiumdithionite). Reactions were carried out inside the anaero-
bicchamber maintained at<0.1ppmoxygen.A10-plaliquot wasremoved
from the reaction mixture (sample before reaction). Reactions were
theninitiated with sodium dithionite and incubated at 37 °C for1-2 h.
After incubation, samples were taken out of the anaerobic chamber
and stored at —80 °C until analysis.

For pVip56, to obtain sufficientamounts of ddhGTP for MS/MS analy-
sis, an enzymatic reaction in a total volume of Iml was performed,
containing 113 mM pVip56,2 mM SAM, 2 mM GTP and 5 mM dithion-
ite in reaction buffer. Reactions were carried out in anaerobic condi-
tions as previously described and incubated at 37 °C for 3 h. Toremove
the protein, 10-kDa centrifugal filters were used. The flow through
was diluted twofold into cold 10 mM ammonium bicarbonate buffer
pH 9.0 (buffer A), thenloaded onto Capto HiRes Q 5/50 (GE Healthcare)
pre-equilibrated with buffer A. The column was washed with 25 mlbuffer
A and elution was performed using linear elution gradient (100 ml)
0f200 mM to 800 mM ammonium bicarbonate, pH 9. The purified prod-
uct was lyophilized and resuspended in water before LC-MS analysis.

LC-MS analysis of in vitro assays. LC-MS measurements were per-
formed with a Thermo Scientific Q Exactive Orbitrap mass spectrom-
etry system equipped with a Dionex Ultimate 3000 UHPLC system.
The software Thermo Xcalibur (v.4.2) was used for instrument control
and data processing. Before analysis, 10 pl of sample from enzymatic
assays were mixed with 40 pl of acetonitrile:methanol organic mixture
(5:3v/vratio). The mixtures were vortexed, centrifuged at17,000g for
2minand 3 plof supernatant wasinjected onto an SeQuant ZIC-pHILIC
5-um polymeric 100 x 2.1 mm HPLC column. The mobile phase was
composed of 20 mM ammonium carbonate pH 9.5 (solvent A) and 100%
acetonitrile (solvent B). Samples were separated using a constant flow
rate of 0.2 ml min™: 80% solvent B was held for 2 min, followed by a
gradient from 80% to 20% of solvent B for 15 min, before immediately
returning to 80% solvent B for equilibration for 9 min. Data analysis
was performed using Thermo Scientific FreeStyle software (v.1.6).

T7 dependent GFP expression assay

Overnight cultures of BL21 DE3 AiscR cells containing pAB151 and
pVip-encoding plasmids (or plasmids encoding MoaA or the human
viperin) were diluted 1:100 in LB medium and incubated in a 96-well
plate format at 37 °C with shaking at 250 rpm until OD,, reached 0.1.
Arabinose was thenadded to afinal concentration of 0.2%. After 45 min
of incubation at 37 °C and 250 rpm, the expression of T7 RNA poly-
merase was induced by the addition of IPTG to afinal concentration of
0.1mM. Fluorescence levels (wavelength excitation 488 nm, emission
520 nm) and cell density (ODy,,) were monitored using TECAN Infinite
200 plate reader with measurements every 15 min.

Quantification of GFP transcripts using RNA-seq

BL21 DE3 AiscR cells containing pAB151 and pVip-encoding plasmids
(or plasmids encoding MoaA or the human viperin) were diluted 1:100
in5ml LB medium supplemented with antibiotics (chloramphenicol,
kanamycin and ampicillin). These cells were grown at 37 °C with shak-
ingat 250 rpm to 0D, of 0.3 and expression of the viperin (or MoaA)
proteinwasinduced by the addition of arabinose (final concentration
0.2%). After 45 min of incubation at 37 °C and 250 rpm, the expres-
sion of T7 RNA polymerase was induced by the addition of IPTG to a
final concentration of 0.1 mM. After 1 h, samples were centrifuged for
10 minat4,000 rpmat4 °C. The supernatant was discarded, and pellets
were used for RNA extraction. Bacterial pellets were lysed using TRIzol
and phenol-chloroform. Bacterial pellets were treated with 100 pl of
2mg ml~lysozyme (in Tris10mM EDTA 1mM pH 8.0) and incubated at
37 °Cfor 5 min. One millilitre of TRI-reagent was added, samples were
thenvortexed for10 s before addition of 200 pl chloroform. Following
another vortexing step, the samples were left at room temperature for
5minto allow phase separation and then centrifuged at12,000g, 4 °C
for15min. The upper phase was added to 500 pl of isopropanol. Sam-
pleswere thenincubated overnight at -20 °C. Finally, following 30 min
of centrifugation at 12,000g at 4 °C, samples were washed twice with
ice cold 70% ethanol, and resuspended in 50 pl water. RNA levels were
measured using Nanodrop. AllRNA samples were treated with TURBO
DNase (Life technologies, AM2238). Ribosomal RNA depletion and
RNA-seqlibraries were prepared as previously described*, except that
all reaction volumes were reduced by a factor of 4.

RNA-seqlibraries were sequenced using Illumina NextSeq platform,
Reads were mapped as previously described® to the reference genome
of E. coli BL21 DE3 (NC_012892) as well as the plasmids present in the
relevant strain (pAB151 and plasmids encoding pVip/MoaA/human
viperin). RNA-seq-mapped reads were used to generate reads-per-gene
and RPKM counts.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Extended DataFig.1|pVips protect against phage infection. Bacteria
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Extended DataFig.2|T7infectioninliquid cultureinthe presence of pVips.

a, For each pVip, growth curves of liquid cultures infected by phage T7 (MOl
0.001) areshown. Light and dark grey are uninfected and infected controls
(strainexpressing GFP), respectively. Light and dark red are uninfected and
infected strains expressing pVips, respectively. Two technical replicates are
presented asindividual curves; representative of three biological replicates.
The negative controls (GFP uninfected, GFP infected) are the same for pVips 6,
7,8,10,15,27,37,39,42,50,54,MoaA, and for pVip12,19,32,44,46,47,48,57,58,
60, 61,62,63.b, The catalyticactivity of pVipsis required for defence against

T7 phage. Foreach pVip andits respective mutant (mutation of three cysteines
inthe activessite), growth curves of liquid cultures infected by phage T7 (MOI
0.001) are presented. Light and dark grey are uninfected and infected controls
(strainexpressing MoaA), respectively. Light and dark red are uninfected and
infected strains expressing viperins, respectively. Light and dark blue are
uninfected and infected strains expressing catalytically inactive mutants. Two
technicalreplicates are presented asindividual curves; representative of three
biological replicates.
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Extended DataFig. 3 |Detection of ddhCTP and ddhCTP derivativesincell (m/z226.0822, retention time (RT) of 2.2 min) (b), ddhCMP (m/z306.0486, RT
lysates froman E. colistrain expressing the humanviperin. a, Extracted 9.7) (c) and ddhCTP (m/z465.9812,RT10.7) (d) in cell lysates from an E. coli
ionchromatogram of the ddhCstandard.b-d, Extractedion chromatogram strain expressing the humanviperin. Representative of three replicates.

for singly charged masses thatare predicted to correspond to ddhC
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Extended DataFig.5|MS/MS fragmentation spectra for predicted
compounds. a-c, MS/MS datawere acquired in positive ionization mode for a
synthesized chemical standard ddhC (a) as well as for masses from the human
viperincelllysate predicted to correspond to ddhC (b), and ddhCMP (c).

d, e, Similar datawere obtained for masses from the pVip21cell lysate predicted
to correspond toddhGMP (d), and ddhGTP (e). f, g, MS/MS datawere acquired,

innegative ionization mode, from the pVip47 cell lysate for masses predicted
to correspond toddhUMP (f), and ddhUTP (g). In all panels, assignment of
hypothetical structuresisindicated for informative fragmentions. The ddhC
moleculeisannotatedtolevel1,and all other molecules are annotated to level
2b, per the Metabolomics Standards Initiative nomenclature.
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substrates respectively; the resulting products are predicted to correspond to
ddhCTP (a) and ddhGTP (b). c, MS/MS data were acquired in negative
ionization mode for product detected in reaction samples using purified pVip8
UTP assubstrate; theresulting productis predicted to correspond toddhUTP.

Extended DataFig. 6| MS/MS fragmentation spectrafor predicted
compounds frominvitroreactions with purified pVips. a, b, MS/MS data
were acquired in positive ionizationmode for the product detected inreaction
samples using purified pVip6 or purified pVipS6 and CTP and GTP as nucleotide
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presentedin Fig.4a) for strains expressing the human viperin, pVips and their
cognate catalytically inactive mutants. Strains are firstinduced with arabinose
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red correspond toinduced and non-induced wild type viperins, respectively; overlaid.

Darkand light blue correspond toinduced and non-induced mutantviperins,
respectively. Grey curve corresponds to negative control (WT viperin, no
addition of IPTG). Two technical replicates are presented as individual curves.
Representative of two biological replicates. b, T7 RNAP expression as
measured by RNA-seq. The expression (RPKM) of T7RNAP in cells expressing
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Eukaryotic viperins included in pVips tree
(Figure 2)

MoaA

Extended DataFig.10 | Phylogenetic tree of pVips and putative eukaryotic viperins. MoaA sequences were used as an outgroup (grey). pVips are depicted in
red and putative eukaryotic viperins selected for the phylogenetic tree presented in Fig. 2 are depicted in blue.
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