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Glacial cooling and climate sensitivity 
revisited

Jessica E. Tierney1 ✉, Jiang Zhu2,3, Jonathan King1, Steven B. Malevich1, Gregory J. Hakim4 & 
Christopher J. Poulsen3

The Last Glacial Maximum (LGM), one of the best studied palaeoclimatic intervals, 
offers an excellent opportunity to investigate how the climate system responds to 
changes in greenhouse gases and the cryosphere. Previous work has sought to 
constrain the magnitude and pattern of glacial cooling from palaeothermometers1,2, 
but the uneven distribution of the proxies, as well as their uncertainties, has challenged  
the construction of a full-field view of the LGM climate state. Here we combine a large 
collection of geochemical proxies for sea surface temperature with an isotope-enabled  
climate model ensemble to produce a field reconstruction of LGM temperatures using 
data assimilation. The reconstruction is validated with withheld proxies as well as 
independent ice core and speleothem δ18O measurements. Our assimilated product 
provides a constraint on global mean LGM cooling of −6.1 degrees Celsius (95 per cent 
confidence interval: −6.5 to −5.7 degrees Celsius). Given assumptions concerning  
the radiative forcing of greenhouse gases, ice sheets and mineral dust aerosols, this 
cooling translates to an equilibrium climate sensitivity of 3.4 degrees Celsius (2.4–4.5 
degrees Celsius), a value that is higher than previous LGM-based estimates but 
consistent with the traditional consensus range of 2–4.5 degrees Celsius3,4.

Palaeoclimatologists have long sought to refine estimates of temper-
ature changes during the LGM, as both a benchmark for climate mod-
els and a constraint on Earth’s climate sensitivity. In the 1970s, the 
Climate Long-Range Investigation, Mapping and Prediction (CLIMAP) 
project collated assemblages of foraminifera, radiolarians and coc-
colithophores and used transfer functions to create maps of seasonal 
sea surface temperatures (SSTs) for the LGM1. Along with geological 
constraints on sea level and ice sheet extent, these maps were used as 
boundary conditions for pioneering atmospheric global climate model 
(GCM) simulations—the first Paleoclimate Modelling Intercomparison 
Project (PMIP)5. Three decades later, the Multiproxy Approach for the 
Reconstruction of the Glacial Ocean Surface (MARGO) project rema-
pped the LGM oceans using foraminiferal, radiolarian, diatom and 
dinoflagellate transfer functions and two geochemical proxies—the 
unsaturation index of alkenones (U ′K

37) and the Mg/Ca ratio of planktic 
foraminifera2. This product has served as a touchstone for model–data 
comparison in the second and third phases of PMIP (PMIP2 and PMIP3)6 
as well as calculations of climate sensitivity7.

In spite of this extensive work, estimates of global cooling dur-
ing the LGM remain poorly constrained due to proxy uncertainties 
and methodological limitations. Microfossils occasionally present 
‘no-analogue’ assemblages; that is, groups of species that are not 
observed today and therefore are difficult to interpret. In the LGM in 
particular, no-analogue assemblages appear in north Atlantic dino-
cysts1 and tropical Pacific foraminifera8, and have cast doubt on the 
CLIMAP and MARGO inference of relatively mild LGM cooling in the 
tropics and subtropics9–11. Likewise, geochemical proxies are subject 

to seasonal biases and sensitivity to non-thermal controls, all of which 
affect calculated SSTs12,13. Beyond proxy uncertainties, the data from 
the LGM present a methodological challenge in that they are not evenly 
distributed in space; the SST data cluster near coasts, where sediment 
accumulation rates are high. This heterogeneous sample distribution 
complicates the calculation of both regional and global average values. 
Furthermore, the translation of changes in SST to global mean surface 
air temperature (GMST)—the quantity needed for calculations of cli-
mate sensitivity—requires the use of an uncertain scaling factor14. As 
a result of these uncertainties, estimates of the change in LGM GMST 
(ΔGMST) range from −1.7 °C to −8.0 °C (refs. 7,14–20), yielding poorly 
bounded estimates of climate sensitivity of 1–6 °C per doubling of 
CO2 (ref. 21).

Here, we infer the magnitude and spatial pattern of LGM cooling 
using geochemical SST proxies, Bayesian proxy forward models, 
isotope-enabled climate model simulations and offline data assimila-
tion. The SST proxy observations are assimilated with new simula-
tions conducted with the isotope-enabled Community Earth System 
Model (iCESM)22. The resulting estimates of ΔGMST are combined with 
published constraints on radiative forcing to produce probabilistic 
estimates of climate sensitivity based on the LGM climate state.

Paleoclimate data assimilation
Our data collection consists of 956 LGM (23–19 kyr ago, ka) and 879 
late Holocene (4–0 ka) SST proxies (Fig. 1). The proxy values are aver-
ages over the chosen time intervals and in many cases come from 
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the same location, such that the total numbers of unique locations 
for each timeslice are 636 and 664, respectively (see Methods for 
further details). For the purposes of this study, the late Holocene 
average is interpreted as representative of the pre-industrial (PI) 
climate state, and is the benchmark from which we compute LGM 
cooling (see Methods). Distinct from previous work, this study 
focuses exclusively on geochemical proxies for SST; specifically, U ′K

37, 
the TetraEther indeX of 86 carbons (TEX86), δ18O and Mg/Ca. We pre-
viously developed Bayesian models for each of these proxy sys-
tems12,13,23,24, which enables us to propagate proxy uncertainties and 
seasonal bias into the data assimilation. Although including marine 
assemblage data would improve spatial coverage, the outstanding 
no-analogue problems and lack of comparable Bayesian models 
prevent us from using these data in the framework presented here. 
Likewise, we do not assimilate terrestrial temperature estimates, 
because many of these are also based on pollen or other microfossil 
assemblages.

To circumvent problems associated with spatial representation and 
averaging, we use an offline data assimilation technique25 (see Methods) 
to blend information from proxies with full-field dynamical constraints 
from iCESM. The assimilation begins with an ensemble ‘prior’ of pos-
sible climate states taken from the model; in our case, these are 50 yr 
average states from simulations of the glacial state (21 and 18 ka) and the 
late Holocene (3 ka and PI) (see Methods). The water-isotope-enabled 
model simulations facilitate the direct assimilation of δ18O data (com-
prising 60% of our collection; Fig. 1), without the need to rely on empir-
ical relationships between seawater δ18O and salinity derived from 
present-day observations. At locations where there are proxy data, 
values from the ensemble prior are translated into proxy units using 

our Bayesian forward models to calculate the ‘innovation’—the dif-
ference between the observed proxy value and the computed value 
from the model ensemble. The innovation is weighted by the Kalman 
gain, which considers both the covariance of the proxy with the rest 
of the climate fields and the uncertainties in the proxy observation 
and the model ensemble. The weighted innovation is then added to 
the prior ensemble to produce an ensemble of assimilated (analysis) 
climate states (see Methods for a mathematical description). For each 
time interval (LGM and late Holocene), we conducted 25 assimilation 
experiments with a 40-member model ensemble in which we withheld 
25% of the proxy data at random to calculate verification statistics (see 
Methods). These collectively yield a total of 1,000 ensemble realiza-
tions of LGM and late-Holocene climates.

Spatial patterns in LGM cooling
The assimilated SST field shows distinctive spatial patterns in LGM 
cooling (Fig. 2a), with changes in SST (ΔSST) in excess of −8 °C in the 
north Atlantic, north Pacific and the Pacific sector of the Southern 
Ocean; enhanced cooling in eastern boundary upwelling zones; and 
reduced cooling in the western boundary regions. Many of these pat-
terns are broadly consistent with CLIMAP and MARGO; however, an 
important difference is that there is no evidence for warming in the 
subtropical gyres, a feature associated with assemblage data1,2 (Fig. 2a). 
Strong cooling near 40° N in the Pacific reflects a southward shift in 
the subpolar gyre; this agrees well with independent model simula-
tions of the LGM and a recent regional synthesis of δ18O data26. In the 
Indian Ocean, our reconstructed cooling pattern closely resembles 
the proxies and reflects the impact of the exposed Sunda and Sahul 
shelves27. Previous investigations of cooling in the glacial tropical 
Pacific offer conflicting conclusions: some suggest enhanced cooling 
in the eastern equatorial Pacific (EEP; as we observe here)8, whereas 
others suggest greater cooling in the warm pool28. Analysis of our 
proxy collection (separate from the assimilated product) indicates 
that there is no significant difference in the magnitude of cooling 
between the warm pool and EEP (−0.2 ± 1.0 °C, 2σ, see Methods). This 
could reflect a limitation of the proxy network, which is biased towards 
the coasts (Fig. 1). The stronger cooling in the EEP in our assimilated 
product thus reflects the CESM prior and possibly the influence of 
proxies that are teleconnected to the EEP, such as those situated along 
the California margin.

The covariance of SST with surface air temperature (SAT) allows us 
to recover the latter directly from the assimilation algorithm, rather 
than having to scale from one to the other14. Over land, we observe 
the expected large cooling over the Northern Hemisphere ice sheets, 
but noticeably little cooling in Alaska and western Beringia (Fig. 2b). 
These results agree with observations that these locations remained 
unglaciated during the LGM29 and experienced minimal cooling or 
even a slight warming30, probably due to dynamical changes induced 
by the Laurentide Ice Sheet31,32.

Our reconstruction provides updated estimates of tropical cooling. 
The glacial change in SAT across the tropics (30° S–30° N) is −3.9 °C (−4.2 
to −3.7 °C; 95% confidence interval, CI). This estimate is greater than 
the PMIP2 and PMIP3 multi-model range of −3.2 to −1.6 °C (ref. 33), but 
is not as large as calculations based on snowlines of tropical glaciers34 
and noble gases35 (approximately −5 °C). Our reconstruction indicates 
that the change in tropical SSTs was −3.5 °C (−3.8 to −3.3 °C, 95% CI). 
This value is larger than the spatial mean computed from the tropical 
SST proxies on their own (−2.6 °C, −3.0 to −2.3 °C, 95% CI), partly due 
to the enhanced cooling throughout the east-central tropical Pacific 
in the assimilated field (Fig. 2a). However, the magnitude of both the 
proxy- and data assimilation-inferred tropical SST cooling is far greater 
than CLIMAP or MARGO estimates (−0.8 °C and −1.5 °C, respectively) 
and closer to the estimates of Ballantyne et al.10 (−2.7 °C) and Lea et al.36 
(−2.8 °C).
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Fig. 1 | Locations of geochemical SST proxies used for the LGM climate 
reconstruction. a, Proxy sites for the LGM (956). b, Proxy sites for the late 
Holocene (LH; 879). Proxies are colour-coded by type and the number of each is 
shown in parentheses.
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Validation with δ18O of precipitation
To assess the reliability of our reconstruction, we included the δ18O 
of precipitation (δ18Op) in our model prior to compare the assimi-
lated value to independent ice core and speleothem proxy data (see 
Methods). Overall, our reconstruction explains 67% of the variance in 
observed Δδ18Op (Fig. 3a). This is a marked improvement over the prior 
(which explains only 35% of the variance; Extended Data Fig. 1) and 
suggests that our reconstruction provides a reasonable estimate of 
global LGM climate. The improvement comes mainly from the ice core 
sites, which show a better match to observations after the assimilation. 
A notable feature captured by our reconstruction is the difference in 
Δδ18Op between ice core sites in west and east Antarctica (Fig. 3b); the 
latter region is warmer (Fig. 2b) and experiences less isotopic deple-
tion. At face value, a warmer east Antarctica contradicts previous work: 
at Epica Dome C, ice core δ18O is interpreted to indicate a change in 

SAT (ΔSAT) of approximately −8 °C (ref. 37), whereas our assimilated 
product indicates a more modest 5 °C of cooling. However, the former 
estimate assumes that the δ18O–SAT relationship remains constant in 
time37. Isotope-enabled modelling experiments have shown that the 
δ18O–SAT slope in Antarctica may have been different during the LGM, 
and strongly depends on changes in Southern Ocean SSTs38.

Global temperature change
As the data assimilation technique yields spatially complete fields, we 
can compute both global SST (GSST) and GMST change during the LGM 
without needing to consider missing values or use a scaling factor14. 
Our calculated change in GSST (ΔGSST) is −3.1 °C (−3.4 to −2.9 °C, 95% 
CI) (Fig. 2c). This is more tightly constrained than the model prior, 
which spans −4 to −2.7 °C (Fig. 2c), reflecting the influence of the data. 
The assimilated ΔGSST is slightly larger than the proxy data suggest 
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Fig. 2 | Global changes in temperature during the LGM derived from 
palaeoclimate data assimilation. a, LGM–late Holocene ΔSST. b, LGM–late 
Holocene ΔSAT. c, LGM ΔGSST. d, LGM ΔGMST. In c and d, dots represent the 

median values and bars the 95% CI for values derived from the data, the data 
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Fig. 3 | Validation of the data assimilation with 
independent δ18Op data. a, Observed changes  
in ice core (Antarctica and Greenland) and 
speleothem LGM–late Holocene δ18Op compared 
with predicted changes from the data 
assimilation ensemble. Dots indicate median 
values, error bars represent the 95% CI. The R2 
value is shown in the lower right corner. b, Map of 
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from the data assimilation, overlain with ice  
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Speleothem δ18O values have been converted 
from δ18O of calcite or aragonite to δ18Op (in ‰ 
Vienna standard mean ocean water, VSMOW) 
before plotting (see Methods).
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(−2.9 °C, −3.0 to −2.7 °C, 95% CI, Fig. 2c), a difference that arises from 
biases due to incomplete and uneven proxy data sampling. The ΔGSST 
from data assimilation agrees well with estimates of glacial cooling 
based on a subset of SST proxies spanning multiple glacial–interglacial 
cycles (−3.1 °C)20, but is much larger than CLIMAP (−1.2 °C) and MARGO 
(−1.9 °C) estimates, as well as previous LGM ocean state estimates that 
used the MARGO dataset (−2.2 to −2.0 °C)39,40.

The change in GMST in the assimilated product is −6.1 °C (−6.5 to 
−5.7 °C, 95% CI) (Fig. 2d). This result agrees with a number of previous 
studies, including those that estimated LGM cooling from a restricted 
network of proxies spanning multiple glacial–interglacial cycles14,20, 
noble gas measurements in ice cores19 and changes in tropical SSTs15,16 
(Fig. 4a). However, our calculated ΔGMST does not overlap with the 
estimates that used the MARGO product7,18 (−4 to −2 °C), or an average of 
time-continuous marine and terrestrial temperature proxies17 (Fig. 4a).

One caveat of our results is that they are based on assimilation with 
an ensemble prior from a single climate model. As discussed above, 
the structure of the temperature fields in CESM directly shapes our 
assimilated fields. In addition, CESM1.2 simulates a larger LGM cooling 
(6.7 °C) than the PMIP2 and PMIP3 models (5.9 to 3.1 °C)21, although 
CESM ECS in our configuration is well within the multiple model range 
of the Coupled Model Intercomparison Project Phase 541 (see Methods). 
An assimilation with a model with different covariance structures and 
a more moderate global cooling could yield a different result. Future 
work should thus test our results by assimilating data across different 
models, preferably with water isotope capabilities. This said, several 
lines of evidence suggest that our inferred median value of approxi-
mately −6 °C is realistic. First, as already noted, our result agrees well 
with a number of previous studies (Fig. 4a). Second, our data-only GMST 
estimate has a median value of −5.6 °C and the assimilated estimate 
falls entirely within its error bounds (Fig. 2d). Finally, an assessment of 
bias in the model prior, based on rank histograms of withheld proxies, 

suggests minimal bias in the mean (Extended Data Fig. 2). However, the 
uncertainties associated with our ΔGMST estimate could be too narrow 
due to a lack of structural variability in the model prior (see Methods 
and Extended Data Fig. 2).

Equilbrium climate sensitivity
Our GMST results can be used to provide updated constraints on ECS. 
To calculate an ECS that approximates the classical ‘Charney’ defini-
tion, we must consider, in addition to GHG forcing (ΔRGHG), the slow 
feedback processes that affect LGM climate, which (following ref. 42) 
are treated here as radiative forcings. These include albedo changes 
associated with the expanded land ice and lowered sea level (ΔRICE) and 
increases in mineral dust aerosols (ΔRAE). Although vegetation changes 
could also impact LGM climate, we do not consider these here because 
biome reconstructions are poorly defined outside of the northern high 
latitudes43 and little is known about the associated radiative forcing44 
and efficacy (effectiveness in changing surface temperature). Likewise, 
we do not consider non-dust aerosol emissions, as these are not well 
constrained for the LGM.

We estimate ΔRGHG, ΔRICE and ΔRAE from published syntheses and prop-
agate uncertainties associated with these into the calculations of ECS 
(see Methods). As these estimates derive from simplified expressions 
or multi-model estimates, they are relatively independent from CESM. 
We show results with and without ΔRAE for comparison with previous 
work (Fig. 4b). Without dust aerosols, ECS is 3.8 °C (2.8–4.7 °C, 95% CI); 
with dust aerosols, ECS is 3.4 °C (2.4–4.5 °C, 95% CI). With our ΔGMST 
from data assimilation, global temperature change is no longer the 
primary source of uncertainty; it accounts for about 25% of the 95% CI 
in each estimate (Fig. 4b). Instead, most of the uncertainty comes from 
the forcings (Fig. 4b). ΔRGHG and the forcing associated with a doubling 
of CO2 can be directly estimated from ice core GHG concentrations and 
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simplified equations (−2.48 W m−2 and 3.80 W m−2, respectively)45 but 
still carry uncertainties and account for about 10% of the 95% CI. ΔRICE 
is estimated from CESM and available PMIP2 and PMIP3 simulations 
(see Methods) and its value varies between −2.6 and −5.2 W m−2, thus 
accounting for ~40% of the 95% CI. Finally, although it is well known 
that the LGM atmosphere was dustier46, the magnitude of ΔRAE also 
varies widely across models (0 to −2 W m−2)46 and contributes ~25% of 
the 95% CI.

It has recently been argued that ice sheets are not as ‘effective’ as 
GHGs in terms of global radiative forcing, because their impact might 
be concentrated at high latitudes47–49. We explore this possibility by 
presenting a distribution of ECS with a reduced ice sheet efficacy (ε) 
of 0.7 (rather than 1.0 as used above; see Methods) (Fig. 4b). Under 
this scenario, the median ECS rises to 4.0 °C with a 95% CI of 2.8–5.3 °C. 
However, these values should be interpreted with caution because ε is 
an under-constrained quantity.

Despite the broad distributions that uncertainties in the radiative 
forcings yield, we can use these new calculations to make probabilistic 
statements concerning ECS. Given the uncertainty space explored here, 
the LGM data suggest that ECS is virtually certain (>99% probability) to 
be above 2.2 °C and below 5.5 °C, with the latter only plausible under 
a condition of low ε. Assuming ε = 1, ECS is very likely (90% probabil-
ity) to be between 2.5 °C and 4.3 °C. These are tighter constraints on 
LGM-constrained ECS than those stated in Assessment Report 5 of 
the Intergovernmental Panel on Climate Change (IPCC) (1–6 °C per 
doubling of CO2)21, and are in excellent agreement with the traditional 
consensus range of 2–4.5 °C (refs. 3,4). Unlike previous work, we find 
little evidence that ECS estimates based on the LGM climate are abnor-
mally low7,44. ECS is unlikely to remain constant across climate states; 
palaeoclimate and modelling evidence suggests that it scales with 
background temperature, with lower values during cold climates and 
higher values during warm states50. Taking this into consideration, 
our LGM results place a strong constraint on the minimum ECS in the 
climate system, which is almost certainly greater than 2 °C, and is more 
likely to lie between 3 and 4 °C.
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Methods

SST proxy data collection
We compiled a total of 956 and 879 average proxy values from the LGM 
and late Holocene (LH) time periods, respectively. In many cases, mul-
tiple types of proxy data are available from the same location. Using 
a cutoff criterion for ‘same location’ of 0.1° in latitude or longitude, 
our proxy collection contains 636 and 664 unique locations for the 
LGM and LH, respectively. Following MARGO, the LGM was defined 
as 23–19 ka (ref. 2). The LH was defined as 4–0 ka to match the interval 
of time averaged for the LGM. This choice is consistent with previous 
LGM–LH comparisons12,51. For the purposes of this study, the LH is con-
sidered representative of pre-industrial conditions. Although climate 
has certainly changed within the past 4 kyr in response to shorter-term 
forcings such as volcanic eruptions and solar irradiance, we posit that 
this assumption is reasonable in the context of the large, slow climate 
changes associated with orbitally driven glacial–interglacial cycles. 
This differs from CLIMAP and MARGO, in which LGM cooling was calcu-
lated relative to twentieth-century observations1,2. However, historical 
observations carry their own distinctive type of uncertainty52 and also 
include the signature of anthropogenic global warming, so are not ideal 
in terms of isolating the LGM climatic response. Furthermore, using 
proxy estimates of the pre-industrial climate, rather than observational 
estimates, offers an ‘apples-to-apples’ comparison with the LGM.

The proxy data consist of both continuous time series that pass 
through the LGM and the LH, and data from ‘timeslice’ studies that 
focused on the average LGM climate state. The latter derive in part from 
the MARGO collection, with additional data from more recent studies. 
In many cases, LGM slice data were not accompanied by corresponding 
LH data. To provide matching data for these cases, we searched the core 
top datasets for each proxy system for a nearby value, with a cutoff 
radius of 1,000 km. This provided roughly similar spatial coverage 
between the LGM and LH target slices (Fig. 1). Core tops that were used 
as LH data were subsequently removed from the calibration datasets, 
and the parameters for the Bayesian forward models were recalculated 
without these data, to avoid circularity. However, as the number of core 
tops used in the data synthesis is small (100 or less) relative to the size 
of the core top datasets (~1,000) the effect on the model parameters 
was negligible.

The time series consist of 260 core sites with radiocarbon-based age 
models. Since we are only reconstructing the mean LGM and LH states, 
we did not apply any criteria regarding sampling resolution. Before tak-
ing time averages from these proxy data, we recalibrated all age models 
using the Marine13 radiocarbon curve53 and the BACON age modelling 
software (translated into Python as snakebacon and available at https://
github.com/brews/snakebacon) to ensure consistent treatment. Not 
all of the core sites extend through the LGM and/or the LH, so not all of 
these sites are represented in the analysis. However, many of these sites 
typically contain more than one proxy for SST, thus the total number of 
data points from the time series is 335 for the LGM and 273 for the LH.

Model simulations
We employ iCESM22, which is based on CESM version 1.254. iCESM has 
the capability to explicitly simulate the transport and transformation 
of water isotopes in hydrological processes in the atmosphere, land, 
ocean and sea ice22. iCESM reproduces instrumental records of both 
physical climate and water isotopes reasonably well22,54.

We conducted iCESM1.2 simulations of the LH and the LGM, con-
sisting of timeslices of the PI, 3, 18 and 21 ka. These simulations had a 
horizontal resolution of 1.9° × 2.5° (latitude × longitude) for the atmos-
phere and land, and a nominal 1° displaced-pole Greenland grid for the 
ocean and sea ice. The PI simulation used standard climatic forcings 
at ad 1850, and the slice simulations of 3, 18 and 21 ka used boundary 
conditions of GHGs, Earth orbits and ice sheets following the PMIP4 pro-
tocol55. Specifically, CO2, CH4 and N2O concentrations were 284.7 ppm, 

791.6 ppb and 275.68 ppb for the PI; 275 ppm, 580 ppb and 270 ppb for 
3 ka; 190 ppm, 370 ppb and 245 ppb for 18 ka; and 190 ppm, 375 ppb, and 
200 ppb for 21 ka. Changes in surface elevation, albedo and land ocean 
distribution associated with the ice sheets were derived from the ICE-6G 
reconstruction56. For the 18 and 21 ka simulations, global volume mean 
seawater δ18O was set to 1.05‰ in accordance with ice-volume effects. 
A value of 0.05‰ was used for the PI and 3 ka simulations. The simula-
tions were run with a prescribed satellite phenology in the land model. 
This choice was based on the overall poorer simulation of vegetation 
processes with a prognostic phenology, which could potentially be 
more problematic for palaeoclimate57. The LH (3 ka and PI) and the 
LGM slices (21 and 18 ka) were initialized from equilibrated CESM1.2 
simulations with water isotopes27,58 and extended for 900 years. All 
of the slices reached quasi-equilibrium in both the physical climate 
and the water isotopes with a top-of-atmosphere energy imbalance 
of less than 0.09 W m−2.

Model ECS was estimated to be 3.6 °C and 2.8 °C in the PI and LGM 
simulations, respectively. The model ECS was calculated as the ΔGMST 
between a baseline simulation (PI or LGM) and a simulation with twice 
the corresponding atmospheric CO2 amount in a slab ocean model 
(SOM) configuration. Ocean dynamics were inactive in SOM simula-
tions and their effects were approximated using prescribed mixed-layer 
depth and heat transport convergence that were derived from the fully 
coupled PI or LGM simulation. The PI ECS of 3.6 °C is in the middle 
of the multiple-model range (2.1–4.7 °C) in the Coupled Model Inter-
comparison Project phase 541, but slightly smaller than the published 
values of 4.0–4.2 °C in CESM1.259,60. The difference is probably due to 
the prescribed satellite phenology in our configuration of the land 
model, which excludes vegetation feedbacks61.

We also made use of available iCESM1.3 simulations of the LGM 
and PI58. iCESM1.3 differs from iCESM1.2 primarily in the gravity wave 
scheme, along with a few bug fixes in the cloud microphysics and radia-
tion62. The iCESM1.3 PI and LGM simulations have lengths of 400 and 
1,000 years, respectively.

Data assimilation
The data assimilation technique used here is the ensemble square-root 
Kalman filter63; specifically, an offline method that has previously been 
used to reconstruct climate during the past millennium25,64–66. This 
data assimilation method solves the following equation to compute 
an ensemble of climate states (Xanalysis) from prior states taken from a 
climate model (Xprior) and proxy data observations (y):

X X K y Y= + ( − ) (1)analysis prior e

Xprior is an ensemble of climate states taken from iCESM, of dimension 
N state vector elements (SST, SAT and so on collapsed into a vector) by 
M ensemble members (40, in our case). In a typical data assimilation 
application, the length of time represented by the ensemble would 
equal the length of time represented by the data; for example, annual 
data would be used to update an annual prior. However, in our case the 
data represent average conditions across 4,000 years. As we cannot 
run iCESM for 100,000 years or more, we must use a different time 
average for our model prior. Experimentation with time averaging the 
model states revealed that once the average exceeded the interannual 
timescale, the patterns in the assimilated fields, as well as GSST and 
GMST, were largely insensitive to the length of the average (Extended 
Data Fig. 3). Thus we chose 50 years—the longest time average that 
we could use while still retaining enough ensemble members for the 
assimilation technique (40 members).

y − Ye is the innovation: the difference between the column vector y 
(dimensions P × 1) of observed proxy values for each location P and 
the matrix Ye (dimensions P × M) of proxy values calculated from the 
model prior at the same locations. The innovation thus takes place 
in the native proxy units. Ye is calculated by feeding model variables 
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from the prior ensemble (SST, SSS, δ18O of seawater) into previously 
published Bayesian forward models for each proxy type12,13,23,24 that 
convert those variables into an estimate in proxy units. These models 
take the general form:

N∼ μ σ
μ f X
Proxy ( , )

= (SST, ),
(2)

i

2

where σ2 is the residual error variance associated with the function that 
describes μ, Xi denotes i additional X climatic influences that may con-
tribute to the proxy, and ~ indicates ‘has the distribution of’. For complete 
details of each model, we refer the reader to the original publica-
tions12,13,23,24. Briefly, the U ′K

37 and TEX86 forward models are only a func-
tion of SST (monthly values for U ′K

37, to account for seasonal responses 
in the North Atlantic, North Pacific and Mediterranean regions12; annual 
for TEX86). The model for δ18O of planktic foraminifera (δ18Oc) requires 
monthly SST and the annual δ18O composition of seawater24. δ18Oc is 
computed for the optimal growing season using the species-specific 
hierarchical model described in ref. 24. The model for Mg/Ca of planktic 
foraminifera requires monthly SST and sea surface salinity (SSS), as well 
as surface water pH, bottom water calcite saturation state (Ω) and the 
cleaning method used in the laboratory13. The latter was recorded as 
part of the data collection effort, but for pH and Ω we must make assump-
tions, as iCESM does not simulate the ocean carbonate system. In the 
absence of good information regarding spatial changes in Ω, we assume 
that it is the same as today for each given site location, with values drawn 
from GLODAPv2 (ref. 67). For pH, we use modern estimates from GLO-
DAPv2 for the LH timeslice, and then for the LGM we add 0.13 units to 
the modern values to account for the global increase in pH due to low-
ered CO2, following refs. 13,68. As with δ18Oc, Mg/Ca is forward-modelled 
for the optimal growing season using the species-specific hierarchical 
model described in ref. 13. In this manner, the seasonal preferences of 
foraminifera are explicitly accounted for in the assimilation.

K is the Kalman gain (of dimension N × P), which weights the inno-
vation according to the covariance of the forward-modelled proxy 
value with the rest of the climate state, as well as the uncertainties of 
the model ensemble and the proxy observations. Following ref. 63, K 
is defined as:

∘ ∘K W X Y n Y Y Y n R= [ ′ ′ /( − 1)] × [ [ ′ ′ /( − 1)] + ] , (3)loc prior e
T

loc e e
T −1

where X ′prior  and Y ′e are the matrices of deviations, for example, 
X X X′ = −prior prior prior , R is a diagonal matrix of the uncertainty (as a 
variance) of each proxy observation, and Wloc and Yloc are weights that 
apply a covariance localization, a distance-weighted filter that limits 
the influence of each proxy in space69. Covariance localization is applied 
to minimize spurious relationships from producing artefacts at large 
distances away from the proxy location. Following ref. 25, we use the 
Gaspari–Cohn fifth-order polynomial70 with a specified cutoff radius 
(outside of which all covariance is eliminated) of 12,000 km (the ration-
ale behind this value is discussed below). Wloc contains the localization 
weights of each N state vector element relative to each proxy estimate 
in Ye and is of dimension N × P. Yloc contains the localization weights of 
each proxy estimate in Ye relative to the other estimates in Ye and thus 
is of dimension P × P. n is the number of ensemble members, and divi-
sion by (n − 1) is applied to obtain an unbiased estimate. ◦ denotes 
element-wise multiplication.

Following ref. 63, the update equation (equation (1)) is solved by 
decomposing the problem into an update of the mean value of the 
prior state (Xprior) and the deviations from the mean (X ′prior):

X X K y Y¯ = ¯ + ( − ), (4)analysis prior e

X X KY′ = ′ − ~ ′ , (5)analysis prior e

where K͠  is defined as:

∘ ∘

∘

K W X Y n Y Y Y n R

Y Y Y n R R

~ = [ ′ ′ /( − 1)] [( [ ′ ′ /( − 1)] + ) ]

×[ [ ′ ′ /( − 1)] + + ] .
(6)

loc prior e
T

loc e e
T −1 T

loc e e
T −1

The full assimilated ensemble is then recovered through:

X X X= ¯ + ′ . (7)analysis analysis analysis

The assimilated ensemble has dimensions N × M, like the prior model 
ensemble.

The diagonal proxy error matrix R and the cutoff radius for the 
covariance localization weights are user-defined, so we used validation 
metrics based on withheld SST proxies and independent proxies for 
the oxygen isotopic composition of precipitation (δ18Op) to guide our 
choices. The most conservative choice for R is to assign the σ2 error 
terms (equation (2)) associated with the Bayesian forward models for 
each proxy to the diagonal of the matrix. As the forward models are 
trained on a globally distributed set of data, these terms represent the 
error in the proxy system on a global level and so we denote these as 
Rg. In temperature space, these translate to 1.5–4 °C 1σ errors. However, 
these are probably too high for an individual proxy location (otherwise, 
one would expect that the proxies would not be able to detect LGM 
cooling at all). Rather, at a single site, proxy uncertainty is expected to 
lie somewhere between analytical precision and the global error. Unfor-
tunately, this can only be directly observed by analysing parallel sedi-
ment cores, which is not commonly done in palaeoceanography. Thus, 
to experimentally determine an optimal value of R, we systematically 
reduced it from Rg to Rg/500 and analysed validation statistics. Values 
of SST, SSS and δ18O of seawater from the assimilated ensemble were 
then forward-modelled to predict the withheld proxy values. We cal-
culate both the coefficient of efficacy (CE)71 and the root mean square 
error (RMSE) between the observed and mean of the predicted proxy 
values. These were calculated in normalized units to account for the 
different ranges of absolute proxy values between U ′K

37, TEX86, δ18O and 
Mg/Ca.

In addition, we calculated the R2 between observed Δδ18Op (LGM – PI) 
derived from ice cores and speleothems and predicted Δδ18Op from the 
assimilation. Model prior δ18Op in the assimilation was calculated as an 
annual mean weighted by the monthly precipitation amounts. Ice core 
Δδ18Op values were taken from the compilation in ref. 72 (their table 1). 
Speleothem Δδ18Op values were computed from the SISAL database, 
version 1b73. We first searched the SISAL database for sites that con-
tained both LH (4–0.2 ka, to exclude anthropogenically influenced 
values) and LGM (23–19 ka) data and recorded the mean δ18O of calcite 
or aragonite. We then converted these average δ18O values to dripwater 
δ18O (considered analogous to δ18Op) following the recommendations 
of ref. 74 (their equations 1–3). This conversion accounts for the influ-
ence of temperature on fractionation as well as kinetic effects, and 
converts from the VPDB to the VSMOW scale. These calculations require 
an estimate of cave temperature; for this we use the SAT value from our 
data assimilation at the grid cells closest to the speleothem locations.

Extended Data Table 1 shows the validation results from scaling Rg. 
For both the LGM and LH, validation CE and RMSE are relatively insensi-
tive to the choice of R, although there is slight improvement up to Rg/5. 
This is in part because the validation is being calculated across the globe 
and the spatial variation in proxy values is always large; indeed, even 
the prior produces decent prediction of the withheld proxies, particu-
larly for the LH (Extended Data Table 1). More useful information can 
be gleaned from the comparison with independent δ18Op data. Here, 
we observe a substantial increase in R2 from the case of Rg to Rg/5 from 
0.50 to 0.67. This suggests that an increase in proxy precision drives 
the assimilated product closer to a state that agrees with the δ18Op 
proxies. However, it is also clear that if the proxy uncertainty is set too 
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low (Rg/500), the R2 drops back down (0.59). Thus, there appears to be 
an ideal value of R somewhere between Rg/5 and Rg/100. We choose the 
lowest scaling value of Rg/5—the most conservative choice. Rg/5 trans-
lates to ~0.6–1.3 °C of 1σ uncertainty, depending on the proxy. This is 
greater than analytical error (~0.3 °C 1σ) and strikes us as a reasonable 
estimate of site-specific error.

To find an optimal cutoff radius for the covariance localization, we 
experimented with values from ∞ (for example, no localization) to 
6,000 km and analysed the same validation statistics as above. As was 
the case with varying R, validation CE and RMSE are not very sensitive 
to localization (Extended Data Table 2). However, comparison with 
δ18Op shows that the best skill is achieved with a cut-off radius of 12,000 
km (Extended Data Table 2), so we use this value for our assimilation.

Each time interval (LGM and LH) is carried out as a separate ensemble 
assimilation consisting of 25 iterations, in which we withhold 25% of the 
proxies at random for validation. Across all iterations, the validation 
CE is 0.94 and 0.92 for the LH and LGM slices respectively, and the vali-
dation RMSE is 0.24 and 0.29 in normalized proxy units, respectively. 
Figure 3 shows the independent validation with the δ18Op proxies. The 
relatively good fit (R2 = 0.67) is a substantial improvement over the 
model prior (Extended Data Fig. 1). The improvement mainly comes 
from the ice core sites, which have an R2 of 0 in the prior case and an R2 
of 0.18 in the assimilated product. However, these values are skewed 
by a negative outlier, the Camp Century ice core. Excluding this outlier, 
the R2 values are 0 and 0.41 in the prior and assimilated product, respec-
tively, indicating substantial improvement. In contrast, the speleothem 
sites show less difference between the prior and posterior, with an R2 
of 0.12 and 0.13, respectively. The speleothem group also has an out-
lier—Sofular Cave. Excluding this site, the R2 is 0.24 and 0.32 in the prior 
and assimilated product, respectively, indicating some improvement. 
The limited change at the speleothem sites may reflect the fact that 
prior variability in mean annual δ18Op is small at these site locations.

Influence of different proxy types
The advantage of using a multi-proxy approach is that structural biases 
associated with each proxy type counterbalance each other, resulting 
in a more robust estimate of LGM cooling. To investigate how each 
proxy type influences the assimilated result, we conducted experiments 
in which only δ18O, U ′K

37 and Mg/Ca data were assimilated, respectively 
(TEX86 was not investigated as there are only 20 sites available). 
Extended Data Fig. 4 shows the assimilated ΔGSST and ΔGMST esti-
mates for LGM cooling for each proxy type, alongside maps of proxy 
locations. Median values for ΔGSST are −3.0 °C, −3.1 °C and −3.3 °C for 
the U ′K

37, Mg/Ca and δ18O experiments respectively, all of which are very 
close to the value using all proxy types (−3.1 °C). Error bounds for U ′K

37 
and Mg/Ca are larger and most probably reflect the smaller number of 
total data points assimilated. Median values for GMST are −6.1 °C, 
−6.6 °C and −6.3 °C for the U ′K

37, Mg/Ca and δ18O experiments respec-
tively. The U ′K

37 and δ18O experiments yield results close to the value 
using all proxy types (−6.1 °C). Assimilation with Mg/Ca yields a slightly 
cooler result, which might reflect the spatial distribution of the prox-
ies (that is, a concentration of data in the North Atlantic) or an imper-
fect estimation of non-thermal controls. Although temperature 
dominates foraminiferal Mg/Ca, salinity, pH and dissolution also exert 
substantial influence. These secondary factors are accounted for in 
the forward model (BAYMAG13), but we must make simple assumptions 
about the change in pH and bottom water saturation (see the descrip-
tion in Data assimilation above) for the LGM case that could deviate 
from actual conditions at the respective core sites.

Assessment of bias in the model prior
As a formal combination of model results and data, our data assimila-
tion product and its uncertainties are inherently influenced by bias in 
the model’s ability to accurately reproduce the true LGM and LH climate 
states. However, we do not know what these true states were (especially 

the LGM), so we can only indirectly assess whether the model prior is 
‘biased’ in this sense. To explore potential bias, we calculated proxy veri-
fication rank histograms75 for the LGM and LH time slices respectively 
(Extended Data Fig. 2). Rank histograms are simply counts of the rank 
of each observation (the proxy data withheld for validation) relative 
to each of the 40 ensemble members from the assimilated product 
(forward-modelled into proxy units). If a proxy ranks below all of the 
ensemble members, it gets a rank of 1; if it ranks above all the ensemble 
members, it ranks as 41. As the proxy observations themselves are not 
error-free, following ref. 75 we add our inferred proxy uncertainty of 
Rg/5 to the ensembles before calculating ranks.

A perfectly ideal model prior would produce a flat rank histogram, 
which indicates that the ensemble is drawn from the same distribution 
as the proxy; however, this is rarely the case as all models carry some 
structural biases relative to observations. Both the symmetry and the 
shape of the rank histogram can be used to intuit the nature of the bias75. 
In our case, we observe that our rank histograms are close to symmetri-
cal (particularly for the LGM; Extended Data Fig. 2), which suggests that 
our model prior does not have too much bias in the mean (otherwise we 
would expect the proxies to systematically rank higher or lower than 
the ensemble). However, our histograms have a distinctive U shape 
(Extended Data Fig. 2), indicating that a number of proxies rank lower or 
higher than the assimilated ensembles. A U shape can arise if the error 
on the observations is underestimated; however, our validation against 
Δδ18Op data suggests that our estimate of this value (Rg/5) is robust. A 
U shape can also arise if there are structural biases in the proxies that 
are not accounted for in our forward models. However, we found that 
the U shape persists across all of our four proxy types, and that there 
are no geographical patterns in the locations of high and low ranks (not 
shown). These observations are encouraging in that they suggest that 
there is not a systematic error in a single proxy system. Nevertheless, 
the forward models are fit globally and thus do not account for errors 
that may arise due to localized non-thermal influences (such as, for 
example, nutrient availability) so we cannot completely rule out the 
possibility that structural proxy errors contribute to the shape of the 
rank histogram.

The most likely explanation for the U shape is that our model prior is 
underdispersive, or rather, lacks variability relative to what the proxies 
consider to be the ‘true state’. Experimentation with inflation of the 
model prior variance, and a range of time-averaging (5–50 years) did not 
substantially reduce the U-shaped rank histograms (not shown), which 
suggests it is not so much the fact that the 50-yr ensemble members lack 
variance, but rather that CESM maintains relatively consistent covari-
ance patterns across the pre-industrial and glacial states, respectively. 
The structure of the SST, SSS and seawater isotope fields, compared 
to modern observations, are not perfect, with known biases22,76,77. This 
would cause proxies to consistently rank lower or higher in certain 
locations.

The implications of an underdispersive prior are mainly that our esti-
mate of uncertainties—both in the assimilated fields and the estimates 
of global mean temperature—may be too small. As we do not know the 
true LGM state, we cannot estimate how overconfident our assimilated 
results are. We need model priors from multiple other isotope-enabled 
climate models to assess this more thoroughly, an experiment that 
must be left to future work, when such simulations become available.

Proxy-only estimates of LGM cooling
To provide a point of comparison for the data assimilation results, we 
computed global and tropical ΔSST and ΔGMST from the proxy data 
in isolation. The proxy data were calibrated to SST using a suite of Bayes-
ian prediction models12,13,23,24 producing 1,000-member ensemble 
estimates for each data point. To approximate the proxy observational 
uncertainty used in the data assimilation (see discussion above), data 
were sorted along the ensemble dimension and normally distributed 
site-level error (N(0, 0.5) °C) was added back to the ensemble. GSST 



was computed following the method of ref. 60—data were first binned 
and averaged into latitudinal bands, then latitudinal averages were 
used to calculate an area-weighted global average. As the results are 
sensitive to the size of the bin60, we computed an ensemble of GSST 
across bin sizes of 2.5° to 15° (at 2.5° intervals). GSST was scaled to 
GMST using the method of ref. 14, in which scaling factors (determined 
from PMIP LGM simulations) were drawn from a uniform distribution 
spanning values between 1.5 and 2.3. Results for ΔGSST and ΔGMST 
are shown in Fig. 2c, d.

Analysis of tropical Pacific cooling
As stated in the main text, we analysed LGM cooling across the tropical 
Pacific in the proxy data alone to compare with the data assimilation 
result. The proxy data were calibrated to SST as described in the pre-
vious subsection, and then the Pacific zonal gradient was computed 
for both the LGM and LH as the difference between the average SST in 
the western Pacific (10° S–10° N, 130–170° E) and the eastern Pacific 
(5° S–5° N, 75–140° W). We then computed the LGM – LH difference in 
the zonal gradient, yielding a median value of −0.2 °C. These calcula-
tions were conducted for all 1,000 ensemble members, yielding an 
uncertainty of 1.0 °C (2σ).

Climate sensitivity calculations
We calculate ECS as:

R
FECS =

ΔGMST
Δ

× , (8)2×CO2

where ΔGMST is taken from the data assimilation, F2×CO2
 is the forcing 

associated with the doubling of CO2 from the pre-industrial state and 
ΔR is the total change in radiative forcing, including the slow feedbacks 
that affect the LGM climate state. In Fig. 4, we present one solution that 
includes GHG and ice sheet forcing ( R R RΔ = Δ + ΔGHG ICE ) and another 
that also includes aerosol forcing from mineral dust 
( R R R RΔ = Δ + Δ + ΔGHG ICE AE). We estimate the mean value of ΔRGHG and 
F2×CO2

to be −2.48 W m−2 and 3.80 W m−2, respectively, using published 
equations45. Average GHG concentrations for the LGM and LH are used 
for the calculation of ΔRGHG. Following the assessment in successive IPCC 
reports, we assume a 10% (90% CI) uncertainty for F2×CO2

 (ref.  45) 
(1σ = 0.23). The 1σ uncertainty in ΔRGHG, which is dependent on F2×CO2

, is:
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ΔRICE accounts for the radiative forcing from surface albedo changes 
associated with the LGM ice sheets and exposed land due to lowered 
sea level. We calculate ΔRICE using an approximate partial radiative 
perturbation method78 in CESM and also make use of additional pub-
lished results in 11 PMIP2 and PMIP3 models6,79. The resulting ΔRICE 
has a multi-model ensemble mean of −3.64 W m−2 and a range from 
−2.59 to −5.20 W m−2 (Extended Data Table 3). ΔRAE was obtained from a 
published compilation of the top of atmosphere instantaneous direct 
radiative forcing of LGM dust in nine modelling studies46. ΔRAE has a 
large spread, ranging from 0 to −2 W m−2.

We also calculate a third solution for ECS that assumes a lower ε in 
which ΔRICE is multiplied by 0.7, a value consistent with previous work48,49. 
This value of ε is used merely to show the impact of a smaller-than-unity 
efficacy on ECS and should not be considered a definitive number. In 
ref. 48 it was demonstrated that there is a wide range of possible values for 
ε; however, some of the derived range comes from models of intermedi-
ate complexity47 that have substantially different physics than the GCMs 
in PMIP2 and PMIP3 that we use to derive the values of ΔRICE (Extended 
Data Table 3). Thus we prefer to show results for a single value of ε as an 
example rather than sampling from the full range in ref. 48.

To propagate uncertainties into the final calculations of ECS, we used 
a Monte Carlo approach, sampling the full 1,000-member ensemble 
of ΔGMST from our assimilated product, and combining these with 
10,000 samples of each distribution of ΔR as well as F2×CO2

. ΔRGHG and 
F2×CO2

 were assumed to have normal distributions. Since their uncer-
tainties are dependent, F2×CO2

 was sampled first, then the distribution 
of ΔRGHG was derived by multiplying the resulting Monte Carlo samples 
by the ratio of the mean value of ΔRGHG to F2×CO2

 (−2.48/3.8 = −0.65). 
ΔRICE and ΔRAE were treated as empirical random distributions because 
the limited number of samples (derived from modelling experiments) 
prevents us from knowing the shape of these distributions.

Total ΔR for the case in which only GHG and ice sheet forcing is con-
sidered is −6.0 W m−2 (−7.9 to −5.0 W m−2, 95%CI). Total ΔR including 
dust aerosol forcing is −6.8 W m−2 (−9.6 to −5.2 W m−2, 95%CI). Total 
ΔR for the case with reduced ice sheet efficacy is −5.7 W m−2 (−8.2 to 
−4.4 W m−2, 95%CI).

Data availability
The LGM and LH proxy data are available as .csv files (including both raw 
proxy values and calibrated estimates of SST). We also provide a gridded 
5° × 5° map of LGM–LH proxy anomalies in .netcdf format. The fields 
of the data assimilation product (SST, SAT, SSS, δ18O of seawater and 
δ18Op are also available in .netcdf format. Files are publicly available for 
download from PANGAEA (https://doi.org/10.1594/PANGAEA.920596) 
and from GitHub (https://github.com/jesstierney/lgmDA). Source data 
are provided with this paper.

Code availability
The data assimilation method used in this paper is publicly available as 
the Matlab code package DASH on GitHub (https://github.com/JonK-
ing93/DASH). The Bayesian forward models, BAYSPAR, BAYSPLINE, 
BAYFOX and BAYMAG are likewise publicly available on GitHub from 
https://github.com/jesstierney. The iCESM1.2 model code is available 
at https://github.com/NCAR/iCESM1.2.
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Extended Data Fig. 1 | Comparison of model prior δ18Op with speleothem 
and ice core proxies. a, Observed changes in ice core (Antarctica and 
Greenland) and speleothem LGM–LH δ18Op compared with the model prior 
ensemble. The R2 value is shown in the lower right corner. b, Spatial map of 

median changes in the δ18Op from the prior ensemble, overlain with LGM–LH ice 
core and speleothem observations (dots). Speleothem δ18O was converted 
from δ18O of calcite or aragonite to δ18Op (in ‰ VSMOW) before plotting (see 
Methods).
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Extended Data Fig. 2 | Assessment of model bias with rank histograms. a, LGM, b, LH. The histograms are generally symmetrical, indicating little bias in the 
mean, but show a U shape that signals that the model prior may lack variability.
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Extended Data Fig. 3 | The impact of time averaging on the assimilation 
results. a–d, The 40-member ensembles of 5-yr (a), 10-yr (b), 25-yr (c) and 50-yr 
(d) averages were assimilated with the same set of proxy data. Spatial 

structures in the SST fields are largely similar. GSST and GMST values remain 
identical within uncertainty.
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Extended Data Fig. 4 | Data assimilation results for individual proxy types. 
a, Assimilation-derived values for ΔGSST for all proxies combined (All), U K

37
′, 

Mg/Ca and δ18O, respectively. Error bars represent the 95% CI. Lightest blue 

bounds show the range of the model ensemble prior. b, As in a, but for ΔGMST. 
c–e, Locations for U K

37
′ (c), Mg/Ca (d) and δ18O (e) data. Lighter blue circles are 

Holocene data points, darker blue circles are LGM data points.



Extended Data Table 1 | Validation statistics associated with scaling the global estimate of the 
proxy variance (Rg)

CE and RMSE are calculated on the 25% of the proxy data withheld from the assimilation. R2 is calculated between observed Δδ18Op, from speleo-
thems and ice cores, and data assimilated Δδ18Op at the same locations. Localization was held constant at 12,000 km. Prior denotes comparison 
with the mean of the prior model ensemble.
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Extended Data Table 2 | Validation statistics associated with 
varying the cutoff radius of the covariance localization

CE and RMSE are calculated on the 25% of the proxy data withheld from the assimilation. R2 is 
calculated between observed Δδ18Op, from speleothems and ice cores, and data assimilated 
Δδ18Op at the same locations. Cutoff radii are given in units of km; ∞ denotes no localization. 
Proxy variance R is held at Rg/5.



Extended Data Table 3 | Compilation of estimates of ΔRICE 
used for calculations of ECS
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