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Fundamental bounds on the fidelity of 
sensory cortical coding

Oleg I. Rumyantsev1,2,3 ✉, Jérôme A. Lecoq1,2,4,5, Oscar Hernandez1,2, Yanping Zhang1,2,6,  
Joan Savall1,2,6, Radosław Chrapkiewicz1,2, Jane Li1,4, Hongkui Zeng5, Surya Ganguli1,3 ✉ &  
Mark J. Schnitzer1,2,3,4,6 ✉

How the brain processes information accurately despite stochastic neural activity is a 
longstanding question1. For instance, perception is fundamentally limited by the 
information that the brain can extract from the noisy dynamics of sensory neurons. 
Seminal experiments2,3 suggest that correlated noise in sensory cortical neural 
ensembles is what limits their coding accuracy4–6, although how correlated noise 
affects neural codes remains debated7–11. Recent theoretical work proposes that how a 
neural ensemble’s sensory tuning properties relate statistically to its correlated noise 
patterns is a greater determinant of coding accuracy than is absolute noise 
strength12–14. However, without simultaneous recordings from thousands of cortical 
neurons with shared sensory inputs, it is unknown whether correlated noise limits 
coding fidelity. Here we present a 16-beam, two-photon microscope to monitor 
activity across the mouse primary visual cortex, along with analyses to quantify the 
information conveyed by large neural ensembles. We found that, in the visual cortex, 
correlated noise constrained signalling for ensembles with 800–1,300 neurons. 
Several noise components of the ensemble dynamics grew proportionally to the 
ensemble size and the encoded visual signals, revealing the predicted information-
limiting correlations12–14. Notably, visual signals were perpendicular to the largest 
noise mode, which therefore did not limit coding fidelity. The information-limiting 
noise modes were approximately ten times smaller and concordant with mouse visual 
acuity15. Therefore, cortical design principles appear to enhance coding accuracy by 
restricting around 90% of noise fluctuations to modes that do not limit signalling 
fidelity, whereas much weaker correlated noise modes inherently bound sensory 
discrimination.

The sensitivity and noise fluctuations of primary sensory neurons, such 
as photoreceptors or mechanoreceptors, limit the perception of weak 
stimuli16–18, although disagreement persists about which downstream 
noise sources limit perceptual discriminations when sensory inputs 
exceed detection thresholds4–14. A groundbreaking experiment spurred 
this debate by identifying individual visual cortical neurons that signal 
visual attributes nearly as reliably as an animal’s perceptual reports2,3. 
One proposed explanation is that similarly tuned cortical neurons 
might share positively correlated noise fluctuations that limit the per-
ceptual improvements attainable by averaging signals from multiple 
cells with similar response properties2,4 (Extended Data Fig. 1a–c).

Theoretical studies show that positively correlated noise limits 
the information that cells with similar sensory-evoked responses can 
encode4,5,7, but this is not necessarily the case for ensembles of cells 
with diverse tuning properties8–10 (Extended Data Fig. 1d–f). A recent 
framework based on a feedforward neural network asserts that, in the 
space of all possible neural ensemble dynamics, it is only noise in the 

dimensions of sensory representations that constrains coding fidel-
ity13,14 (Extended Data Fig. 1g–m). Previous experiments have examined 
noise in cell pairs, but this approach incurs substantial measurement 
errors13,19,20 and the results were conflicting4,6,21–23. To our knowledge, no 
previous study has recorded neural ensemble noise patterns, related 
these to sensory signals, and tested the idea that only specific noise pat-
terns confine the information encoded by large neural populations13,14.

A multi-beam two-photon microscope
To make such measurements, we built a laser-scanning two-photon 
microscope with a 4-mm2 field of view for imaging across the span of the 
mouse primary visual cortex (V1). The microscope has 16 photodetec-
tors and 16 corresponding beams, which originate from one laser and 
are focused 500 μm apart in the specimen in a 4 × 4 array (Fig. 1). Four 
beams are active at any instant, and switching to a different four beams 
takes about 50 ns; this enables scanning of a larger area per unit time 
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than would be feasible with one beam and the same optics (Extended 
Data Figs. 2–4). Compared to 16 active beams, our approach yields 
fourfold greater fluorescence for any given time-averaged illumina-
tion power and delivers fourfold less heat to the brain for an equiva-
lent rate of fluorescence emission (Supplementary Note). The active 
laser foci are ≥1 mm apart, so fluorescence scattering between the four 
active image tiles is <2%; scattering into inactive tiles can be corrected 
computationally using the 16 photocurrents (Extended Data Fig. 4). 
Our system images neocortical activity down to layer 5 with full-frame 
acquisition rates of 7.23–17.5 Hz (Supplementary Videos 1–3), whereas 
other two-photon microscopes with large fields of view attain similar 
imaging rates over smaller sub-fields24–27 (Extended Data Fig. 2j, k).

Imaging studies across cortical area V1
We studied layer 2/3 pyramidal neurons, which project extensive 
connections from V1 to higher visual areas. In awake mice express-
ing the Ca2+-indicator GCaMP6f in these neurons, we imaged around 
1,000–2,000 cells concurrently as mice viewed, with one eye, a random 
sequence of moving gratings. Each grating was oriented at either +30° 
or −30° from vertical, lasted 2 s and spanned the central ~50 deg of the 
eye’s visual field (Fig. 2a–c). There were 350 trials with each stimulus, 
but because locomotion modulates vision28 we analysed only trials 
with locomotor speeds of less than 0.2 mm s−1 (217–332 trials per stimu-
lus). From these recordings we extracted 8,029 neurons, mainly in V1 
(1,031–2,191 cells in each of 5 mice; Extended Data Figs. 5, 6).

A total of 5,008 cells responded at least weakly to the stimuli, with 
activity rates and stimulus preferences consistent with those found in 
previous studies28,29 (Extended Data Fig. 6a–d). These neurons likely had 
substantially overlapping inputs, because mouse V1 neurons respond to 
large portions of the visual field that are comparable in size to our stim-
uli29. Noise correlation coefficients in pairs of concurrently recorded 
cells were widely distributed, with positive mean values (r = 0.06 ± 0.01; 
mean ± s.d.; 5 mice) as in most previous reports6 (Fig. 2d–g, Extended 
Data Fig. 6e–i). Active cell pairs that on average responded similarly to 
the two stimuli had, on average, noise correlation coefficients about 
twice as large as those that responded dissimilarly (Fig. 2f, g).

To evaluate the significance of these correlations, we created trial-
shuffled datasets in which the responses of each cell were permuted 
across different trials, thereby mimicking cells with statistically 

identical individual responses as in the real data but with uncorrelated 
noise fluctuations. Non-zero noise correlations in trial-shuffled datasets 
merely reflect the finite number of trials. Indeed, noise correlation 
coefficients were more narrowly distributed than in real data, although 
many deviated substantially from zero (Fig. 2d, g). This confirms the 
difficulty of measuring noise correlations given limited trials13,19 and 
likely explains why previous studies of cell pairs yielded divergent 
results4,6,21–23.

Evaluations of cortical coding fidelity
To study visual coding, we represented the dynamics using a population 
vector (one cell per dimension) and used the discriminability index, 
d′, to assess the statistical confidence in distinguishing the stimuli on 
the basis of their evoked neural responses30. (d′)2 relates to the Fisher 
information that the cell ensembles convey about stimulus identity8,13,30, 
which even for binary classifications (≤1 bit of Shannon entropy) can 
be infinite—that is, 100% confidence31. Theories of noise correlations 
and neural coding have largely examined pairwise discriminations, as 
error rates discriminating more than two stimuli are well approximated 
using d′ values from all the pairwise comparisons31.

To enable us to determine d′ accurately despite having about 5- to 
10-fold fewer trials than cells recorded per mouse, we created analyses 
to extract the primary, ensemble noise modes without measuring noise 
in cell pairs (Appendix). First, we performed a dimensional reduction 
by using partial least squares (PLS) analysis to identify and retain only 
five population vector dimensions in which the stimuli were highly 
distinguishable; retaining more than five dimensions only added noise 
and decreased the ability to distinguish the stimuli (Fig. 3a, b, Extended 
Data Figs. 5b, 7a–c). In this five-dimensional representation, the neural 
dynamics evoked by the two stimuli became distinguishable over the 
first ~0.5 s of stimulus presentation (Fig. 3b–d). Using an optimal linear 
decoder of the ensemble activity, d′ values rose to a plateau within 
~0.5 s of the stimulus onset; the optimal decoder then remained stable 
until stimulus offset (Extended Data Fig. 7d). In shuffled datasets the 
stimuli were even more distinguishable, as d′ values attained greater 
values than in real datasets, indicating that correlated noise degrades 
stimulus representations in the real data.

We also evaluated decoders that ignore noise correlations. ‘Diagonal 
decoders’, which neglect off-diagonal elements of the noise covariance 
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Fig. 1 | Two-photon Ca2+ imaging over a 4-mm2 field of view. a, Schematic of 
the microscope. Sixteen laser beams converge on a pair of galvanometer 
mirrors (X- and Y-galvos). Sixteen photomultiplier tubes (PMTs) detect 
fluorescence. b, Two-photon image (greyscale, mean of 1,000 frames taken at 
7.23 Hz) of GCaMP6f-expressing layer 2/3 pyramidal neurons in the visual 

cortex of an awake mouse. Overlaid are >2,000 neuronal somata (green) 
identified in the Ca2+ video. Boxed areas are magnified in c. c, Magnifications of 
the boxed areas in b. d, Example Ca2+-activity sources (computationally 
identified), revealing dendrites. Images in b–d are representative of results 
from 10 mice. Scale bars: b, 250 μm; c, d, 100 μm.
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matrix30, performed nearly as well as optimal linear decoders, although 
the decrement was statistically significant (Fig. 3d–h). Thus, although 
correlated neural noise degraded stimulus encoding, using the noise 
structure to improve decoding brought only modest benefit.

The stability of the optimal decoder across most of the stimulus 
duration suggested that, by integrating neural activity across the 
stimulus presentation, the brain might in principle average out noise 
in its sensory representations to improve discrimination. To test this, 
we examined the optimal linear decoder of the time-integrated neu-
ral responses over each trial, which indeed yielded greater d′ values 
(Extended Data Fig. 7e). For comparison, we examined decoders of 
the cumulative set of neural responses that had occurred up to each 
moment in the stimulation trial (Fig. 3e–h). Cumulative decoders sur-
passed those using individual time-bins of neural activity, but not the 
simple decoder of time-integrated activity (Extended Data Fig. 7e). 
This suggests that there was little temporal structure in the sustained 
neural responses that might improve decoding beyond that attained 
using time-integrated activity, at least as reported by Ca2+ imaging.

We next examined how decoding varied with n, the number of cells 
analysed. In the absence of correlated noise, each additional cell used 
should linearly increase the Fisher information that is conveyed about the 
identity of the stimulus5,12. Trial-shuffled datasets confirmed this, as (d′)2 

increased linearly with n (Fig. 3f, g). In real data, (d′)2 reached a plateau 
when n exceeded ~1,000 cells, for both instantaneous and cumulative 
decoders (Fig. 3f–i). This constitutes direct evidence of information satu-
ration in large neural populations, without extrapolations from cell pairs.

Several control analyses bolstered these conclusions. First, we vali-
dated linear decoding as a way of assessing Fisher information. The 
noise covariance matrix was stimulus-independent, with similar matrix 
elements for both stimuli (r = 0.81 ± 0.16; mean ± s.d.; 20 off-diagonal 
matrix elements for each of 5 mice). Thus, nonlinear decoders should 
have similar accuracy as the optimal linear decoder, which we con-
firmed by quantifying the additional information that an optimal quad-
ratic decoder could extract from the data (Extended Data Fig. 7f–h). 
Second, we verified that there were a sufficient number of trials to 
estimate d′ accurately. In every mouse the empirically determined 
values of d′ approached a stable estimate with increasing numbers of 
trials and were stationary across the imaging session (Extended Data 
Fig. 7g, i, j). Third, we confirmed that alternative decoding methods 
using regularized regression yielded similar d′ values and identical 
conclusions to those from PLS analysis (Extended Data Fig. 8a, b). 
Further, we used regularized regression to analyse publicly available 
neural activity datasets32, which also showed that d′ reached a plateau 
(Appendix). Fourth, we used simulations to verify that our decoders 
were robust to potential large sources of neural variability, such as com-
mon mode noise and gain modulation of visual responses (Extended 
Data Fig. 8c–h). Fifth, we mathematically derived the accuracy of d′ 
determinations made via PLS analysis (Appendix). Altogether, numer-
ous analyses and derivations upheld the information saturation that 
we found in ensembles of ~1,000 neurons or more.

The data also enabled us to test a framework for understanding 
cortical noise fluctuations based on a feedforward network12,13. In this 
framework, the encoded information, I, as a function of the ensem-
ble size, n, obeys I(n) = (I0n)/[1 + εn], where the constant I0 is the mean 
encoded information per cell in the shuffled data and the parameter 
ε characterizes the strength of information-limiting correlations13. 
Our data matched this prediction (Fig. 3f, g), verifying the existence 
of information-limiting correlations and establishing the effect size. 
The minimum set of cells needed to detect information saturation is 
approximately 2ε−1, which is around 800–1500 cells for the instantane-
ous decoders (Fig. 3h, i). This shows the importance of large recordings 
to adjudicate whether correlated noise limits coding accuracy, and 
likely explains why previous recordings of less than 350 cells did not 
observe information saturation19,21.

Comparing neural coding to visual acuity
An additional benefit of recordings across V1 is to enable estimates of 
the attainable perceptual acuity given only the information encoded 
in the early visual cortex, which is important for fine discriminations 
of grating stimuli33. To approximate conditions more representative 
of the perceptual threshold, we examined another 5 mice that viewed 
the same grating stimuli as before but with ±6° orientations—closer to 
the discriminability limits.

As expected, these stimuli were harder to distinguish from their 
evoked neural activity stimuli (Extended Data Fig. 9). The asymptotic d′ 
value (~2.5) for large n suggests that gratings presented at ±2.4° under 
otherwise identical viewing conditions would have the minimal, percep-
tibly distinct orientations (d′ ≈ 1). Behavioural studies of mouse visual 
spatial acuity under photopic illumination15 yield similar predictions 
of ±2.3° (Methods). Direct measurements of mouse visual orientation 
sensitivity have been slender and used different stimuli from ours, 
but yielded similar values34. The fine agreement in these numbers is 
probably fortuitous, but the similar values estimated from cortical 
responses and behavioural studies15,34 suggest that the information 
signalling limits of visual cortical coding likely have an important role 
in setting perceptual bounds.
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Fig. 2 | Noise correlations of cell pairs are difficult to estimate from 
hundreds of stimulus trials. a, Image of visual cortex, processed as in Fig. 1b. The 
coordinate system indicates anterior (A) and lateral (L) directions. The red line 
marks the area V1 boundary, found by retinotopic mapping. Scale bar, 500 μm. 
 b, Top, in each trial, one of two randomly chosen stimuli (A or B) appeared for 2 
s, followed by a uniform background for 2 s. Bottom, each stimulus was a 
drifting grating, oriented at either +30° or −30° from vertical. The analyses in 
d–g used 217–332 trials per stimulus in each of 5 mice. c, Example Ca2+ activity 
traces. F, fluorescence intensity. d, Histograms of noise correlation 
coefficients (Pearson’s r) for concurrently imaged cell pairs (6,946,280 cell 
pairs; 5 mice), computed using the estimated spike count of each cell within 
[0.5 s, 2 s] of stimulus onset. r values are averages across both stimuli for real 
and trial-shuffled datasets. The latter histogram was Gaussian 
(R2 = 0.9982 ± 0.0005 (95% confidence interval)) with a variance around 50% of 
that of the real data, showing the difficulty of accurately determining pairwise 
noise correlations with hundreds of trials. Error bars estimated as counting 
errors are too small to see. e, Histograms of noise correlation coefficients 
differed significantly for cell pairs with similarly or differently tuned mean 
responses to the two stimuli, computed for the top 10% most active cells and by 
grouping cell pairs into those with positively or negatively correlated mean 
responses to the two stimuli. (***P < 1.3 × 10−6 for all 5 mice; two-tailed 
Kolmogorov–Smirnov test; 901 cells, 43,887 positively and 43,768 negatively 
correlated pairs). For exact P values for this and all subsequent figures, 
see Supplementary Information. f, g, Box plots of mean (f) and full width at half 
maximum (FWHM) (g) values of the colour-corresponding distributions in d, e. 
Circles indicate data points for 5 individual mice. Noise correlations in f were 
greater for cell pairs with similarly tuned responses (one-tailed Wilcoxon rank 
sum test, ***P < 0.001 for all 5 mice). Extended Data Fig. 6g–i shows results for all 
cell pairs. Boxes cover the middle 50% of values, horizontal lines denote 
medians, and whiskers span the full range of the data.
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Origins of information-limiting noise
To identify why the information saturates, we analysed the neural noise 
structure by finding the principal eigenvectors of the neural noise 
covariance matrix and the mean amplitudes of visual signals encoded 
along each of these eigenvectors. This allowed us to decompose (d′)2 
into a sum of signal-to-noise ratios, one for each eigenvector13 (Meth-
ods). Although visual signal amplitudes increase linearly with ensemble 
size, n (Fig. 4a, b), certain noise eigenvalues might also increase with n, 
which could offset the greater signalling capacity of a larger ensemble 
and cause the information saturation.

We developed methods to determine the principal eigenvectors of 
the noise covariance matrix without needing accurate estimates of 
its matrix elements—a key distinction from previous analyses13,19,20. 
Contravening prevailing thinking, with our approach recordings of 
more cells enable accurate estimates of these eigenvectors and of 
d′ using fewer trials (Extended Data Fig. 10). As n increased, mean 
ensemble responses to the two stimuli became increasingly dis-
tinct while staying aligned to the dimensions important for optimal 
decoding (Fig. 4b, c). In real but not in shuffled datasets the noise 
covariance matrix had 2–3 eigenvalues that also increased linearly 
with n (Fig. 4d, e). We examined how these particular noise eigen-
modes related to the dimensions in which the neural ensembles 
represented visual signals.

In every mouse the visual signalling dimensions were nearly orthogo-
nal to the largest noise mode, which therefore had almost no effect on 
coding fidelity even though it was around tenfold greater than any other 
noise mode (Fig. 4e–h; Extended Data Fig. 10). Instead, it was the third-
largest noise mode that primarily aligned with the visual coding dimen-
sions and thereby limited coding accuracy (Fig. 4f–h). These properties 
were sometimes seen, to a lesser extent, in the second-largest mode. 
The existence of noise eigenvectors that closely align to the dimen-
sions used for visual representations and have eigenvalues that grow 
with n explains the information saturation for large n and why there 
was little performance decrement for decoders that did not account 
for correlated noise. Although these inferences rely on Ca2+ signals, 
not electrical recordings, this is unlikely to affect the conclusions, 
as variability in how spikes produce Ca2+ signals arises mainly from 
fluctuations in Ca2+ levels, photon emission and detection, which are 
statistically independent across cells and are not information-limiting.

A key question is how does information-limiting noise arise. Recent 
work examines this issue in a two-layer, feedforward network model with 
sensory inputs and intrinsic noise in both its input and its output layers12. 
As more cells are added to the output layer, the encoded information 
approaches a plateau, the value of which depends on the noise levels 
and synaptic weights12 (Extended Data Fig. 1j–m). Our re-analysis of 
this model12 revealed that the dimensionality of the space of receptive 
fields in the output layer equals the number of noise covariance matrix 
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Fig. 3 | Correlated noise limits the information conveyed by cortical neural 
ensembles. a, Schematic of neural ensemble dynamics in a population vector 
representation of reduced dimensionality. Trajectories, rA(t) and rB(t), depict 
single-trial responses to different (red, blue) stimuli. At a fixed time after 
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onto a subspace, found by PLS analysis, in which responses to the two stimuli 
are most distinct. The green line indicates the optimal linear boundary for 
classifying stimuli in this subspace. The stimulus discriminability, d′, equals the 
separation, Δμ, of the two distributions along the dimension orthogonal to this 
boundary, divided by the s.d., σ, of each distribution along this dimension.  
b, c, Neural ensemble responses, 0.15 s (left) and 1 s (right) after stimulus onset, 
in the two-dimensional space in which the sets of responses to the two stimuli 
are most distinct, for real (b) or trial-shuffled (c) datasets. The blue and red 
crosses denote individual trials (220 trials per stimulus); the green and orange 
lines mark the classification boundaries for real and trial-shuffled data, 
respectively; and the vertical black line in b is the classification boundary for 
diagonal discrimination, which ignores correlations in the responses of the 
cells. woptimal, wshuffled and wdiagonal represent directions normal to the 
classification boundaries. wshuffled = wdiagonal, as the corresponding classification 
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plotted as a function of time after stimulus onset, for the classifiers in b, c. Error 
bars represent the standard deviation. Coloured lines show the d′ values for 
individual mice, computed using the protocol of Extended Data Fig. 5b and 

averaged over 100 different randomly chosen subsets of 1,000 cells and 
randomly chosen assignments of trials to decoder training sets and test sets in 
each mouse. d′ values are normalized by those obtained for trial-shuffled data 
(averaged across 0.83–1.11 s). e, Same as d but using cumulative decoding, 
which considers the full time-course of the activity of each cell up to time t. For 
each mouse, d′ values in e–h have the same normalizations as in d. f, (d′)2 values 
during the interval 0.83–1.11 s from stimulation onset, plotted against the 
number of cells, n, used for analysis. Data points in f–i are averages over 100 
different subsets of cells, and the shading in f, g indicates the standard 
deviation. For real data, (d′)2 values were well fit by the expression 
(d′)2 = (d)2

shuffled/(1+ε × n), (green curves; R2 = 0.88 ± 0.03 (s.d); 
ε = 0.0019 ± 0.0007; 5 mice), where ε is the fit parameter and (d′)2

shuffled is the 
(d′)2 value for n cells in a linear regression to the shuffled data (orange lines).  
g, Same as f, but for (d′)2 values computed using cumulative decoding for the 
interval 0–1.11 s. h, i, Asymptotic d′ values in the limit of many cells (h) and the 
number of cells at which (d′)2 attains half its asymptotic value (i) determined 
from curve fits as in f, g for instantaneous (open boxes) and cumulative (filled 
boxes) decoding. Optimal linear decoders (green) slightly but significantly 
outperformed diagonal decoders (black) (**P < 10−11; one-tailed Wilcoxon rank 
sum test; N = 100 different assignments to decoder testing and training sets 
using all cells recorded in each mouse; dots are mean values from individual 
mice). Boxes cover the middle 50% of values, horizontal lines denote medians, 
and whiskers span the full range of the data. Analyses in d–i are based on 217–
332 trials per stimulus in each of 5 mice and time bins of 0.275 s.
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eigenvectors for which the eigenvalues increase linearly with the number 
of output cells (Appendix). This shows that information-limiting correla-
tions arise even in rudimentary networks, and reflect the co-propagation 
of signals and noise through the same synaptic connections.

Discussion
Our findings address longstanding questions about how the brain com-
putes accurately despite neural noise1, and help to resolve a 30-year-old 
puzzle by providing direct evidence that correlated noise limits cortical 
coding accuracy2–4. These results adjudicate against models in which 
noise correlations do not limit—or even improve—cortical ensemble 
coding7,8. Encoded visual signals in our recordings were orthogonal to 
the largest noise eigenmode, enhancing coding accuracy by restricting 
~90% of noise fluctuations to dimensions that did not impede signal-
ling. This strategy allows cortical codes to evade a majority of noise, 
although coding fidelity is ultimately bounded by the weaker correlated 
noise patterns that cannot be disambiguated from signal. (This strat-
egy might not apply to sensory variables, such as full-field luminance, 
that animals rarely use for fine discriminations.) In support of these 
conclusions, mouse visual acuity measured using stimuli similar to 
ours15,34 is around tenfold better than would be predicted from the 
total noise amplitude in the visual cortex, but fits with the amplitudes 
of the information-limiting noise modes.

Nevertheless, rigorous comparisons between the accuracies of sen-
sory cortical coding and psychophysical discriminations will require 
concurrent evaluations in individual animals, using identical stimuli. 
Visual stimuli of greater size can increase d′ values32 by decreasing 
the mean level of shared inputs among responsive cells and thereby 
reducing ε, whereas stimuli of greater saliency should increase d′ by 
increasing I0. The recent history of sensory stimuli will also influence 
d′ owing to sensory adaptation. Although specific values of d′ will vary 
across stimulus types, information-limiting noise correlations and 
the saturation of information for large n arise generically from the 
propagation of signals and noise through common circuitry and place 
fundamental constraints on coding accuracy. Therefore, our experi-
mental results likely reflect basic attributes of hierarchical networks 
and should generalize to diverse stimuli and sensory modalities.

The brain probably cannot learn its own correlated noise structure 
to decode sensory features optimally, as any particular sensory scene 
almost never repeats precisely. Nonetheless, decoders that ignore 
noise correlations can still be near optimal (Fig. 3d, e, h, Extended Data 
Fig. 9c), as predicted for large networks with information-limiting 
noise correlations14. Therefore, information-limiting cortical noise 
might help downstream circuits to readout diverse sensory features 
nearly optimally.

Future work should extend our experiments to different stimuli, 
sensory modalities and behavioural conditions. Together with our 
analyses tailored for large-scale recordings, microscopes that image 
multiple brain regions concurrently24–26,35 will enable studies of noise 
correlations and information flow across successive cortical areas. Such 
measurements will help to address longstanding questions about the 
decoding strategies that the brain uses for perception, and the effect 
of attention on perceptual sensitivity and neural ensemble noise.
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Fig. 4 | The largest noise mode is orthogonal to the dimensions encoding 
sensory information. a, Schematics of trial-to-trial variability in ensemble 
neural responses with increasing numbers of cells, n. Ellipsoids represent 1 s.d. 
fluctuations around mean ensemble responses, r(s), to two similar stimuli 
parameterized by a variable s (here the stimulus orientation). For large n, 
response variability along the tuning curve, r(s), increases proportionally to 
the separation, Δμ, between the two mean responses, leading to a saturation  
of d′. w is the normal to the optimal linear classification boundary between the 
two response sets. e1,2,3 are three eigenvectors, eα, of the noise covariance 
matrix, averaged across both stimuli. The eigenvalues, λα, are the noise 
variances along each eigenvector. b, Mean values of (Δμ)2 plotted against n for 5 
mice in units of the variance in the shuffled datasets, which have isotropic noise 
covariance matrices. Analyses in b–h used instantaneous decoding in the five-
dimensional space found by PLS analysis and 100 different randomly chosen 
subsets of cells and assignments of trials to decoder training sets and test sets. 
Given these 100 sets of results, lines and shading in b–f denote mean ± s.d.,  
g shows 100 individual results, and h has box plots. c, Cosine of the angle 
between Δμ and w plotted against n, for 5 individual mice in real and trial-
shuffled datasets. Because Δμ is nearly collinear with w, optimal linear 
decoding—which accounts for noise correlations—only modestly outperforms 
diagonal decoding, which does not (Fig. 3h). d, Eigenvalues, λα, for the 
eigenvectors best-aligned with Δμ in 5 individual mice (green lines) increase 
linearly with n, revealing the origin of information-limiting correlations. For 
trial-shuffled data (25 orange lines, 5 eigenvalues for each of 5 mice), the noise 
variance along Δμ is independent of n and is uniform for all eigenvectors of the 
noise covariance matrix. e, f, The geometric relationships between visual 
signals and noise indicate that the largest noise mode is not the one that is 
information-limiting. Each colour denotes a different eigenvector, eα, of the 
noise covariance matrix in the reduced five-dimensional space, α∈{1,2,3,4,5}. 
In each individual mouse (e) there were multiple eigenvalues, λα, of the noise 
covariance matrix that increased with n. Extended Data Fig. 10 shows results 
for all mice. Visual signals (f) also increased with n, as shown by decomposing 
Δμ into components along the five eigenvectors, eα. In each mouse the 
eigenvector with the largest eigenvalue, e1, was the least well aligned with the 
visual encoding direction, Δμ (compare the red curves in e, f). g, A plot of noise 
values computed as in e against signal values computed as in f, using all 
recorded cells from mouse 1. The largest noise mode (red points) is an order of 
magnitude greater than the noise modes that limit neural ensemble signalling 
(green and yellow points), yet it is the least aligned with the signal direction.  
h, Signal-to-noise ratios for all five eigenvectors, computed using the values  
in g. (d′)2 equals the sum of these five signal-to-noise ratios. Boxes cover the 
middle 50% of values for the same 100 data subsets used in e–g, horizontal lines 
denote medians, and whiskers span 1.5 times the interquartile range. Analyses 
in b–h are based on 217–332 trials per stimulus in each of 5 mice.
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Methods

Microscope design
We used a systems-engineering approach to design the two-photon 
microscope. To simulate its optical performance and assess component 
suitability, we used optical design software (ZEMAX) to simulate both 
ray and wave propagation through the optical pathway. To validate the 
multiplexing strategy (Extended Data Fig. 2b–d) and the computational 
un-mixing of crosstalk between image tiles (Extended Data Figs. 3c–e, 
4a–c), we simulated fluorescence scattering in brain tissue using the 
non-sequential mode of ZEMAX. We created an optomechanical design 
of the microscope using CREO Parametric 3.0 CAD mechanical design 
software.

Laser source and control of illumination
We used an ultrashort-pulsed Ti:sapphire laser (MaiTai eHP DeepSee; 
Spectra Physics) with an 80 MHz repetition rate. We tuned the emis-
sion wavelength to 910 nm and used the laser’s built-in pre-chirping 
module to attain pulses of 130 ± 20 fs duration (FWHM) at the sample 
plane. For general purpose routeing of the laser light to and within the 
microscope we used broadband dielectric mirrors (BB1-E03, Thorlabs). 
A computer-driven rotating half-wave (λ/2) plate (WP, AHWP05M-980; 
Thorlabs) controlled the laser beam polarization and hence the power 
transmitted through a polarizing beam splitter (PBS) (PBS102, Thor-
labs) and into the microscope’s illumination pathway (Extended Data 
Fig. 2d). To block all laser illumination to the microscope during the 
turnaround portion of the fast galvanometer mirror’s scanning cycle, 
we used a custom laser chopper wheel (90:10 duty ratio), positioned 
after the PBS and synchronized in frequency and phase with the fast-
axis galvometer cycle.

Multiplexing of the 16 illumination pathways
Owing to the powerful ultrafast lasers that are now commercially avail-
able, past users of two-photon microscopy have often had more than 
enough illumination power at their disposal but remained limited with 
regards to the imaging speeds and the fields of view that were attain-
able with a single beam and existing scanning hardware. We therefore 
developed a multi-beam, two-photon microscope that puts the (previ-
ously) excess laser power to good use, by using multiple beam paths 
that enable the coverage of larger fields of view at faster image-frame 
acquisition rates. The Supplementary Note, Extended Data Fig. 2j, k 
and Supplementary Fig. 1 quantitatively compare our imaging system 
to other recent approaches to large-scale two-photon microscopy.

To steer laser illumination into four different sets of four beam paths, 
we used three pairs of electro-optic modulators (EOM) (LM0202 3 × 3 
mm 5W, LIV20 pulse amplifier; QIOptic) and PBS cubes (PBS102, Thor-
labs) (Extended Data Fig. 2d). We drove each EOM with a high-voltage 
(310 V amplitude) square wave oscillation, with the period matched to 
that of the microscope’s pixel clock. When imaging using the 4 × 4 set of 
beams, the square waves driving the second and third EOMs were both 
phase-shifted by ¼ period relative to the square wave driving the first 
EOM (Extended Data Fig. 2c). By toggling the beam exiting each EOM 
between the two linear orthogonal polarization states (the transition 
time between polarizations was around 50 ns), these three square-wave 
signals steered the beam from the laser successively into each of the four 
sets of four beam paths (that is, 16 total), with each set of four illuminated 
for ¼ of each pixel clock cycle (Extended Data Fig. 2b–d). Within each 
set, three beamsplitters (10RQ00UB.2 and 10RQ00UB.4, respectively, 
for S and P polarizations; Newport) divided the beam power equally 
between four different paths corresponding to four non-neighbouring 
image tiles in the 4 × 4 array (Extended Data Fig. 2b). Because the effi-
ciency of two-photon fluorescence excitation increases as the square 
of the peak illumination intensity, this temporal multiplexing scheme 
enabled fourfold greater fluorescence excitation compared with an 
otherwise identical, 4 × 4 set of beams that were not multiplexed in time.

Illumination pathways
Each of the 16 beam pathways contained a pair of kinematically mounted 
mirrors, a 1:2 telescope implemented using a pair of lenses (AC254-500-
B-ML, LA1464-B; Thorlabs), and a gimbal-mounted mirror (GMB1/M; 
Thorlabs). The 16 beam paths converged on a 6-mm-diameter, Ag-
coated mirror mounted on a galvanometer scanner (6215HSM40B 
scanner, 671215HHJ-1HP driver; Cambridge Technologies). This gal-
vanometer served as our slow-axis scanner.

To image the 16 beams striking the first scanning mirror onto an 
identical galvanometer scanning mirror serving as the fast-axis scan-
ner, we used a pair of telecentric f-theta lenses designed to induce 
minimal group velocity dispersion with ultrashort-pulsed illumination 
(S4LFT0089/094; Sill Optics) in a 1:1 telescope configuration (Fig. 1a). 
A third, identical f-theta lens and a tube lens (f = 300 mm, G322-372-525, 
Linos) imaged all 16 beams striking the second scanning mirror onto the 
back aperture of the microscope objective. The objective focused the 16 
beams to a square array of 4 × 4 foci, which together scanned a 2 mm × 2 mm  
specimen area at image frame acquisition rates up to around 8 Hz.

Alternatively, to enable image frame acquisition rates up to 20 Hz 
over a 2 mm × 2 mm specimen area, we used a resonant galvanometer 
scanner (6SC08KA040-02Y, Cambridge Technology, 8 kHz, 7 mm 
clear aperture) as the fast-axis scanner. The 8 kHz rate of resonant 
line-scanning allowed us to use a data acquisition scheme based on 
line multiplexing instead of pixel multiplexing. In this mode we used 
EOM3 to direct the laser illumination into one of its two optical output 
paths (Extended Data Fig. 1d, phase I and phase IV). During the resonant 
scanner turnaround times, we used EOM1 to redirect the laser illumina-
tion towards EOM2, the output pathway of which was blocked. During 
both the forward and backward motion of the resonant scanner a set 
of 4 laser beams scanned across a total of 8 image tiles—that is, 2 tiles 
per beam. By using a different set of 4 beams during the forward and 
backward scanning motions, we sampled one image line in all 16 image 
tiles during each cycle of the resonant scanner while using only 8 of the 
16 beam paths. As with the pixel-multiplexing approach, only 4 beams 
were active at any instant in time.

For the microscope objective lens, we used either an air objective lens 
(Leica, 5.0 × Planapo 0.5 NA; 19 mm working distance; anti-reflection 
(AR) coated for 400–1,000 nm light; transmission >90% at 520 nm, 
>75% at 910 nm) or a water-immersion lens optimized for large-scale 
two-photon imaging26 (1.0 numerical aperture (NA) fluorescence col-
lection, objective ( Jenoptik; 2.5 mm working distance). The illumina-
tion beams underfilled the back aperture of the microscope objective 
lens, leading to an optical resolution of approximately 1.2 μm and 8 μm 
in the lateral and axial dimensions, respectively, as determined from 
the FWHM values of the microscope’s optical point-spread function.

Fluorescence collection pathway
Fluorescence emanating from the sample returned through the objec-
tive lens, reflected from a dichroic mirror (FF735-Di02-58x82, Semrock) 
and passed through a collection lens (AC508-180-A, Thorlabs) and a 
fluorescence emission filter (FF02-525/40-25, Semrock).

The objective and the collection lens project a magnified image of the 
fluorescence foci in the sample. To optimize the efficiency of fluores-
cence detection, we designed a custom 4 × 4 lens array (4.5 mm pitch, 
plano-convex lenslets, custom injection-moulded in poly(methyl meth-
acrylate) (AR-coated: reflectivity <0.5%, 450–650 nm) that efficiently 
coupled fluorescence emissions into a 4 × 4 array of 3-mm diameter 
(0.5 NA) plastic optical fibres (FF-CK-120, AR-coated, FibreFin) (Fig. 1a).

To capture the maximum amount of fluorescence near the edges 
of the large field of view, the outer lenslets in the array were slightly 
larger than the others, extending outward from the perimeter of the 
array. Because even the outer lenslets had a maximum numerical aper-
ture (0.19 NA) much lower than that of the plastic fibres (0.5 NA), this 
lenslet design yielded a theoretical efficiency of >97% for coupling 



fluorescence into the array of 16 optical fibres. The fibre array delivered 
the fluorescence to a set of 16 GaAsP photomultiplier tubes (PMT) 
(H10770PA-40, Hamamatsu). Each 400-mm-long fibre had a specified 
transmission efficiency of >98%, yielding an overall design efficiency 
of >95% for conveying fluorescence into the photomultiplier tubes.

Optomechanics
We custom-fabricated the majority of the structural components of 
the microscope at our laboratory’s machine shop using high-strength 
7075-aluminium alloy and computer numeric control machining. We 
used three-dimensional (3D) printing to create a cover for the micro-
scope objective lens and a mount for the dichroic mirror. The optom-
echanical components were generally catalogue parts from standard 
vendors, mainly Thorlabs, Newport and Linos.

Data acquisition electronics
Owing to the unique multiplexing scheme of our microscope, data 
acquisition differs from that in a conventional two-photon microscope 
(Extended Data Fig. 3a). A major concern was to ensure that the sig-
nals from each of the four phases per pixel clock cycle were correctly 
assigned. This necessitated sampling the 16 PMTs sufficiently rapidly 
to ensure that the signals corresponding to different pixels and phases 
were not conflated. Hence, we chose a sampling rate of 50 MHz for each 
PMT. Because the duration of each of the four multiplexing phases was 
400 ns, this sampling rate yielded 20 samples per pixel per multiplex-
ing phase (Extended Data Fig. 3b).

To implement data sampling at this rate, we first converted the photo-
currents from the 16 PMTs into voltage signals using a set of four trans-
impedance amplifiers, each with four input channels (SR445A, Stanford 
Research Systems). We then sampled the resulting voltage signals using a 
16-channel, 50 MS/s analogue-to-digital converter (ADC; 14-bit-samples 
encoded in 2 bytes) module (NI 5751, National Instruments). The ADC con-
nected to the NI FlexRIO field programmable gate array (FPGA) Module 
for PXI Express, which was controlled by a host computer (Win 64-bit, 
2 Intel E5-2630 processors, 32 GB RAM, Lenovo) through a PCIe-PXIe 
link (NI PXIe-7962R, NI PXIe-1082 chassis, PXIe-PCIe8381 link, National 
Instruments) (Extended Data Fig. 3a). For each multiplexing phase, the 
FPGA module summed the digitally sampled values of the photocurrents 
into pixel intensities. All subsequent data manipulations involved only 
the pixel intensities, yielding a total data throughput rate of 60 MB s−1 or 
105 MB s−1, for image frame acquisition at 7.23 Hz or 17.5 Hz, respectively, 
as opposed to the 1.6 GB s−1 raw data stream. To eliminate any residual 
crosstalk between pixels resulting from the approximately 50-ns switch-
ing time of the EOMs, the software interface gave the user the flexibility 
to discard the first few samples of each pixel.

Instrument control
When imaging in pixel-multiplexing mode, we used ScanImage36 soft-
ware (version 3.8) to generate the analogue signals driving the galva-
nometer scanners and the digital line-clock and frame-clock signals 
(Extended Data Fig. 3a). Using the clock signals from ScanImage, the 
FPGA module generated signals to drive the EOMs. We created custom 
LabVIEW (National Instruments, version 2012 SP1, 32 bit) code to initiate 
the imaging sessions and control the data acquisition parameters. When 
imaging in line-multiplexing mode, we controlled the instrumentation 
fully using custom software written in LabVIEW. We synchronized laser 
line-scanning and data acquisition by using the clock of the resonant 
scanner as a master clock.

In both imaging modes, the FPGA module continually transmitted 
to the host computer the imaging data in packets of pixels, combined 
into image lines, via a high-speed direct memory access first-in first-
out (DMA FIFO) data link. The host computer constructed image tiles 
from the image line data, accounting for the number of photodetec-
tion channels and temporal multiplexing phases. The computer then 
streamed the image data onto its hard drive (Extended Data Fig. 3a).

Mice
The Stanford Administrative Panel on Laboratory Animal Care (APLAC) 
approved all procedures involving animals, and we complied with all of 
the panel’s ethical regulations. We analysed data acquired from 6 male 
and 4 female Ai93 triple transgenic GCaMP6f-tTA-dCre mice from the 
Allen Institute (Rasgrf2-2A-dCre/CaMK2a-tTA/Ai93), which expressed 
the Ca2+-indicator GCaMP6f in layer 2/3 pyramidal cells37. Mice resided 
on a 12-h reverse light cycle in standard plastic disposable cages. Experi-
ments occurred during the dark cycle. All animals in the experiment 
belonged to the same group, so blinding and random assignments 
were neither needed nor feasible.

For illustrative purposes only, we imaged a single tetO-GCaMP6s/
CaMK2a-tTA mouse38, which expressed the Ca2+-indicator GCaMP6 s 
in a subset of neocortical pyramidal neurons (Supplementary Video 3).

Surgical procedures
At the start of surgery we gave adult mice (12–17 weeks old) buprenor-
phine (0.1 mg kg−1) and carprofen (5 mg kg−1) and anaesthetized them 
with 1–2% isoflurane in O2. We implanted a glass window within a 5-mm-
diameter craniotomy positioned over the right visual cortical area V1 
and surrounding cortical tissue. The window was a round #1 cover 
glass (5 mm diameter, 0.15 ± 0.02 mm thickness, Warner Instruments) 
that we attached to a circular steel annulus (1 mm thick, 4.9 mm outer 
diameter, 4.4 mm inner diameter) using adhesive cured with ultra-
violet light (NOA81, Norland Products). To fill the gap between skull 
and glass window we applied 1.5% agarose. We secured the window 
on the cranium with dental acrylic. We also implanted an aluminium 
metal bar atop the cranium, allowing the mice to be head-restrained 
during in vivo brain imaging. For two days after surgery, we gave the 
mice buprenorphine (0.1 mg kg−1) and carprofen (5 mg kg−1) to reduce 
post-surgical discomfort. Mice recovered for at least one month before 
any imaging experiments began.

Visual stimulation
Mice viewed visual stimuli on a gamma-corrected computer moni-
tor (Lenovo LT2323p; 58.4 cm diagonal extent) that was 10 cm away 
from the left eye and spanned around 142° of this eye’s accessible, 
angular field of view. We generated visual stimuli using the psycho-
physics toolbox libraries of the MATLAB (Mathworks; version 2017b) 
programming environment. Stimuli were sinusoidal drifting gratings 
(spatial frequency, 0.04 cycles per degree; stimulus angular diameter, 
50 deg; drifting rate, 50 deg s−1, centred on the left eye’s visual field; 
stimulation duration, 2 s; amplitude modulation depth, 100%; screen 
background intensity, 50%; Fig. 2b). During each experiment, we pre-
sented the gratings at two different angles, ±30° or ±6° to the vertical, 
in a random sequence. Between successive stimuli, the monitor was 
uniformly illuminated at the background intensity for a 2-s inter-trial 
interval. To prevent light from the visual stimuli from entering the 
fluorescence collection pathway of the microscope, the stimuli used 
only the blue component of the RGB colour model, which was blocked 
by the fluorescence emission filter. We also placed a colour filter (Rosco, 
382 Congo Blue) on the monitor screen. The mean luminance from the 
stimulus at the mouse eye was approximately 5 × 1010 photons mm−2 s−1, 
which is more than two orders of magnitude higher than the transition 
threshold to photopic vision in mice15.

Imaging sessions
To reduce the stress of head restraint, we head-fixed mice on a 100-mm-
diameter Styrofoam ball that could rotate in two angular dimensions. 
We tracked the movement of the ball with an optical computer mouse. 
Because running or walking is known to alter visual processing in 
rodents28, we ensured that all visual stimulation trials used for analysis 
were those when the mice were passively viewing the video monitor, 
without locomotion, by excluding all trials during which the mice had 
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an ambulatory speed of greater than 0.2 mm s−1. We imaged the Ca2+ 
activity of neocortical layer 2/3 pyramidal neurons, 150–250 μm below 
the cortical surface. The pixel clock cycle duration was 1.6 μs, hence 
the pixel dwell time in each of the four multiplexing phases was 400 ns. 
Owing to the ~50-ns switching time of the EOMs, we discarded four 
samples at the start of each phase, removing any crosstalk between 
phases. Across the full duration of each imaging session, fluorescence 
intensities decreased by ~9% owing to photobleaching. The total laser 
illumination power was 280–320 mW, divided evenly amongst the 4 
beams that were active at any instant in time. Hence, each of the 16 
image tiles (each 500 μm × 500 μm in size) received a time-averaged 
power of 17.5–20 mW, for a time-averaged illumination intensity of 
70–80 mW mm−2. Previous Ca2+ imaging studies of layer 2/3 neocorti-
cal neurons with conventional two-photon microscopy39–42 have used 
mean illumination intensities of 89–1,800 mW mm−1.

For studies in which the visual stimulation comprised moving grat-
ings oriented at ±30°, we used the air objective lens and the pixel-mul-
tiplexing approach to image acquisition. We acquired images with 
1,024 × 1,024 pixels at a 7.23 Hz frame rate across the 2 mm × 2 mm field 
of view using the air objective lens. The total imaging duration per ses-
sion was 2,800 s (about 20,000 two-photon image frames), resulting 
in 700 visual stimulation trials, 350 for each of the two visual stimuli.

For studies in which the moving grating stimuli were oriented at ±6° 
to vertical, we used the water-immersion objective lens and line-mul-
tiplexing to acquire images with 1,728 × 1,728 pixels at 17.5 Hz across 
the 2 mm × 2 mm field of view, which we averaged and downsampled 
on the FPGA module to 864 × 864 pixels (Extended Data Fig. 9a–c, e, 
Supplementary Videos 2, 3). The total imaging duration per session 
was around 1,500 s.

Image reconstruction
We wrote custom MATLAB (Mathworks; version 2017b) scripts to 
manipulate the experimental datasets directly from the computer 
hard drive, without loading all the data into the computer’s random-
access memory.

The first step of image reconstruction accounted for the differences 
in the gain values of the 16 PMTs. We determined the gain values by 
imaging a static fluorescence sample and then analysing the statistics 
of the photon shot-noise limited fluorescence detection. Specifically, 
we performed a linear regression between the mean signal from each 
PMT and its variance. In the shot-noise limited regime, the slope of this 
relationship equals the combined gain of the PMT, pre-amplifier and 
ADC. Knowledge of the pre-amplifier and ADC gain values enabled us 
to determine the PMT gain. Given these empirically determined PMT 
gain values, the first step of image reconstruction was normalization 
of the fluorescence signals from each PMT channel by its gain.

The second step in image reconstruction was un-mixing of the 
crosstalk between the different PMT channels (Extended Data Fig. 3). 
In principle, when using laser-scanning microscopes with multiple 
illumination beams, one can apply to the set of PMT signal traces an 
un-mixing matrix that represents the inverse of a pre-calibrated, empiri-
cally determined matrix of crosstalk coefficients between the different 
photodetection channels43. However, this approach assumes that the 
biological sample is uniform and hence that a single un-mixing matrix 
will apply equally well across the entire specimen. In practice, brain tis-
sue is not optically uniform, and it is challenging to precisely determine 
the crosstalk matrix in image sub-regions with low fluorescence levels, 
such as in blood vessels. Furthermore, two-photon neural Ca2+ imaging 
routinely involves modest signal-to-noise ratios and consequently the 
application of the inverse crosstalk matrix introduces additional error, 
analogous to the errors introduced by deconvolution methods when 
applied to weak signals.

For these reasons, we used a more straightforward, conservative and 
computationally efficient method of image reconstruction. Because 
crosstalk was only present in our microscope near the boundaries 

between image tiles, for each of the four sub-frames per image we 
computationally reassigned the signals from the boundary regions 
between tiles to the nearest neighbour source tile from which the cross-
talk signals originated according to Extended Data Fig. 3c. We empiri-
cally determined that boundary regions 50 pixels wide contained ~75% 
of the scattered fluorescence photons from each laser focus. Hence, 
computational re-assignment of the photons from these boundary 
regions enabled conservative estimates of cells’ fluorescence signals, 
near continuous stitching of the images (Extended Data Fig. 3d, e), 
and high-fidelity extraction of neural activity (Extended Data Fig. 4).

Beyond each 50-pixel-wide boundary region, there were generally 
residual scattered fluorescence photons. Thus, for purposes of visual 
display only (Fig. 1b, c; Supplementary Video 1), we removed boundary 
artefacts left over after computational re-assignment (Extended Data 
Fig. 3c) by parameterizing the boundary with a smoothly decaying 
function:

( )
xsigmoid( ) =

1

1 + e
x d

a
−

where x is the distance from the tile edge, d = 70 pixels is the width of 
the boundary region, and a = 25 pixels characterizes the smoothness 
of the boundary decay.

Image pre-processing
After image reconstruction, each dataset comprised 16 videos, each 
256 pixels × 256 pixels × 21,000 frames for a typical experiment, cor-
responding to the 16 tiles of each image frame. To correct for lateral 
displacements of the brain during image acquisition, we applied a 
rigid image registration algorithm (Turboreg44; http://bigwww.epfl.
ch/thevenaz/turboreg/) to each of the individual video tiles. We chose 
this approach because the application of a single, rigid image regis-
tration algorithm over the entire 2 mm × 2 mm field of view did not 
account for variations in tissue motion between the different image 
tiles. After image registration, for display purposes only we merged 
the 16 motion-corrected video tiles into images or videos of the entire 
field of view (Supplementary Videos 1–3). We performed all further 
analysis on individual tiles.

For display purposes only (Supplementary Video 2, 3), to minimize 
stitching artefacts during video playback we applied to each image 
frame a linear-blending stitching algorithm45,46. We then computation-
ally corrected the movie for lateral displacements of the brain by using 
a piecewise rigid image registration algorithm47. To highlight the details 
for viewers using a typical computer monitor, we saved the processed 
video using a contrast (γ) value of 0.75.

Computational extraction of neural activity traces
To identify individual neurons in the Ca2+ imaging data, we separately 
analysed the 16 individual video tiles in each movie and applied an 
established algorithm for cell sorting based on the successive applica-
tion of principal component and independent component analyses35,48 
(Mosaic software, version 0.99.17; Inscopix). We visually screened the 
resulting set of putative cells and removed any that were clearly not 
neurons (about 50% of candidate cells were removed). For the resulting 
set of cells, we created a corresponding set of truncated spatial filters 
that were localized to the cell bodies by setting to zero all pixels in the 
filter with values <5% of the peak amplitude of the filter. After threshold-
ing, we removed any connected components containing less than 30 
pixels. To obtain traces of neural Ca2+ activity, we applied the truncated 
spatial filters to the (F(t) − F0)/F0 movies (Extended Data Fig. 5), where 
F(t) denotes the time-dependent fluorescence intensity of each pixel 
and F0 is its mean intensity value, time-averaged over the entire movie.

For each cell, we used fast non-negative deconvolution to estimate the 
number of spikes fired in each time bin49. We then temporally down-sam-
pled twofold the resulting traces by summing the estimated numbers 
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of spikes in pairs of adjacent time bins, yielding time bins of 0.276 ms. 
We performed all subsequent analysis on the down-sampled traces.

Moreover, previous work has shown that the activity of mouse visual 
cortical neurons differs substantially between behavioural states of pas-
sive viewing and viewing during active locomotion28,35. To ensure that 
all visual stimulation trials used for analysis were those when the mice 
were passively viewing the video monitor, we excluded from analysis all 
trials during which the mice were running or walking (at speeds greater 
than 0.2 mm s−1). The resulting set of trials retained for data analysis in 
each mouse was 217–332 for each stimulus condition, except for the 
analysis of Extended Data Fig. 9a–c, e, which involved 122–167 trials 
per stimulus condition.

Trial-shuffled datasets
To create trial-shuffled datasets, we randomly permuted the activ-
ity traces of each cell across the full set of trials in which the same 
stimulus was presented, using a different random permutation for 
each individual cell. Thus, the trial-shuffled datasets preserved the 
statistical distributions of each cell’s responses to the two stimuli, 
but any temporally correlated fluctuations in different cells’ stimulus-
evoked responses were scrambled. For analyses of trial-shuffled data, 
we averaged results over 100 different randomly chosen subsets of cells 
and/or stimulation trials, each of which was trial-shuffled with its own 
distinct permutations; exceptions to this statement are the analyses 
of Extended Data Figs. 8c–h, 10a, b, for which we averaged results over 
30 such calculations instead of 100.

Noise correlations in the visual stimulus-evoked responses of 
pairs of cells
To compute correlation coefficients for the noise in the visual responses 
of a pair of neurons, we first integrated the estimated spike count of 
each cell between [0.5 s, 2 s] from the start of visual stimulation. After 
separating the trials for each of the two visual stimuli, we subtracted 
from each trace the mean stimulus-evoked response of the cell and 
then calculated the Pearson correlation coefficient, r, for the resulting 
set of responses from the two cells. We then averaged these noise cor-
relation coefficients over the two stimulus conditions. Figure 2d, e and 
Extended Data Fig. 6e, g show statistical distributions of the resulting 
mean correlation coefficients across many cell pairs.

We compared the statistical distributions of mean correlation coef-
ficients for two different sets of cell pairs, those with positive and those 
with negative covariance of their mean stimulus responses (that is, cell 
pairs with similar or dissimilar visual tuning) (Extended Data Fig. 6e, 
g). To visually highlight the differences between the two distributions 
(Fig. 2e), we also analysed only the most responsive cells, defined as 

those cells with the top 10% values of r r+A
2

B
2 , where rA and rB are 

the mean responses to the two stimuli.

Dimensionality reduction and computation of d′ for neural 
responses to visual stimuli
To estimate how much information the neural activity conveyed about 
the stimulus identity, we used the metric d′, which characterizes how 
readily the distributions of the neural responses to the two different 
sensory stimuli can be distinguished50. The quantity (d′)2 is the dis-
crete analogue of Fisher information30. We evaluated three different 
approaches to computing d′ values for the discrimination of the two 
different visual stimuli (Fig. 3).

In the first approach, which we termed ‘instantaneous decoding’ 
(Fig. 3d, f, Extended Data Figs. 7a, 9a), we chose for analysis a specific 
time bin relative to the onset of visual stimulation. To examine the 
time-dependence of d′, we used the instantaneous decoding approach 
and varied the selected time bin from t = 0 s to t = 2 s relative to the 
start of the trial. The number of dimensions of the neural ensemble 
activity evoked in response to the visual stimulus was No, the number 

of recorded neurons (No ≈ 1,500). Said differently, the set of estimated 
spike traces provided an No-dimensional population vector response 
to each stimulus presentation.

In the second approach, termed ‘cumulative decoding’ (Fig. 3e, g, 
Extended Data Figs. 7b, 9b), we concatenated the responses of each 
neuron over time, from the start of the trial up to a chosen time, t. In 
this case, the dimensionality of the population activity vector was  
No × Nt, where Nt is the number of time bins spanning the interval [0 s, t].

In the third approach, termed ‘integrated decoding’ (Extended Data 
Fig. 7c), we examined the neural ensemble responses integrated over 
the interval from [0 s, 2 s] relative to stimulation onset. In the plots of 
d′ against time as computed by instantaneous decoding, the interval 
[0.5 s, 2 s] is when the d′ values have already reached an approximate pla-
teau (Extended Data Fig. 7e). With integrated decoding, the dimension-
ality of the population vector response was No, the number of recorded 
neurons, as in the instantaneous decoding approach.

In each of the three decoding approaches, we arranged the traces of 
estimated spike counts into three-dimensional data structures (number 
of neurons × number of time bins × number of trials), for each of the 
two visual stimuli (Extended Data Fig. 5b).

A challenge was that calculation of d′ in an No-dimensional popula-
tion vector space would have involved estimation of a No × No noise 
covariance matrix with over a million matrix elements. Direct estima-
tion of the covariance matrix would have been unreliable, because the 
typical number of cells per dataset, No ≈ 1,500, was much larger than 
the typical number of trials P ≈ 600. This issue was even more severe 
in the case of cumulative decoding, for which the population activity 
vector had No × Nt dimensions. However, we found mathematically 
that by reducing the dimensionality of the space used to represent the 
ensemble neural responses, one can reliably estimate eigenvalues for 
the largest eigenvectors of the noise covariance matrix, which govern 
how well the two visual stimuli can be discriminated based on the neural 
responses (Appendix).

Our approach to dimensional reduction relied on a PLS discrimi-
nant analysis51. The PLS analysis enabled us to find the dimensions of 
the population vector space that were most informative about which 
visual stimulus was shown. To determine how many dimensions were 
important for discriminating the two stimuli, we constructed an ortho-
normal projection operator, which projected the No-dimensional (or 
No × Nt dimensional) ensemble neural responses onto a truncated set 
of the NR dimensions identified by the PLS analysis as being the most 
informative about the identity of the visual stimulus.

In the reduced space with NR dimensions, we calculated the (d′)2 value 
of the optimal linear discrimination strategy as:

wμ μ μd( ′ ) = Δ Σ Δ = Δopt
2 T −1 T

opt

where Σ = (Σ + Σ )1
2 A B  the noise covariance matrix averaged across two 

stimulation conditions, μ μ μΔ = −A B is the vector difference between 
the mean ensemble neural responses to the two stimuli and wopt =  
Σ−1 Δμ, which is normal to the optimal linear discrimination hyperplane 
in the response space30.

To determine the optimal value of NR for these computations of d′, 
we split the data into three sets, each comprising a third of all trials. We 
used the first set to identify the PLS dimensions, the second ‘training’ 
set to find the optimal discrimination boundary defined by wopt, and 
the third ‘test’ set to estimate the discrimination performance d′. We 
then varied NR and plotted the resulting d′ values for both the training 
and test datasets (Extended Data Fig. 7a–c).

For all three decoding strategies, we chose NR = 5 for all subsequent 
determinations of d′, because the addition of further dimensions led 
to overfitting, as shown by the increase in discrimination performance 
using the training set and the decline in performance (that is, poorer 
generalization to previously unseen data) using the test set (Extended 
Data Fig. 7a–c).
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After picking NR = 5, for all further computations of d′ we first chose a 

subset of neurons and divided the set of stimulation trials into two groups 
of equal size. We used the first group of trials to conduct the PLS analysis 
and the second group to determine d′ and the eigenvalue spectrum of 
the noise covariance matrix (Extended Data Fig. 5b). To make plots of d′ 
(Fig. 3d–g), we averaged d′ values across 100 different randomly chosen 
subsets of cells, which we analysed independently for every time bin. 
For each subset of cells and every time bin, we randomly split the set of 
visual stimulation trials into two halves, one half for determination of the 
five-dimensional sub-space and decoder training, and the other half for 
decoder testing. In Fig. 3d, e, we kept constant the number of cells per 
subset. In Fig. 3f, g, we varied the number of cells per subset. For instan-
taneous and cumulative decoders in the experiment with visual gratings 
oriented at ± 30°, we used [0.83 s, 1.11 s] and [0 s, 1.11 s] time intervals, 
respectively (Fig. 3f–i). For the experiment with gratings oriented at ± 6°, 
the time intervals used for instantaneous and cumulative decoding were 
respectively [0.70 s, 0.94 s] and [0 s, 0.94 s] (Extended Data Fig. 9a–c).

To determine the asymptotic value of d′ in the limit of many neurons, 
and the number of cells, n1/2, at which (d′)2 attains half of its asymptotic 
value (Fig. 3h, i), we performed a two-parameter fit to the growth of d' 
with increasing numbers of neurons, n: (d′)2 = (sn) / (1 + εn). We deter-
mined the asymptotic value of d′ as (s/ε)1/2 and n1/2 as ε–1.

To verify that linear decoding is a near optimal decoding strategy, we 
confirmed that the noise covariance matrix Σ was stimulus-independent 
in the reduced, five-dimensional space used to calculate d′ (Extended 
Data Fig. 7f). We found that the matrix elements of the noise covari-
ance matrix were highly correlated across the two stimulus conditions 
(r: 0.81 ± 0.16, mean ± s.d., N = 5 mice). This indicates that other more 
complex, nonlinear decoding strategies are unlikely to substantially 
surpass the accuracy of the linear strategy, which we further confirmed 
via an analysis of quadratic decoding (Extended Data Fig. 7h).

We also verified that we had sufficient numbers of visual stimulation 
trials to estimate d′ accurately (Extended Data Fig. 7g). For every mouse, 
d′ approached an asymptote as the number of stimulation trials used 
for analysis was increased; this indicates that beyond a certain point 
the computed value of d′ is insensitive to the number of trials. Moreo-
ver, we developed an analytic theory describing how the accuracy of 
our estimates of d′ depends jointly on the numbers of neurons and 
experimental trials (Extended Data Fig. 10f–k, Appendix).

In addition to our analyses of real data, we also calculated d( ′ )shuffled
2 

(Fig. 3b–g), the optimal linear discrimination performance using trial-
shuffled datasets, which we created by shuffling the responses of each 
cell across stimulation trials of the same type. Owing to this shuffling 
procedure, the off-diagonal elements of ΣA and ΣB become near zero.

We further calculated the performance of a ‘diagonal’ discrimination 
strategy (Fig. 3b, d, e) that was blind to the noise correlations between 
neurons, using the actual (unshuffled) datasets30. For this sub-optimal 
strategy, d( ′ )diagonal

2 determines the separation of two response distri-
butions obtained when the vector of decoding weights w is collinear 
with Δμ (Fig. 3), which we calculated according to:

μ μ
μ μ
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where Σd is the diagonal covariance matrix.

Eigenvalues of the noise covariance matrix
To examine how the statistical structure of neural noise affects the abil-
ity to discriminate neural responses to the two different visual stimuli 
(Fig. 4, Extended Data Fig. 10a–e), we expressed (d′)2 in terms of the 
eigenvalues λα and eigenvectors eα of the noise covariance matrix Σ:
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which can be viewed as a sum of signal-to-noise ratios, one for each 
eigenvector. Clearly, the eigenvectors well aligned with Δμ are the most 
important for discriminating between the two distributions of neural 
responses. Noting that λα equals the noise variance along eα, our data 
revealed noise modes that were well aligned with Δμ and for which the 
variance increased linearly with the number of cells. The combination of 
these two attributes is what leads to the saturation of d′ as the number 
of cells in the ensemble becomes large (Fig. 4). Notably, our analysis 
also uncovered noise modes with much larger variance that are not 
information-limiting, as they do not align well with Δμ.

Calculation of decoding weights
We calculated the vector of optimal linear decoding weights, wopt, in 
the reduced space identified by PLS analysis:

w μ= Σ Δopt
−1

For moving grating visual stimuli oriented at ±30°, wopt was generally 
well aligned to Δμ, indicating that correlation-blind decoding per-
formed near optimally (Figs. 3b, h, 4a, c). This was somewhat less the 
case with moving gratings oriented at ± 6° (Extended Data Fig. 9c). To 
assess the contributions of individual cells to the optimal decoder, we 
estimated the vector of decoding weights in the space of all neurons as:

w
w

w

T
=

‖ ‖decoding

T
opt

opt

where T is a transformation matrix from the high-dimensional popula-
tion vector space, in which the responses of each cell occupy an indi-
vidual dimension, into the five-dimensional space identified by PLS 
analysis. Starting around 0.4 s after the onset of visual stimulation, 
wdecoding was largely time-invariant (Extended Data Fig. 7d).

L2-regularized regression
Because our method for computing d′ via PLS analysis involved a dimen-
sional reduction, we compared the d′ values found with PLS analysis to 
those determined via a different method, L2-regularized regression52, 
which does not depend on dimensional reduction (Extended Data 
Fig. 8a, b). This form of regression uses a regression vector, b, that lies 
within the high-dimensional space of all ensemble neural activity pat-
terns, but its length is limited by the use of an adjustable regularization 
parameter, k. For each subset of neurons considered, we randomly 
chose 90% of the visual stimulation trials for the determination of b. 
We projected the neural responses from the remaining 10% of trials 
onto the dimension determined by b. We then computed d′ with the 
same formula as used with PLS analysis, except with b replacing wopt, 
the optimal linear discrimination hyperplane. Using this approach, we 
found the maximum value of d′ across all values of k within the range [1, 
105]. We averaged these maximal d′ values across 100 different subsets 
of neurons and visual stimulation trials (Extended Data Fig. 8a).

Kullback–Leibler divergence
To assess the extent to which quadratic decoding might surpass the 
optimal linear decoder, we computed the Kullback–Leibler (KL) diver-
gence31 between the two distributions of ensemble neural responses 
to the two different visual stimuli (Extended Data Fig. 7h). The KL 
divergence is a generalization of d′ to arbitrary distributions and, like 
d′, provides an assessment of the statistical differences between two 
distributions. When the two distributions are Gaussians with equal 
covariance matrices, the KL divergence reduces to (d′)2, and linear 
decoding methods suffice to optimally discriminate between the two 
distributions52. By comparison, for two Gaussian distributions with 
different means and covariance matrices, (d′)2 is not equivalent to 
the KL divergence, and quadratic decoding methods are required to 
optimally discriminate between the two distributions52.



To assess the potential benefits of quadratic decoding, we fit multi-
variate Gaussians to the two stimulus response distributions without 
assuming they had equal covariance matrices. We computed the KL 
divergence of the response distribution to stimulus A relative to the 
response distribution to stimulus B according to:
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where ΣA, ΣB are the noise covariance matrices for the two stimulation 
conditions, Δμ = μA − μB is the vector difference between the mean 
ensemble neural responses to the two stimuli, and N is the dimension-
ality of the response distribution (that is, the number of cells in the 
ensemble). The KL divergence saturated as N increased and was gen-
erally not much greater than (d′)2 (Extended Data Fig. 7h). This result 
was consistent with the finding that the noise covariance matrix was 
similar for the two different visual stimuli (Extended Data Fig. 7f) and 
supported the conclusion that quadratic decoding would achieve little 
performance gain beyond that of the optimal linear decoder.

Computational studies of the robustness of empirically 
determined d' values
To verify that our decoding methods were robust to the potential pres-
ence of effects such as common mode fluctuations and multiplicative 
gain modulation that could increase the trial-to-trial variability of neu-
ral responses, we compared the d′ values obtained from PLS analysis 
versus L2-regularized regression using computationally simulated 
datasets of neural population responses (Extended Data Fig. 8c–h).

First, to examine the combined effects of information-limiting cor-
relations and common mode fluctuations (Extended Data Fig. 8c–f), 
we studied a model of the neural ensemble responses in which the noise 
covariance matrix exhibited information-limiting noise correlations via 
a single eigenvector, f, the eigenvalue of which grew linearly with the 
number of cells in the ensemble. In addition to this rank 1 component, 
we included a noise term that was uncorrelated between different cells, 
as well as a common mode fluctuation, yielding a noise covariance 
matrix with the form 

f fσ I ε J εΣ* = + + T2
common

where σ2 = 1 is the amplitude of uncorrelated noise, I is the identity 
matrix, J is a rank 1 matrix of all ones, and f is the information-limiting 
direction, a vector that we chose randomly in each individual simu-
lation from a multi-dimensional Gaussian distribution with unity 
variance in each dimension. The amplitude of information-limiting 
correlations was ε = 0.002, approximately matching the level observed 
in the experimental data. In the model version without common mode 
fluctuations, we set εcommon to zero. In the version with common mode 
fluctuations, we set εcommon = 0.02, ten times the value of ε. We chose 
the difference in the means of the two stimulus response distributions, 
Δμ, to be aligned with f (Fig. 3a) and to have a magnitude of 0.2, so that 
the asymptotic value of d′ for large numbers of cells approximately 
matched that of the data. We compared the decoding results attained 
with and without the presence of common mode fluctuations in the 
neural responses.

Second, to study the possible effects of multiplicative gain modula-
tion (Extended Data Fig. 8g, h), we compared two versions of a model 
in which the responses of the V1 neural population either were or were 
not subject to a multiplicative stochastic gain modulation but were 
otherwise statistically equivalent. We modelled the V1 cell population 
as a set of linear Gabor filters (see Appendix section 5). In the version 
with gain modulation, on each visual stimulation trial we multiplied 
the output of the Gabor filter by a randomly chosen factor, uniformly 
distributed between 50–150%, the value of which was the same for 
every cell but varied from trial to trial.

Estimates of perceptual acuity
We used the empirical determinations of d′ based on visual cortical 
activity and the parameters of the moving grating visual stimuli to 
estimate the minimum perceptible orientation difference between 
the two stimuli. We compared the resulting values to those estimated 
from past behavioural measurements of visual acuity in mice15,34, all 
of which agree well.

One behavioural study assessed how well three individual mice could 
discriminate the orientations of visual gratings34. The best trained of 
these three mice—that is, the mouse that performed the most sessions 
and had the smallest error bars in the threshold determination—had a 
behavioural threshold for orientation discrimination (4.6° ± 0.1°; n = 7 
sessions) close to the value estimated from our neural data (4.8°). The 
second mouse had a 5.7° ± 0.6° threshold (n = 4 sessions), and the third 
mouse had a threshold of 6.9° (n = 1 session).

Another behavioural study examined visual acuity in 13 mice and 
determined the highest visual spatial frequencies the mice could dis-
cern15. To compare our results to this study, we used the fact that our 
grating stimuli had a low spatial frequency (0.04 cycles per degree) to 
approximate the perceptual challenge of estimating the grating ori-
entation as being equivalent to that of estimating the orientation of 
the line of peak illumination intensity over the same viewing diameter. 
In the behavioural study of acuity15, the mice used both eyes to view 
the stimulus, whereas in our studies mice viewed the stimulus with one 
eye, and we recorded neural activity from only one cerebral hemisphere. 
To account for these differences, we posited that neural noise fluctua-
tions should be nearly independent across the visual streams from the 
two eyes, which would boost d′ values by about a factor of √2 over those 
achievable with one eye. However, our determinations of d′ from neu-
ral activity concern the discrimination of two distinct visual stimuli, 
which should also increase d′ values by a factor of about √2 over those 
for a single stimulus viewed with one eye. Given these counterbalanc-
ing factors, we used the d′ values to estimate the highest perceptible 
spatial frequency as f d θ D θ≈ ′( )/ sin , where D is the diameter of the 
visual stimuli (50 deg; Fig. 2b) presented at orientations of ±θ. For the 
grating stimuli oriented at ±30° to vertical, d′ ≈ 6, yielding f ≈ 0.3 cycles 
per degree. For the grating stimuli oriented at ±6°, which are more 
representative of the perceptual threshold, d′ ≈ 2.5 and thus f ≈ 0.48 
cycles per degree, comparable to the value of f ≈ 0.5 cycles per degree 
attained from the behavioural studies at a unity d′ value for the behav-
ioural performance15. We converted values of f into the minimum per-
ceptible orientation difference, 2θmin, between two grating stimuli 
oriented at ±θmin by using θ Df= sin (1/ )min

−1 . This conversion yielded a 
prediction of θmin ≈ 2.3° based on the behavioural studies of mouse 
visual acuity15, as compared to θmin ≈ 2.4° based on our neural data.

Computational simulations of activity in a two-layer neural 
network
To illustrate that cells whose receptive fields overlap exhibit shared 
noise correlations, we simulated a simple two-layer feed-forward net-
work of linear neurons, with 14 input neurons and 3 output neurons 
(Extended Data Fig. 1j–m). The neurons in each layer were equally 
spaced along a linear axis. We defined the strengths of the connec-
tions, wi, between the input and output neurons such that the receptive 
field profiles of the different output neurons were spatially overlap-
ping Gaussian functions of the linear separation between each output 
neuron and the input neurons (Extended Data Fig. 1j).

For the three example cells shown in Extended Data Fig. 1j, the unity-
normalized overlap between their connection weight vectors was:  
w1 · w2 = 0.165, w1 · w3 = 0.022 and w2 · w2 = 0.038. The activity of cells in 
the output layer, r was defined as: ri = [wi · (x + n)], where x is the mean 
activity of the input cells in response to a given stimulus, n is a noise 
term in which each element is Poisson-distributed with mean 0.1, and 
[] denotes rounding to the nearest integer. We simulated the activity 



Article
of this two-layer network across 10,000 time bins and calculated the 
noise correlation coefficients between three different pairs of output 
neurons.

Measurements of fluorescence scattering
To examine the extent of fluorescence scattering between active image 
tiles within one temporal phase of our multiplexed imaging scheme 
(Extended Data Fig. 4d–g), we measured the spatial distribution func-
tion, PS(x, y), governing the probability that a two-photon excited 
fluorescence photon will exit the cortical tissue surface at a point with 
lateral displacement coordinates (x, y) relative to the laser focus. To 
directly observe the distributions PS(x,y) of scattered fluorescence, we 
built a custom optical setup that used the Ti:sapphire laser beam to 
excite fluorescence in fixed cortical tissue slices from adult GCaMP6f-
tTA-dCre mice and imaged the resulting distribution of fluorescence 
signals on a scientific grade CMOS camera (Orca Flash, Hamamatsu). 
Owing to the use of an imaging detector in this setup, the fluorescence 
detection pathway had to be optically corrected for field curvature 
and other image plane distortions, whereas the primary two-photon 
microscope (Fig. 1) had no such requirement. For this reason, our stud-
ies of scattering used an Olympus XLUMPLFLN objective lens (0.95 NA, 
20×), which provided fluorescence images of ~1.2 mm in width. We 
positioned the laser focal spot on one side of the field of view, so as to 
image scattered fluorescence up to about 1.1 mm away from the focal 
spot (Extended Data Fig. 4e, f). We computed the mean PS(x, y) distribu-
tion, averaged over 100 different locations of the laser focus in each 
of 3 different brain slices, at tissue depths up to 600 μm beneath the 
surface of the slice. To determine the mean cross-sectional distribution 
of fluorescence as a function of the radial distance from the laser focus, 
r x y= +2 2 , we also averaged over all accessible polar angles. To com-
pute the probability that a fluorescence photon excited in one active 
tile would scatter into an adjacent active tile, we integrated the circu-
larly symmetric determinations of PS(x, y) over the portion of the image 
area yielding this form of crosstalk (Extended Data Fig. 4g).

Measurements of brain temperature during two-photon brain 
imaging
To perform temperature measurements in the brains of awake mice 
during two-photon imaging (Extended Data Fig. 2f), we surgically 
prepared GCaMP6f-tTA-dCre mice by performing a 5-mm-diameter 
craniotomy following the same procedures as described above. How-
ever, before placement of the cranial window, we inserted a flexible 
200-μm-diameter thermocouple probe53 (IT24P; Physitemp) into the 
brain, 100–200 μm beneath the dura, within ~0.75 mm of the centre of 
the field-of-view of the microscope. The thermocouple resided within 
a 5-mm-long plastic micropipette and extended ~2.5 mm beyond the 
tip of the micropipette.

Using ultraviolet-light curable glue (Loctite, 4305) and dental 
cement, we affixed the micropipette to the cranium at a shallow angle of 
5° relative to the surface of the cranium. We then placed the glass cranial 
window onto the craniotomy and fixed the window in place with dental 
cement. The thermocouple probe was connected to a two-channel 
digital thermometer (CL3515R; Omega), which conveyed digitized 
temperature data (10 Hz sampling rate) to a computer via a USB port. 
We protected the wires of the thermocouple connecting to the digital 
thermometer using a 5-cm-long piece of flexible plastic tubing. We then 
commenced concurrent two-photon imaging (17.5 Hz image frame 
acquisition rate) and temperature recordings (Extended Data Fig. 2f).

Histology
To check whether in vivo two-photon imaging with the 16-beam instru-
ment induced any brain tissue damage, we performed immunohisto-
chemical analyses of post-mortem brain tissue sections (Extended Data 
Fig. 2g–i). We compared positive control tissue sections that we had 

deliberately damaged in vivo with high-power (2,680 mW mm−2) laser 
illumination, negative control tissue sections that received no laser illu-
mination, and experimental tissue sections that had undergone in vivo 
two-photon imaging at the highest intensity levels of laser illumination 
(80 mW mm−2) used in this study for tracking neuronal Ca2+ dynamics.

We euthanized and intracardially perfused the mice in all three 
groups with phosphate buffered saline followed by a 4% solution of 
paraformaldehyde in phosphate buffered saline. To allow adequate 
time for expression of HSP70 following exposure to laser illumination54, 
mice in the positive control and experimental groups were euthanized 
21 h after the end of two-photon imaging. We sliced the fixed brain tis-
sue using a vibratome (Leica VT1000 s) to obtain 100-μM-thick coro-
nal sections. We immunostained the tissue sections with antibodies 
against glial fibrillary activation protein (1:2,500, rabbit anti-GFAP, 
Sigma HPA056030, Lot C115616) and heat shock protein 70 (1:400, 
mouse anti-HSP, Enzo ADI-SPA-810, Clone C92F3A-5, Lot 01031912) 
and then applied fluorophore-conjugated secondary antibodies (goat 
anti-rabbit-Alexa 594 (Invitrogen, A-11012, Lot 1933366) and goat anti-
mouse-Alexa 488 (Invitrogen, A-11001, Lot 56881A)).

We also stained the sections with DAPI (Invitrogen, D1306), which 
labels cell nuclei by binding to DNA. After mounting the brain sections 
on glass slides, we visualized immunofluorescence using an epifluores-
cence macroscope (Leica, MZFL III) equipped with a plan 1.0× objective 
lens, a solid-state white light engine (Lumencor, Sola SM 5-LCR-VA), 
filter sets for imaging red and green fluorophores (Leica 10450756 and 
10450212, respectively) and a CCD camera (QImaging, 01-QIClick-F-
M-12). Brain sections from all three groups were imaged under identical 
optical conditions and with the same camera settings.

Statistical tests
For comparison of the distributions of noise correlation coefficients 
in Fig. 2e and Extended Data Fig. 6g, we used two-tailed, two-sample 
Kolmogorov–Smirnov tests. In Figs. 2f, 3h and Extended Data Fig. 9c we 
used one-tailed Wilcoxon rank-sum tests. Supplementary Table 1 con-
tains all P values associated with the figures and extended data figures.

Instrument availability
With support from the United States National Institute of Neurologi-
cal Disorders and Stroke, we are currently converting the large-scale 
two-photon microscope (Fig. 1, Extended Data Fig. 2) into a research 
facility that is available to other laboratories and formally overseen 
by a steering committee. Researchers interested in this facility should 
please write to its principal investigator (M.J.S.) for more information.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.

Code availability
We used open source software routines for image registration44 (http://
bigwww.epfl.ch/thevenaz/turboreg/) and partial least squares analysis 
(https://www.mathworks.com/matlabcentral/fileexchange/18760-
partial-least-squares-and-discriminant-analysis). Software code for 
extracting individual neurons and their Ca2+ activity traces from Ca2+ 
videos using principal component and then independent compo-
nent analyses35,48 is freely available (https://www.mathworks.com/
matlabcentral/fileexchange/25405-emukamel-cellsort), although for 
convenience we used a commercial version of these routines (Mosaic 
software, version 0.99.17; Inscopix). We wrote all other analysis routines 
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in MATLAB (Mathworks; version 2017b). The primary software code 
used to support the findings of the study is available at Zenodo.org 
(https://zenodo.org/record/3593520#.XgWPu-hKg2w).
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Extended Data Fig. 1 | The discriminability of two sensory stimuli based on 
the activity patterns of two or more cells depends on the statistical 
relationship between the mean responses of the cells and their noise 
correlations, which in turn depends on visual neural circuitry.  
a–f, Schematics of the distributions of responses by two cells to two distinct 
stimuli in six different cases. Cyan dots indicate joint responses of the cell pair 
to stimulus 1; orange dots indicate responses to stimulus 2. Ellipses convey the 
shapes of the statistical distributions of the responses to each stimulus. Three 
types of noise correlation are depicted. In a and d, the two cells have 
statistically independent noise correlations. In b and e, the cells share 
positively correlated noise fluctuations. In c and f, the cells share negatively 
correlated noise fluctuations. In all six cases, dashed lines indicate optimal 
linear boundaries for stimulus discrimination. The information in a–f is based 
on similar plots published previously5,11,30. a–c, When both neurons have similar 
stimulus-response properties (for example, as schematized, when both cells 
have a smaller mean response to stimulus 1 than stimulus 2), positively 
correlated noise fluctuations (b) increase the overlap between the two 
response distributions and thereby impair stimulus discrimination, whereas 
negatively correlated noise fluctuations (c) improve stimulus discrimination as 
compared to the case with independent noise fluctuations (a). d–f, When both 
neurons have opposite stimulus tuning (for example, as schematized, when 
neuron 1 responds more vigorously to stimulus 1 and neuron 2 responds more 
vigorously to stimulus 2), positively correlated noise fluctuations (e) decrease 
the overlap between the two response distributions as compared to the case 
with independent noise fluctuations (d) and thereby improve stimulus 
discrimination, whereas negatively correlated noise fluctuations (f) impair 
stimulus discrimination by increasing the overlap of the two response 
distributions. g, Cells in visual cortical areas, denoted by red circles, integrate 
signals from earlier stages of the visual pathway, as schematized by the input 
connections to two example cortical neurons. Thus, as visual information 
propagates through neural circuitry, noise fluctuations become correlated 
between cells with similar receptive fields, leading to an upper bound on the 
amount of information that a neural ensemble can encode. h, Example 
receptive fields for cells in g. Cells in early stages of the visual processing 
pathway have relatively simple receptive fields. Integration of their activity 
patterns leads to more complex visual receptive fields in downstream visual 
areas. Dashed boxes enclose receptive fields (right) for the two example cells 
marked in g, as well as the receptive fields of cells providing visual inputs (left). 
i, A network’s pattern of synaptic connectivity constrains the dimensionality of 
the activity in downstream visual circuits12. Left, in the early layers of the visual 
pathway, the dimensionality of ensemble activity is about the same order of 
magnitude as the number of photoreceptors. In downstream visual areas, due 
to the extraction of visual features, neural activity is constrained to a manifold 

of lower dimensionality (indicated by the red-shaded manifold in the space of 
all possible photoreceptor inputs). This manifold is determined by the set of 
receptive fields and hence the visual features that the downstream visual area 
detects. Grey ellipses (left) depict the distributions of photoreceptor 
responses to two distinct visual stimuli; after propagating through the visual 
circuitry these distributions are confined to the lower-dimensional manifold 
(red ellipses). Right, for a family of visual stimuli parameterized by a single 
variable, the mean neural ensemble responses lie along a corresponding tuning 
curve. Noise in the input circuitry propagates to downstream areas and leads to 
noise fluctuations in downstream neurons that are statistically correlated for 
cells with similar receptive fields. This, in turn, implies that the magnitude of 
noise fluctuations along the neural tuning curve becomes proportional to the 
number of cells in a neural ensemble and indistinguishable from the encoded 
visual signals, which also increase in proportion to the number of cells. This 
proportional growth of noise and signal ultimately limits the ability to 
discriminate two visual stimuli. Thus, for neural ensembles with more than a 
certain number of cells, the encoded information reaches an upper bound.  
j, We simulated a two-layer, linear feedforward neural network, to illustrate that 
information-limiting correlations are intrinsic to feed-forward neural networks 
with overlapping receptive fields12. Top, for three example output cells, the plot 
shows the synaptic weights of the inputs from cells in the first layer of the 
network. Bottom, diagram of connections between the two layers of the 
network. Symbols are defined as follows: x is the mean activity of cells in the 
first layer in response to a given stimulus; n is the noise in the activity of the 
input cells; r is the activity of the output cells. k, Digitized plots of spike counts 
for simulated activity in the network of j, for the two example input cells (yellow 
and black) and three example output cells (red, green, blue). The noise traces 
for the input cells came from independent Poisson random processes. External 
inputs to the network selectively drove either the yellow or the black cell, but 
owing to the presence of noise the two cells are occasionally active 
concurrently. l, Frequency plots of pairwise activity levels (rounded to the 
nearest integer) for pairs of output cells in the network of j. Yellow and black 
circles denote which of the two corresponding input cells received external 
input. The diameter of each circle denotes the number of time bins with a given 
pair of activity levels in the two cells. Σ values are noise correlation coefficients 
and are larger for pairs of output cells with greater overlap in their receptive 
fields. m, Plot of the distribution of activity responses in the output cell layer, 
for the three example cells coloured green, red and blue in j. Data points are 
coloured either yellow or black, to indicate whether the output activity is a 
response to stimulation of the yellow- or black-coloured cell in the input layer. 
The red plane denotes the optimal linear classification boundary between the 
two stimulation conditions.
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Extended Data Fig. 2 | Spatiotemporal multiplexing of the illumination 
beams permits imaging of large fields of view at fast frame rates without 
thermal damage to brain tissue. a, Computer-assisted design of the 
mechanical layout of the two-photon microscope. Scale bar, 0.5 m. b, In the 
pixel multiplexing mode of imaging, each of the 16 beams are assigned to one 
of four different temporal phases within each cycle of the pixel clock (Extended 
Data Fig. 3b). Alternatively, in the line-multiplexing mode of imaging, only 8 of 
the 16 beam paths are used (Methods). In neither imaging mode are 
neighbouring beams ever active concurrently (Extended Data Fig. 3c), 
minimizing fluorescence scattering between active image tiles and allowing 
scattering into inactive image tiles to be corrected computationally (Extended 
Data Figs. 3d, e, 4a–g). c, To switch between the different sets of active beams, 
square-wave electronic signals control a set of three electro-optic modulators 
(EOMs). d, A Ti:sapphire laser provides ultrashort-pulsed infrared illumination. 
A half-wave (λ/2) plate and a polarizing beam-splitter enable power control. 
Three pairs of EOMs and polarizing beam-splitters direct the light into one of 
four main optical paths, with only one path illuminated during each of the four 
multiplexing phases. In each of these four main paths, three 50:50 beam-
splitters create four beams of equal intensity, yielding up to 16 total beams but 
with only four on at any instant. A chopper blocks all light during the 
turnaround portion of the galvanometer scanning cycle. e, Seventy-five 
example fluorescence traces of Ca2+ activity in layer 2/3 pyramidal cells of an 
awake mouse. f, Maintaining brain temperature within physiological ranges 
during in vivo two-photon imaging requires a proper balance between heat loss 
through the cranial window and heating induced by the laser illumination53,55. 
To directly verify that our cranial window preparation and imaging conditions 
properly balanced these two opposing effects, we measured brain temperature 
during two-photon imaging with the 16-beam microscope. For these studies we 
used an implanted thermocouple53 and either the highest (blue trace) or lowest 
(green trace) time-averaged laser illumination intensity used for Ca2+ imaging 
elsewhere in this study (Methods). Consistent with previous work, before laser 
illumination commenced the brain temperature was about 9 °C below normal 
mouse body temperature55, a state that is considered to be neuroprotective56. 
By about 100 s after the start of imaging, brain temperatures attained steady-
state values within the physiological range of C57BL/6 mice57 (grey shaded 
region; 36.3 °C–38.7 °C). Each trace is an average of three bouts of imaging for 
each of three separate mice. Coloured shading denotes the s.d. across the 9 
individual measurements acquired at each illumination intensity.  
g–i, Fluorescence immunohistochemical analyses of tissue damage markers. 
To check whether in vivo imaging of brain tissue with the 16-beam instrument 

(4 mm2 field of view) induced any tissue damage, we immunostained post-
mortem brain tissue sections using antibodies to two different damage 
markers, glial fibrillary activation protein (GFAP) and heat shock protein 70 
(HSP70), previously identified as indicators of laser-induced tissue damage53. 
We also stained the sections with DAPI, which labels cell nuclei. We compared 
positive control tissue sections (g) that we had deliberately damaged in vivo 
with high-power (2,680 mW mm−2) laser illumination, negative control sections 
(h) that received no laser illumination, and experimental tissue sections (i) that 
had undergone in vivo two-photon imaging at the highest level of laser 
illumination (80 mW mm−2) used in this study for tracking Ca2+ dynamics in 
neocortical layer 2/3 pyramidal neurons. Together, these analyses verified the 
functionality of the antibodies and revealed no signs of tissue damage from 
two-photon imaging. To image neurons in cortical layers deeper than layer 2/3, 
users have several options for doing so without delivering excess heat to the 
brain (Supplementary Video 3, Supplementary Note). Scale bars, 500 μm. 
Results shown are representative of those from 8 cerebral hemispheres of 4 
different mice. j, k, Comparisons between recent large-scale two-photon 
microscopes24,26. The performance of a laser-scanning microscope closely 
relates to four main parameters: the scanner speed, image-frame acquisition 
rate, field of view, and pixel size (Supplementary Note). For microscopes that 
use a single laser beam to sweep in two dimensions across the field of view, 
these parameters obey the relationship FOV = d × v × f −1, where FOV is the field-
of-view area, d is the spacing between adjacent image lines (or equivalently the 
pixel width along the slow-axis of laser-scanning), v is the speed at which the 
beam is swept across the specimen by the fast-axis scanner, and f is the image-
frame acquisition rate. By comparison, our approach using four active beams 
leads to an expression for the maximal field of view, FOV = 4 × d × v × f −1. These 
relationships enable performance comparisons with other recently published 
large-scale two-photon microscopes24,26. To illustrate, j shows a plot of the 
image-frame acquisition rate against the field-of-view area, given a line spacing 
of d = 1.15 μm. k shows how the image-frame acquisition rate depends on d for a 
4 mm2 field of view. Solid red circles denote the performance of our 
microscope in its line-multiplexing imaging mode using an 8-kHz resonant 
galvanometer (Methods). Black data points denote performance options of 
another large two-photon microscope, which uses pair of laser beams with 
temporally interleaved pulses24, as calculated on the basis of its published 
capabilities. Blue data points and associated blue dashed lines show 
performance options for a third large-scale microscope26, as calculated on the 
basis of its published capabilities.
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Extended Data Fig. 3 | Data acquisition and post-processing for two-photon 
imaging with 16 time-multiplexed excitation beams. a, Block diagram of the 
electronics for data acquisition and instrument control. PMT, photomultiplier 
tube; Pre-amp, pre-amplifier; ADC, analogue-to-digital converter; FPGA, field-
programmable gate array; EOM, electro-optic modulator. b, Computer 
simulation of signal sampling in different stages of the pipeline in a. The ADC 
samples the analogue, pre-amplified and low-pass filtered signals (blue) from 
one of the PMTs at a rate of 5 × 107 samples per second. In each of the four 
temporal phases, the FPGA sums the digitized signals (red) from the ADC to 
yield the fluorescence intensity values of each image pixel (grey). c, Raw 
fluorescence images for each of the four excitation phases, acquired in an 
awake mouse expressing GCaMP6f in layer 2/3 cortical pyramidal cells and 
averaged over 100 frames (7.23 Hz acquisition rate). In each of the four phases, 
a distinct set of four PMTs detects most of the fluorescence emissions, creating 

four active image tiles within the 4 × 4 array. (Each of the four PMTs corresponds 
to one of the four laser beams that is active in that phase.) To illustrate, the four 
active tiles within the phase I image are shaded with a different colour (shaded 
large square regions). However, close to the boundaries of each active tile, 
some fluorescence photons are detected by the other 12 PMTs. During signal 
unmixing these photons are reassigned to corresponding pixels in the correct 
adjacent active image tile. For instance, within the phase I image photons 
detected in the areas outlined in colour (rectangles and small squares) are 
reassigned to the colour-corresponding active tiles. d, An image compiling the 
four sets of four active image tiles from the panels in c. e, During signal un-
mixing, we re-assign scattered fluorescence photons to their correct pixels of 
origin, using the method shown in c, by reassigning the boundary regions of 
128 pixels width. The resulting image is displayed with the mean contrast 
equalized across tiles. Scale bars: c, e, 500 μm.
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Extended Data Fig. 4 | Crosstalk un-mixing procedure for reconstructing 
the full field-of-view enables accurate estimation of neural activity traces.  
a, To quantify the extent of fluorescence scattering across image tiles, we 
acquired images in two distinct configurations that enabled us to distinguish 
fluorescence signals from any crosstalk due to fluorescence scattering across 
image tiles. Using an awake mouse expressing GCaMP6f in layer 2/3 cortical 
pyramidal cells, we first imaged with only one active laser beam and its 
corresponding PMT; the other 15 beams were blocked (configuration 1). In this 
configuration, there is no fluorescence scattering into the active image tile 
from the other 15 tiles, only the signals from the active tile. In configuration 2, 
we blocked the beam that had previously been active, unblocked the other 15 
beams, operated the microscope with the normal multiplexing approach, and 
again sampled signals from all 16 PMTs. To estimate the extent of scattering 
into the tile with the blocked beam, we applied the computational un-mixing 
procedure to the raw image data. To estimate how much scattered 
fluorescence affects cell sorting, we first extracted individual cells and their 
Ca2+ activity traces from the first dataset, attained in configuration 1 without 
crosstalk. We then summed the images, frame by frame, from the two datasets, 
to create a mock dataset comprising unscattered plus scattered fluorescence 
signals, from which we again computationally extracted cells and their activity 
traces. This enabled a direct comparison between two datasets containing the 
exact same patterns of neural activity, with and without fluorescence 
scattering from other image tiles. b, Activity traces for four example cells, 
enabling comparisons of the Ca2+ activity traces (top), ΔF(t)/F0, and the 
resulting traces of the estimated spike counts (bottom), between the datasets 
with (red traces) and without (black traces) inter-tile scattering. The traces with 
and without inter-tile scattered fluorescence signals are nearly 
indistinguishable by eye. c, Histogram of the ratio of estimated spikes for the 
two datasets constructed in a, for all time bins (0.14 s per time bin) with an 
estimated spike count greater than 0.5. The mean ratio is 1.0 ± 0.06 
(mean ± s.d.; N = 31 cells). Total number of time bins, 5,865. d–g, Studies of 
fluorescence scattering between the active image tiles in one temporal phase 

(Extended Data Fig. 2b) of the multiplexing scheme used for two-photon 
imaging. Throughout the paper, we corrected computationally for 
fluorescence scattering from active to inactive image tiles within each 
temporal phase of imaging (Extended Data Fig. 3c, Methods). This approach 
neglects the small amount of fluorescence scattering from active tiles to other 
active tiles, which in principle could also be computationally corrected using a 
more sophisticated method than the one we adopted. Hence, we examined 
experimentally the validity of our computational approach and the extent to 
which scattering between active tiles can be justifiably neglected. The 
amplitude of scattering between active tiles (d) varies with the location of each 
laser beam and its proximity to a tile boundary. We used fixed cortical tissue 
slices from adult GCaMP6f-tTA-dCre mice to measure the amplitude of such 
scattering effects when imaging at different depths within brain tissue. An 
image (e) of the spatial distribution of two-photon fluorescence excited  
500 μm deep within a tissue slice shows that a majority of scattered 
fluorescence photons exits the brain tissue relatively near to the laser focus. By 
averaging over 100 different laser foci positions in each of 3 different brain 
slices, we determined the mean cross-sectional spatial profiles (f) of scattered 
fluorescence excited at different depths in tissue, as a function of the lateral 
displacement, x, from the laser focus. Profiles are shown normalized to unity at 
x = 0. The inset of f shows a magnified view of these cross-sectional profiles for 
x ∈ [–1,000 μm, –500 μm], that is, up to 1 mm away from the laser focus. We used 
these empirically determined scattering profiles to compute the probability 
(mean ± s.d.; N = 300 laser focus positions) (g) that a fluorescence photon 
originating in one active image tile would scatter into an adjacent active tile. 
Even when the laser focus is on the boundary of an image tile, this probability 
remains less than 0.02 for all tissue depths ≤ 600 μm. For our studies of layer 
2/3 cortical pyramidal cells in live mice, the probability of a fluorescence 
photon scattering between active tiles is less than 0.01. In conclusion, 
computational corrections for fluorescence scattering that account solely for 
scattering from active to inactive tiles—and neglect scattering between 
different active tiles—are empirically well justified.
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Extended Data Fig. 5 | Pipeline of offline data processing and procedures for 
reducing the dimensionality of the neural ensemble activity data and 
calculating the decoding accuracy. a, Pipeline of the offline procedures we 
applied to the acquired fluorescence signals to attain traces of neural activity. 
Steps coloured purple involve algorithms that use raw or processed image 
data. Steps coloured yellow involve algorithms that use cells’ spatial filters as 
their input arguments. Steps coloured green involve algorithms that use cells’ 
activity traces as their inputs. Purple steps, starting from the raw 
photocurrents from each of the 16 PMTs (sampled at 50 MHz and assigned to 
individual image pixels corresponding to a 400-ns laser dwell time), we 
normalized the photocurrent signals by the gain of each individual PMT, to 
equalize the image intensity scale across the entire image. We then un-mixed 
scattered fluorescence, as shown in Extended Data Fig. 3, and applied an image 
registration routine (TurboReg44) to the videos from the individual image tiles. 
To highlight Ca2+ transients against baseline fluctuations, we used the fact that 
the two-photon fluorescence increases of GCaMP6 during Ca2+ transients are 
many times the s.d. of background noise. Thus, we converted the fluorescence 
trace of each pixel, F(t), into a trace of z-scores, ΔF(t)/σ. Here ΔF(t) = F(t) – F0 
denotes the deviation of the pixel from its mean value, F0, and σ denotes the 
background noise of the pixel, which we estimated by taking the minimum of all 
standard deviation values calculated within a sliding 10-s window35. After 
transforming the movie data into this ΔF(t)/σ form, we identified neural cell 
bodies and processes using an established cell-sorting algorithm that 
sequentially applies principal and independent component analyses (PCA and 
ICA) to extract the spatial filters and time traces of individual cells48. Yellow 
steps, for all spatial filters corresponding to individual cell bodies, we 

thresholded the filters at 5% of each filter’s maximum intensity and set to zero 
any filter components with non-zero weights outside the soma. To attain neural 
activity traces, we then reapplied the set of resulting filters to the ΔF(t)/F0 
movies. Green steps, to estimate the most likely number of spikes fired by each 
cell in each time bin, we applied a fast non-negative deconvolution algorithm to 
the ΔF/F0 trace of the cell49. For each neuron, we down-sampled (2×) the activity 
traces to time bins of 0.275 s by averaging the values within adjacent time bins. 
To make comparisons across similar behavioural states, we removed all trials 
during which the mouse was moving. b, Neural responses for each visual 
stimulus (A and B) are represented as matrices of size Nneurons × Ntrials × Ntime bins. To 
calculate the accuracy of stimulus discrimination, we first randomly chose a 
subset of neurons from the dataset. For decoding using the ‘instantaneous’ 
strategy (Fig. 3, Extended Data Figs. 7–10), we then chose a specific time bin, 
whereas for the ‘cumulative’ decoding strategy we treated all the different time 
bins up to a specific time, t, as independent dimensions of the population 
activity vector. We then split the trials in half, into a training set and a test set, 
each with equal numbers of trials with the A and B stimuli. We took the neural 
activity traces in the training set and normalized them by the s.d. of the cell’s 
activity about its mean, to create to a set of z-score traces. We then performed 
PLS analysis to identify a low-dimensional basis that well captured the 
separation between the neural responses to the two sensory stimuli. Using the 
activity data in the test set, we applied the same normalization and dimensional 
reduction procedures and values as for the training set. We used the resulting 
distributions of responses to calculate d′ values and the eigenvectors of the 
noise covariance matrix. For each mouse we repeated this entire procedure for 
100 different randomly chosen subsets of neurons.
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Extended Data Fig. 6 | Distributions of pairwise noise correlation 
coefficients do not differ significantly between pyramidal neurons in area 
V1 and higher-order visual areas. a, Anatomical maps of visual cortical 
neurons that responded to each of the two stimuli. For these maps (but for no 
other analyses in the paper), we denoted a cell as responsive to one of the 
stimuli if, in at least one time bin during the 2-s-stimulation period (0.275 s per 
bin), the difference between the cell’s mean response and its mean activity 
trace during the inter-trial intervals was more than twice the sum of the s.e.m. 
values for these two traces. Cells that responded to stimulus A only are shown 
red, those that responded only to stimulus B only are shown blue, those that 
responded to both stimuli are shown purple. b, Mean Ca2+ responses (ΔF/F) of 
25 example neurons to the two different moving grating stimuli, oriented 
at ± 30°. Ca2+ activity traces are shown coloured during the stimulation period 
(marked with light grey shading) and black otherwise. Coloured shading about 
each trace denotes the s.e.m. over 217 trials of each type. The inset shows a 
schematic of the two stimuli, which appeared for 2 s per trial and were 
presented in random order. c, d, Histograms of the estimated mean spiking 
rates of individuals neurons during visual stimulation (c) and the absolute 
values of the differential responses of the individual neurons to the two visual 
stimuli, |RA – RB| / (RA + RB) (d), where RA and RB denote the mean responses of a 
cell to stimuli A and B, respectively. The distributions of cells’ activity rates and 
preferences for one stimulus over the other were consistent with previous 
studies of rodent visual cortical neurons28,29,38,58,59. Data shown are for N = 8,029 
individual cells from N = 5 mice. Error bars are s.d. as estimated on the basis of 
counting errors. e, Histogram of noise correlation coefficients, r, between 
pairs of layer 2/3 pyramidal neurons, computed as in Fig. 2d, for V1 cell pairs 
(dashed lines) and cells pairs in higher-order visual areas (solid lines). The 
histograms show mean values across the two different visual stimuli for both 
the real neural activity traces, and for trial-shuffled data in which each cell’s 

responses to each stimulus presentation were randomly permuted across the 
set of all presentations of the same stimulus. r values were computed on the 
basis of cells’ responses integrated over t = [0.5 s, 2 s] from the start of each 
trial. Histogram bin, 0.01. (N = 1,331,109 V1 cell pairs from 5 mice; N = 2,428,437 
cell pairs from higher-order visual areas in 5 mice). f, Box-and-whisker plots of 
the mean and FWHM values of the distributions in e (real data only). Both 
statistical metrics are similar for the two classes of visual cortical neurons. 
Open circles denote individual data points for N = 5 mice. g, h, Histograms (g) 
and cumulative probability distributions (h) of noise correlation coefficients 
for all cell pairs (based on all recorded V1 and higher-order visual cortical 
neurons) with similar or differently tuned mean evoked responses to the two 
visual stimuli. Unlike Fig. 2e, which shows these distributions for only the most 
active cells (the highest decile), here the distributions include all cell pairs with 
either positively (red curves) or negatively (blue curves) correlated mean 
responses to the two stimuli. Within these two groups of cell pairs, we 
computed the noise correlation coefficient, r, for each cell pair. Owing to the 
extremely large number of cell pairs, the two distributions of r values differed 
significantly (***P < 10−13 for all 5 individual mice; two-tailed Kolmogorov–
Smirnov test; 3,482,186 positively correlated cell pairs in total; 3,464,094 
negatively correlated pairs), even though the effect size was tiny and the two 
distributions were nearly identical. This result shows the difficulty of detecting 
information-limiting correlations by measuring pairwise noise correlations, 
because the variance in the individual r values is much greater than the 
difference between the mean values of the two distributions. i, Box-and-
whisker plots of the mean values of the correlation coefficients in g, h. Open 
circles mark individual data points for N = 5 mice. b–i are based on 217–332 trials 
per stimulus condition in each of 5 mice. In f, i, boxes cover the middle 50% of 
values, horizontal lines denote medians, and whiskers span the full range of the 
data.
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Extended Data Fig. 7 | Temporal integration of neural activity improves 
decoding performance, but quadratic and linear decoding yield identical 
biological conclusions. a–c, To identify how many PLS dimensions were 
needed to determine d′ accurately, we divided data from each of 5 mice into 
three equally sized portions. We performed PLS analysis using trials in the first 
third. Onto the PLS dimensions thereby identified, we projected the neural 
ensemble activity in the second third of the data (training data). We retained 
only the first NR dimensions of this projection and computed d′ in the reduced 
space (magenta data points) by identifying a hyperplane for optimal stimulus 
discrimination. Finally, we applied this discrimination strategy to the 
remaining third of the data (test data) and again calculated d′ (grey points). 
Plots show mean values of d′ as a function of NR for the interval [0.83 s, 1.11 s] 
from stimulus onset (N = 5 mice; error bars denote s.d. across 100 different 
subsets of 1,000 neurons per mouse). We normalized d′ values to that found for 
NR = 5 on the test dataset. For NR > 5, discrimination performance declines 
owing to overfitting for all discrimination strategies: instantaneous (a), 
cumulative (b) and integrated (c). Hence, throughout the rest of the study we 
used NR = 5 for all calculations of d′. d, Pearson correlation coefficients between 
the optimal linear decoding weights attained using instantaneous decoding at 
different time bins after the onset of grating stimuli (±30° orientations). These 
weights were highly correlated for different time bins, especially across the 
interval [0.5 s, 2 s], during which d′ reaches a plateau. Further, optimal decoders 
for each time bin yielded nearly equivalent decoding performance when 
applied to data from other time bins. For instance, the optimal decoder for the 
fourth time bin (t = 0.97 s), when applied to any other of the last five time bins, 
yielded a performance within less than 2% of that of the optimal instantaneous 
decoder in all mice. When applied to the first and second time bins, the decoder 
from the fourth time bin yielded decoding performances that were, 
respectively, 83 ± 11% and 90 ± 3% (mean ± s.d.; N = 5 mice; 217–232 trials per 
stimulus) of that of the optimal decoders. e, Plots of d′ versus time after 
stimulus onset, for instantaneous and cumulative decoding strategies (Fig. 3). 
For each mouse that viewed gratings oriented at ±30°, we chose 100 random 
subsets of 1,000 cells and normalized d′ values by those obtained using a time-
integrated decoding strategy, which involved optimal linear discrimination 
over one interval, [0.28 s, 1.94 s], covering most of the visual stimulation 
period. Green traces, mean d′ values for individual mice using a time bin of 275 
ms. Error bars, s.d. across 5 mice. f, In the five-dimensional space used after 
truncating ensemble neural responses to the five leading PLS dimensions, the 
distributions of noise in the responses to the two stimuli were highly similar. 
Specifically, non-diagonal elements, Σij, of the noise covariance matrices for 
the two stimulus conditions were highly correlated (r: 0.81 ± 0.16; mean ± s.d.; 

N = 5 mice), as computed for the interval [0.83 s, 1.11 s] after stimulus onset. This 
similarity argues that a linear discrimination strategy to classify the two sets of 
ensemble neural responses is near optimal, as confirmed in h. Values of Σij are 
plotted as mean ± s.d., computed across 100 different randomly chosen 
subsets of 1,000 neurons per mouse. g, Using optimal linear decoding,  
d′ values saturated as the number of trials analysed increased. Colours denote 
individual mice. Data points were calculated for the interval [0.83 s, 1.11 s] after 
stimulus onset. Error bars, s.d. across 100 different randomly chosen subsets 
of 1,000 cells per mouse and stimulation trials. h, To check whether our results 
depended on our use of linear decoding, we tested whether quadratic decoding 
might yield different conclusions. We examined the KL divergence31, a 
generalization of (d′)2 that makes no assumption about the statistical 
distributions under consideration. We computed the KL divergence, which 
equals (d′)2 for linear decoders, by using Gaussian approximations to the 
distributions of ensemble neural responses to the two different stimuli, and we 
plotted the results as a function of the number of cells, n, in the ensemble. First, 
to recapitulate our determinations of (d′)2 (magenta data points), we computed 
the KL divergence under the assumption the two different response 
distributions had distinct means but identical noise covariance matrices, 
which we estimated as the mean noise covariance matrix averaged over the two 
different stimulus conditions. This is equivalent to computing (d′)2. Next, we 
relaxed the assumption that the two noise covariance matrices were equal and 
computed the KL divergence between the distributions of neural responses to 
stimulus B relative to those to stimulus A (blue points), and vice versa (red 
points) (Methods). For all mice, KL divergence values saturated with increasing 
n and, except in one mouse, were not much larger than (d′)2 values. Thus, 
quadratic decoders (which are optimal for discriminating two Gaussian 
distributions with different means and covariances) will yield the same basic 
conclusions as linear decoders (which are optimal for discriminating two 
Gaussian distributions with the same covariance matrix). Data points and error 
bars denote mean ± s.d. values computed in each mouse across 50 different 
randomly chosen subsets of cells and assignments of visual stimulation trials 
to decoder training and testing (Extended Data Fig. 5b). i, Mean neural 
responses, averaged across all cells, to stimuli A (top) and B (bottom) for the 
first and second halves of the experimental trials in each mouse. Error bars, s.d. 
across the set of trials. j, d′ values computed for each mouse using 
instantaneous decoders trained on the first half of the trials and tested on the 
second half (x axis), plotted with d′ values for an instantaneous decoder trained 
on the second half of the trials and tested on the first half (y axis). a–j are based 
on 217–332 trials per stimulus condition in each of 5 mice.
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Extended Data Fig. 8 | PLS-based decoding methods are robust to 
multiplicative gain modulation and common mode fluctuations in the 
neural ensemble dynamics and yield identical conclusions to regularized 
regression. a, b, To test whether PLS analysis and dimensionality reduction 
might lead to underestimates of d′, we compared d′ values determined using an 
L2-regularized regression (L2RR) performed in the full space of neural 
responses (a) to those found by PLS analysis (b). The two methods yielded 
similar estimates of d′, which both saturated with increasing numbers of 
neurons. Plots show d′ values (mean ± s.d.) for neural responses within [0.83 s, 
1.11 s] after stimulus onset, computed across 100 different randomly chosen 
subsets of neurons and visual stimulation trials (Extended Data Fig. 5b). For PLS 
analyses, we used half of the trials in each subset for decoder training and the 
other half for testing. For L2RR we used 90% of the trials in each subset to 
determine the regression vector and the other 10% to determine d′. We varied 
the regularization parameter, k, within [1, 105] and used the maximum d′ value 
so obtained, as determined independently for each mouse, subset of neurons, 
and subset of trials (217–332 trials per stimulus condition in each of 5 mice).  
c–h, The conclusions of our study depend on comparisons of decoding 
performance between real and trial-shuffled datasets. Thus, we checked 
whether our PLS-based decoding methods would robustly detect information-
limiting correlations in models in which such correlations were present but 
weak; avoid reporting information-limiting correlations in models lacking such 
correlations; and be robust to the potential presence of other strong sources of 
neural trial-to-trial variability—such as common mode fluctuations and 
multiplicative gain modulation—even when they make an order-of-magnitude 
greater contribution to neural variability than the information-limiting noise 
fluctuations. We studied these issues using two different computational 
models (Methods). For both models we plotted empirically determined (d′)2 
values as a function of the number of neurons in the ensemble. We compared 
determinations of (d′)2 using PLS-based decoding and those made using L2RR 
to the actual ground truth values of (d′)2 in each model. In each panel, the top 
and bottom plots show results for unshuffled and trial-shuffled datasets, 
respectively. Data points and error bars denote mean ± s.d. values across 30 
different simulations. To examine the combined effects of information-
limiting noise correlations and common mode fluctuations (c–f) we studied a 
model of neural ensemble responses in which the noise covariance matrix 
exhibited information-limiting noise correlations via a single eigenvector f, the 
eigenvalue of which grew linearly with the number of cells in the ensemble. In 
addition to this rank 1 component, we included a noise term that was 
uncorrelated between different cells, as well as a common mode fluctuation, 
yielding a noise covariance matrix with the form Σ* = σ2I + εcommonJ + ε fT f, where 
σ2 = 1 is the amplitude of uncorrelated noise, I is the identity matrix, J is a rank 1 
matrix of all ones, reflecting a common mode fluctuation, and f is the 

information-limiting direction, a vector that we chose randomly in each 
individual simulation from a multi-dimensional Gaussian distribution with 
unity variance in each dimension. The amplitude of information-limiting 
correlations was ε = 0.002, approximately matching the level observed in the 
experimental data. We chose the difference in the means of the two stimulus 
response distributions, Δμ, to be aligned with f (Fig. 3a) and to have a 
magnitude of 0.2 so that the asymptotic value of d′ for large numbers of cells 
approximately matched that of the data. We compared decoding results 
attained with and without the presence of the common mode fluctuations in 
the neural responses. In the version of the model without common mode 
fluctuations, we set εcommon to zero. In this case (c) both PLS- and L2RR-based 
decoders correctly detected the saturation of information in the real data but 
not in trial-shuffled datasets. (See Extended Data Fig. 10h, k for theoretical 
results showing how the accuracy of d′ estimates from PLS analysis depends on 
the numbers of neurons and experimental trials in this particular model.) To 
verify that our methods would not incorrectly report an information saturation 
when it was in fact absent, we next set ε = 0 and confirmed that in the absence of 
information-limiting noise correlations (d), neither decoder detected a 
saturation of information in the real or shuffled data. In the version of the 
model with common mode fluctuations, we set εcommon = 0.02, ten times the 
value of ε = 0.002. In this case (e), both PLS- and L2RR-based decoders correctly 
detected the information saturation in the real but not in the shuffled data. To 
verify that common mode fluctuations alone cannot induce an illusory 
saturation of information (f), we set ε = 0 while maintaining εcommon = 0.02 and 
confirmed that neither PLS- nor L2RR-based decoders reported an illusory 
information saturation. Overall, these results indicate that our methods 
accurately detect the presence of weak information-limiting correlations 
buried within common mode noise that can be an order of magnitude larger, 
without falsely detecting information-limiting correlations when they are 
absent. To study the possible effects of multiplicative gain modulation (g, h), 
we compared two versions of a model in which the responses of the V1 neural 
population either were or were not subject to a multiplicative stochastic gain 
modulation but were otherwise statistically equivalent. We modelled the V1 
cell population as a set of Gabor filters (see Appendix section 5). In the model 
version with gain modulation, on each visual stimulation trial we multiplied the 
output of each Gabor filter by a randomly chosen factor, uniformly distributed 
between 50%–150%, the value of which was the same for all cells but varied from 
trial to trial. In the model version without gain modulation (g) both PLS- and 
L2RR-based decoders detected the information saturation in the real but not in 
the trial-shuffled datasets. When we added global gain modulation to the 
model (h) both decoders correctly found the information saturation in the real 
but not in the shuffled datasets.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Moving grating visual stimuli oriented at ±6° are 
harder to distinguish on the basis of their evoked neural ensemble 
responses than gratings oriented at ±30°, but also reveal the saturation of 
information signalling in large neural populations. a, (d′)2 values determined 
using an ‘instantaneous’ decoder for the interval [0.70 s, 0.94 s] from visual 
stimulation onset, plotted as a function of the number of cells, n, in the 
ensemble in mice presented moving gratings oriented at ±6°. Data points 
represent mean values determined across 100 different subsets of cells, and 
the shading represents s.e.m. As in Fig. 3f, g, we fit the (d′)2 values as a function 
of n using a one-parameter fit, (d′)2 = (d′)2

shuffled/(1 + ε × n), where (d′)2
shuffled (n) is 

the empirically determined value of (d′)2 for the same number of cells in the 
shuffled data, and ε is the fit parameter. For each mouse, for both real and trial-
shuffled data we normalized (d′)2 values by the value of (d′shuffled)2 for n = 1,000 
neurons. Goodness of fit: R2 = 0.41 ± 0.17 (s.d). N = 5 mice. ε = 0.0021 ± 0.0008 
(s.d.), 122–167 trials per stimulus condition for each mouse. b, Same as a, but 
using the ‘cumulative’ decoding strategy over the [0 s, 0.94 s] time interval.  
c, Box-and-whisker plots of the asymptotic values of d′ in the limit of many 
neurons (right) and the number of cells at which (d′)2 attains half its asymptotic 
value (left) as determined from parametric fits to the data of a and b for the 

instantaneous (open boxes) and cumulative (filled boxes) decoding strategies. 
Optimal linear decoders (green data) slightly but significantly outperformed 
diagonal decoders (black data) (**P < 0.0001; one-tailed Wilcoxon rank sum 
test; N = 100 different randomly chosen assignments of trials to decoder 
training and test sets in each mouse; 122–167 trials per stimulus condition for 
each mouse; open circles denote mean values from N = 5 individual mice).  
d, e, Histograms for the real (unshuffled) and shuffled datasets of the ensemble 
neural responses to each of the two visual stimuli, projected onto the direction 
of the optimal decoding vector determined by PLS analysis, as computed in 
each mouse viewing moving gratings oriented either at ±30° (d) or ±6° (e), 
using all imaged neurons and the instantaneous decoding approach. Error bars 
denote counting errors. Values on the x axes are plotted for each mouse in units 
of the s.d. of its neural ensemble responses along the decoding vector for the 
shuffled data. For each mouse, the histograms have approximately equal 
shapes for the two visual stimuli, are unimodal and approximately symmetric 
about their mean values, bolstering the use of linear decoding and d′. This 
analysis involved 217–232 trials per stimulus condition per mouse in d and  
122–167 trials per stimulus condition per mouse in e.
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Extended Data Fig. 10 | Hundreds of experimental trials sufficed to estimate 
the statistical structure of signals and noise in visual cortical coding.  
a, b, PLS analysis represents ensemble neural responses in a low-dimensional 
subspace that helps for understanding visual discrimination (Fig. 4). On the 
basis of Extended Data Fig. 7a–c, computations here used the five most 
informative PLS dimensions. Each column shows results from an individual 
mouse that viewed gratings oriented at ±30° (217–332 trials per stimulus). Each 
colour denotes a different eigenvector, eα, of the noise covariance matrix in the 
five-dimensional subspace. α denotes the dimension index, {1,2,3,4,5}. As 
illustrated in Fig. 4e, each mouse had multiple eigenvalues, λα, of the noise 
covariance matrix that increased with the number of cells, n, used for analysis. 
As shown in Fig. 4f, visual signals—defined as the mean separation, Δμ, between 
the two response distributions—also increased with n. a, b show eigenvalues λα 
(a) and signal components |Δμ · eα| (b) plotted against the number of trials 
analysed. Both signal and noise estimates plateau, indicating that there were 
sufficient trials to accurately estimate signal and noise structure in the reduced 
five-dimensional space. Throughout a–d, lines and shading denote mean ± s.d. 
across 100 different randomly chosen subsets of cells and assignments of trials 
to decoder training and testing, except in a, b we used all cells from each 
mouse and 30 different assignments of trials. c, d, The statistical relationships 
between visual signals and noise show the largest noise mode is not 
information-limiting. Each mouse had multiple eigenvalues, λα, of the noise 
covariance matrix (c) that increased with n, the number of cells. Visual signals 
(d) also increased with n, as shown by decomposing Δμ into components along 
the five eigenvectors, eα. In every mouse the eigenvector with the largest 
eigenvalue, e1, was the least well aligned with the signals, Δμ (compare red 
curves in c, d). e, Plots of noise values, computed as in c, versus signal values, 
computed as in d, based on all recorded neurons from each mouse and the 
same 100 subsets of data used in c, d. The largest noise mode (red points) was 
generally an order of magnitude greater than noise modes that limited neural 
ensemble signalling (green and yellow points). f–k, In a–e and throughout 
much of the paper, we analysed populations of up to 2,191 neurons using 217–
332 trials with each stimulus, which sufficed to accurately determine the Fisher 
information, (d′)2, and principal eigenvectors of the noise covariance matrix 
(Fig. 4). By comparison, there were insufficient trials to accurately determine 
noise covariance matrix elements—that is, noise correlations between cell 
pairs (Fig. 2d). To explain this, we derived the accuracy with which d′ and 
principal noise covariance eigenvectors and eigenvalues can be estimated 
through PLS analysis of recordings of n neurons across P trials, using the 
computational model of Extended Data Fig. 8c (Appendix section 6 has 

derivations of results in f–k). The central idea, illustrated in f, is that one can 
estimate accurately the principal noise covariance eigenvector, because it has 
a large eigenvalue, λ, that grows linearly with n ( ≅λ cn, where c is a constant). 
The theory predicts that the correlation coefficient, C, between estimated and 
actual eigenvectors is given by C = cP cn

cP
2 − 1 / ( )

+ 1
, for c Pn > 12 . Otherwise, C = 0.  

f shows predictions for C (black curve) versus the number of trials, P, for 
n = 2,000 and c = 0.005. We chose this c value to fall within the lower range of 
growth rates for experimentally determined eigenvalues, c. The predicted C 
values match those describing the accuracy (red points) with which we could 
estimate the principal noise covariance eigenvector in the computational 
model. However, correlation coefficients (blue points) between estimated and 
actual individual elements of the noise covariance matrix were unsatisfactory, 
even with 800 trials. i shows predicted values of C as a joint function of n and P. 
Iso-contours of C are hyperbolic, revealing a tradeoff such that recording more 
cells enables accurate estimation of noise eigenvectors using fewer trials. We 
also derived how accurately one can estimate eigenvalues of the noise 
covariance matrix, as quantified using the ratio, λ λℜ = / ˆ

λ where λ = cn is the 
actual eigenvalue in the model and λ̂ is the estimate based on P trials. The 
theory predicts ℜ =λ

cP
cP + 1

 when c Pn > 12 ; otherwise we set ℜ = 0λ , because we 
cannot accurately estimate the corresponding eigenvector when c Pn < 1.2  g 
plots predictions of ℜλ (black curve) versus P (for n = 2,000 cells and c = 0.005), 
which match the accuracy with which we estimated the model eigenvalues from 
simulated data (red dots). j shows ℜλ predictions as a joint function of n and P. 
We also studied how well one can estimate the Fisher information, (d′)2, via PLS 
analysis of data with fewer trials than recorded neurons. We examined the ratio, 
ℜ, of the d′ estimate to its actual value using the model and simulated data of 
Extended Data Fig. 8c and found 

C
ℜ = nε

nε
2 1 +

1 / +PLS
2 , where C = s P ε n

s P ε

Δ 2 + 4( + 1 / )

Δ 2 + 4( + 1)PLS
2  is the 

predicted correlation coefficient between the PLS regression vector and the 
optimal one. Here Δs2 and ε determine the Fisher information in the model of 
Extended Data Fig. 8c via d( ′ ) = n s

n ε
2 Δ 2

1 +opt . As in Extended Data Fig. 8c, we used  
ε = 0.002 to match the growth rate of (d′)2 in experimental data with increasing 
n, and Δs2 = 0.04 to approximate the magnitude, s

ε
Δ 2

, of (d′)2 in the data for large 
n. CPLS

2  increases monotonically with P and n, confirming that PLS regression 
improves as n and P increase. As CPLS

2  nears 1, so does ℜ2, indicating that PLS 
analysis can accurately estimate (d′)2. h shows predictions for ℜ2 versus P for 
n = 2,000 cells (black curve). The theory matches the accuracy with which we 
estimated (d′)2 via PLS analyses of the simulated model data (red dots). k shows 
predicted ℜ2 values versus n and P. Iso-contours of ℜ2 are hyperbolic, 
indicating recordings of more neurons permit accurate estimates of (d′)2 based 
on fewer trials.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection For data acquisition, we used custom routines written in LabView software (National Instruments, version 2012 SP1, 32 bit). For 
instrument control in the pixel-multiplexing acquisition modes, we also used open-source ScanImage software (version 3.8).

Data analysis We used open source software routines for image registration (http://bigwww.epfl.ch/thevenaz/turboreg/), 
cell sorting, and partial least squares analysis (https://www.mathworks.com/matlabcentral/fileexchange/18760-partial-least-squares-and 
discriminant-analysis). Software code for extracting individual neurons and their calcium activity traces from calcium videos by using 
principal component and then independent component analyses is freely available (https://www.mathworks.com/matlabcentral/
fileexchange/25405-emukamel-cellsort), although for convenience we used a commercial version of these routines (Mosaic software, 
version 0.99.17; Inscopix Inc.). We wrote all other analysis software in Matlab (2017b). The primary software code used to support the 
findings of the study is available at Zenodo.org (https://zenodo.org/record/3593520#.XgWPu-hKg2w).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We designed the study such that each of the main results would come from 5 biological replicates, i.e., 5 different mice, for each of 2 
different experimental conditions. The experimental results from all 10 mice were similar, affording confidence in the findings.

Data exclusions To minimize false positives during cell sorting, we adopted a conservative approach during manual classification of candidate cells, such that 
we accepted for analysis only those candidates whose spatial forms and temporal dynamics were plainly those of neurons. Due to the known 
modulatory effects of locomotion on mouse visual processing, we used for analysis only those experimental trials during which the mice had 
no locomotor activity.

Replication We reproduced the main results of our study across 10 different mice under 2 different experimental conditions (5 mice in each group).

Randomization We split the datasets randomly into training and test subsets (usually 50% each; see Methods for details). We determined measured 
quantities by averaging across multiple realizations of such a split. For analysis performed on subsets of neurons, we chose subsets randomly 
and averaged results across multiple subsets. See Methods and Extended Data Fig. 5b for details.

Blinding All animals in the experiment belonged to the same experimental group, so blinding was neither needed nor feasible. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used We immunostained tissue sections with antibodies against glial fibrillary activation protein (1:2500 dilution, rabbit anti-GFAP, 

Sigma HPA056030, Lot C115616) and heat shock protein 70 (1:400 dilution, mouse anti-HSP, Enzo ADI-SPA-810, Clone C92F3A-5, 
Lot 01031912) and then applied fluorophore-conjugated secondary antibodies (goat anti-rabbit-Alexa 594 [Invitrogen, A-11012, 
Lot 1933366] and goat anti-mouse-Alexa 488 [Invitrogen, A-11001, Lot 56881A]). 

Validation We performed positive control experiments to validate the abilities of these antibodies to detect laser-induced tissue damage 
(Extended Data Fig. 2g).

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals We analyzed data acquired from 6 male and 4 female Ai93 triple transgenic GCaMP6f-tTA-dCre mice from the Allen Institute 
(Rasgrf2-2A-dCre/CaMK2a-tTA/Ai93), which expressed the calcium indicator GCaMP6f in layer 2/3 pyramidal cells. Mice were 
12-17 weeks of age when we implanted the cranial window in preparation for brain imaging. For illustrative purposes only, we 
imaged a single tetO-GCaMP6s/CaMK2a-tTA mouse42, which expressed the calcium indicator GCaMP6s in a subset of 
neocortical pyramidal neurons (Supplementary Video 3).
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Wild animals No wild animals were used.

Field-collected samples There were no field-collected samples.

Ethics oversight The Stanford University APLAC approved all procedures involving animals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Fundamental bounds on the fidelity of sensory cortical coding

	A multi-beam two-photon microscope

	Imaging studies across cortical area V1

	Evaluations of cortical coding fidelity

	Comparing neural coding to visual acuity

	Origins of information-limiting noise

	Discussion

	Online content

	Fig. 1 Two-photon Ca2+ imaging over a 4-mm2 field of view.
	Fig. 2 Noise correlations of cell pairs are difficult to estimate from hundreds of stimulus trials.
	Fig. 3 Correlated noise limits the information conveyed by cortical neural ensembles.
	Fig. 4 The largest noise mode is orthogonal to the dimensions encoding sensory information.
	Extended Data Fig. 1 The discriminability of two sensory stimuli based on the activity patterns of two or more cells depends on the statistical relationship between the mean responses of the cells and their noise correlations, which in turn depends on vis
	Extended Data Fig. 2 Spatiotemporal multiplexing of the illumination beams permits imaging of large fields of view at fast frame rates without thermal damage to brain tissue.
	Extended Data Fig. 3 Data acquisition and post-processing for two-photon imaging with 16 time-multiplexed excitation beams.
	﻿Extended Data Fig. 4 Crosstalk un-mixing procedure for reconstructing the full field-of-view enables accurate estimation of neural activity traces.
	Extended Data Fig. 5 Pipeline of offline data processing and procedures for reducing the dimensionality of the neural ensemble activity data and calculating the decoding accuracy.
	Extended Data Fig. 6 Distributions of pairwise noise correlation coefficients do not differ significantly between pyramidal neurons in area V1 and higher-order visual areas.
	Extended Data Fig. 7 Temporal integration of neural activity improves decoding performance, but quadratic and linear decoding yield identical biological conclusions.
	Extended Data Fig. 8 PLS-based decoding methods are robust to multiplicative gain modulation and common mode fluctuations in the neural ensemble dynamics and yield identical conclusions to regularized regression.
	Extended Data Fig. 9 Moving grating visual stimuli oriented at ±6° are harder to distinguish on the basis of their evoked neural ensemble responses than gratings oriented at ±30°, but also reveal the saturation of information signalling in large neural po
	Extended Data Fig. 10 Hundreds of experimental trials sufficed to estimate the statistical structure of signals and noise in visual cortical coding.




