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Mastering Atari, Go, chess and shogi by 
planning with a learned model

Julian Schrittwieser1,3, Ioannis Antonoglou1,2,3, Thomas Hubert1,3, Karen Simonyan1, 
Laurent Sifre1, Simon Schmitt1, Arthur Guez1, Edward Lockhart1, Demis Hassabis1, 
Thore Graepel1,2, Timothy Lillicrap1 & David Silver1,2,3 ✉

Constructing agents with planning capabilities has long been one of the main 
challenges in the pursuit of artificial intelligence. Tree-based planning methods have 
enjoyed huge success in challenging domains, such as chess1 and Go2, where a perfect 
simulator is available. However, in real-world problems, the dynamics governing the 
environment are often complex and unknown. Here we present the MuZero 
algorithm, which, by combining a tree-based search with a learned model, achieves 
superhuman performance in a range of challenging and visually complex domains, 
without any knowledge of their underlying dynamics. The MuZero algorithm learns 
an iterable model that produces predictions relevant to planning: the action-selection 
policy, the value function and the reward. When evaluated on 57 different Atari 
games3—the canonical video game environment for testing artificial intelligence 
techniques, in which model-based planning approaches have historically struggled4—
the MuZero algorithm achieved state-of-the-art performance. When evaluated on Go, 
chess and shogi—canonical environments for high-performance planning—the 
MuZero algorithm matched, without any knowledge of the game dynamics, the 
superhuman performance of the AlphaZero algorithm5 that was supplied with the 
rules of the game.

Planning algorithms based on lookahead search have achieved remark-
able successes in artificial intelligence. Human world champions have 
been defeated in classic games such as checkers6, chess1, Go2 and 
poker7,8, and planning algorithms have had real-world impact in applica-
tions from logistics9 to chemical synthesis10. However, these planning 
algorithms all rely on knowledge of the environment’s dynamics, such 
as the rules of the game or an accurate simulator, preventing their direct 
application to real-world domains such as robotics, industrial control 
or intelligent assistants, where the dynamics are normally unknown.

Model-based reinforcement learning (RL)11 aims to address this issue 
by first learning a model of the environment’s dynamics and then plan-
ning with respect to the learned model. Typically, these models have 
either focused on reconstructing the true environmental state12–14 
or the sequence of full observations15,16. However, previous work15–17 
remains far from the state of the art in visually rich domains, such as 
Atari 2600 games3. Instead, the most successful methods are based 
on model-free RL18–20—that is, they estimate the optimal policy and/
or value function directly from interactions with the environment. 
However, model-free algorithms are in turn far from the state of the 
art in domains that require precise and sophisticated lookahead, such 
as chess and Go.

Here we introduce MuZero, a new approach to model-based RL that 
achieves both state-of-the-art performance in Atari 2600 games—a 
visually complex set of domains—and superhuman performance in 
precision planning tasks such as chess, shogi and Go, without prior 

knowledge of the game dynamics. MuZero builds on AlphaZero’s5 pow-
erful search and policy iteration algorithms, but incorporates a learned 
model into the training procedure. MuZero also extends AlphaZero 
to a broader set of environments, including single agent domains and 
non-zero rewards at intermediate time steps.

The main idea of the algorithm (summarized in Fig. 1) is to predict 
those aspects of the future that are directly relevant for planning. The 
model receives the observation (for example, an image of the Go board 
or the Atari screen) as an input and transforms it into a hidden state. 
The hidden state is then updated iteratively by a recurrent process that 
receives the previous hidden state and a hypothetical next action. At 
every one of these steps, the model produces a policy (predicting the 
move to play), value function (predicting the cumulative reward, for 
example, the eventual winner) and immediate reward prediction (for 
example, the points scored by playing a move). The model is trained 
end to end, with the sole objective of accurately estimating these three 
important quantities, to match the improved policy and value function 
generated by search, as well as the observed reward. There is no direct 
requirement or constraint on the hidden state to capture all informa-
tion necessary to reconstruct the original observation, drastically 
reducing the amount of information the model has to maintain and 
predict. Neither is there any requirement for the hidden state to match 
the unknown, true state of the environment; nor any other constraints 
on the semantics of state. Instead, the hidden states are free to repre-
sent any state that correctly estimates the policy, value function and 
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reward. Intuitively, the agent can invent, internally, any dynamics that 
lead to accurate planning.

Previous work
RL can be subdivided into two principal categories: model based and 
model free11. Model-based RL constructs, as an intermediate step, a 
model of the environment. Classically, this model is represented by 
a Markov decision process (MDP)21 consisting of two components: a 
state transition model, predicting the next state given the selected 
action, and a reward model, predicting the expected reward during that 
transition. Once a model has been constructed, it is straightforward 
to apply MDP planning algorithms, such as value iteration21 or Monte 
Carlo tree search (MCTS)22, to compute the optimal value function or 
optimal policy for the MDP. In large or partially observed environments, 
the algorithm must first construct the state representation that the 
model should predict. This tripartite separation between representa-
tion learning, model learning and planning is potentially problematic, 
as the agent is not able to optimize its representation or model for the 
purpose of effective planning, so, for example, modelling errors may 
compound during planning.

A common approach to model-based RL focuses on directly mod-
elling the observation stream at the pixel level. It has been hypoth-
esized that deep, stochastic models may mitigate the problems of 
compounding error15,16. However, planning at pixel-level granularity 
is not computationally tractable in large-scale problems. Other meth-
ods build a latent state-space model that is sufficient to reconstruct 
the observation stream at the pixel level23,24 or to predict its future 
latent states25,26, which facilitates more efficient planning but still 
focuses the majority of the model capacity on potentially irrelevant 
detail. None of these previous methods have constructed a model 
that facilitates effective planning in visually complex domains such 
as Atari; results lag behind well tuned, model-free methods, even in 
terms of data efficiency27.

A quite different approach to model-based RL has recently been 
developed, focused end to end on predicting the value function28–33. 
The main idea of these methods is to construct an abstract MDP model 

such that planning in the abstract MDP is equivalent to planning in the 
real environment. This is achieved by ensuring value equivalence, that 
is, that, starting from the same real state, the cumulative reward of a 
trajectory through the abstract MDP matches the cumulative reward 
of a trajectory in the real environment.

The predictron29 introduced value equivalent models for predicting 
value functions (without actions). Although the underlying model still 
takes the form of an MDP, there is no requirement for its transition 
model to match real states in the environment. Instead the MDP model 
is viewed as a hidden layer of a deep neural network. The unrolled MDP 
is trained such that the expected cumulative sum of rewards matches 
the expected value with respect to the real environment, for example, 
by temporal-difference learning.

Value equivalent models have also been applied to optimizing 
value (with actions). Value-aware model learning30,31 constructs an 
MDP model, such that a step of value iteration using the model pro-
duces the same outcome as the real environment. TreeQN32 learns 
an abstract MDP model, such that a tree search over that model 
(represented by a tree-structured neural network) approximates 
the optimal value function. Value iteration networks28 learn a local 
MDP model, such that many steps of value iteration over that model 
(represented by a convolutional neural network) approximates the 
optimal value function.

Value prediction networks33 are perhaps the closest precursor to 
MuZero: they learn an MDP model grounded in real actions; the unrolled 
MDP is trained such that the cumulative sum of rewards, conditioned 
on the actual sequence of actions generated by a simple lookahead 
search, matches the real environment. Unlike MuZero there is no policy 
prediction, and the search utilizes only value prediction.

MuZero algorithm
We now describe the MuZero algorithm in more detail. Predictions are 
made at each time step t, for each of k = 0, …, K steps, by a model μθ, 
with parameters θ, conditioned on past observations o1, ..., ot and for 
k > 0 on future actions at+1, ..., at+k. The model predicts three future 
quantities: the policy p π a o o a a≈ ( | , …, , , …, )t

k
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Fig. 1 | Planning, acting and training with a learned model. a, How MuZero 
uses its model to plan. The model consists of three connected components for 
representation, dynamics and prediction. Given a previous hidden state sk−1 and 
a candidate action ak, the dynamics function g produces an immediate reward 
rk and a new hidden state sk. The policy pk and value function vk are computed 
from the hidden state sk by a prediction function f. The initial hidden state s0 is 
obtained by passing the past observations (for example, the Go board or  
Atari screen) into a representation function h. b, How MuZero acts in the 
environment. An MCTS is performed at each timestep t, as described in a. An 
action at+1 is sampled from the search policy πt, which is proportional to the visit 
count for each action from the root node. The environment receives the action 
and generates a new observation ot+1 and reward ut+1. At the end of the episode, 

the trajectory data are stored into a replay buffer. c, How MuZero trains its 
model. A trajectory is sampled from the replay buffer. For the initial step, the 
representation function h receives as input the past observations o1, ..., ot from 
the selected trajectory. The model is subsequently unrolled recurrently for K 
steps. At each step k, the dynamics function g receives as input the hidden state 
sk−1 from the previous step and the real action at+k. The parameters of the 
representation, dynamics and prediction functions are jointly trained, end to 
end, by backpropagation through time, to predict three quantities: the policy 
pk ≈ πt+k, value function vk ≈ zt+k and reward rk ≈ ut+k, where zt+k is a sample return: 
either the final reward (board games) or n-step return (Atari). Schematic Go 
boards at the top of the figure represent the sequence of observations.
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reward, π is the policy used to select real actions and γ is the discount 
function of the environment.

Internally, at each time step t (subscripts t are suppressed for simplic-
ity), the model is represented by the combination of a representation 
function, a dynamics function and a prediction function. The dynamics 
function gθ, is a recurrent process, rk, sk = gθ(sk−1, ak), that computes, at 
each hypothetical step k, an immediate reward rk and an internal state 
sk. It mirrors the structure of an MDP model that computes the expected 
reward and state transition for a given state and action21. However, 
unlike traditional approaches to model-based RL11, this internal state 
sk has no semantics of environment state attached to it—it is simply the 
hidden state of the overall model and its sole purpose is to accurately 
predict relevant, future quantities: policies, values and rewards. In this 
paper, the dynamics function is represented deterministically; the 
extension to stochastic transitions is left for future work. A prediction 
function fθ computes the policy and value functions from the internal 
state sk, pk, vk = fθ(sk), akin to the joint policy and value network of Alp-
haZero. A representation function hθ initializes the ‘root’ state s0 by 
encoding past observations, s0 = hθ(o1, ..., ot); again, this has no special 
semantics beyond its support for future predictions.

Given such a model, it is possible to search over hypothetical future 
trajectories a1, ..., ak given past observations o1, ..., ot. For example, a 
naive search could simply select the k-step action sequence that max-
imizes the value function. More generally, we may apply any MDP plan-
ning algorithm to the internal rewards and state space induced by the 
dynamics function. Specifically, we use an MCTS algorithm similar to 
AlphaZero’s search, generalized to allow for single-agent domains and 
intermediate rewards (Methods). The MCTS algorithm may be viewed 
as a search policy πt = P[at+1|o1, ..., ot] and search value function νt ≈ E
[ut+1 + γut+2 +...|o1, ..., ot] that both selects an action and predicts cumu-
lative reward given past observations o1, ..., ot. At each internal node, 
it makes use of the policy, value function and reward estimate produced 

by the current model parameters θ, and combines these values together 
using lookahead search to produce an improved policy πt and improved 
value function νt at the root of the search tree. The next action at+1 ≈ πt 
is then chosen by the search policy.

All parameters of the model are trained jointly to accurately match 
the policy, value function and reward prediction, for every hypo-
thetical step k, to three corresponding targets observed after k actual 
time steps have elapsed. Similarly to AlphaZero, the first objective is 
to minimize the error between the actions predicted by the policy  
pt

k  and by the search policy πt+k. Also like AlphaZero, value targets  
are generated by playing out the game or MDP using the search  
policy. However, unlike AlphaZero, we allow for long episodes with 
discounting and intermediate rewards by computing an n-step return 
zt that bootstraps n steps into the future from the search value,  
zt = ut+1 + γut+2 + ... + γn−1ut+n + γnνt+n. Final outcomes {lose, draw, win} in 
board games are treated as rewards ut ∈ {−1, 0, +1} occurring at the 
final step of the episode. Specifically, the second objective is to min-
imize the error between the value function vt

k and the value target, 
zt+k. The third objective is to minimize the error between the predicted 
immediate reward r t

k and the observed immediate reward ut+k. Finally, 
an L2 regularization term is also added, scaled by a constant c, leading 
to the overall loss
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where lp, lv and lr are loss functions for policy, value and reward, respec-
tively. Supplementary Fig. 2 summarizes the equations governing 
how the MuZero algorithm plans, acts and learns. We note that for 
chess, Go and shogi, the same squared error loss as AlphaZero is used 
for rewards and values. A cross-entropy loss was found to be more 
stable than a squared error when encountering rewards and values 
of variable scale in Atari. Cross-entropy was used for the policy loss 
in both cases.
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Fig. 2 | Evaluation of MuZero throughout training in chess, shogi, Go and 
Atari. The x axis shows millions of training steps. For chess, shogi and Go, the y 
axis shows Elo rating, established by playing games against AlphaZero using 
800 simulations per move for both players. MuZero’s Elo is indicated by the 
blue line and AlphaZero’s Elo is indicated by the horizontal orange line. For 
Atari, mean (full line) and median (dashed line) human normalized scores 

across all 57 games are shown on the y axis. The scores for R2D219 (the previous 
state of the art in this domain, based on model-free RL) are indicated by the 
horizontal orange lines. Performance in Atari was evaluated using 50 
simulations every fourth time step, and then repeating the chosen action four 
times, as in previous work39. Supplementary Fig. 1 studies the repeatability of 
training in Atari.
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Results
We applied the MuZero algorithm to the classic board games Go, chess 
and shogi, as benchmarks for challenging planning problems, and to 
all 57 games in the Atari learning environment3, as benchmarks for 
visually complex RL domains.

In each case, we trained MuZero for K = 5 hypothetical steps. Train-
ing proceeded for one million mini-batches of size 2,048 in board 
games and of size 1,024 in Atari. During both training and evalua-
tion, MuZero used 800 simulations for each search in board games 
and 50 simulations for each search in Atari. The representation 

function uses the same convolutional34 and residual35 architecture as  
AlphaZero, but with 16 residual blocks instead of 20. The dynam-
ics function uses the same architecture as the representation  
function and the prediction function uses the same architecture 
as AlphaZero. All networks use 256 hidden planes (see Methods 
for further details).

Figure 2 shows the performance throughout training in each game. In 
Go, MuZero slightly exceeded the performance of AlphaZero, despite 
using less computation per node in the search tree (16 residual blocks 
per evaluation in MuZero compared with 20 blocks in AlphaZero). This 
suggests that MuZero may be caching its computation in the search 

Table 1 | Comparison of MuZero against previous agents in Atari

Agent Median (%) Mean (%) Environment frames Training time Training steps

Ape-X20 434.1 1,695.6 22.8 billion 5 days 8.64 million

R2D219 1,920.6 4,024.9 37.5 billion 5 days 2.16 million

MuZero 2,041.1 4,999.2 20.0 billion 12 hours 1 million

IMPALA18 191.8 957.6 200 million – –

Rainbow36 231.1 – 200 million 10 days –

UNREALa 42 250a 880a 250 million – –

LASER37 431 – 200 million – –

MuZero Reanalyze 731.1 2,168.9 200 million 12 hours 1 million

We compare separately against agents trained in large (top) and small (bottom) data settings; all agents other than MuZero used model-free RL techniques. Mean and median scores are given, 
compared with human testers. The best results are highlighted in bold. MuZero shows state-of-the-art performance in both settings. aHyperparameters were tuned per game.
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Fig. 3 | Evaluations of MuZero on Go, all 57 Atari games and Ms. Pac-Man.  
a, Scaling with search time per move in Go, comparing the learned model with 
the ground truth simulator. Both networks were trained at 800 simulations 
per search, equivalent to 0.1 s per search. Remarkably, the learned model is able 
to scale well to up to two orders of magnitude longer searches than seen during 
training. b, Scaling of final human normalized mean score in Atari with the 
number of simulations per search. The network was trained at 50 simulations 
per search. Dark line indicates mean score and the shaded regions indicate the 
25th to 75th and 5th to 95th percentiles. The learned model’s performance 
increases up to 100 simulations per search. Beyond, even when scaling to  
much longer searches than during training, the learned model’s performance 
remains stable and decreases only slightly. This contrasts with the much better 
scaling in Go (a), presumably due to greater model inaccuracy in Atari than Go. 

c, Comparison of MCTS-based training with Q-learning in the MuZero 
framework on Ms. Pac-Man, keeping network size and amount of training 
constant. The state-of-the-art Q-learning algorithm R2D2 is shown as a 
baseline. Our Q-learning implementation reaches the same final score as R2D2, 
but improves slower and results in much lower final performance compared 
with MCTS-based training. d, Different networks trained at different numbers 
of simulations (sims) per move, but all evaluated at 50 simulations per move. 
Networks trained with more simulations per move improve faster, consistent 
with ablation (b), where the policy improvement is larger when using more 
simulations per move. Surprisingly, MuZero can learn effectively even when 
training with less simulations per move than are enough to cover all eight 
possible actions in Ms. Pac-Man.
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tree and using each additional application of the dynamics model to 
gain a deeper understanding of the position.

In Atari, MuZero achieved state-of-the-art performance for both 
mean and median normalized score across the 57 games of the arcade 
learning environment, outperforming the previous state-of-the-art 
method R2D219 (a model-free approach) in 42 out of 57 games, and 
outperforming the previous best model-based approach SimPLe16 in 
all games (Table 1 and Supplementary Table 1).

We also evaluated a second version of MuZero that was optimized 
for greater sample efficiency. Specifically, it reanalyses old trajec-
tories by re-running the MCTS using the latest network parameters 
to provide fresh targets (see ‘MuZero Reanalyze’ in Methods). When 
applied to 57 Atari games, using 200 million frames of experience per 
game, MuZero Reanalyze achieved 731% median normalized score, 
compared with 192%, 231% and 431% for previous state-of-the-art 
model-free approaches IMPALA18, Rainbow36 and LASER37,  
respectively.

To understand the role of the model in MuZero, we also ran several 
experiments, focusing on the board game of Go and the Atari game 
of Ms. Pac-Man.

First, we tested the scalability of planning (Fig. 3a), in the canonical 
planning problem of Go. We compared the performance of search in 
AlphaZero, using a perfect model, to the performance of search in 
MuZero, using a learned model. Specifically, the fully trained AlphaZero 
or MuZero was evaluated by comparing MCTS with different thinking 
times. MuZero matched the performance of a perfect model, even when 
doing much larger searches (thinking time of up to 10 s) than those 
from which the model was trained (thinking time of around 0.1 s; see 
also Supplementary Fig. 3a).

We also investigated the scalability of planning across all Atari games 
(Fig. 3b). We compared MCTS with different numbers of simulations, 
using the fully trained MuZero. The improvements due to planning are 
much less marked than in Go, perhaps because of greater model inac-
curacy; performance improved slightly with search time, but plateaued 
at around 100 simulations. Even with a single simulation—that is, when 
selecting moves solely according to the policy network—MuZero per-
formed well, suggesting that, by the end of training, the raw policy has 
learned to internalize the benefits of search (see also Supplementary 
Fig. 3b).

Next, we tested our model-based learning algorithm against a compa-
rable model-free learning algorithm (Fig. 3c). We replaced the training 
objective of MuZero (equation (1)) with a model-free Q-learning objec-
tive (as used by R2D2), and the dual policy and value heads with a single 
head representing the action-value function Q(⋅|st). Subsequently, we 
trained and evaluated the new model without using any search. When 
evaluated on Ms. Pac-Man, our model-free algorithm achieved identical 
results to R2D2, but learned much slower than MuZero and converged 
to a much lower final score. We conjecture that the search-based policy 
improvement step of MuZero provides a stronger learning signal than 
the high-bias, high-variance targets used by Q-learning.

To better understand the nature of MuZero’s learning algorithm, we 
measured how MuZero’s training scales with respect to the amount 
of search it uses during training. Figure 3d shows the performance in 
Ms. Pac-Man, using an MCTS of different simulation counts per move 
throughout training. Surprisingly, and in contrast to previous work38, 
even with only six simulations per move—fewer than the number of 
actions—MuZero learned an effective policy and improved rapidly. 
With more simulations, the performance jumped much higher. For 
analysis of the policy improvement during each individual iteration, 
see also Supplementary Fig. 3c, d.

Conclusions
Many of the breakthroughs in artificial intelligence have been based on 
either high-performance planning1,2,5 or model-free RL methods39–41. 

Here we have introduced a method that combines the benefits of both 
approaches. Our algorithm, MuZero, has both matched the superhu-
man performance of high-performance planning algorithms in their 
favoured domains (logically complex board games such as chess and 
Go) and outperformed state-of-the-art model-free RL algorithms in 
their favoured domains (visually complex Atari games). Crucially, our 
method does not require any knowledge of the environment dynamics, 
potentially paving the way towards the application of powerful learning 
and planning methods to a host of real-world domains for which there 
exists no perfect simulator.
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Methods

Comparison to AlphaZero
MuZero is designed for a more general setting than AlphaGo Zero43 
and AlphaZero5.

In AlphaGo Zero and AlphaZero, the planning process makes use 
of a simulator that samples the next state and reward (for example, 
according to the environment’s dynamics, or the rules of the game). 
The simulator updates the state of the game while traversing the search 
tree (Fig. 1a). The simulator is used to provide three important pieces of 
knowledge: (1) state transitions in the search tree, (2) actions available 
at each node of the search tree and (3) episode termination within the 
search tree. In MuZero, all of these have been replaced with the use of 
a single implicit model learned by a neural network (Fig. 1b).

(1) State transitions. AlphaZero had access to a perfect simulator of 
the environment’s dynamics. In contrast, MuZero employs a learned 
dynamics model within its search. Under this model, each node in the 
tree is represented by a corresponding hidden state; by providing a 
hidden state sk−1 and an action ak to the model, the search algorithm 
can transition to a new node sk = g(sk−1, ak).

(2) Actions available. We consider a standard problem formulation 
where the set of available actions is provided at each time step along-
side the observation. During search, however, it could be helpful to 
specify the available actions at each interior node—which would require 
knowledge of how the available actions change over time. AlphaZero 
used the set of legal actions obtained from the simulator to mask the 
policy network at interior nodes. MuZero does not perform any masking 
within the search tree, but only masks legal actions at the root of the 
search tree where the set of available actions is directly observed. The 
policy network rapidly learns to exclude actions that are unavailable, 
simply because they are never selected.

(3) Terminal states. AlphaZero stopped the search at tree nodes rep-
resenting terminal states and used the terminal value provided by the 
simulator instead of the value produced by the network. MuZero does 
not give special treatment to terminal states and always uses the value 
predicted by the network. Inside the tree, the search can proceed past 
a state that would terminate the simulator. In this case, the network is 
expected to always predict the same value, which may be achieved by 
modelling terminal states as absorbing states during training.

In addition, MuZero is designed to operate in the general RL setting: 
single-agent domains with discounted intermediate rewards of arbitrary 
magnitude. In contrast, AlphaGo Zero and AlphaZero were designed to 
operate in two-player games with undiscounted terminal rewards of ±1.

Many other generalizations of MuZero may be possible, for example, 
to stochastic, continuous, non-stationary or temporally extended 
environments, or to imperfect information or general sum games. 
These generalizations are left for future work.

Search
We now describe the search algorithm used by MuZero. Our approach 
is based on MCTS with upper confidence bounds, an approach to plan-
ning that converges asymptotically to the optimal policy in single agent 
domains and to the minimax value function in zero sum games44.

Every node of the search tree is associated with an internal state s. For 
each action a from s there is an edge (s, a) that stores a set of statistics 
{N(s, a), P(s, a), Q(s, a), R(s, a), S(s, a)}, respectively representing visit 
counts N, policy P, mean value Q, reward R and state transition S.

Similar to AlphaZero, the search is divided into three stages, repeated 
for a number of simulations.

Selection. Each simulation starts from the internal root state s0, and 
finishes when the simulation reaches a leaf node sl. For each hypotheti-
cal time step k = 1 ... l of the simulation, an action ak is selected accord-
ing to the stored statistics for internal state sk−1, by maximizing over a 
probabilistic upper confidence tree (PUCT) bound5,45
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where a and b are possible actions. The constants c1 and c2 are used to 
control the influence of the policy P(s, a) relative to the value Q(s, a) as 
nodes are visited more often. In our experiments, c1 = 1.25 and c2 = 19,652.

For k < l, the next state and reward are looked up in the state transi-
tion and reward table sk = S(sk−1, ak), rk = R(sk−1, ak).

Expansion. At the final time step l of the simulation, the reward and state 
are computed by the dynamics function, rl, sl = gθ(sl−1, al), and stored in 
the corresponding tables, R(sl−1, al) = rl, S(sl−1, al) = sl. The policy and value 
function are computed by the prediction function, pl, vl = fθ (sl). A new 
node, corresponding to state sl is added to the search tree. Each edge (sl, 
a) from the newly expanded node is initialized to {N(sl, a) = 0, Q(sl, a) = 0, 
P(sl, a) = pl}. Note that the search algorithm makes at most one call to the 
dynamics function and prediction function respectively per simulation; 
the computational cost is of the same order as in AlphaZero.

Backup. At the end of the simulation, the statistics along the trajectory 
are updated. The backup is generalized to the case where the environ-
ment can emit intermediate rewards, have a discount γ different from 1 
and the value estimates are unbounded. (We note that in board games, 
the discount is assumed to be 1 and there are no intermediate rewards.) 
For k = l ... 0, we form an l − k-step estimate of the cumulative discounted 
reward, bootstrapping from the value function vl
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For k = l ... 1, we update the statistics for each edge (sk−1, ak) in the 
simulation path as follows
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In two-player zero sum games, the value functions are assumed to 
be bounded within the [0, 1] interval. This choice allows us to combine 
value estimates with probabilities using a variant of the PUCT rule45 
(equation  (2)). However, as in many environments the value is 
unbounded, it is necessary to adjust the PUCT rule. A simple solution 
would be to use the maximum score that can be observed in the envi-
ronment to either rescale the value or set the PUCT constants appro-
priately46. However, both solutions are game specific and require 
adding prior knowledge to the MuZero algorithm. To avoid this, MuZero 
computes normalized Q-value estimates Q ∈ [0, 1] by using the mini-
mum–maximum values observed in the search tree up to that point. 
When a node is reached during the selection stage, the algorithm com-
putes the normalized Q  values of its edges to be used in place of the Q 
values in the PUCT rule using the equation
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Hyperparameters
For simplicity we preferentially use the same architectural choices 
and hyperparameters as in previous work. Specifically, we started with 
the network architecture and search choices of AlphaZero5. For board 



games, we use the same PUCT constants, Dirichlet exploration noise 
and the same 800 simulations per search as in AlphaZero.

Owing to the much smaller branching factor and simpler policies in 
Atari, we used only 50 simulations per search to speed up experiments. 
As shown in Fig. 3b, the algorithm is not very sensitive to this choice. 
We also use the same discount (0.997) and value transformation (see 
‘Network architecture’) as R2D219.

For parameter values not mentioned in the text, please refer to the 
pseudocode (see ‘Code availability’).

Data generation
To generate training data, the latest checkpoint of the network (updated 
every 1,000 training steps) is used to play games with MCTS. In the 
board games Go, chess and shogi, the search is run for 800 simulations 
per move to pick an action; in Atari, due to the much smaller action 
space 50 simulations per move are sufficient.

For board games, games are sent to the training job as soon as they 
finish. Owing to the much larger length of Atari games (up to 30 min or 
108,000 frames), intermediate sequences are sent every 200 moves. 
In board games, the training job keeps an in-memory replay buffer of 
the most recent one million games received; in Atari, where the visual 
observations are larger, the most recent 125,000 sequences of length 
200 are kept.

During the generation of experience in the board game domains, 
the same exploration scheme as the one described in AlphaZero5 is 
used. Using a variation of this scheme, in the Atari domain, actions are 
sampled from the visit count distribution throughout the duration of 
each game, instead of just the first k moves. Moreover, the visit count 
distribution is parametrized using a temperature parameter T
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T is decayed as a function of the number of training steps of the net-
work. Specifically, for the first 500,000 training steps a temperature of  
1.0 is used, for the next 250,000 steps a temperature of 0.5 and for the 
remaining 250,000 a temperature of 0.25. This ensures that the action 
selection becomes greedier as training progresses.

Observation and action encoding
Representation function. The history over board states used as input 
to the representation function for Go, chess and shogi is represented 
similarly to AlphaZero5. In Go and shogi, we encode the last eight board 
states as in AlphaZero; in chess, we increased the history to the last 100 
board states to allow correct prediction of draws.

For Atari, the input of the representation function includes the last 
32 RGB frames at resolution 96 × 96 along with the last 32 actions that 
led to each of those frames. We encode the historical actions because 
unlike board games, an action in Atari does not necessarily have a visible 
effect on the observation. RGB frames are encoded as one plane per 
colour, rescaled to the range [0, 1], for red, green and blue, respectively. 
We perform no other normalization, whitening or other preprocessing 
of the RGB input. Historical actions are encoded as simple bias planes, 
scaled as a/18 (there are 18 total actions in Atari).

Dynamics function. The input to the dynamics function is the hidden 
state produced by the representation function or previous application of 
the dynamics function, concatenated with a representation of the action 
for the transition. Actions are encoded spatially in planes of the same 
resolution as the hidden state. In Atari, this resolution is 6 × 6 (see descrip-
tion of downsampling in ‘Network architecture’), in board games, this is 
the same as the board size (19 × 19 for Go, 8 × 8 for chess, 9 × 9 for shogi).

In Go, a normal action (playing a stone on the board) is encoded as 
an all-zero plane, with a single one in the position of the played stone. 
A pass is encoded as an all-zero plane.

In chess, eight planes are used to encode the action. The first one-hot 
plane encodes which position the piece was moved from. The next two 
planes encode which position the piece was moved to: a one-hot plane 
to encode the target position, if on the board, and a second binary plane 
to indicate whether the target was valid (on the board) or not. This is 
necessary because for simplicity, our policy action space enumerates 
a superset of all possible actions, not all of which are legal, and we use 
the same action space for policy prediction and to encode the dynamics 
function input. The remaining five binary planes are used to indicate 
the type of promotion, if any (queen, knight, bishop, rook, none).

The encoding for shogi is similar, with a total of 11 planes. We use 
the first eight planes to indicate where the piece moved from—either 
a board position (first one-hot plane) or the drop of one of the seven 
types of prisoner (remaining seven binary planes). The next two planes 
are used to encode the target as in chess. The remaining binary plane 
indicates whether the move was a promotion or not.

In Atari, an action is encoded as a one-hot vector that is tiled appro-
priately into planes.

Network architecture. The prediction function pk, vk = fθ(sk) uses the 
same architecture as AlphaZero: one or two convolutional layers that 
preserve the resolution but reduce the number of planes, followed by 
a fully connected layer to the size of the output.

For value and reward prediction in Atari, we follow ref. 47 in scaling 
targets using an invertible transform h x x x εx( ) = sign( )( | | + 1 − 1) + , 
where ε = 0.001 in all our experiments. We then apply a transformation 
ϕ to the scalar reward and value targets to obtain equivalent categor-
ical representations. We use a discrete support set of size 601 with one 
support for every integer between −300 and 300. Under this transfor-
mation, each scalar is represented as the linear combination of its two 
adjacent supports, such that the original value can be recovered by  
x = xlow × plow + xhigh × phigh. As an example, a target of 3.7 would be rep-
resented as a weight of 0.3 on the support for 3 and a weight of 0.7 on 
the support for 4. The value and reward outputs of the network are also 
modelled using a softmax output of size 601. During inference, the 
actual value and rewards are obtained by first computing their expected 
value under their respective softmax distribution and subsequently 
by inverting the scaling transformation. Scaling and transformation 
of the value and reward happens transparently on the network side 
and is not visible to the rest of the algorithm.

Both the representation and dynamics function use the same archi-
tecture as AlphaZero, but with 16 instead of 20 residual blocks35. We use 
3 × 3 kernels and 256 hidden planes for each convolution.

For Atari, where observations have large spatial resolution, the rep-
resentation function starts with a sequence of convolutions with stride 
2 to reduce the spatial resolution. Specifically, starting with an input 
observation of resolution 96 × 96 and 128 planes (32 history frames 
of 3 colour channels each, concatenated with the corresponding 32 
actions broadcast to planes), we downsample as follows: 1 convolu-
tion with stride 2 and 128 output planes, output resolution 48 × 48; 
2 residual blocks with 128 planes; 1 convolution with stride 2 and 256 
output planes, output resolution 24 × 24; 3 residual blocks with 256 
planes; average pooling with stride 2, output resolution 12 × 12; 3 
residual blocks with 256 planes; average pooling with stride 2, output 
resolution 6 × 6. The kernel size is 3 × 3 for all operations.

For the dynamics function (which always operates at the downsam-
pled resolution of 6 × 6), the action is first encoded as an image, then 
stacked with the hidden state of the previous step along the plane 
dimension.

Training. During training, the MuZero network is unrolled for K hypo-
thetical steps and aligned to sequences sampled from the trajectories 
generated by the MCTS actors. Sequences are selected by sampling a 
state from any game in the replay buffer, then unrolling for K steps from 
that state. In Atari, samples are drawn according to prioritized replay48, 
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with priority P i( ) =

p

p∑ k

i
α

k
α , where pi = |νi − zi|, ν is the search value and z the 

observed n-step return. To correct for sampling bias introduced by the 
prioritized sampling, we scale the loss using the importance sampling 

ratio ( )w = , × ,i N P i

β1 1
( )

. In all our experiments, we set α = β = 1. For board 
games, states are sampled uniformly.

Each observation ot along the sequence also has a corresponding 
search policy πt, search value function νt and environment reward ut. 
At each unrolled step k, the network has a loss to the policy, value and 
reward target for that step, summed to produce the total loss for the 
MuZero network (see equation (1)). Note that, in board games without 
intermediate rewards, we omit the reward prediction loss. For board 
games, we bootstrap directly to the end of the game, equivalent to 
predicting the final outcome; for Atari we bootstrap for n = 10 steps 
into the future.

To maintain roughly similar magnitude of gradient across different 
unroll steps, we scale the gradient in two separate locations. (1) We scale 
the loss of each head by 1/K, where K is the number of unroll steps. This 
ensures that the total gradient has similar magnitude irrespective of 
how many steps we unroll for. (2) We also scale the gradient at the start 
of the dynamics function by 1/2. This ensures that the total gradient 
applied to the dynamics function stays constant.

In the experiments reported in this paper, we always unroll for K = 5 
steps. For a detailed illustration, see Fig. 1.

To improve the learning process and bound the activations, we also 
scale the hidden state to the same range as the action input ([0,1]): 
s = s s

s sscaled
− min( )

max( ) − min( )
.

All experiments were run using third-generation Google Cloud ten-
sor processing units (TPUs)49. For each board game, we used 16 TPUs 
for training and 1,000 TPUs for self-play. For each game in Atari, in the 
20 billion frame setting we used 8 TPUs for training and 32 TPUs for 
self-play. In the smaller 200 million frame setting, we used only four 
TPUs for training and two TPUs for self-play, equivalent to two weeks 
of training on 1 GPU. The much smaller proportion of TPUs used for 
acting in Atari is due to the smaller number of simulations per move  
(50 instead of 800) and the smaller size of the dynamics function com-
pared with the representation function.

Note that the network is trained separately for each environment 
(that is, one model for each different Atari game or board game). 
However, in principle, the same model could be shared between 
different environments during training, or could be tested in new 
environments (that is, zero-shot generalization); this approach is 
left to future work.

MuZero Reanalyze. To improve the sample efficiency of MuZero, we 
introduced a second variant of the algorithm, MuZero Reanalyze. Mu-
Zero Reanalyze revisits its past time steps and re-executes its search 
using the latest model parameters, potentially resulting in a better-quality 
policy than the original search. This fresh policy is used as the policy 
target for 80% of updates during MuZero training. Furthermore, a target 
network39 v f s⋅, = ( )θ

− 0
− , based on recent parameters θ−, is used to provide 

a fresher, stable n-step bootstrapped target for the value function, 
z u γu γ u γ v= + + … + +t t t

n
t n

n
t n+1 +2

−1
+ +

− . In addition, several other hyper-
parameters were adjusted— primarily to increase sample reuse and avoid 
overfitting of the value function. Specifically, 2.0 samples were drawn 
per state, instead of 0.1; the value target was weighted down to 0.25 com-
pared with weights of 1.0 for policy and reward targets; and the n-step 
return was reduced to n = 5 steps instead of n = 10 steps.

Evaluation. We evaluated the relative strength of MuZero (Fig. 2) in 
board games by measuring the Elo rating of each player. We estimate 
the probability that player a will defeat player b by a logistic function 
p a b( defeats ) = (1 + 10 )c e b e a[ ( )− ( )] −1elo , and estimate the ratings e(⋅) by 
Bayesian logistic regression, computed by the BayesElo program50 
using the standard constant celo = 1/400.

Elo ratings were computed from the results of an 800-simulations- 
per-move tournament between iterations of MuZero during training, 
and also a baseline player: either Stockfish, Elmo or AlphaZero, respec-
tively. Baseline players used an equivalent search time of 100 ms per 
move. The Elo rating of the baseline players was anchored to publicly 
available values5.

In Atari, we computed mean reward over 1,000 episodes per game, 
limited to the standard 30 min or 108,000 frames per episode51, using 
50 simulations per move unless indicated otherwise. To mitigate the 
effects of the deterministic nature of the Atari simulator, we employed 
two different evaluation strategies: 30 noop random starts and human 
starts. For the former, at the beginning of each episode, a random num-
ber of between 0 and 30 noop actions are applied to the simulator 
before handing control to the agent. For the latter, start positions are 
sampled from human expert play to initialize the Atari simulator before 
handing the control to the agent51.

Data availability
MuZero is trained only on data generated by MuZero itself; no external 
data were used to produce the results presented in the article. Data for 
all figures and tables presented are available in JSON format in the Sup-
plementary Information.

Code availability
The Arcade Learning Environment3 is available open source at https://
github.com/mgbellemare/Arcade-Learning-Environment. The Go and 
chess environments are available open source in OpenSpiel52 at https://
github.com/deepmind/open_spiel. The pseudocode for the MuZero 
algorithm can be found in the file pseudocode.py in the Supplementary 
Information. All the neural architecture details and hyperparameters 
are described in Methods.
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