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Towards real-time photorealistic 3D 
holography with deep neural networks

Liang Shi1,2 ✉, Beichen Li1,2, Changil Kim1,2, Petr Kellnhofer1,2 & Wojciech Matusik1,2 ✉

The ability to present three-dimensional (3D) scenes with continuous depth sensation 
has a profound impact on virtual and augmented reality, human–computer 
interaction, education and training. Computer-generated holography (CGH) enables 
high-spatio-angular-resolution 3D projection via numerical simulation of diffraction 
and interference1. Yet, existing physically based methods fail to produce holograms 
with both per-pixel focal control and accurate occlusion2,3. The computationally 
taxing Fresnel diffraction simulation further places an explicit trade-off between 
image quality and runtime, making dynamic holography impractical4. Here we 
demonstrate a deep-learning-based CGH pipeline capable of synthesizing a 
photorealistic colour 3D hologram from a single RGB-depth image in real time.  
Our convolutional neural network (CNN) is extremely memory efficient (below  
620 kilobytes) and runs at 60 hertz for a resolution of 1,920 × 1,080 pixels on a single 
consumer-grade graphics processing unit. Leveraging low-power on-device artificial 
intelligence acceleration chips, our CNN also runs interactively on mobile (iPhone 11 
Pro at 1.1 hertz) and edge (Google Edge TPU at 2.0 hertz) devices, promising real-time 
performance in future-generation virtual and augmented-reality mobile headsets. We 
enable this pipeline by introducing a large-scale CGH dataset (MIT-CGH-4K) with 
4,000 pairs of RGB-depth images and corresponding 3D holograms. Our CNN is 
trained with differentiable wave-based loss functions5 and physically approximates 
Fresnel diffraction. With an anti-aliasing phase-only encoding method, we 
experimentally demonstrate speckle-free, natural-looking, high-resolution 3D 
holograms. Our learning-based approach and the Fresnel hologram dataset will help 
to unlock the full potential of holography and enable applications in metasurface 
design6,7, optical and acoustic tweezer-based microscopic manipulation8–10, 
holographic microscopy11 and single-exposure volumetric 3D printing12,13.

Holography is the process of encoding a light field14 as an interference 
pattern of variations in phase and amplitude. When properly lit, a holo-
gram diffracts an incident light into an accurate reproduction of the 
original light field, producing a true-to-life recreation of the recorded 
three-dimensional (3D) objects1. The reconstructed 3D scene presents 
accurate monocular and binocular depth cues, which are difficult to 
simultaneously achieve in traditional displays. Yet, creating photore-
alistic computer-generated holograms (CGHs) power-efficiently and 
in real time remains an unsolved challenge in computational physics. 
The primary challenge is the tremendous computational cost required 
to perform Fresnel diffraction simulation for every object point in a 
continuous 3D space. This remains true despite extensive efforts to 
design various digital scene representations3,15–18 and algorithms for 
the detection of light occlusions19.

The challenging task of efficient Fresnel diffraction simulation 
has been tackled by explicitly trading physical accuracy for com-
putational speed. Hand-crafted numerical approximations based 

on look-up tables of precomputed elemental fringes20–22, multilayer 
depth discretization23–25, holographic stereograms26–29, wavefront 
recording plane (alternatively intermediate ray sampling planes)30,31 
and horizontal/vertical-parallax-only modelling32 were introduced at 
a cost of compromised image quality. Harnessing rapid advances of 
graphics processing unit (GPU) computing, the non-approximative 
point-based method (PBM) recently produced colour and textured 
scenes with per-pixel focal control at a speed of seconds per frame2. 
Yet, PBM simulates Fresnel diffraction independently for every scene 
point, and thus does not model occlusion. This prevents accurate 
recreation of complex 3D scenes, where the foreground will be 
severely contaminated by ringing artefacts due to the unoccluded 
background (Extended Data Fig. 1d). This lack of occlusion is partially 
addressed by light-field rendering3,29,33. However, this approach 
incurs substantial rendering and data storage overhead, and the 
occlusion is only accurate within a small segment (holographic ele-
ment) of the entire hologram. Adding a per-ray visibility test during 
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Fresnel diffraction simulation ideally resolves the problem, yet the 
additional cost of an occlusion test, access for neighbour points and 
conditional branching slow down the computation. This quality– 
speed trade-off is a trait shared by all existing physically based 
approaches and fundamentally limits the practical deployment of 
dynamic holographic displays.

We resolve this dilemma with a physics-guided deep-learning 
approach, dubbed tensor holography. Tensor holography avoids 
the explicit approximation of Fresnel diffraction and occlusion, but 
imposes underlying physics to train a convolutional neural network 
(CNN) as an efficient proxy for both. It exploits the fact that propa-
gating a wave field to different distances is equivalent to convolving 
the same wave field with Fresnel zone plates of different frequencies. 
As the zone plates are radially symmetric and derived from a single 
basis function using different propagation distances, our network 
accurately approximates them through successive application of 
a set of learned 3 × 3 convolution kernels. This reduces diffraction 
simulation from spatially varying large kernel convolutions to a set of 
separable and spatially invariant convolutions, which runs orders of 
magnitude faster on GPUs and application-specific integrated circuits 
(ASICs) for accelerated CNN inference. Our network further lever-
ages nonlinear activation (that is, ReLU or the rectified linear unit34) 
in the CNN to handle occlusion. The nonlinear activation selectively 
distributes intermediate results produced through forward propa-
gation, thus stopping the propagation of occluded wavefronts. We 
note that although the mathematical model of the CNN is appeal-
ing, the absence of a large-scale Fresnel hologram dataset and an 
effective training methodology impeded the development of any 
learning-based approach. Despite recent successful adoption of CNNs 
for phase retrieval35–37 and for recovering in-focus images or extended 
depth-of-field images from optically recorded digital holograms38–40, 
Fresnel hologram synthesis, as an inverse problem, is more challenging 

and demands a carefully tailored dataset and design of the CNN. So far, 
the potential suitability of CNNs for the hologram synthesis task has 
been demonstrated for only 2D images positioned at a fixed depth41,42 
and for post compression43.

Hologram dataset of tensor holography
To facilitate training CNNs for this task, we introduce a large-scale 
Fresnel hologram dataset, MIT-CGH-4K, consisting of 4,000 pairs of 
RGB-depth (RGB-D) images and corresponding 3D holograms. Our 
dataset is created with three important features to enable CNNs to 
learn photorealistic 3D holograms. First, the 3D scenes used for ren-
dering the RGB-D images are constructed with high complexities and 
large variations in colour, geometry, shading, texture and occlusion 
to help the CNN generalize to both computer-rendered and real-world 
captured RGB-D test inputs. This is achieved by a custom random scene 
generator (Fig. 1a), which assembles a scene by randomly sampling 
200–250 triangle meshes with repetition from a pool of over 50 meshes 
and assigning each mesh a random texture from a pool of over 60,000 
textures from publicly available texture synthesis datasets44,45 with 
augmentation (see Methods for more rendering details). Second, the 
pixel depth distribution of the resulting RGB-D images is statistically 
uniform across the entire view frustum. This is crucial for preventing 
the learned CNN from biasing towards any frequently occurring depths 
and producing poor results at those sparsely populated ones when a 
non-uniform pixel depth distribution occurs. To ensure this property, 
we derived a closed-form probability density function (PDF) for arrang-
ing triangle meshes along the depth axis (z axis):
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Fig. 1 | Tensor holography workflow for learning Fresnel holograms from 
RGB-D images. a, A custom ray-tracer renders an RGB-D image of a random 
scene. The meshes are distributed exponentially along the depth axis and the 
resulting pixel depth distribution is statistically uniform. b, An OA-PBM 
reconstructs a triangular surface mesh from the point cloud defined by the 
RGB-D image. During Fresnel diffraction simulation, wavefronts carried by the 

occluded rays are excluded from the hologram calculation. c, A fully 
convolutional residual network synthesizes a Fresnel hologram from the same 
RGB-D image. The network is optimized against the target hologram using a 
data fidelity loss and a focal stack loss. BN, batch renormalization. The minus 
symbol indicates error minimization. The plus symbol denotes layer 
concatenation along the colour channel. Conv, convolution.
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where znear and zfar are the distances from the camera to the near and far 
plane of the view frustum, C is the number of meshes in the scene and 
α is a scaling factor calibrated via experimentation. This PDF distrib-
utes meshes exponentially along the z axis (Fig. 1a, top) such that the 
pixel depth distribution in the resulting RGB-D images is statistically 
uniform (Fig. 1a, bottom; see Methods for derivation and comparison 
with existing RGB-D datasets). Here we set znear and zfar to 0.15 m and 
10 m, respectively, to accommodate a wide range of focal distances 
(approximately a 6.6-diopter range for the depth of field). Third, the 
holograms computed from the RGB-D images can precisely focus each 
pixel to the location defined by the depth image and properly handle 
occlusion. This is accomplished by our occlusion-aware point-based 
method (OA-PBM).

The OA-PBM augments the PBM with occlusion detection. Instead of 
processing each 3D point independently, the OA-PBM reconstructs a 
triangle surface mesh from the RGB-D image and performs ray casting 
from each vertex (point) to the hologram plane (Fig. 1b). Wavefronts 
carried by the rays intersecting the surface mesh are excluded from 
hologram computation to account for foreground occlusion. In prac-
tice, a point light source is often used to magnify the hologram for 
an extended field of view (Extended Data Fig. 3a); thus, the OA-PBM 
implements configurable illumination geometry to support ray cast-
ing towards spatially varying diffraction cones. Figure 2b visualizes a 
focal stack refocused from the OA-PBM-computed holograms, in which 
clean occlusion boundaries are formed and little to no background 
light leaks into the foreground (see Methods for a comparison with 
PBM results and OA-PBM implementation details).

Combining the random scene generator and the OA-PBM, we ren-
dered our dataset at wavelengths of 450 nm, 520 nm and 638 nm to 
match the RGB lasers deployed in our experimental prototype. The 
MIT-CGH-4K dataset is also rendered for multiple spatial light modu-
lator (SLM) resolutions (see Methods for details) and will be made 
publicly available.

Neural network of tensor holography
Our CNN model is a fully convolutional residual network. It receives 
a four-channel RGB-D image and predicts a colour hologram as 
a six-channel image (RGB amplitude and RGB phase), which can 
be used to drive three optically combined SLMs or one SLM in a 
time-multiplexed manner to achieve full-colour holography. The 
network has a skip connection that creates a direct feed of the input 
RGB-D image to the penultimate residual block and has no pooling 
layer for preserving high-frequency details (see Fig. 1c for a scheme 
of the network architecture; see Methods for performance analysis 
and comparisons with other architectures). Let W be the width of the 
maximum subhologram (Fresnel zone plate) produced by the far-
thest object points to the hologram. We note that the minimal recep-
tive field aggregated from all convolution layers should match W to 
physically accurately predict the target hologram. Yet, W of the target 
hologram varies according to the relative position between the holo-
gram plane and the 3D volume, and can often reach hundreds of pixels 
(see Methods for derivation), resulting in too many convolution layers 
and slowing down the inference speed. To address the issue, we apply 
a pre-processing step to compute an intermediate representation 
(midpoint hologram), which reduces the effective W and losslessly 
recovers the target hologram.

The midpoint hologram is an application of the wavefront record-
ing plane30. It propagates the target hologram to the centre of the 
view frustum to optimally minimize the distance to any scene point, 
thus reducing the effective W. The calculation follows the two steps 
shown in Extended Data Fig. 3. First, the diverging frustum V induced 
by the point light source is mathematically converted to an analogous 
collimated frustum V′ using the thin-lens formula describing the 
magnification of the laser beam (see Methods for calculation details).  

The change of representation simplifies the simulation of 
depth-of-field images perceived in V into free-space propagation of 
the target hologram to the remapped depth in V′. Let H ∈ ℂM N

target
×  

be the target hologram (colour channel is omitted here), where ℂ 
denotes the set of complex numbers, and M and N are the number of 
pixels along the width and height of the hologram. Let d′nearand d′far 
be the distances from the target hologram to the near and far clipping 
plane of V′. Htarget is propagated for a distance of d d d′ = ( ′ + ′ )/2mid near far  
to the centre of V′ to form the midpoint hologram H ∈ ℂM N

mid
× . The 

angular spectrum method47 (ASM) is employed to model the propa-
gation of a wave field:
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Here, F and F−1 are the Fourier and inverse Fourier transform operators, 
respectively; Lw and Lh are the physical width and height of the holo-
gram, respectively; λ is the wavelength; m = −M/2, …, M/2 − 1 and 
n = −N/2, …, N/2 − 1. Replacing the target hologram with the midpoint 
hologram reduces W by a factor of d d′ /Δ ′far , where d d dΔ ′ = ( ′ − ′ )/2far near . 
The reduction is a result of eliminating the free-space propagation 
shared by all the points, and the target hologram can be exactly recov-
ered by propagating the midpoint hologram back for a distance d− ′mid. 
In our rendering configuration, where the collimated frustum V′ has a 
6-mm optical path length, using the midpoint hologram as the CNN’s 
learning objective minimizes the convolution layers to 15.

We introduce two wave-based loss functions to train the CNN to 
accurately approximate the midpoint hologram and learn Fresnel dif-
fraction. The first loss function serves as a data fidelity measure and 
computes the phase-corrected ℓ2 distance between the predicted 
hologram H A~ = ~ e ∈ ℂϕ M N

mid mid
i ~ ×mid  and the ground-truth midpoint 
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where A~mid and ϕ~
mid are the amplitude and phase of the predicted 

hologram, Amid and ϕmid are the amplitude and phase of the ground truth 
hologram, δ ϕ ϕ ϕ ϕ ϕ ϕ( ~ , ) = atan2[sin( ~ − ), cos( ~ − )]mid mid mid mid mid mid ,  
• denotes the mean and ||⋅||p denotes the ℓp vector norm applied on a 
vectorized matrix output. The phase correction computes the signed 
shortest angular distance in the polar coordinates and subtracts the 
global phase offset, which exerts no impact on the intensity of the 
reconstructed 3D image.

The second loss function measures the perceptual quality of the 
reconstructed 3D scene observed by a viewer. As ASM-based wave 
propagation is a differentiable operation, the loss is modelled as a 
combination of the ℓ1 distance and total variation of a dynamic focal 
stack, reconstructed at two sets of focal distances that vary per training 
iteration
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Here, |⋅|2 denotes element-wise squared absolute value; ∇ denotes 
the total variation operator; t is the training iteration; D′ ∈ ℝt

M N×  is 
the depth channel (remapped to V′) of the input RGB-D image, where 
ℝ denotes the set of real numbers; β is a user-defined attention 
scale; Dt

fix and Dt
float are two sets of dynamic focal distances calculated  
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as follows: (1) V′ is equally partitioned into T depth bins, (2) Dt
fix 

picks the top-kfix bins from the histogram of D′t  and Dt
float randomly 

picks kfloat bins among the rest, and (3) a depth is uniformly sampled 
from each selected bin. Here, Dt

fix guarantees the dominant content 
locations in the current RGB-D image are always optimized, while 
Dt

float ensures sparsely populated locations are randomly explored. 
The random sampling within each bin prevents overfitting to sta-
tionary depths, enabling the CNN to learn true 3D holograms. The 
attention mask directs the CNN to focus on reconstructing in-focus 
features in each depth-of-field image. Figure 2f validates the 

effectiveness of each training loss component through an ablation 
study.

Our CNN was trained on a NVIDIA Tesla V100 GPU for 84 h (see Meth-
ods for model parameters and training details). The trained model 
generalizes well to computer-rendered (Fig. 2a, Extended Data Fig. 5), 
real-world captured (Fig. 2c, Extended Data Fig. 6) RGB-D inputs, and 
standard test patterns (Fig. 2e, Extended Data Fig. 4). The simulated 
focal sweep of CNN-predicted 3D holograms can be found in Supple-
mentary Videos 1, 2, 6. Compared with the reference OA-PBM holo-
grams, the CNN predictions are both perceptually similar (Fig. 2b) and 
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Fig. 2 | Performance evaluation of the OA-PBM and tensor holography CNN. 
a, A simulated depth-of-field image refocused from a CNN predicted hologram. 
The bunny’s eye is in focus. The input RGB-D image is from Big Buck Bunny. The 
bottom right inset visualizes the depth image. b, Comparison of focal stacks 
reconstructed at highlighted regions in a. The CNN prediction is visually 
similar to the OA-PBM ground truth. c, A simulated depth-of-field image and 
focal stack (the magnified insets) reconstructed from the CNN predicted 
hologram of a real-world captured RGB-D image46. d, Performance comparison 
of the PBM, OA-PBM and CNNs with various model capacities. The default CNN 
model consists of 30 convolution layers and 24 filters per layer, the small and 
mini models have 15 and 8 convolution layers, respectively. The reduction of 
convolution layers gracefully degrades the reconstructed image quality. The 
mini model runs in real time (60 Hz). The error bars are the standard deviation. 
SSIM, structural similarity index measure. e, A CNN predicted hologram and 
reconstructed depth-of-field images (the magnified insets) of a star test 

pattern. Line pairs of varying frequencies are sharply reconstructed at 
different depths, and the wavelength-dependent light dispersion is accurately 
reproduced. f, Ablation study of the full loss function (first). The ablation of 
attention mask (second) dilutes the CNN’s attention to out-of-focus features 
and results in inferior performance. The ablation of data loss (third) removes 
the regularization of phase information and leads to poor generalization to 
unseen examples and large focal stack error. The ablation of perceptual loss 
(fourth) removes the guide of focal stacks and uniformly degrades the 
performance. The error bars are the standard deviation. PSNR, peak 
signal-to-noise ratio. g, Comparison of a ground truth Fresnel zone plate and a 
CNN prediction (by a model with 30 layers and 120 filters per layer) computed 
for a 6-mm distant point (propagated for another 20 mm for visualization).  
b, c, Images reproduced from www.bigbuckbunny.org (© 2008, Blender 
Foundation) under a Creative Commons licence (https://creativecommons.
org/licenses/by/3.0/).

http://www.bigbuckbunny.org
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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numerically close (Fig. 2d, f). Evaluated on a single distance-point tar-
get, the output from a CNN with sufficient model capacity faithfully 
approximates a Fresnel zone plate (Fig. 2g), under the low-rank solu-
tion space restricted by a set of successively applied 3 × 3 convolution 
kernels. When all algorithms are implemented on a GPU with the CNN in 
NVIDIA TensorRT, and the OA-PBM and PBM in NVIDIA CUDA, the mini 
CNN achieves more than two orders of magnitude speed-up (Fig. 2d) 
over the OA-PBM and runs in real time (60 Hz) on a single NVIDIA Titan 
RTX GPU. As our end-to-end learning pipeline completely avoids logi-
cally complex ray–triangle intersection operations, it runs efficiently 
on low-power ASICs for accelerated CNN inference. In Supplementary 
Video 5, we demonstrate interactive mobile hologram computation on 
an iPhone 11 Pro, leveraging the A13 Bionic chip’s neural engine. Our 
model has an extremely low memory footprint of only 617 KB at Float32 
precision and 315 KB at Float16 precision. At Int8 precision, it runs at 
2 Hz on a single Google Edge TPU. All reported runtime performance 
is evaluated on inputs with a resolution of 1,920 × 1,080 pixels.

Display prototype of tensor holography
We have built a phase-only holographic display prototype (see Fig. 3a for 
a scheme and Extended Data Fig. 8 for a version of the physical setup) 
to experimentally validate our CNN. The prototype uses a HOLOEYE 
PLUTO-2-VIS-014 reflective SLM with a resolution of 1,920 × 1,080 pixels 
and a pixel pitch of 8 μm (see Methods for prototype details). The col-
our image is obtained field sequentially48. To encode a CNN-predicted 
complex hologram into a phase-only hologram, we introduce an 
anti-aliasing double phase method (AA-DPM), which produces 
artefact-free 3D images around high-frequency objects and occlusion 
boundaries (see Methods for algorithm details and comparison with the 
original double phase method (DPM)49,50). In Fig. 3b, we demonstrate 
speckle-free, high-resolution and high-contrast 2D projection, where the 
fluff of the berries can be found to be sharply reconstructed. In Fig. 3c, 
d, we show 3D holograms photographed for the couch scene and the Big 
Buck Bunny scene with focus set to the front and rear objects. Additional 
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photographs of real-world, computer-rendered and test scenes can 
be found in Extended Data Figs. 9, 10, where the image details closely 
match the simulation. Demonstration of real-time computation and 
focal sweep of 3D holograms can be found in Supplementary Videos 3, 4.

Discussion
Our results present evidence of using CNNs for real-time, photore-
alistic 3D CGH synthesis from a single RGB-D image, a task that was 
traditionally considered to be beyond the capabilities of existing com-
putational devices. Our multi-resolution, large-scale Fresnel holo-
gram dataset, created by the tailored random scene generator and 
the OA-PBM, will enable a wide range of conventional image-related 
applications to be transferred to holography: examples include 
super-resolution, compression, semantic editing of holograms and 
foveation-guided holographic rendering. Ultimately, it provides a test-
bed for both commercial and academic research fields that will benefit 
from real-time, high-resolution CGH, for example, consumer holo-
graphic displays for virtual and augmented reality, hologram-based 
single-shot volumetric 3D printing, optical trapping with substantially 
increased foci and real-time simulation for holographic microscopy. 
Tensor holography itself can be further improved by directly learn-
ing phase-only holograms to discover an optimal encoding, avoid-
ing explicit complex-to-phase-only conversion. In addition, though 
the RGB-D input is inexpensive to compute and memory efficient, it 
provides accurate 3D depiction from only a single perspective. Thus, 
extending our pipeline to support true volumetric 3D input (voxel grid, 
dense light fields and general point cloud) could expedite the syn-
thesis of holograms that support view-dependent effects and obser-
vation under large baseline movement (see Methods for expanded 
discussion). Finally, the rapid development of ASICs will soon make 
high-frame-rate tensor holography viable on mobile devices, enabling 
untethered real 3D viewing experiences and substantially lowering the 
cost and barrier to entry for holographic content creation.
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Methods

OA-PBM
The OA-PBM assumes a general holographic display setting, where the 
RGB-D image is rendered with perspective projection and the hologram 
is illuminated by a point source of light co-located with the camera. This 
includes the support of collimated illumination, a special case where 
the point light source is located at infinity and the rendering projection 
is orthographic. During ray casting, every object point defined by the 
RGB-D image produces a subhologram at the hologram plane. The maxi-
mum spatial extent of a subhologram is dictated by the grating equation

p θ θ λΔ (sin − sin ) = ± , (5)m i

where Δp is the grating pitch (twice the SLM pixel pitch), θi is the light 
incidence angle from the point light source to a hologram pixel, θm is 
the maximum outgoing angle from the same hologram pixel and λ is 
the wavelength. Let o ∈ ℝ3 be (the location of) an object point defined 
by the RGB-D image, So be the set of SLM pixels within the extent of the 
subhologram of o, ∈ ℝ3p  be (the location of) an SLM pixel in So, ∈ ℝ3l  
be (the location of) the point light source and Sslm be the set of all SLM 
pixels, the wavefront contributed from o to p under the illumination 
of 1 is given by
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an amplitude attenuation factor for energy conversation (where j is a 
dummy variable that denotes an SLM pixel in So and [⋅] denotes Iverson 
bracket) and ϕo is the initial phase associated with o. The initialization 
of ϕo uses the position-dependent formula by Maimone et al.2 instead 
of random initialization to allow different Fresnel zone kernels to can-
cel out at the hologram plane and achieve a smooth phase profile. We 
emphasize that this deterministic phase initialization method is criti-
cal to the success of CNN training, as it ensures the complex holograms 
generated for the entire dataset are statistically consistent and bear 
repetitive features that can be learned by a CNN.

The OA-PBM models occlusion by multiplying ho(p) with a binary 
visibility mask vo(p). The value of vo(p) is set to 0 if ray op intersects 
the piece-wise linear surface (triangular surface mesh) built from the 
RGB-D image. In practice, this ray–triangle intersection test can be 
accelerated with space tracing by only testing the set of triangles Qop 
that may lie on the path of op. Let pol be the SLM pixel intersecting ol 
(pixel at the subhologram centre of o), the set opQ  only consists of 
triangles whose vertices’ x–y coordinate indices are on the path of line 
segment ppol, and

v q( ) = ¬ intersects , (7)
q Q∈

p opo
op
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where q is a dummy variable that denotes a triangle on the path of opQ . 
Finally, the target hologram Htarget is obtained by summing subholo-
grams contributed from all object points

∑H v h( ) = ( ) ( ), (8)
S

target
∈

p p p
j

j j
p

where Sp is the set of object points whose subholograms are defined 
at p. Extended Data Fig. 1b visualizes the masked Fresnel zone plate 
computed for different depth landscapes. Compared with the PBM, 
the OA-PBM considerably reduces background leakage (Extended 
Data Fig. 1d). It is important to note that the OA-PBM is still a first-order 
approximation of the Fresnel diffraction, and the hologram quality 

could be further improved by modelling wavefronts from secondary 
point sources stimulated at the occlusion boundaries based on the 
Huygens–Fresnel principle. While theoretically possible, in practice 
the number of triggered rays grows exponentially with respect to the 
number of occlusions, and both the computation and memory cost 
becomes intractable for complex scenes and provides only minor 
improvement (see Extended Data Fig. 1c for a comparison study of an 
elementary case).

Random scene generator
The random scene generator is implemented using the NVIDIA 
OptiX-ray-tracing library with the NVIDIA AI-Accelerated denoiser 
turned on to maximize customizability and performance. During the 
construction of a scene, we limit the random scaling of mesh such that 
the longest side of the mesh’s bounding box falls within 0.1 times to 
0.35 times the screen space height. This prevents a single mesh from 
being negligibly small or overwhelmingly large. We also distribute 
meshes according to equation (1) to produce a statistically uniform 
pixel depth distribution in the rendered depth image. To show the 
derivation of the probability density function f(z), we start from an 
elementary case where only a single pixel is to be rendered. Let a series 
of mutually independent and identically distributed random variables 
z1, z2, …, zC′ denote the depths of all C′ meshes in the camera’s line of 
sight. The measured depth of this pixel zd is dictated by the closest 
mesh to the camera, namely z z z z= min { , , , }Cd 1 2 ′⋯ . For any z z z∈ [ , ]near far

⟺ ⋯ ⟺ ⋀z z z z z z z z≥ min { , , , } ≥ ≥ , (9)C
i

C

id 1 2 ′
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where i is a dummy variable that iterates from 1 to C′. From a proba-
bilistic perspective









 ∏z z z z z z z zPr( ≥ ) = Pr ≥ = Pr( ≥ ) = [Pr( ≥ )] . (10)

i

C

i
i

C

i
C

d
=1

′

=1

′

1
′⋀

When zd obeys a uniform distribution over [z near, zfar], 
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gives a closed-form solution to the PDF associated with z1, z2, …, zC′.
Although it is required by definition that C ′ ∈ ℤ+, where ℤ+ denotes 

the set of positive integers, equation (12) extrapolates to any positive 
real number no less than 1 for C′. In practice, calculating an average C′ 
for the entire frame is non-trivial, as meshes of varying shapes and 
sizes are placed at random x–y positions and scaled stochastically. 
Nevertheless, C′ is typically much smaller than the total number of 
meshes C, and well modelled by using a scaling factor α such that 
C′ = C/α. Equation (1) is thus obtained by applying this equation to 
equation (12). On the basis of experimentation, we find setting α = 50 
results in a sufficiently statistically uniform pixel depth distribution 
for 200 ≤ C ≤ 250. Extended Data Fig. 2 shows a comparison of the 
resulting RGB-D images and histograms of pixel depth between our 
dataset and the DeepFocus dataset. The depth distribution of the 
DeepFocus dataset is unevenly biased to the front and rear end of the 
view frustum. This is due to both unoptimized object depth 



distribution and sparse scene coverage that leads to overly exposed 
backgrounds.

We generated 4,000 random scenes using the random scene gen-
erator. To support application of important image processing and 
rendering algorithms such as super-resolution and foveation-guided 
rendering to holography, we rendered holograms for both 8 μm 
and 16 μm pixel pitch SLMs. The image resolution was chosen to be 
384 × 384 pixels and 192 × 192 pixels, respectively, to match the physi-
cal size of the resultant holograms and enable training on commonly 
available GPUs. We note that as the CNN is fully convolutional, as long 
as the pixel pitch remains the same, the trained model can be used to 
infer RGB-D inputs of an arbitrary spatial resolution at test time.

Finally, we acknowledge that an RGB-D image records only the 
3D scene perceived from the observer’s current viewpoint, and it is 
not a complete description of the 3D scene with both occluded and 
non-occluded objects. Therefore, it is not an ideal input for creating 
holograms that are intended to remain static, but being viewed by an 
untracked viewer for motion parallax under large baseline movement 
or simultaneously by multiple persons. However, with real-time perfor-
mance first enabled by our CNN on RGB-D input, this limitation is not a 
concern for interactive applications and particularly with eye position 
tracked, as new holograms can be computed on-demand on the basis 
of the updated scene, viewpoint or user input to provide an experience 
as though the volumetric 3D scene was simultaneously reconstructed. 
This is especially true for virtual and augmented-reality headsets, where 
six-degrees-of-freedom positional tracking has become omnipresent, 
and we can always deliver the correct viewpoint of a complex 3D scene 
for a moving user by updating the holograms to reflect the change of 
view.

However, the low rendering cost and memory overhead of RGB-D 
representation is a key attribute that enables practical real-time appli-
cations. Volumetric 3D representations (dense point cloud, voxel grid, 
light fields) at the same spatial resolution generally consume orders of 
magnitude more data. The increased rendering, memory, input/output 
and data streaming cost alone have made them much less practical for 
real-time applications with current graphics hardware (that is, a 1080P 
light field video with only 8 × 8 views is already four times the data 
of an 8-K video), not including proportionally increased hologram 
computation cost, which dominates the total cost. The additional 
points (objects) offered by these representations, however, are either 
occluded or out of the frame of the current viewpoint. Consequently, 
they contribute little to no wavefront to the perceived 3D image of the 
current view. Beyond computer graphics, the RGB-D image is read-
ily available with low-cost RGB-D sensors such as Microsoft Kinect or 
integrated sensors of modern mobile phones. This further facilitates 
utilization of real-world captured data, whereas high-resolution full 
3D scanning of real-world-sized environments is much less accessible 
and requires specialized high-cost imaging devices. Thus, the RGB-D 
representation strikes a balance between image quality and practicality 
for interactive applications.

CNN model architecture, training, evaluation and comparisons
Our network architecture consists of only residual blocks and a skip 
connection from the input to the penultimate residual block. The archi-
tecture is similar to DeepFocus51, a fully convolutional neural network 
designed for synthesizing image content for varifocal, multifocal and 
light field head-mounted displays. Yet, our architecture ablates its 
volume-preserving interleaving and de-interleaving layer. The inter-
leaving layer reduces the spatial dimension of an input tensor through 
rearranging non-overlapped spatial blocks into the depth channel, and 
the de-interleaving layer reverts the operation. A high interleaving 
rate reduces the network capacity and trades lower image quality for 
faster runtime. In practice, we compared three different network min-
iaturization methods in Extended Data Fig. 4b: (1) reduce the number 
of convolution layers; (2) use a high interleaving rate; and (3) reduce 

the number of filters per convolution layer. At equal runtime, approach 
1 (using fewer convolution layers) produces the highest image quality 
for our task; approach 3 results in the lowest image quality because 
the CNN model contains the lowest number of filters (240 filters for 
approach 3 compared with 360 or 1,440 filters for approaches 1 and 2, 
respectively), while approach 2 is inferior to approach 1 mainly because 
neighbouring pixels are scattered across channels, making a reasoning 
of their interactions much more difficult. This is particularly harmful 
when the CNN has to learn how different Fresnel zone kernels should 
cancel out to produce a smooth phase distribution. Given this observa-
tion, we ablate the interleaving and de-interleaving layers in favour of 
both performance and model simplicity.

All convolution layers in our network use 3 × 3 convolution filters. 
The number of minimally required convolution layers depends on the 
maximal spatial extent of the subhologram. Quantitatively, successive 
application of x convolution layers results an effective 3 + (x − 1) × 2 con-
volution. Solving for the maximum subhologram width W = 3 + (x − 1) × 2 
yields [(W − 3)]/2 + 1 minimally required convolution layers. In Extended 
Data Fig. 3, we demonstrate the calculation of the midpoint hologram, 
which reduces the effective maximum subhologram size through relo-
cating the hologram plane. First, the holographic display magnified 
by the point light source is unmagnified to its collimated illumina-
tion counterpart. The original view frustum V and the unmagnified 
view frustum V′ are related by the thin-lens equation 1/d′ = 1/d + 1/f, 
where f, d and d′ are the distance between the point light source and 
the hologram, the hologram and a point in V, and the hologram and 
the same point mapped to V′ respectively. Then, the target hologram is 
propagated to the centre of the unmagnified view frustum V′ following 
equation (2). As the resulting midpoint hologram depends on only the 
thickness of the 3D volume, it leads to a substantial reduction of W if 
the relative distance between the hologram plane and the 3D volume 
is far. For example, in our rendering setting, we assume a 30-mm eye-
piece magnifies a collimated frustum between 24 mm and 30 mm away, 
effectively resulting in a magnified frustum that covers from 0.15 m to 
infinity for an observer that is one focal length behind the eyepiece. If 
the hologram plane is co-located with the eyepiece (30 mm to the far 
clipping plane), using the midpoint to substitute the target hologram 
reduces the maximum subhologram width by ten times from 300 pixels 
to 30 pixels, resulting in 15 convolution layers as minimally required. 
In practice, we find using fewer convolution layers than the theoretical 
minimum only moderately degrades the image quality (Fig. 2d). This is 
because the use of the phase initialization of Maimone et al.2 allows the 
target phase pattern to be mostly occupied by low-frequency features 
and absent from Fresnel-zone-plate-like high-frequency patterns. Thus, 
even with reduced effective convolution kernel size, such features are 
still sufficiently easy to reproduce.

We reiterate that the midpoint hologram is an application of the 
wavefront recording plane (WRP)30 as a pre-processing step. In 
physical-based methods, the WRP is introduced as an intermediate 
ray-sampling plane placed either inside52 or outside30,53 the point cloud 
to reduce the wave propagation distance and thus the subhologram size 
during Fresnel diffraction integration. Application of multiple WRPs 
was also combined with the use of precomputed propagation kernels 
to further accelerate the runtime at the price of sacrificing accurate 
per-pixel focal control19,54. For fairness, the GPU runtimes reported 
for the OA-PBM and PBM baseline in Fig. 2d have been accelerated 
by putting the WRP to a plane that corresponds to the centre of the 
collimated frustum.

Our CNN is trained on a 384 × 384-pixel RGB-D image and hologram 
pairs. We use a batch size of 2, ReLu activation, attention scale β = 0.35, 
number of depth bins T = 200, number of dynamic focal stack kfix = 15 
and kfloat = 5 for the training. We train the CNN for 1,000 epochs using 
the Adam55 optimizer at a constant learning rate of 1 × 10−4. The dataset 
is partitioned into 3,800, 100 and 100 samples for training, testing 
and validation. Extended Data Fig. 4a quantitatively compares the 
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performance of our CNN with U-Net56 and Dilated-Net57, both of which 
are popular CNN architectures for image synthesis tasks. When the 
capacity of the other two models is configured for the same inference 
time, our network achieves the highest performance. The superior-
ity comes from the more consistent and repetitive architecture of 
our CNN. Specifically, it avoids the use of pooling and transposed 
convolution layers to contract and expand the spatial dimension of 
intermediate tensors, thus the high-frequency features of Fresnel zone 
kernels are more easily constructed and preserved during forward 
propagation.

In Extended Data Fig. 4c, we evaluate our CNN on two additional 
standard pattern (USAF-1951 and RCA Indian-head) variants made by the 
authors. The CNN-predicted holograms can reproduce a few-pixel-wide 
patterns as shown by the magnified in-focus insets. In Extended Data 
Figs. 5, 6, we show four additional complex scenes (two computer ren-
dered and two real-world captured) and the CNN predicted holograms.

AA-DPM
The double phase method encodes an amplitude-normalized complex 
hologram Ae ∈ ℂϕ M Ni ×  (0 ≤ A ≤ 1) into a sum of two phase-only holo-
grams at half of the normalized maximum amplitude:

Ae = 0.5e + 0.5e . (13)ϕ ϕ A ϕ Ai i( −cos ) i( +cos )−1 −1

There are many different methods to merge decomposed two 
phase-only holograms into a single phase-only hologram. The original 
DPM50 uses a checkerboard mask to select interleaving phase values 
from the two phase-only holograms. Maimone et al.2 first discard every 
other pixel of the input complex hologram along one spatial axis and 
then arrange the decomposed two phase values along the same axis in 
a checkerboard pattern. The latter method produces visually compa-
rable results, but reduces the complexity of the hologram calculation 
by half via avoiding calculation at unused locations. Nevertheless, for 
complex 3D scenes, they produce severe artefacts around 
high-frequency objects and occlusion boundaries (Extended Data 
Fig. 7, left). This is because the high-frequency phase alterations pre-
sented at these regions become under-sampled due to the interleaving 
sampling pattern and disposal of every other pixel. Although these 
artefacts can be partially suppressed by closing the aperture and cut-
ting the high-frequency signal in the Fourier domain, this leads to 
substantial blurring. Although sampling is inevitable, we borrow tech-
niques employed in traditional image subsampling to holographic 
content and introduce an AA-DPM. Specifically, we first convolve the 
complex hologram by a Gaussian kernel G σ( )WG

 to obtain a 
low-pass-filtered complex hologram Āe ∈ ℂϕ M Ni ¯ × :

A A G σ¯e = e ( ), (14)ϕ ϕ
W

i ¯ i
G

∗

where * denotes a 2D convolution operator, WG is the width of the 2D 
Gaussian kernel and σ is the standard deviation of the Gaussian distri-
bution. In practice, we find setting WG no greater than 5 and σ between 
0.5 and 1.5 is generally sufficient for both the rendered and captured 
3D scenes used in this paper, while the exact σ can be fine-tuned based 
on the image statistics of content. For flat 2D images, σ can be further 
tuned down to achieve sharper results. The slightly blurred Āe ϕi ¯

 avoids 
aliasing during sampling and allows the Fourier filter (aperture) to be 
opened wide, thus resulting in a sharp and artefact-free 3D image. We 
also add a global phase offset to Āe ϕi ¯

 to centre the mean phase around 
half of the full phase-shift range of the SLM (3π in our case). This avoids 
phase warping and results in smooth phase distribution2. Finally, let 
P ∈ ℂM N

1
×  and P ∈ ℂM N

2
×  be the two phase-only holograms decomposed 

from Āe ϕi ¯
 using equation (13), the final phase-only hologram P ∈ ℂM N×  

is calculated by arranging P1 and P2 in a checkerboard pattern

P m n
P m n m n
P m n m n m M n N( , ) =

( , ) if + is odd
( , ) if + is even(0 ≤ ≤ − 1, 0 ≤ ≤ − 1). (15)1

2





This alternating sampling pattern yields a high-frequency, phase-only 
hologram, which can diffract light as effectively as a random holo-
gram, but without producing speckle noise. Extended Data Fig. 7 
compares the depth-of-field images simulated for the AA-DPM and 
DPM, where the AA-DPM produces artefact-free images in regions 
with high-spatial-frequency details and around occlusion boundaries. 
The AA-DPM can be efficiently implemented on a GPU as two gather 
operations, which takes less than 1 ms to convert a 1,920 × 1,080-pixel 
complex hologram on a single NVIDIA TITAN RTX GPU.

Holographic display prototype
Our display prototype (Extended Data Fig. 8) uses a Fisba RGBeam 
fibre-coupled laser and a single HOLOEYE PLUTO-2-VIS-014 liquid- 
crystal-on-silicon reflective phase-only SLM with a resolution of 
1,920 × 1,080 pixels and a pitch of 8 μm. The laser consists of three 
precisely aligned diodes operating at 450 nm, 520 nm and 638 nm, and 
provides per-diode power control. The prototype is constructed and 
aligned using a Thorlabs 30-mm and 60-mm cage system and compo-
nents. The fibre-coupled laser is mounted using a ferrule connector/
physical contact adaptor, placed at a distance that results in an ideal 
diverging beam (adjustable based on the desired field of view) and 
linearly polarized to the x axis (horizontal) to match the incident polari-
zation required by the SLM. A plate beam splitter mounted on a 30-mm 
cage cube platform splits the beam and directs it towards the SLM. 
After SLM modulation, the reconstructed aerial 3D image is imaged by 
an achromatic doublet with a 60-mm focal length. An aperture stop is 
placed about one focal length behind the doublet (the Fourier plane) to 
block higher-order diffractions. The radius of its opening is set to match 
the extent of the blue beam’s first-order diffraction. We emphasize 
that this should be the maximum radius as opening it further includes 
second-order diffraction from the blue beam. A 30-mm to 60-mm cage 
plate adaptor is then used to widen the optical path and an eyepiece is 
mounted to create the final retinal image.

In this work, a Sony A7 Mark III mirrorless camera with a resolution 
of 6,000 × 4,000 pixels and a Sony 16–35 mm f/2.8 GM lens is paired to 
photograph and record video of the display (except Supplementary 
Video 4). Colour reconstruction is obtained field sequentially with a 
maximum frame rate of 20 Hz that is limited by the SLM’s 60-Hz refresh 
rate. A Labjack U3 USB DAQ is deployed to send field sequential signals 
and synchronize the display of colour-matched phase-only holograms. 
Each hologram is quantized to 8 bits to match the bit depth of the SLM. 
For the results shown in Fig. 3b, Extended Data Figs. 9, 10a, we used a 
Meade Series 5000 21-mm MWA eyepiece. For the results shown in 
Fig. 3c, d, Supplementary Videos 3, 4, Extended Data Fig. 10b, we used 
an Explore Scientific 32-mm eyepiece. The photograph was captured by 
exposing each colour channel for 1 s. The long exposure time improves 
the signal-to-noise ratio and colour accuracy. Supplementary Video 3 
was captured at 4 K/30 Hz and downsampled to 1080P. Supplemen-
tary Video 4 was captured by a Panasonic GH5 mirrorless camera with a 
Lumix 10–25 mm f/1.7 lens at 4 K/60 Hz (a colour frame rate of 20 Hz) and 
downsampled to 1080P. No post sharpening, denoising or despeckling 
was applied to the captured videos and photographs. Finally, our setup 
can be further miniaturized to an eyeglass form factor as demonstrated 
by Maimone et al.2.

Data availability
Our hologram dataset (MIT-CGH-4K) and the trained CNN model will 
be made publicly available (on GitHub) along with the paper.

Code availability
The code to evaluate the trained CNN model will be made publicly avail-
able (on GitHub) along with the paper. Additional codes are available 
from the corresponding authors upon reasonable request.
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Extended Data Fig. 1 | Visualization of masked Fresnel zone plates 
computed by OA-PBM and performance comparison of foreground 
occlusion. a, A depth image cropped from a frame of Big Buck Bunny. Three 
regions with different depth landscapes are highlighted in different colours.  
b, Masked Fresnel zone plates computed for the centre pixel of each 
highlighted region. Three pixels are propagated for the same distance for ease 
of comparison. The flat depth landscape around the green pixel results in a 
non-occluded Fresnel zone plate. The masked Fresnel zone plates of red and 
blue pixels contain sharp cutoffs at their long-distance separated occlusion 
boundaries, and freeform shapes at occlusion boundaries with moderate 
distance separation and varying depth distribution. c, Comparison of 

foreground reconstruction by the PBM, OA-PBM and Fresnel diffraction. The 
scene is a cropped modulation transfer function bar target with a step depth 
profile. The PBM leaks a considerable portion of the background into the 
foreground due to a lack of occlusion handling. The artefacts are clearly visible 
in the original unmagnified view. The OA-PBM removes a considerable portion 
of the artefacts and the remaining artefacts are visually inconsequential in the 
unmagnified view. d, Comparison of focal stacks reconstructed by the PBM and 
OA-PBM for the Big Buck Bunny. The orange bounding boxes mark the 
background leakage in the PBM reconstructions. a, d, Images reproduced from 
www.bigbuckbunny.org (© 2008, Blender Foundation) under a Creative 
Commons licence (https://creativecommons.org/licenses/by/3.0/).

http://www.bigbuckbunny.org
https://creativecommons.org/licenses/by/3.0/


Extended Data Fig. 2 | Samples of the MIT-CGH-4K dataset and comparison 
with the DeepFocus dataset. a, The RGB-D image, amplitude and phase of two 
samples from the MIT-CGH-4K dataset. The RGB image records the amplitude 
of the scene (directly visualized in sRGB space) and consists of large variations 
in colour, texture, shading and occlusion. The pixel depth has a statistically 
uniform distribution throughout the view frustum. The phase presents 

high-frequency features at both occlusion boundaries and texture edges to 
accommodate rapid depth and colour changes. b, A sample RGB-D image from 
the DeepFocus dataset51. c, Histograms of pixel depth distribution computed 
for the MIT-CGH-4K dataset and the DeepFocus dataset. b, Image reproduced 
from ‘3D Scans from Louvre Museum’ by Benjamin Bardou under a Creative 
Commons licence (https://creativecommons.org/licenses/by-nc/4.0/).

https://creativecommons.org/licenses/by-nc/4.0/
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Extended Data Fig. 3 | Schematic of the midpoint hologram calculation.  
a, A holographic display magnified through a diverging point light source.  
b, A holographic display unmagnified through the thin-lens formula.  

c, The target hologram in this example is propagated to the centre of the 
unmagnified view frustum to produce the midpoint hologram. The width of 
the maximum subhologram is considerably reduced.



Extended Data Fig. 4 | Evaluation of tensor holography CNN on model 
architecture and test patterns. a, Performance comparison of different CNN 
architectures. b, Performance comparison of different CNN miniaturization 

methods. c, CNN prediction of two standard test pattern (USAF-1951 and RCA 
Indian-head) variants made by the authors.
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Extended Data Fig. 5 | Evaluation of tensor holography CNN on additional 
computer-rendered scenes. a, b, CNN prediction of amplitude and phase 
along with focused reconstructions for holograms of a living room scene from 
the DeepFocus dataset51 (a) and a night landscape scene from the Stanford light 
field dataset29 (b). a, Certain still images from ‘ArchVizPRO Vol. 2’ were used to 

render new images for inclusion in this publication with the permission of the 
copyright holder (© Corridori Ruggero 2018), under a Creative Commons 
licence (https://creativecommons.org/licenses/by-nc/4.0/). Panel b 
reproduced with permission from ref. 29, ACM.

https://creativecommons.org/licenses/by-nc/4.0/


Extended Data Fig. 6 | Evaluation of tensor holography CNN on real-world captured scenes. a, b, CNN prediction of amplitude and phase along with focused 
reconstructions for holograms of a statue scene (a) and a mansion scene (b). Both scenes are from the ETH light field dataset46.



Article

Extended Data Fig. 7 | Comparison of the original DPM and the AA-DPM. 
Reconstruction of two real-world scenes from the encoded phase-only 
holograms. The couch scene is focused on the mouse toy and the statue scene 

is focused on the black statue. Orange bounding boxes highlight regions with 
strong high-frequency artefacts. Left: DPM. Right: AA-DPM.



Extended Data Fig. 8 | Holographic display prototype used for the experimental results shown in this paper. The control box of the laser, Labjack DAQ and 
camera are not visualized in the figure.
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Extended Data Fig. 9 | Additional experimental demonstration of 3D holographic projection (part 1). The RGB-D input can be found in Extended Data Fig. 6.



Extended Data Fig. 10 | Additional experimental demonstration of 3D holographic projection (part 2). The RGB-D inputs can be found in Extended Data Fig. 6 
for a, and Extended Data Fig. 4 for b. Panel a reproduced with permission from ref. 29, ACM.
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