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M Check for updates

Mutation of C9orf72is the most prevalent defect associated with amyotrophic lateral
sclerosis and frontotemporal degeneration'. Together with hexanucleotide-repeat
expansion®?, haploinsufficiency of C90rf72 contributes to neuronal dysfunction*,
Here we determine the structure of the C9orf72-SMCR8-WDR41 complex by

cryo-electron microscopy. C90rf72 and SMCR8 both contain longin and DENN
(differentially expressed in normal and neoplastic cells) domains’, and WDR41is a
B-propeller protein that binds to SMCRS8 such that the whole structure resembles an
eye slip hook. Contacts between WDR41 and the DENN domain of SMCR8 drive the
lysosomallocalization of the complexin conditions of amino acid starvation. The
structure suggested that C9orf72-SMCRS8 is a GTPase-activating protein (GAP), and
we found that C9orf72-SMCR8-WDR41 acts as a GAP for the ARF family of small
GTPases. These data shed light on the function of C90rf72 in normal physiology, and
inamyotrophic lateral sclerosis and frontotemporal degeneration.

Expansion of hexanucleotide GGGGCC repeats in the first intron of
C9orf72is the most prevalent genetic cause of amyotrophic lateral
sclerosis (ALS) and frontotemporal degeneration (FTD), and accounts
for approximately 40% of familial ALS, 5% of sporadic ALS and 10-50%
of FTD™. Two hypotheses—which are not mutually exclusive—could
explain how the mutation leads to a progressive loss of neurons. The
toxic gain-of-function hypothesis suggests that toxic molecules,
including RNA and dipeptide-repeat aggregates, disrupt neural func-
tion and lead to their destruction. The loss-of-function hypothesis is
based on the observation of areduction in C90orf72 mRNA and protein
levels in patients. The endogenous function of C90rf72 is essential
for microglia* and for the normal dynamics of axonal actin in motor
neurons’, and restoring normal expression of C9orf72 rescues function
in C9orf72-mutant model neurons®.

C90rf72 contains longin and DENN domains’ (Fig. 1a), and exists as
astable complex with another protein that contains these domains,
Smith-Magenis syndrome chromosomeregion, candidate 8 (SMCRS),
as well as the WD repeat-containing protein 41 (WDR41)%" (Fig. 1a).
WDR41targets C9orf72-SMCRS8 to lysosomes™ via an interaction with
the transporter PQ loop repeat-containing 2 (PQLC2)". Previously
proposed functions of C90orf72-SMCRS8 include the regulation of
RAB-positive endosomes’®, regulation of RABSA and RAB39B in mem-
brane transport®?, regulation of the ULK1 complex in autophagy®*"*"
and regulation of mTORCI at lysosomes'®"*®, Thus far it has been dif-
ficult to deconvolute which of these roles are direct and which are
indirect. To gain more insight, we reconstituted and purified the com-
plex, determined its structure and assessed its function as a purified
complex.

We expressed and purified full-length human C90rf72-SMCRS8
and C9orf72-SMCR8-WDR41 (Extended Data Fig. 1a-c). We deter-
mined the structure of C9orf72-SMCR8-WDR41 at a resolution of
3.8 Aby cryo-electron microscopy (cryo-EM) (Fig. 1b, ¢, Extended Data

Figs.2,3, Extended Data Table1). We were able to visualize the ordered,
approximately 120-kDa portion of the complex, which corresponds to
about 60% of the total mass of the complex. Portions of the density—
notably, inthe DENN domains of both C90rf72 and SMCR8—were very
well-resolved, such that side-chain density was clear. Other regions
(particularly thelongin domains of C9orf72and SMCRS, and the portion
of WDR41most distal to SMCR8) were less well-resolved, and were not
clearenough for side-chain placement. The structure has the shape of
aneyeslip hook with along dimension of about 140 A (Fig.1c). The ring
ofthe hook was straightforward to assign to WDR41by its appearance
as an eight-bladed pB-propeller. The remainder of the density showed
evidence of two longin domains at the tip of the hook, with the bulk of
the hook made up of two DENN domains. The DENN domain of SMCR8
isindirect contact with WDR41, whereas C9orf72 has no direct contact
with WDR41. We assigned the hook-tip portion of the longin domain
of SMCRS8 to residues 1165-A219, which were predicted to comprise a
long helical extension unique to this domain. The longin and DENN
domains of SMCR8 are near each other but notin direct contact,and are
connected by a helical linker that consists of residues K320-V383. Both
the longin and the DENN domain of C90rf72 are positioned between
the longin and DENN domains of SMCRS. This linear arrangement of
domains gives the overall complex an elongated shape.
Tomaptheinteractions of WDR41and to facilitate theinterpretation
oftheless well-resolved portions of the cryo-EM structure, we subjected
C90rf72-SMCRS8 and C90rf72-SMCR8-WDR41 to hydrogen deute-
rium exchange mass spectrometry (HDX-MS) for 0.5, 5, 50, 500 and
50,000 seconds, and compared them to each other (Fig. 2, Extended
DataFigs.1d-f,4, 5, Supplementary Datal). We achieved excellent pep-
tide coverage (89,87 and 80% for SMCRS8, C90rf72 and WDR41, respec-
tively), and consistent patterns were observed across experimental time
points. Several regions in SMCR8—including the N-terminal 54 resi-
dues, and residues V104-V118, E212-1230, P257-F315, V378-1714 and
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Fig.1|Cryo-EMstructure of the C9orf72-SMCRS8-WDR41 complex.

a, Schematic ofthe domain structure of the C9orf72-SMCR8-WDR41 complex.
b, ¢, Cryo-EM density map (local filter map, b factor, =50 A?) (b) and the refined
coordinates (c) of the complex shown as pipes and planks for a-helices and
B-sheets, respectively. The domains are colour-coded as follows: longin

V788-Y806—showed more than 50% deuterium uptake at 0.5 seconds,
which indicates these regions are intrinsically disordered regions—
consistent withsequence-based predictions. Nearly all of C90rf72 was
protected from exchange, except for the N-terminal 21 residues and the
Cterminus. For WDR41, the N-terminal 24 residues, and the loops that
connectbladesiland Il (R128-C131), blades Vand VI(R260-D270 and
L277-1284), the internal loop of blade VIl and the loop connecting to
blade VIII (R352-L357 and M369-E396) were flexible.

Difference heat maps for C9orf72 and SMCRS (Fig. 2a, b) showed
that, in the presence of WDR41, regions of the DENN domain of
SMCR8—including K363-F372 (M1region), P763-Q778 (M2 region),
$729-V735 (M3 region), T807-D811 (M4 region) and the C-terminal
K910-Y935 (M5 region)—were protected from exchange (Figs. 2, 3,
Extended Data Figs. 4-6), consistent with the structure. There was no
substantial exchange in C9orf72, with the exception of K388-R394
(the M1region of C90rf72) (Figs. 2, 3). We mutagenized the regions
thatshowed protection against exchange, and tested these mutantsin
co-expressionand pulldownexperiments (Fig. 2c, d; see ‘Protein expres-
sion and purification”in Methods for details of the mutants). Except
for the helical linker mutant in the M1 region of SMCRS8, the SMCR8
mutants abolished the interaction with WDR41. When WDR41did not
pulldown SMCR8 mutants, wild-type C9orf72 was not detected either.
This confirms the structural finding that SMCR8 bridges the other
two components. Because alterations of the M1 region of C9orf72 did
not prevent interaction with SMCR8-WDR41, we concluded that this
regionwas protected by a conformational change induced upon WDR41
binding, consistent with the lack of direct interaction in the cryo-EM
structure. The interface between SMCR8 and C90rf72 is extensive,
mediated by longin-longinand DENN-DENN dimerization (Fig.1d, e).
Substitutions in the C9orf72(F397E/T411W) double mutant disrupt
theinteraction with SMCRS, as shown by co-expression and pulldown
experiments (Extended Data Fig. 7a, b). The cryo-EM structure showed
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domain of SMCR8 (SMCR8""¢"), cornflower blue; DENN domain of SMCRS8
(SMCR8P®N) Dodger blue; longin domain of C90rf72 (C9orf72'°"¢"), olive;
DENN domain of C90rf72 (C90rf72°™N), goldenrod; and WDR41, medium
purple.d, e, Organizations of SMCR8'""¢"-C9orf72"°"¢" (d) and SMCRS ENN-
C90rf72"fN (e) arrangement.

that SMCR8 bound to blade VIl and the C-terminal helix of WDR41
(Fig.3a, Extended DataFig. 6). The pulldown experiment showed that
the N-terminal residues E35-K40 of blade VIll and the C-terminal helix
S$442-V459 are required for SMCR8 binding (Extended Data Fig. 7c).
Collectively, the HDX-MS and mutational results corroborate the struc-
tural interpretation.

WDRA41lisresponsible for the reversible targeting of C9orf72-SMCR8
tolysosomes under conditions of nutrient depletion'*. WDR41, in turn,
bindsto lysosomes via PQLC2%. We cotransfected DNA encoding green
fluorescent protein-tagged SMCR8 (GFP-SMCRS), C90rf72, WDR41and
PQLC2 tagged with monomeric red fluorescent protein (PQLC2-mRFP)
in HEK293A cells. SMCRS clustered on PQLC2-positive lysosomes in
conditions of amino acid depletion and was diffusely localized in the
cytosol uponrefeeding (Fig. 3b), consistent with previous reports'",
SMCR8 mutants deficientin WDR41bindingin vitro did not colocalize
with PQLC2-positive lysosomes, but rather were diffusely localized in
the cytosol even under amino acid-starved conditions (Fig.3b, c). These
findings confirm that the WDR41-binding site on SMCR8 as mapped
by cryo-EM and HDX-MS is responsible for the lysosomal localization
of the complex under conditions of amino acid starvation.

The structure showed that the longin domain of SMCRS8 forms a
heterodimer with the longin domain of C90rf72 in the same manner
as NPRL2-NPRL3 of the GATOR1 complex'® and FLCN-FNIP2 in the
lysosomal folliculin complex?*?. The NPRL2 and FLCN subunits of
these complexes are GAPs for the lysosomal small GTPases RAGA?? and
RAGC?, respectively. Structure-based alignment of SMCR8 with FLCN
and NPRL2 showed that they shared a conserved arginine finger resi-
due®®*?* (Fig.4a),which corresponds to SMCR8 R147. This arginine resi-
dueisexposed onthe proteinsurface near the centre of alarge concave
surface, which appearssuitable for binding asmall GTPase (Extended
DataFig.8). Usingatryptophan fluorescence and high-performancelig-
uid chromatography (HPLC)-based assay, we assayed C90rf72-SMCRS8
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Fig.2|HDX-MS of C90rf72-SMCRS8in the absence of WDR41. a, Difference
plotofpercentage of deuteronincorporation of SMCR8in the heterotrimer
versus the dimer, at the 5-s time point. b, Difference plot of percentage of
deuteronincorporation of C9orf72inthe heterotrimer versus the dimer, at the
0.5-stime point. ¢, Co-expression and pulldown experiment of Strep-tagged
SMCR8 mutants with wild-type MBP-C9o0rf72 and GST-WDR41. M1-5, mutants

for GAP activity withrespect to RAGA or RAGC and found none detect-
able (Extended DataFig.9a, b, d). We also assayed for GAP activity with
respectto RAB1A” and the late endosomal RAB7A', and—again—activity
was undetectable (Extended Data Fig. 9a, b, d).

It has previously been reported that C9orf72 interacts with the
small GTPases ARF1 and ARF6% in neurons’. We found that C9orf72-
SMCR8-WDR41was an efficient GAP for ARF1on the basis of both tryp-
tophan fluorescence and HPLC-based assays (Fig. 4). The ARF1(Q71L)
GTP-locked mutant had no activity (Fig. 4b, Extended Data Fig.10); nor
didthe version of the complex that contained the SMCR8(R147A) finger
mutant. FLCN-FNIP2 and GATOR1 had no GAP activity towards ARF1.
C90rf72-SMCR8 was as active as C90rf72-SMCR8-WDR41, consistent
with the location of WDR41 on the opposite side of the complex from
R147. C90rf72-SMCR8-WDRA41 has activity against the other mem-
bers of the ARF family, ARF5 and ARF6 (Extended Data Fig. 9a, c, d)—
but not against the lysosomal ARF-like proteins ARLS8A and ARLSB
(Extended Data Fig. 9a, b, d). These observations clarify the nature
of the reported C9orf72-ARF interaction by showing that the role of
C9orf72is to stabilize a complex with SMCRS, which is—in turn—an
efficient and selective GAP for ARF GTPases.

RAB5A%, RAB7A%, RABSA® and RAB39B®"? have all previously been
reported tobe guanine nucleotide exchange factor (GEF) substrates of
C9orf72. We tested the activity of the purified complex with respect to
these RAB proteins and another putative C9orf72 interactor, RABIAY.
Compared to aRABEX5 and RAB5A positive control, no exchange was
observed on any of these upon addition of C90orf72-SMCR8-WDR41
(Extended Data Fig. 11a, b). The structure of RAB35 in complex with
the GEF DENND1B? was previously used as a basis for modelling®. In
comparing C9orf72 in our structure with the structure of DENND1B
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pulldown experiments of GST-C9orf72 mutant with wild-type untagged
SMCR8 and Strep-WDR41. M1, mutant of the M1region of C90rf72; GST-
C9orf72W"™L WT, wild type; M1, mutant of the M1 region of C90rf72. The
pulldown experiments were repeated at least twice with similar results (c, d).

in complex with RAB35%, we found that the alignment of the longin
domains showed that RAB35 collides with the longin domain of SMCRS,
and superimposition of DENN domains indicated that RAB35 collides
with the longin domain of C9orf72—consistent with our result that
C90rf72-SMCRS8 does not have DENND1B-like GEF activity (Extended
DataFig.11c).

These data shed light on the normal function of C90rf72, which is
thought to contribute to neuronal loss-of-functionin ALSand FTD®. The
structure shows that C9orf72is the central component of its complex
withSMCRS. The longin and DENN domains of SMCR8 flank, and are sta-
bilized by, C90rf72. SMCR8 contains the binding site for WDR41, which
isresponsible for lysosomal localization during amino acid starvation.
C90rf72-SMCR8 belongs to the same class of double-longin-domain
GAP complexes as GATOR1" and FLCN-FNIP22°%, Unlike GATOR1 and
FLCN-FNIP2, C90rf72-SMCRS8 is inactive against RAG GTPases but is
active against ARF GTPases. The GAP active siteis located at the oppo-
site end of the complex from the lysosomal targeting site on WDR41.

Our in vitro observation that C9orf72-SMCR8 and C9orf72-
SMCR8-WDR41 have comparable GAP activities suggests that—in
cells—C90orf72-SMCR8 may regulate ARF GTPases both in full nutri-
ent conditions, when the complexis primarily localized in the cytosol,
and under conditions of amino acid starvation, when it relocalizes
to the lysosomal membrane via interactions between WDR41 and
PQLC2. However, additional factors could limit or augment the ARF
GAP activity of C9orf72-SMCRS8 in either condition, and restrict or
enhanceaccesstothe GTP-bound ARF substrate. ARF proteins are not
observed on lysosomes, and their closest lysosomal cousins (ARLSA
and ARL8B) are not substrates for C9orf72-SMCRS. Thus, sequestra-
tion of C90rf72-SMCR8-WDR41 on lysosomes could prevent it from
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b, Tryptophan fluorescence GTPase signal was measured for wild-type ARF1or
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regulating the ARF proteins in cis under unfavourable metabolic con-
ditions. Alternatively, C9orf72-SMCR8-WDR41 could act in trans on
ARF proteins bound to the membrane of acompartment other thanthe
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C90rf72-SMCR8(R147A)-WDR41, C90rf72-SMCRS8, FLCN-FNIP2 or GATOR1
complex. The fluorescence signal upon addition of the GAP was normalized to
1for each experiment.Plots are mean +s.d. of triplicate technical experiments.
¢, Model for ARF protein family activation by C9orf72-SMCR8-WDR41.

lysosome. ARF GTPases are found on the Golgi, endosomes, plasma
membrane and cytoskeleton, and in the cytosol®, and function on
membranes in their active GTP-bound form. C90rf72 can associate



with endosomes®'*?® and the cytoskeleton’, which could be loci of the
ARF substrate of C90rf72-SMCRS. The potential trans GAP activity of
C90rf72-SMCR8-WDR41 versus endosomal or cytoskeletal ARF would
be facilitated by its elongated structure and the distal positioning of
the GAP and lysosomal localization sites (Fig. 4¢).

Haploinsufficient GAP activity for ARF GTPases could contribute
to ALS and FTD in several ways. Defects in actin dynamics in neurons
could contribute to problems with endosomal transport®. Indeed, sev-
eral studies connect C90rf72 to endosomal sorting®'¢*, a process in
which the role of ARF proteins is well-established®. It has previously
been reported that ARF1 promotes mTORC1 activation®, so the GAP
function of C90rf72-SMCR8 with respect to ARF GTPases could explain
how this complex antagonizes mTORC1'®. mTORC1 negatively regulates
autophagy, and thus the ARF1I-mTORCI connection could explain how
haploinsufficient C90orf72 leads to a decrease in autophagy—which
has, in turn, previously been linked to multiple neurodegenerative
diseases®®. While this Article was under review, the cryo-EM structure of
adimericformofthe C90rf72-SMCR8-WDR41 complex was reported
and proposed to serve as a GAP for RABSA and RAB11A™. The relative
roles of GAP activity withrespect to different small GTPases in normal
function and disease remain to be determined. The structural and
in vitro biochemical data reported here, and previously®, provide a
framework and afoothold for understanding how the normal functions
of C9orf72 relate to lysosomal signalling, autophagy and neuronal
survival.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized and investigators were not blinded
to allocation during experiments and outcome assessment.

Protein expression and purification

Synthetic genes encoding SMCR8 were amplified by PCR and cloned
into the pCAG vector coding for an N-terminal twin Strep-Flag tag
using Kpnl and Xhol restriction sites. The pCAG vector encoding an
N-terminal GST followed by a TEV restriction site or uncleaved MBP
tag was used for expression of C90rf72. WDR41was cloned into pCAG
vector without a tag or with a GST tag for pulldown experiments. For
the mutations of SMCRS8 identified from HDX experiments, the M1
region of SMCR8 (K363-F372) was mutated to MSDYDIPTTE, whichisa
10-residue linker derived from the pETM11 vector. For lysosome locali-
zation experiments, the M2 region of SMCR8 (P771-Q778 or K762-1782)
was mutated to GGKGSGGS. Mutants of the M3 (S729-V735) and M4
(T807-D811) regions of SMCR8 were made by mutating these regions
to GGKGSGG and GGKGS, respectively. The mutant of the M5 region of
SMCR8 was made by truncation after residue K910. The M1 region of
C90rf72 (K388-1L393) was mutated to polyalanine. The SMCR8 arginine
finger mutation (R147A), C90rf72(F397E) and C90rf72(T411W) mutants
were made using two-step PCR and cloned into the expression vector.

HEK293-GnTi cells adapted for suspension were grown in Freestyle
medium supplemented with 1% FBS and 1% antibiotic-antimycotic
at 37 °C, 80% humidity, 5% CO, and shaking at 140 rpm. Once the cul-
tures reached 1.5-2 million cells mI ™ in the desired volume, they were
transfected as followed. For a1-l transfection, 3 mI PEI (1 mg mI™, pH
7.4, Polysciences) was added to 50 ml hybridoma medium (Invitro-
gen) and1 mg oftotal DNA (isolated from transformed Escherichia coli
XL10-gold) in another 50 ml hybridoma medium. One mg of transfec-
tion DNA contained an equal mass ratio of C90orf72-complex expression
plasmids. PElwas added to the DNA, mixed and incubated for 15min at
room temperature. One hundred ml of the transfection mix was then
added to each 1-l culture. Cells were collected after 3 days.

Cells were lysed by gentle rocking in lysis buffer containing 50 mM
HEPES, pH7.4,200 mM NaCl, 2 mM MgCl,, 1% (v/v) Triton X-100, 0.5 mM
TCEP, protease inhibitors (AEBSF, leupeptin and benzamidine) and
supplemented with phosphatase inhibitors (50 mM NaF and 10 mM
B-glycerophosphate) at 4 °C. Lysates were clarified by centrifugation
(15,000gfor40 minat4 °C) and incubated with 5 ml glutathione sepha-
rose 4B (GE Healthcare) for 1.5 h at 4 °C with gentle shaking. The glu-
tathione sepharose 4B matrix was applied to a gravity column, washed
with 100 ml wash buffer (20 mM HEPES, pH 7.4,200 mM NaCl, 2 mM
MgCl, and 0.5 mM TCEP), and purified complexes were eluted with
40 mlwashbuffer containing 50 mM reduced glutathione. Eluted com-
plexes were treated with TEV protease at 4 °C overnight. TEV-treated
complexes were purified to homogeneity by injection on Superose 6
10/300 (GE Healthcare) column that was pre-equilibrated in gel fil-
tration buffer 20 mM HEPES, pH 7.4,200 mM NacCl, 2 mM MgCl, and
0.5mM TCEP). For long-term storage, fractions from the gel filtration
chromatography were frozen using liquid nitrogen and kept at =80 °C.
C90rf72-SMCRS8 and C90orf72-SMCR8-WDR41 were expressed and
purified using the same protocol (Supplementary Fig.1).

For expression of human His¢-tagged ARF1 (residues E17-K181),
ARF1(Q71L), ARF5(Q17-Q180), ARF6(R15-S175), ARF6(Q67L), Hisg—
RABIA, His,~ARL8A(E20-S186), His,~ARL8B(E20-S186), His,~RAB39B
and bovine His,~RABEXS helix bundle-Vps9 domain (S133-E398), plas-
mids were transformed into E. coli BL21 DE3 star cells and induced with
0.5 mMIPTG at 18 °C overnight. The cells were lysed in 50 mM Tris-HCI
pH 8.0,300 mM NacCl, 2 mM MgCl,, 5mMimidazole, 0.5mM TCEP and 1
mM PMSF by ultrasonication. The lysate was centrifuged at 15,000g for
30 min. The supernatant was loaded into Ni-NTA resin and washed with
20 mM imidazole and eluted with 300 mM imidazole. The eluate was

further purified onaSuperdex 7510/300 (GE Healthcare) column equili-
brated in20 mM HEPES, pH 7.4, 200 mM NaCl,2mM MgCl, and 0.5 mM
TCEP.RAG, FLCN-FNIP2 and GATOR1 complex were purified as previously
described®. GST-tagged humanRAB7A, or RAB5A (Canisfamiliaris), was
expressed in the same conditions as above and purified with GST resin,
elutedin 50 mM reduced glutathione buffer and applied on Superdex200
column. Twin Strep-Flag tag RABSA was expressed in HEK293-GnTicells
and purified by Strep resinand elutedin10 mM desthiobiotin buffer. The
eluted protein was applied on Superdex 7510/300 column.

Hydrogen-deuterium exchange experiment

Sample quality was assessed by SDS-PAGE before each experiment.
Amide hydrogen exchange mass spectrometry wasinitiated by a 20-fold
dilutionof 10 uM C90rf72-SMCR8-WDR410r C90rf72-SMCR8into 95 pl
D,O0 buffer containing20 mM HEPES pH (pD 8.0),200 mM NaCl,1mM
TCEP at 30 °C. Incubations in deuterated buffer were performed
atintervals from 0.5, 5, 50, 500 and 50,000 s (0.5 s was carried out
by incubating proteins with ice-cold D,0O for 5s). All exchange reac-
tions were carried outin triplicate or quadruplicate. Backbone amide
exchange was quenched at O °C by the addition of ice-cold quench
buffer (400 mM KH,PO,/H;P0O,, pH 2.2). The 50,000-s sample served
as the maximally labelled control. Quenched samples were injected
ontoachilled HPLC setup with in-line peptic digestion and then eluted
onto a BioBasic 5 tM KAPPA Capillary HPLC column (Thermo Fisher
Scientific), equilibrated in buffer A (0.05% TFA), using 10-90% gradient
of buffer B (0.05% TFA, 90% acetonitrile) over 30 min. Desalted pep-
tides were eluted and directly analysed by an Orbitrap Discovery mass
spectrometer (Thermo Fisher Scientific). The spray voltage was 3.4 kV
and the capillary voltage was 37 V. The HPLC system was extensively
cleaned between samples. Initial peptide identification was performed
via tandem mass spectrometry experiments. A Proteome Discoverer
2.1 (Thermo Fisher Scientific) search was used for peptide identifi-
cation and coverage analysis against entire complex components,
with precursor mass tolerance =10 ppm and fragment mass tolerance
of + 0.6 Da. Mass analysis of the peptide centroids was performed using
HDExaminer (Sierra Analytics), followed by manual verification of each
peptide. The difference plots were prepared using Origin 6.0.

Cryo-EM grid preparation and data acquisition

The purified C90rf72-SMCR8-WDR41 complex was diluted to 0.8 uM
in20 mM HEPES pH 7.4,2 mM MgCl, and 0.5 mM TCEP, and applied to
glow-discharged C-flat (1.2/1.3, Au 300 mesh) grids. The sample was
vitrified after blotting for 2 s using a Vitrobot Mark IV (FEI) with 42-s
incubation, blot force 8 and100% humidity. The complex was visualized
withaTitan Krios electron microscope (FEI) operating at 300 kVwith a
Gatan Quantum energy filter (operated at 20-eV slit width) using aK2
summitdirect electron detector (Gatan) in super-resolution counting
mode, corresponding to a super-resolution pixel size of 0.5745 A on
the specimen level. Intotal, 3,508 movies were collected innanoprobe
mode using Volta phase plate (VPP) with defocus collected at around
-60 nm. Movies consisted of 49 frames, with atotal dose of 59.8 " per A2,
atotal exposure time of 9.8 s and a dose rate of 8.1 e™ per pixel pers.
Datawereacquired with SerialEM using custom macros for automated
single-particle data acquisition. Imaging parameters for the dataset
are summarized in Extended Data Table 1.

Cryo-EM data processing

Preprocessing was performed during data collection within Focus®.
Drift, beam-induced motion and dose weighting were corrected with
MotionCor2* using 5 x 5 patches and Fourier cropping with a factor of
0.5 after motion correction. CTF fitting and phase-shift estimation were
performed using Getfv.1.06**, whichyielded the characterized pattern
of phase-shiftaccumulation over time for each position. The datawere
manually inspected and micrographs with excess ice contamination
orshooting onthe carbon were removed. A total of 4,810,184 particles



from 3,220 micrographs were picked using gautomatch (http:/www.
mrc-lmb.cam.ac.uk/kzhang/) and extracted with binning 4. All subse-
quent classification and reconstruction steps were performed using
Relion3-beta® or cryoSPARC v.2%, The particles were subjected to 3D
classification (K = 5) using a 60 A low-pass-filtered ab initio reference
generated in cryoSPARC. Around 2.2 million particles from the two best
classes were selected for 3D auto-refinement and another round of 3D
classification (K=8 classes, T=8, E-step=8 A) without alignment. About
1.8 million particles from the best 6 classes were re-extracted with bin-
ning 2 and refined to 4.9 A, and further subjected to 2D classification
without alignment for removing contamination and junk particles.
After another round of 3D classification (K= 4) with alignment, the
best class was extracted andimportedinto cryoSPARC v.2 for another
round of 2D classification. The cleaned-up 571,002 particles were sub-
jected to CTF refinement, Bayesian polishing, and further particles
at the edges were removed in Relion 3. A final set of 381,450 particles
resulted in final resolution of 3.8 A, with a measured map B-factor of
-102 A2. More extensive 3D classification and focus classification in
Relion3 did notimprove the quality of the reconstruction. Localfilter-
ing and B-factor sharpening were done in cryoSPARCv.2. All reported
resolutions are based on the gold-standard Fourier shell correlation
(FSC) 0.143 criterion.

Atomic model building and refinement

The model of WDR41 was generated with I-Tasser”” and used Protein
DataBank codes (PDB) SNNZ,2YMU, SWLC, 4NSX and 6G6M as starting
models. The model of the longin domain of C90rf72 was generated on
thebasis of the longin domain of NPRL2 (PDB 6CES) in Modeller®®. The
model of the DENN domain of SMCR8 was generated from Modeller and
RaptorX® using the DENN domain of FLCN (PDB 3V42) or DENNDIB (PDB
3TWS8) as templates. The longin domain of SMCR8 and DENN domain
of C9orf72 were generated with Phyre2*° using longin domain of FLCN
and DENN domain of FNIP2 (PDB 6NZD), respectively, as templates.
Secondary structure predictions of each protein were carried out with
Phyre2** or Psipred*. The models were docked into the 3D map as rigid
bodies in UCSF Chimera*. The coordinates of the structures were manu-
ally adjusted and rebuilt in Coot*. The resulting models were refined
using Phenix.real_space.refine in the Phenix suite with secondary struc-
turerestraints and aweight of 0.1***. Model quality was assessed using
MolProbity*¢ and the map-versus-model FSC (Extended Data Fig. 3c,
Extended Data Table1). Data used inthe refinement excluded spatial fre-
quencies beyond 4.2 A to avoid over fitting. A half-map cross-validation
test showed noindication of overfitting (Extended DataFig. 3d). Figures
were prepared using UCSF Chimera*’ and PyMOL v.1.7.2.1.

Live cellimaging

Eight hundred thousand HEK 293A cells were plated onto
fibronectin-coated glass-bottom Mattek dishes and transfected with
the indicated wild-type GFP-SMCRS8 or mutants, C90rf72, WDR41
and PQLC2-mRFP constructs with transfection reagent Xtremegene.
Twenty-four hlater, cells were starved foramino acids for 1h (-AA), or
starved and restimulated with amino acids for 10 min (+AA). Cells in
the —AA condition were transferred to imaging buffer (10 mM HEPES,
pH7.4,136 mM NacCl, 2.5 mM KCl, 2 mM CaCl,, 1.2 mM MgCl,) and cells
inthe +AA condition were transferred to imaging buffer supplemented
with aminoacids, 5mMglucose and1% dialysed FBS (+AA), and imaged
by spinning-disc confocal microscopy. Lysosomal enrichment was
scored as previously described® using a home-built MATLAB script to
determine the lysosomal enrichment of GFP-SMCRS8. The score was
analysed for atleast ten cells for each condition. The one-way analyses
of variance were calculated using Prism 6 (Graphpad).

HPLC analysis of nucleotides
The nucleotides bound to small GTPases were assessed by heating
the protein to 95 °C for 5 min followed by 5 min centrifugation at

16,000g. The supernatant was loaded onto a HPLC column (Eclipse
XDB-C18, Agilent). Nucleotides were eluted with HPLC buffer (10 mM
tetra-n-butylammonium bromide, 100 mM potassium phosphate
pH 6.5,7.5% acetonitrile). The identity of the nucleotides was compared
to GDP and GTP standards.

HPLC-based GAP assay

HPLC-based GTPase assays were carried out by incubating 30 pl of
GTPases (30 pM) with or without GAP complex at a1:50 molar ratio for
30 minat37 °C.Samples were boiled for 5min at 95 °Cand centrifuged
for 5min at16,000g. The supernatant was injected onto an HPLC col-
umn as described in ‘HPLC analysis of nucleotides’. The experiments
were carried out in triplicate and one representative plot is shown.

Tryptophan-fluorescence-based GAP assay

Fluorimetry experiments were performed using a FluoroMax-4 (Horiba)
instrument and a quartz cuvette compatible with magnetic stirring
(Starna Cells), a path length of 10 mm, and were carried out in triplicate.
The tryptophan fluorescence signal was collected using 297-nm excita-
tion (1.5-nmslit) and 340-nm emission (20-nmslit). Experiments were
performed in gel filtration buffer at room temperature with stirring.
Data collection commenced with anacquisitioninterval of 1s. Two uM
GTPase was added to the cuvette initially. Once the signal was equili-
brated, C9orf72-SMCR8-WDR41, C90rf72-SMCR8(R147A)-WDR41,
C90rf72-SMCRS, FLCN-FNIP2 or GATOR1 complex was pipetted into
the cuvetteatal:10 molarratio. Time (¢) = O corresponds to GAP addi-
tion. The fluorescence signal upon GAP addition was normalized to 1
for each experiment. Mean + s.d. of three replicates per conditions or
one representative plot were plotted.

MantGDP loading for GEF assay

To load GTPases for the N-methylanthraniloyl (mant)
fluorescence-based GEF assay, purified GTPases were diluted at least
1:10 into PBS buffer without MgCl, (10 mM Na,HPO,, 1.8 mM KH,PO,,
137 mM NacCl, 2.7 mM KCI). EDTA was added to a final concentration
of 5mM and incubated at room temperature for 10 min. A tenfold
molar excess of mantGDP nucleotide (Millipore Sigma) was added
to the GTPases and incubated for 30 min at room temperature. After
addition of MgCl, to a final concentration of 20 mM and incubation
atroomtemperature for 10 min, unbound nucleotides were removed
by buffer exchange into gel filtration buffer using a PD-10 column (GE
Healthcare).

GEF assay

GEF assays were carried out with the same instrument and cuvette as the
tryptophan fluorescence assays (see ‘Tryptophan-fluorescence-based
GAP assay’). Mant fluorescence was collected using a 360-nm excita-
tion (10-nm slit) and 440-nm emission (10-nm slit). Experiments were
performed ingelfiltration buffer at room temperature. Five hundred pl
of gel filtration buffer was added to the cuvette, and after baseline
equilibration, 20 pl of the respective GTPase with or without RABEX5
or C9orf72-SMCR8-WDR41 were added to a final concentration of
350 nM. After signal equilibration, the assay commenced by addition
of 20 pl of GTP to a final concentration of 5 uM (about 15-fold molar
excessover the respective GTPase) and fluorescence was measured in
1-sintervalsfor1,400s. Allexperiments were performed in triplicates.
Data were baseline-subtracted and normalized to the signal immedi-
ately after GTP addition, which also is the O-s time point in the plots.
Plots are mean + s.d. of each triplicate experiment.

Cellline authentication

BothHEK293 GnTiand HEK 293A cell lines were purchased from the UC
Berkeley Cell Culture Facility, and were authenticated by short-tandem
repeat analysis and confirmed to be mycoplasma-negative by nuclear
staining and fluorescence microscopy screening.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The electron microscopy density map has been depositedin the Elec-
tron Microscopy Data Bank with accession number EMD-21048. Atomic
coordinates for C9orf72-SMCR8-WDR41 have been deposited in the
PDB with accession number 6V4U. Source data are provided with this
paper.
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Extended DataFig. 4 |Deuteriumuptake of C9orf72-SMCRS8-WDR41.
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Extended DataFig. 6 | Mappingtheprotected regionfromHDXresultsonto regions of SMCRS8, and the M1region of C90rf72 (d). e, Enlarged view of the
the SMCRS8-C90rf72-WDR41structure.a, The HDX uptake differenceat 0.5s ~ WDR41residuesinthe SMCR8-WDR4linterface.
was mapped on C90rf72-SMCRS8. b-d, Close-up view of M1 (b) and M2-MS5 (c)
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Extended DataFig.7|Co-expression and pulldown validation of C90rf72- C9orf72 mutants and WDR41. ¢, Pulldown experiment of GST-WDR41 mutants
SMCRS8 and SMCRS-WDR4linterface. a, Close-up view of the residues that with C90orf72-SMCRS8. The pulldown experiments were carried out at least
mediate the DENN-DENN dimerization between C9orf72 and SMCRS. twice withsimilar results (b, c).

b, Co-expression and pulldown experiment of Strep-tagged SMCR8 with GST-
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~-FLCN. Left

SMCRS. Right, comparison between the longin dimers (top), DENN dimers (middle) and SMCR8 DENN with C9orf72 DENN domain (bottom).

Extended DataFig. 8| Structural comparison between C90rf72-SMCRS8 and FNIP2
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Extended DataFig. 11| GEF assay for different small GTPases with C9orf72- baseline-subtracted and normalized to the signalimmediately after GTP

SMCRS8-WDR41. a, SDS-PAGE of C90rf72-SMCR8-WDR41 complex and addition, which alsois the 0-s time pointin the plots. Plots are mean + s.d. of
GTPase proteins used in the experiments. b, GEF assay with mantGDP-reloaded  eachtechnicaltriplicate experiment. Allexperiments were carried out at least
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addition of C90rf72-SMCR8-WDR41 complex, asindicated. RABSA treated C90rf72-SMCR8-WDR41with DENND1B-RAB35 (PDB3TWS).

with RABEXS5 was used as a positive-control reaction. Data were
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Extended Data Table 1| Cryo-EM data collection, refinement and validation statistics

C90rf72-SMCR8-WDR41
(EMDB-21048)

(PDB 6V4U)
Data collection and processing
Magnification  (calibrated) 43,516
Voltage (kV) 300
Electron exposure (e—/A?) 59.6
Defocus range (um) 0.06
Pixel size (A) 1.149
Symmetry imposed C1
Initial particle images (no.) 4,810,184
Final particle images (no.) 381,450
Map resolution (A) 3.80
FSC threshold 0.143
Map resolution range (A) 3.3-11
Refinement
Initial model used (PDB code) -
Model resolution (A) 4.5
FSC threshold 0.5
Model resolution range (A) n.a.
Map sharpening B factor (A?) -50
Model composition
Non-hydrogen atoms 7,073
Protein residues 1,106
Ligands 0
B factors (A?)
Protein 108.36
Ligand
R.m.s. deviations
Bond lengths (A) 0.002
Bond angles (°) 0.472
Validation
MolProbity score 1.60
Clashscore 4.14
Poor rotamers (%) 0
Ramachandran plot
Favored (%) 93.89
Allowed (%) 6.11

Disallowed (%) 0.00
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& A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection SerialEM 3.6.14

Data analysis For Cryo-EM data processing, the following software were used: Focus, MotionCor2, gctf-v1.06, gautomatch, Relion 3.0-beta,
cryoSPARC, cryoSPARCV2,
For model building, the following software were used: I-TASSER, Modeller, RaptorX, Phyre2, Coot 0.9 and 0.8.9.1, Phenix , PyMOL
v1.7.2.1, UCSF Chimera 1.13 and 1.14, UCSF pyem, Molprobity (as part of Phenix)
For HDX analysis, the following software were used: Orbitrap Discovery mass spectrometer, HDExaminer, Proteome Discoverer 2.1
For data display, the following software were used: Prism 6,7,8 and Origin 6.0
Lysosomal enrichment was scored using a home-built Matlab script.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

EM density map has been deposited in the EMDB with accession number EMD-21048. Atomic coordinates for the C9orf72-SMCR8-WDR41 have been deposited in
the PDB with accession number 6V4U.

o]
Q
=
C
=
D
=
D
wv
()
eY)
=
(@)
>
=
D
°
©)
=
=
Q
(%2]
(-
3
=)
Q
=
=

810¢ 4290120




Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. The cryoEM data was collected in one session with more than 3000 movies.
The high particle number included in the final reconstruction (381,450) indicates that based on similar methods and analysis that are widely
published the sample size was not limiting.
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Data exclusions  Electron microscopy: micrographs were screened manually and bad ones discarded. After CTF estimation, the bad movies which were bad
focus or included ice contamination were excluded.
HDX-MS: some peptides are with low signal therefore not included in analysis

Replication HDX experiment was performed technically triplicate or quadruplicate for 0.5, 5, 50, 500 and 50,000 sec timepoints, . GAP and GEF assay were
carried out either technical or biological triplicates. All replicates were successful and yielded similar results.

Randomization  Samples were not allocated into groups. Randomization is not relevant to this study.

Blinding Blinding was not relevant to this study because there was no group allocation.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
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Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology |:| MRI-based neuroimaging
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Animals and other organisms

Human research participants

XXXNX[X s

[] Clinical data

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) HEK 293 Gn-Ti and HEK293A cell lines are purchased from UC Berkeley Cell Culture Facility.
Authentication The cell lines were authenticated using short tandem repeat analysis.
Mycoplasma contamination Both cell lines were tested negative for mycoplasma contamination using a nuclear stain by fluorescence microscopy.

Commonly misidentified lines  No commonly misidentified cell lines were used.
(See ICLAC register)
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