
604 | Nature | Vol 588 | 24/31 December 2020

Article

Mastering Atari, Go, chess and shogi by
planning with a learned model

Julian Schrittwieser1,3, Ioannis Antonoglou1,2,3, Thomas Hubert1,3, Karen Simonyan1,
Laurent Sifre1, Simon Schmitt1, Arthur Guez1, Edward Lockhart1, Demis Hassabis1,
Thore Graepel1,2, Timothy Lillicrap1 & David Silver1,2,3 ✉

Constructing agents with planning capabilities has long been one of the main
challenges in the pursuit of artificial intelligence. Tree-based planning methods have
enjoyed huge success in challenging domains, such as chess1 and Go2, where a perfect
simulator is available. However, in real-world problems, the dynamics governing the
environment are often complex and unknown. Here we present the MuZero
algorithm, which, by combining a tree-based search with a learned model, achieves
superhuman performance in a range of challenging and visually complex domains,
without any knowledge of their underlying dynamics. The MuZero algorithm learns
an iterable model that produces predictions relevant to planning: the action-selection
policy, the value function and the reward. When evaluated on 57 different Atari
games3—the canonical video game environment for testing artificial intelligence
techniques, in which model-based planning approaches have historically struggled4—
the MuZero algorithm achieved state-of-the-art performance. When evaluated on Go,
chess and shogi—canonical environments for high-performance planning—the
MuZero algorithm matched, without any knowledge of the game dynamics, the
superhuman performance of the AlphaZero algorithm5 that was supplied with the
rules of the game.

Planning algorithms based on lookahead search have achieved remark-
able successes in artificial intelligence. Human world champions have
been defeated in classic games such as checkers6, chess1, Go2 and
poker7,8, and planning algorithms have had real-world impact in applica-
tions from logistics9 to chemical synthesis10. However, these planning
algorithms all rely on knowledge of the environment’s dynamics, such
as the rules of the game or an accurate simulator, preventing their direct
application to real-world domains such as robotics, industrial control
or intelligent assistants, where the dynamics are normally unknown.

Model-based reinforcement learning (RL)11 aims to address this issue
by first learning a model of the environment’s dynamics and then plan-
ning with respect to the learned model. Typically, these models have
either focused on reconstructing the true environmental state12–14
or the sequence of full observations15,16. However, previous work15–17
remains far from the state of the art in visually rich domains, such as
Atari 2600 games3. Instead, the most successful methods are based
on model-free RL18–20—that is, they estimate the optimal policy and/
or value function directly from interactions with the environment.
However, model-free algorithms are in turn far from the state of the
art in domains that require precise and sophisticated lookahead, such
as chess and Go.

Here we introduce MuZero, a new approach to model-based RL that
achieves both state-of-the-art performance in Atari 2600 games—a
visually complex set of domains—and superhuman performance in
precision planning tasks such as chess, shogi and Go, without prior

knowledge of the game dynamics. MuZero builds on AlphaZero’s5 pow-
erful search and policy iteration algorithms, but incorporates a learned
model into the training procedure. MuZero also extends AlphaZero
to a broader set of environments, including single agent domains and
non-zero rewards at intermediate time steps.

The main idea of the algorithm (summarized in Fig. 1) is to predict
those aspects of the future that are directly relevant for planning. The
model receives the observation (for example, an image of the Go board
or the Atari screen) as an input and transforms it into a hidden state.
The hidden state is then updated iteratively by a recurrent process that
receives the previous hidden state and a hypothetical next action. At
every one of these steps, the model produces a policy (predicting the
move to play), value function (predicting the cumulative reward, for
example, the eventual winner) and immediate reward prediction (for
example, the points scored by playing a move). The model is trained
end to end, with the sole objective of accurately estimating these three
important quantities, to match the improved policy and value function
generated by search, as well as the observed reward. There is no direct
requirement or constraint on the hidden state to capture all informa-
tion necessary to reconstruct the original observation, drastically
reducing the amount of information the model has to maintain and
predict. Neither is there any requirement for the hidden state to match
the unknown, true state of the environment; nor any other constraints
on the semantics of state. Instead, the hidden states are free to repre-
sent any state that correctly estimates the policy, value function and

https://doi.org/10.1038/s41586-020-03051-4

Received: 3 April 2020

Accepted: 7 October 2020

Published online: 23 December 2020

 Check for updates

1DeepMind, London, UK. 2University College London, London, UK. 3These authors contributed equally: Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, David Silver.
✉e-mail: davidsilver@google.com

https://doi.org/10.1038/s41586-020-03051-4
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-03051-4&domain=pdf
mailto:davidsilver@google.com

Nature | Vol 588 | 24/31 December 2020 | 605

reward. Intuitively, the agent can invent, internally, any dynamics that
lead to accurate planning.

Previous work
RL can be subdivided into two principal categories: model based and
model free11. Model-based RL constructs, as an intermediate step, a
model of the environment. Classically, this model is represented by
a Markov decision process (MDP)21 consisting of two components: a
state transition model, predicting the next state given the selected
action, and a reward model, predicting the expected reward during that
transition. Once a model has been constructed, it is straightforward
to apply MDP planning algorithms, such as value iteration21 or Monte
Carlo tree search (MCTS)22, to compute the optimal value function or
optimal policy for the MDP. In large or partially observed environments,
the algorithm must first construct the state representation that the
model should predict. This tripartite separation between representa-
tion learning, model learning and planning is potentially problematic,
as the agent is not able to optimize its representation or model for the
purpose of effective planning, so, for example, modelling errors may
compound during planning.

A common approach to model-based RL focuses on directly mod-
elling the observation stream at the pixel level. It has been hypoth-
esized that deep, stochastic models may mitigate the problems of
compounding error15,16. However, planning at pixel-level granularity
is not computationally tractable in large-scale problems. Other meth-
ods build a latent state-space model that is sufficient to reconstruct
the observation stream at the pixel level23,24 or to predict its future
latent states25,26, which facilitates more efficient planning but still
focuses the majority of the model capacity on potentially irrelevant
detail. None of these previous methods have constructed a model
that facilitates effective planning in visually complex domains such
as Atari; results lag behind well tuned, model-free methods, even in
terms of data efficiency27.

A quite different approach to model-based RL has recently been
developed, focused end to end on predicting the value function28–33.
The main idea of these methods is to construct an abstract MDP model

such that planning in the abstract MDP is equivalent to planning in the
real environment. This is achieved by ensuring value equivalence, that
is, that, starting from the same real state, the cumulative reward of a
trajectory through the abstract MDP matches the cumulative reward
of a trajectory in the real environment.

The predictron29 introduced value equivalent models for predicting
value functions (without actions). Although the underlying model still
takes the form of an MDP, there is no requirement for its transition
model to match real states in the environment. Instead the MDP model
is viewed as a hidden layer of a deep neural network. The unrolled MDP
is trained such that the expected cumulative sum of rewards matches
the expected value with respect to the real environment, for example,
by temporal-difference learning.

Value equivalent models have also been applied to optimizing
value (with actions). Value-aware model learning30,31 constructs an
MDP model, such that a step of value iteration using the model pro-
duces the same outcome as the real environment. TreeQN32 learns
an abstract MDP model, such that a tree search over that model
(represented by a tree-structured neural network) approximates
the optimal value function. Value iteration networks28 learn a local
MDP model, such that many steps of value iteration over that model
(represented by a convolutional neural network) approximates the
optimal value function.

Value prediction networks33 are perhaps the closest precursor to
MuZero: they learn an MDP model grounded in real actions; the unrolled
MDP is trained such that the cumulative sum of rewards, conditioned
on the actual sequence of actions generated by a simple lookahead
search, matches the real environment. Unlike MuZero there is no policy
prediction, and the search utilizes only value prediction.

MuZero algorithm
We now describe the MuZero algorithm in more detail. Predictions are
made at each time step t, for each of k = 0, …, K steps, by a model μθ,
with parameters θ, conditioned on past observations o1, ..., ot and for
k > 0 on future actions at+1, ..., at+k. The model predicts three future
quantities: the policy p π a o o a a≈ (| , …, , , …,)t

k
t k t t t k+ +1 1 +1 + , the value

p0,v0 p1,v1 p2,v2

f f f

f

p2,v2

p3,v3

p1,v1

p0,v0

f

f

f

a b

cs1

s2

s3

r2

r3

r1

a2

a3

a1

h

g gr1 r2

vt+1 vt+2vt
at+1 at+2 at+3

at+1 at+2 at+3

ut+1 ut+2 ut+3

t t+1 t+2

s0

g

g

g

h

s0 s2s1

Fig. 1 | Planning, acting and training with a learned model. a, How MuZero
uses its model to plan. The model consists of three connected components for
representation, dynamics and prediction. Given a previous hidden state sk−1 and
a candidate action ak, the dynamics function g produces an immediate reward
rk and a new hidden state sk. The policy pk and value function vk are computed
from the hidden state sk by a prediction function f. The initial hidden state s0 is
obtained by passing the past observations (for example, the Go board or
Atari screen) into a representation function h. b, How MuZero acts in the
environment. An MCTS is performed at each timestep t, as described in a. An
action at+1 is sampled from the search policy πt, which is proportional to the visit
count for each action from the root node. The environment receives the action
and generates a new observation ot+1 and reward ut+1. At the end of the episode,

the trajectory data are stored into a replay buffer. c, How MuZero trains its
model. A trajectory is sampled from the replay buffer. For the initial step, the
representation function h receives as input the past observations o1, ..., ot from
the selected trajectory. The model is subsequently unrolled recurrently for K
steps. At each step k, the dynamics function g receives as input the hidden state
sk−1 from the previous step and the real action at+k. The parameters of the
representation, dynamics and prediction functions are jointly trained, end to
end, by backpropagation through time, to predict three quantities: the policy
pk ≈ πt+k, value function vk ≈ zt+k and reward rk ≈ ut+k, where zt+k is a sample return:
either the final reward (board games) or n-step return (Atari). Schematic Go
boards at the top of the figure represent the sequence of observations.

606 | Nature | Vol 588 | 24/31 December 2020

Article

function Ev u γu o o a a≈ [+ + …| , …, , , …,]t
k

t k t k t t t k+ +1 + +2 1 +1 + and, for k
> 0, also the immediate reward r u≈t

k
t k+ , where u. is the true, observed

reward, π is the policy used to select real actions and γ is the discount
function of the environment.

Internally, at each time step t (subscripts t are suppressed for simplic-
ity), the model is represented by the combination of a representation
function, a dynamics function and a prediction function. The dynamics
function gθ, is a recurrent process, rk, sk = gθ(sk−1, ak), that computes, at
each hypothetical step k, an immediate reward rk and an internal state
sk. It mirrors the structure of an MDP model that computes the expected
reward and state transition for a given state and action21. However,
unlike traditional approaches to model-based RL11, this internal state
sk has no semantics of environment state attached to it—it is simply the
hidden state of the overall model and its sole purpose is to accurately
predict relevant, future quantities: policies, values and rewards. In this
paper, the dynamics function is represented deterministically; the
extension to stochastic transitions is left for future work. A prediction
function fθ computes the policy and value functions from the internal
state sk, pk, vk = fθ(sk), akin to the joint policy and value network of Alp-
haZero. A representation function hθ initializes the ‘root’ state s0 by
encoding past observations, s0 = hθ(o1, ..., ot); again, this has no special
semantics beyond its support for future predictions.

Given such a model, it is possible to search over hypothetical future
trajectories a1, ..., ak given past observations o1, ..., ot. For example, a
naive search could simply select the k-step action sequence that max-
imizes the value function. More generally, we may apply any MDP plan-
ning algorithm to the internal rewards and state space induced by the
dynamics function. Specifically, we use an MCTS algorithm similar to
AlphaZero’s search, generalized to allow for single-agent domains and
intermediate rewards (Methods). The MCTS algorithm may be viewed
as a search policy πt = P[at+1|o1, ..., ot] and search value function νt ≈ E
[ut+1 + γut+2 +...|o1, ..., ot] that both selects an action and predicts cumu-
lative reward given past observations o1, ..., ot. At each internal node,
it makes use of the policy, value function and reward estimate produced

by the current model parameters θ, and combines these values together
using lookahead search to produce an improved policy πt and improved
value function νt at the root of the search tree. The next action at+1 ≈ πt
is then chosen by the search policy.

All parameters of the model are trained jointly to accurately match
the policy, value function and reward prediction, for every hypo-
thetical step k, to three corresponding targets observed after k actual
time steps have elapsed. Similarly to AlphaZero, the first objective is
to minimize the error between the actions predicted by the policy
pt

k and by the search policy πt+k. Also like AlphaZero, value targets
are generated by playing out the game or MDP using the search
policy. However, unlike AlphaZero, we allow for long episodes with
discounting and intermediate rewards by computing an n-step return
zt that bootstraps n steps into the future from the search value,
zt = ut+1 + γut+2 + ... + γn−1ut+n + γnνt+n. Final outcomes {lose, draw, win} in
board games are treated as rewards ut ∈ {−1, 0, +1} occurring at the
final step of the episode. Specifically, the second objective is to min-
imize the error between the value function vt

k and the value target,
zt+k. The third objective is to minimize the error between the predicted
immediate reward r t

k and the observed immediate reward ut+k. Finally,
an L2 regularization term is also added, scaled by a constant c, leading
to the overall loss

∑ ∑ ∑l θ l π p l z v l u r c θ() = (,) + (,) + (,) + || || , (1)t
k

K

t k t
k

k

K

t k t
k

k

K

t k t
k

=0

p
+

=0

v
+

=1

r
+

2

where lp, lv and lr are loss functions for policy, value and reward, respec-
tively. Supplementary Fig. 2 summarizes the equations governing
how the MuZero algorithm plans, acts and learns. We note that for
chess, Go and shogi, the same squared error loss as AlphaZero is used
for rewards and values. A cross-entropy loss was found to be more
stable than a squared error when encountering rewards and values
of variable scale in Atari. Cross-entropy was used for the policy loss
in both cases.

Chess Shogi Go Atari

5,000

4,000

3,000

2,000

1,000

0
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps

E
lo

5,000

4,000

3,000

2,000

1,000

0

R
ew

ar
d

Fig. 2 | Evaluation of MuZero throughout training in chess, shogi, Go and
Atari. The x axis shows millions of training steps. For chess, shogi and Go, the y
axis shows Elo rating, established by playing games against AlphaZero using
800 simulations per move for both players. MuZero’s Elo is indicated by the
blue line and AlphaZero’s Elo is indicated by the horizontal orange line. For
Atari, mean (full line) and median (dashed line) human normalized scores

across all 57 games are shown on the y axis. The scores for R2D219 (the previous
state of the art in this domain, based on model-free RL) are indicated by the
horizontal orange lines. Performance in Atari was evaluated using 50
simulations every fourth time step, and then repeating the chosen action four
times, as in previous work39. Supplementary Fig. 1 studies the repeatability of
training in Atari.

Nature | Vol 588 | 24/31 December 2020 | 607

Results
We applied the MuZero algorithm to the classic board games Go, chess
and shogi, as benchmarks for challenging planning problems, and to
all 57 games in the Atari learning environment3, as benchmarks for
visually complex RL domains.

In each case, we trained MuZero for K = 5 hypothetical steps. Train-
ing proceeded for one million mini-batches of size 2,048 in board
games and of size 1,024 in Atari. During both training and evalua-
tion, MuZero used 800 simulations for each search in board games
and 50 simulations for each search in Atari. The representation

function uses the same convolutional34 and residual35 architecture as
AlphaZero, but with 16 residual blocks instead of 20. The dynam-
ics function uses the same architecture as the representation
function and the prediction function uses the same architecture
as AlphaZero. All networks use 256 hidden planes (see Methods
for further details).

Figure 2 shows the performance throughout training in each game. In
Go, MuZero slightly exceeded the performance of AlphaZero, despite
using less computation per node in the search tree (16 residual blocks
per evaluation in MuZero compared with 20 blocks in AlphaZero). This
suggests that MuZero may be caching its computation in the search

Table 1 | Comparison of MuZero against previous agents in Atari

Agent Median (%) Mean (%) Environment frames Training time Training steps

Ape-X20 434.1 1,695.6 22.8 billion 5 days 8.64 million

R2D219 1,920.6 4,024.9 37.5 billion 5 days 2.16 million

MuZero 2,041.1 4,999.2 20.0 billion 12 hours 1 million

IMPALA18 191.8 957.6 200 million – –

Rainbow36 231.1 – 200 million 10 days –

UNREALa 42 250a 880a 250 million – –

LASER37 431 – 200 million – –

MuZero Reanalyze 731.1 2,168.9 200 million 12 hours 1 million

We compare separately against agents trained in large (top) and small (bottom) data settings; all agents other than MuZero used model-free RL techniques. Mean and median scores are given,
compared with human testers. The best results are highlighted in bold. MuZero shows state-of-the-art performance in both settings. aHyperparameters were tuned per game.

0.1 0.2 0.5 1 2 5 10 20 50
Search time (s)

4,000

4,200

4,400

4,600

4,800

5,000

5,200

5,400

E
lo

a

1 10 25 50 100 200 500
Number of simulations per move

3,500

4,000

4,500

5,000

5,500

M
ea

n
re

w
ar

d

b

0 0.2 0.4 0.6 0.8 1.0
Millions of training steps

0

50,000

100,000

150,000

200,000

250,000

M
ea

n
re

w
ar

d

c

0 0.2 0.4 0.6 0.8 1.0
Millions of training steps

d

Learned model
Real simulator

MuZero
R2D2

MuZero

R2D2
Q-learning

Train 50 sims
Train 25 sims
Train 10 sims
Train 7 sims
Train 6 sims
Train 5 sims

Fig. 3 | Evaluations of MuZero on Go, all 57 Atari games and Ms. Pac-Man.
a, Scaling with search time per move in Go, comparing the learned model with
the ground truth simulator. Both networks were trained at 800 simulations
per search, equivalent to 0.1 s per search. Remarkably, the learned model is able
to scale well to up to two orders of magnitude longer searches than seen during
training. b, Scaling of final human normalized mean score in Atari with the
number of simulations per search. The network was trained at 50 simulations
per search. Dark line indicates mean score and the shaded regions indicate the
25th to 75th and 5th to 95th percentiles. The learned model’s performance
increases up to 100 simulations per search. Beyond, even when scaling to
much longer searches than during training, the learned model’s performance
remains stable and decreases only slightly. This contrasts with the much better
scaling in Go (a), presumably due to greater model inaccuracy in Atari than Go.

c, Comparison of MCTS-based training with Q-learning in the MuZero
framework on Ms. Pac-Man, keeping network size and amount of training
constant. The state-of-the-art Q-learning algorithm R2D2 is shown as a
baseline. Our Q-learning implementation reaches the same final score as R2D2,
but improves slower and results in much lower final performance compared
with MCTS-based training. d, Different networks trained at different numbers
of simulations (sims) per move, but all evaluated at 50 simulations per move.
Networks trained with more simulations per move improve faster, consistent
with ablation (b), where the policy improvement is larger when using more
simulations per move. Surprisingly, MuZero can learn effectively even when
training with less simulations per move than are enough to cover all eight
possible actions in Ms. Pac-Man.

608 | Nature | Vol 588 | 24/31 December 2020

Article
tree and using each additional application of the dynamics model to
gain a deeper understanding of the position.

In Atari, MuZero achieved state-of-the-art performance for both
mean and median normalized score across the 57 games of the arcade
learning environment, outperforming the previous state-of-the-art
method R2D219 (a model-free approach) in 42 out of 57 games, and
outperforming the previous best model-based approach SimPLe16 in
all games (Table 1 and Supplementary Table 1).

We also evaluated a second version of MuZero that was optimized
for greater sample efficiency. Specifically, it reanalyses old trajec-
tories by re-running the MCTS using the latest network parameters
to provide fresh targets (see ‘MuZero Reanalyze’ in Methods). When
applied to 57 Atari games, using 200 million frames of experience per
game, MuZero Reanalyze achieved 731% median normalized score,
compared with 192%, 231% and 431% for previous state-of-the-art
model-free approaches IMPALA18, Rainbow36 and LASER37,
respectively.

To understand the role of the model in MuZero, we also ran several
experiments, focusing on the board game of Go and the Atari game
of Ms. Pac-Man.

First, we tested the scalability of planning (Fig. 3a), in the canonical
planning problem of Go. We compared the performance of search in
AlphaZero, using a perfect model, to the performance of search in
MuZero, using a learned model. Specifically, the fully trained AlphaZero
or MuZero was evaluated by comparing MCTS with different thinking
times. MuZero matched the performance of a perfect model, even when
doing much larger searches (thinking time of up to 10 s) than those
from which the model was trained (thinking time of around 0.1 s; see
also Supplementary Fig. 3a).

We also investigated the scalability of planning across all Atari games
(Fig. 3b). We compared MCTS with different numbers of simulations,
using the fully trained MuZero. The improvements due to planning are
much less marked than in Go, perhaps because of greater model inac-
curacy; performance improved slightly with search time, but plateaued
at around 100 simulations. Even with a single simulation—that is, when
selecting moves solely according to the policy network—MuZero per-
formed well, suggesting that, by the end of training, the raw policy has
learned to internalize the benefits of search (see also Supplementary
Fig. 3b).

Next, we tested our model-based learning algorithm against a compa-
rable model-free learning algorithm (Fig. 3c). We replaced the training
objective of MuZero (equation (1)) with a model-free Q-learning objec-
tive (as used by R2D2), and the dual policy and value heads with a single
head representing the action-value function Q(⋅|st). Subsequently, we
trained and evaluated the new model without using any search. When
evaluated on Ms. Pac-Man, our model-free algorithm achieved identical
results to R2D2, but learned much slower than MuZero and converged
to a much lower final score. We conjecture that the search-based policy
improvement step of MuZero provides a stronger learning signal than
the high-bias, high-variance targets used by Q-learning.

To better understand the nature of MuZero’s learning algorithm, we
measured how MuZero’s training scales with respect to the amount
of search it uses during training. Figure 3d shows the performance in
Ms. Pac-Man, using an MCTS of different simulation counts per move
throughout training. Surprisingly, and in contrast to previous work38,
even with only six simulations per move—fewer than the number of
actions—MuZero learned an effective policy and improved rapidly.
With more simulations, the performance jumped much higher. For
analysis of the policy improvement during each individual iteration,
see also Supplementary Fig. 3c, d.

Conclusions
Many of the breakthroughs in artificial intelligence have been based on
either high-performance planning1,2,5 or model-free RL methods39–41.

Here we have introduced a method that combines the benefits of both
approaches. Our algorithm, MuZero, has both matched the superhu-
man performance of high-performance planning algorithms in their
favoured domains (logically complex board games such as chess and
Go) and outperformed state-of-the-art model-free RL algorithms in
their favoured domains (visually complex Atari games). Crucially, our
method does not require any knowledge of the environment dynamics,
potentially paving the way towards the application of powerful learning
and planning methods to a host of real-world domains for which there
exists no perfect simulator.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-020-03051-4.

1. Campbell, M., Hoane, A. J. Jr & Hsu, F.-h. Deep Blue. Artif. Intell. 134, 57–83 (2002).
2. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search.

Nature 529, 484–489 (2016).
3. Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The arcade learning

environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47,
253–279 (2013).

4. Machado, M. et al. Revisiting the arcade learning environment: evaluation protocols and
open problems for general agents. J. Artif. Intell. Res. 61, 523–562 (2018).

5. Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play. Science 362, 1140–1144 (2018).

6. Schaeffer, J. et al. A world championship caliber checkers program. Artif. Intell. 53,
273–289 (1992).

7. Brown, N. & Sandholm, T. Superhuman AI for heads-up no-limit poker: Libratus beats top
professionals. Science 359, 418–424 (2018).

8. Moravčík, M. et al. Deepstack: expert-level artificial intelligence in heads-up no-limit
poker. Science 356, 508–513 (2017).

9. Vlahavas, I. & Refanidis, I. Planning and Scheduling Technical Report (EETN, 2013).
10. Segler, M. H., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural

networks and symbolic AI. Nature 555, 604–610 (2018).
11. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction 2nd edn (MIT Press,

2018).
12. Deisenroth, M. & Rasmussen, C. PILCO: a model-based and data-efficient approach to

policy search. In Proc. 28th International Conference on Machine Learning, ICML 2011
465–472 (Omnipress, 2011).

13. Heess, N. et al. Learning continuous control policies by stochastic value gradients. In
NIPS’15: Proc. 28th International Conference on Neural Information Processing Systems
Vol. 2 (eds Cortes, C. et al.) 2944–2952 (MIT Press, 2015).

14. Levine, S. & Abbeel, P. Learning neural network policies with guided policy search under
unknown dynamics. Adv. Neural Inf. Process. Syst. 27, 1071–1079 (2014).

15. Hafner, D. et al. Learning latent dynamics for planning from pixels. Preprint at https://
arxiv.org/abs/1811.04551 (2018).

16. Kaiser, L. et al. Model-based reinforcement learning for atari. Preprint at https://arxiv.org/
abs/1903.00374 (2019).

17. Buesing, L. et al. Learning and querying fast generative models for reinforcement
learning. Preprint at https://arxiv.org/abs/1802.03006 (2018).

18. Espeholt, L. et al. IMPALA: scalable distributed deep-RL with importance weighted
actor-learner architectures. In Proc. International Conference on Machine Learning, ICML
Vol. 80 (eds Dy, J. & Krause, A.) 1407–1416 (2018).

19. Kapturowski, S., Ostrovski, G., Dabney, W., Quan, J. & Munos, R. Recurrent experience
replay in distributed reinforcement learning. In International Conference on Learning
Representations (2019).

20. Horgan, D. et al. Distributed prioritized experience replay. In International Conference on
Learning Representations (2018).

21. Puterman, M. L. Markov Decision Processes: Discrete Stochastic Dynamic Programming
1st edn (John Wiley & Sons, 1994).

22. Coulom, R. Efficient selectivity and backup operators in Monte-Carlo tree search. In
International Conference on Computers and Games 72–83 (Springer, 2006).

23. Wahlström, N., Schön, T. B. & Deisenroth, M. P. From pixels to torques: policy
learning with deep dynamical models. Preprint at http://arxiv.org/abs/1502.02251
(2015).

24. Watter, M., Springenberg, J. T., Boedecker, J. & Riedmiller, M. Embed to control: a locally
linear latent dynamics model for control from raw images. In NIPS’15: Proc. 28th
International Conference on Neural Information Processing Systems Vol. 2 (eds Cortes, C.
et al.) 2746–2754 (MIT Press, 2015).

25. Ha, D. & Schmidhuber, J. Recurrent world models facilitate policy evolution. In NIPS’18:
Proc. 32nd International Conference on Neural Information Processing Systems
(eds Bengio, S. et al.) 2455–2467 (Curran Associates, 2018).

26. Gelada, C., Kumar, S., Buckman, J., Nachum, O. & Bellemare, M. G. DeepMDP: learning
continuous latent space models for representation learning. Proc. 36th International
Conference on Machine Learning: Volume 97 of Proc. Machine Learning Research
(eds Chaudhuri, K. & Salakhutdinov, R.) 2170–2179 (PMLR, 2019).

https://doi.org/10.1038/s41586-020-03051-4
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/1903.00374
https://arxiv.org/abs/1903.00374
https://arxiv.org/abs/1802.03006
http://arxiv.org/abs/1502.02251

Nature | Vol 588 | 24/31 December 2020 | 609

27. van Hasselt, H., Hessel, M. & Aslanides, J. When to use parametric models in
reinforcement learning? Preprint at https://arxiv.org/abs/1906.05243 (2019).

28. Tamar, A., Wu, Y., Thomas, G., Levine, S. & Abbeel, P. Value iteration networks. Adv. Neural
Inf. Process. Syst. 29, 2154–2162 (2016).

29. Silver, D. et al. The predictron: end-to-end learning and planning. In Proc. 34th
International Conference on Machine Learning Vol. 70 (eds Precup, D. & Teh, Y. W.)
3191–3199 (JMLR, 2017).

30. Farahmand, A. M., Barreto, A. & Nikovski, D. Value-aware loss function for model-based
reinforcement learning. In Proc. 20th International Conference on Artificial Intelligence
and Statistics: Volume 54 of Proc. Machine Learning Research (eds Singh, A. & Zhu, J)
1486–1494 (PMLR, 2017).

31. Farahmand, A. Iterative value-aware model learning. Adv. Neural Inf. Process. Syst. 31,
9090–9101 (2018).

32. Farquhar, G., Rocktaeschel, T., Igl, M. & Whiteson, S. TreeQN and ATreeC: differentiable
tree planning for deep reinforcement learning. In International Conference on Learning
Representations (2018).

33. Oh, J., Singh, S. & Lee, H. Value prediction network. Adv. Neural Inf. Process. Syst. 30,
6118–6128 (2017).

34. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).

35. He, K., Zhang, X., Ren, S. & Sun, J. Identity mappings in deep residual networks. In 14th
European Conference on Computer Vision 630–645 (2016).

36. Hessel, M. et al. Rainbow: combining improvements in deep reinforcement learning. In
Thirty-Second AAAI Conference on Artificial Intelligence (2018).

37. Schmitt, S., Hessel, M. & Simonyan, K. Off-policy actor-critic with shared experience
replay. Preprint at https://arxiv.org/abs/1909.11583 (2019).

38. Azizzadenesheli, K. et al. Surprising negative results for generative adversarial tree
search. Preprint at http://arxiv.org/abs/1806.05780 (2018).

39. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518,
529–533 (2015).

40. Open, A. I. OpenAI five. OpenAI https://blog.openai.com/openai-five/ (2018).
41. Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement

learning. Nature 575, 350–354 (2019).
42. Jaderberg, M. et al. Reinforcement learning with unsupervised auxiliary tasks. Preprint at

https://arxiv.org/abs/1611.05397 (2016).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

https://arxiv.org/abs/1906.05243
https://arxiv.org/abs/1909.11583
http://arxiv.org/abs/1806.05780
https://blog.openai.com/openai-five/
https://arxiv.org/abs/1611.05397

Article
Methods

Comparison to AlphaZero
MuZero is designed for a more general setting than AlphaGo Zero43
and AlphaZero5.

In AlphaGo Zero and AlphaZero, the planning process makes use
of a simulator that samples the next state and reward (for example,
according to the environment’s dynamics, or the rules of the game).
The simulator updates the state of the game while traversing the search
tree (Fig. 1a). The simulator is used to provide three important pieces of
knowledge: (1) state transitions in the search tree, (2) actions available
at each node of the search tree and (3) episode termination within the
search tree. In MuZero, all of these have been replaced with the use of
a single implicit model learned by a neural network (Fig. 1b).

(1) State transitions. AlphaZero had access to a perfect simulator of
the environment’s dynamics. In contrast, MuZero employs a learned
dynamics model within its search. Under this model, each node in the
tree is represented by a corresponding hidden state; by providing a
hidden state sk−1 and an action ak to the model, the search algorithm
can transition to a new node sk = g(sk−1, ak).

(2) Actions available. We consider a standard problem formulation
where the set of available actions is provided at each time step along-
side the observation. During search, however, it could be helpful to
specify the available actions at each interior node—which would require
knowledge of how the available actions change over time. AlphaZero
used the set of legal actions obtained from the simulator to mask the
policy network at interior nodes. MuZero does not perform any masking
within the search tree, but only masks legal actions at the root of the
search tree where the set of available actions is directly observed. The
policy network rapidly learns to exclude actions that are unavailable,
simply because they are never selected.

(3) Terminal states. AlphaZero stopped the search at tree nodes rep-
resenting terminal states and used the terminal value provided by the
simulator instead of the value produced by the network. MuZero does
not give special treatment to terminal states and always uses the value
predicted by the network. Inside the tree, the search can proceed past
a state that would terminate the simulator. In this case, the network is
expected to always predict the same value, which may be achieved by
modelling terminal states as absorbing states during training.

In addition, MuZero is designed to operate in the general RL setting:
single-agent domains with discounted intermediate rewards of arbitrary
magnitude. In contrast, AlphaGo Zero and AlphaZero were designed to
operate in two-player games with undiscounted terminal rewards of ±1.

Many other generalizations of MuZero may be possible, for example,
to stochastic, continuous, non-stationary or temporally extended
environments, or to imperfect information or general sum games.
These generalizations are left for future work.

Search
We now describe the search algorithm used by MuZero. Our approach
is based on MCTS with upper confidence bounds, an approach to plan-
ning that converges asymptotically to the optimal policy in single agent
domains and to the minimax value function in zero sum games44.

Every node of the search tree is associated with an internal state s. For
each action a from s there is an edge (s, a) that stores a set of statistics
{N(s, a), P(s, a), Q(s, a), R(s, a), S(s, a)}, respectively representing visit
counts N, policy P, mean value Q, reward R and state transition S.

Similar to AlphaZero, the search is divided into three stages, repeated
for a number of simulations.

Selection. Each simulation starts from the internal root state s0, and
finishes when the simulation reaches a leaf node sl. For each hypotheti-
cal time step k = 1 ... l of the simulation, an action ak is selected accord-
ing to the stored statistics for internal state sk−1, by maximizing over a
probabilistic upper confidence tree (PUCT) bound5,45

a Q s a

P s a
N s b

N s a
c

N s b c
c

= arg max (,)

+ (,)
∑ (,)

1 + (,)
+ log

∑ (,) + + 1
,

(2)

k

a

b b
1

2

2

where a and b are possible actions. The constants c1 and c2 are used to
control the influence of the policy P(s, a) relative to the value Q(s, a) as
nodes are visited more often. In our experiments, c1 = 1.25 and c2 = 19,652.

For k < l, the next state and reward are looked up in the state transi-
tion and reward table sk = S(sk−1, ak), rk = R(sk−1, ak).

Expansion. At the final time step l of the simulation, the reward and state
are computed by the dynamics function, rl, sl = gθ(sl−1, al), and stored in
the corresponding tables, R(sl−1, al) = rl, S(sl−1, al) = sl. The policy and value
function are computed by the prediction function, pl, vl = fθ (sl). A new
node, corresponding to state sl is added to the search tree. Each edge (sl,
a) from the newly expanded node is initialized to {N(sl, a) = 0, Q(sl, a) = 0,
P(sl, a) = pl}. Note that the search algorithm makes at most one call to the
dynamics function and prediction function respectively per simulation;
the computational cost is of the same order as in AlphaZero.

Backup. At the end of the simulation, the statistics along the trajectory
are updated. The backup is generalized to the case where the environ-
ment can emit intermediate rewards, have a discount γ different from 1
and the value estimates are unbounded. (We note that in board games,
the discount is assumed to be 1 and there are no intermediate rewards.)
For k = l ... 0, we form an l − k-step estimate of the cumulative discounted
reward, bootstrapping from the value function vl

∑G γ r γ v= + . (3)k

τ

l k
τ

k τ
l k l

=0

−1−

+1+
−

For k = l ... 1, we update the statistics for each edge (sk−1, ak) in the
simulation path as follows

Q s a
N s a Q s a G

N s a

N s a N s a

(,):=
(,) × (,) +

(,) + 1
,

(,):= (,) + 1.

(4)
k k

k k k k k

k k

k k k k

−1
−1 −1

−1

−1 −1

In two-player zero sum games, the value functions are assumed to
be bounded within the [0, 1] interval. This choice allows us to combine
value estimates with probabilities using a variant of the PUCT rule45
(equation (2)). However, as in many environments the value is
unbounded, it is necessary to adjust the PUCT rule. A simple solution
would be to use the maximum score that can be observed in the envi-
ronment to either rescale the value or set the PUCT constants appro-
priately46. However, both solutions are game specific and require
adding prior knowledge to the MuZero algorithm. To avoid this, MuZero
computes normalized Q-value estimates Q ∈ [0, 1] by using the mini-
mum–maximum values observed in the search tree up to that point.
When a node is reached during the selection stage, the algorithm com-
putes the normalized Q values of its edges to be used in place of the Q
values in the PUCT rule using the equation

Q s a
Q s a Q s a

Q s a Q s a
(,) =

(,) − min (,)

max (,) − min (,)
. (5)k k

k k

s a

s a s a

−1

−1

, ∈Tree

, ∈Tree , ∈Tree

Hyperparameters
For simplicity we preferentially use the same architectural choices
and hyperparameters as in previous work. Specifically, we started with
the network architecture and search choices of AlphaZero5. For board

games, we use the same PUCT constants, Dirichlet exploration noise
and the same 800 simulations per search as in AlphaZero.

Owing to the much smaller branching factor and simpler policies in
Atari, we used only 50 simulations per search to speed up experiments.
As shown in Fig. 3b, the algorithm is not very sensitive to this choice.
We also use the same discount (0.997) and value transformation (see
‘Network architecture’) as R2D219.

For parameter values not mentioned in the text, please refer to the
pseudocode (see ‘Code availability’).

Data generation
To generate training data, the latest checkpoint of the network (updated
every 1,000 training steps) is used to play games with MCTS. In the
board games Go, chess and shogi, the search is run for 800 simulations
per move to pick an action; in Atari, due to the much smaller action
space 50 simulations per move are sufficient.

For board games, games are sent to the training job as soon as they
finish. Owing to the much larger length of Atari games (up to 30 min or
108,000 frames), intermediate sequences are sent every 200 moves.
In board games, the training job keeps an in-memory replay buffer of
the most recent one million games received; in Atari, where the visual
observations are larger, the most recent 125,000 sequences of length
200 are kept.

During the generation of experience in the board game domains,
the same exploration scheme as the one described in AlphaZero5 is
used. Using a variation of this scheme, in the Atari domain, actions are
sampled from the visit count distribution throughout the duration of
each game, instead of just the first k moves. Moreover, the visit count
distribution is parametrized using a temperature parameter T

π a s
N s a

N s b
(|) =

(,)
∑ (,)

. (6)
T

b
T

1/

1/

T is decayed as a function of the number of training steps of the net-
work. Specifically, for the first 500,000 training steps a temperature of
1.0 is used, for the next 250,000 steps a temperature of 0.5 and for the
remaining 250,000 a temperature of 0.25. This ensures that the action
selection becomes greedier as training progresses.

Observation and action encoding
Representation function. The history over board states used as input
to the representation function for Go, chess and shogi is represented
similarly to AlphaZero5. In Go and shogi, we encode the last eight board
states as in AlphaZero; in chess, we increased the history to the last 100
board states to allow correct prediction of draws.

For Atari, the input of the representation function includes the last
32 RGB frames at resolution 96 × 96 along with the last 32 actions that
led to each of those frames. We encode the historical actions because
unlike board games, an action in Atari does not necessarily have a visible
effect on the observation. RGB frames are encoded as one plane per
colour, rescaled to the range [0, 1], for red, green and blue, respectively.
We perform no other normalization, whitening or other preprocessing
of the RGB input. Historical actions are encoded as simple bias planes,
scaled as a/18 (there are 18 total actions in Atari).

Dynamics function. The input to the dynamics function is the hidden
state produced by the representation function or previous application of
the dynamics function, concatenated with a representation of the action
for the transition. Actions are encoded spatially in planes of the same
resolution as the hidden state. In Atari, this resolution is 6 × 6 (see descrip-
tion of downsampling in ‘Network architecture’), in board games, this is
the same as the board size (19 × 19 for Go, 8 × 8 for chess, 9 × 9 for shogi).

In Go, a normal action (playing a stone on the board) is encoded as
an all-zero plane, with a single one in the position of the played stone.
A pass is encoded as an all-zero plane.

In chess, eight planes are used to encode the action. The first one-hot
plane encodes which position the piece was moved from. The next two
planes encode which position the piece was moved to: a one-hot plane
to encode the target position, if on the board, and a second binary plane
to indicate whether the target was valid (on the board) or not. This is
necessary because for simplicity, our policy action space enumerates
a superset of all possible actions, not all of which are legal, and we use
the same action space for policy prediction and to encode the dynamics
function input. The remaining five binary planes are used to indicate
the type of promotion, if any (queen, knight, bishop, rook, none).

The encoding for shogi is similar, with a total of 11 planes. We use
the first eight planes to indicate where the piece moved from—either
a board position (first one-hot plane) or the drop of one of the seven
types of prisoner (remaining seven binary planes). The next two planes
are used to encode the target as in chess. The remaining binary plane
indicates whether the move was a promotion or not.

In Atari, an action is encoded as a one-hot vector that is tiled appro-
priately into planes.

Network architecture. The prediction function pk, vk = fθ(sk) uses the
same architecture as AlphaZero: one or two convolutional layers that
preserve the resolution but reduce the number of planes, followed by
a fully connected layer to the size of the output.

For value and reward prediction in Atari, we follow ref. 47 in scaling
targets using an invertible transform h x x x εx() = sign()(| | + 1 − 1) + ,
where ε = 0.001 in all our experiments. We then apply a transformation
ϕ to the scalar reward and value targets to obtain equivalent categor-
ical representations. We use a discrete support set of size 601 with one
support for every integer between −300 and 300. Under this transfor-
mation, each scalar is represented as the linear combination of its two
adjacent supports, such that the original value can be recovered by
x = xlow × plow + xhigh × phigh. As an example, a target of 3.7 would be rep-
resented as a weight of 0.3 on the support for 3 and a weight of 0.7 on
the support for 4. The value and reward outputs of the network are also
modelled using a softmax output of size 601. During inference, the
actual value and rewards are obtained by first computing their expected
value under their respective softmax distribution and subsequently
by inverting the scaling transformation. Scaling and transformation
of the value and reward happens transparently on the network side
and is not visible to the rest of the algorithm.

Both the representation and dynamics function use the same archi-
tecture as AlphaZero, but with 16 instead of 20 residual blocks35. We use
3 × 3 kernels and 256 hidden planes for each convolution.

For Atari, where observations have large spatial resolution, the rep-
resentation function starts with a sequence of convolutions with stride
2 to reduce the spatial resolution. Specifically, starting with an input
observation of resolution 96 × 96 and 128 planes (32 history frames
of 3 colour channels each, concatenated with the corresponding 32
actions broadcast to planes), we downsample as follows: 1 convolu-
tion with stride 2 and 128 output planes, output resolution 48 × 48;
2 residual blocks with 128 planes; 1 convolution with stride 2 and 256
output planes, output resolution 24 × 24; 3 residual blocks with 256
planes; average pooling with stride 2, output resolution 12 × 12; 3
residual blocks with 256 planes; average pooling with stride 2, output
resolution 6 × 6. The kernel size is 3 × 3 for all operations.

For the dynamics function (which always operates at the downsam-
pled resolution of 6 × 6), the action is first encoded as an image, then
stacked with the hidden state of the previous step along the plane
dimension.

Training. During training, the MuZero network is unrolled for K hypo-
thetical steps and aligned to sequences sampled from the trajectories
generated by the MCTS actors. Sequences are selected by sampling a
state from any game in the replay buffer, then unrolling for K steps from
that state. In Atari, samples are drawn according to prioritized replay48,

Article
with priority P i() =

p

p∑ k

i
α

k
α , where pi = |νi − zi|, ν is the search value and z the

observed n-step return. To correct for sampling bias introduced by the
prioritized sampling, we scale the loss using the importance sampling

ratio ()w = , × ,i N P i

β1 1
()

. In all our experiments, we set α = β = 1. For board
games, states are sampled uniformly.

Each observation ot along the sequence also has a corresponding
search policy πt, search value function νt and environment reward ut.
At each unrolled step k, the network has a loss to the policy, value and
reward target for that step, summed to produce the total loss for the
MuZero network (see equation (1)). Note that, in board games without
intermediate rewards, we omit the reward prediction loss. For board
games, we bootstrap directly to the end of the game, equivalent to
predicting the final outcome; for Atari we bootstrap for n = 10 steps
into the future.

To maintain roughly similar magnitude of gradient across different
unroll steps, we scale the gradient in two separate locations. (1) We scale
the loss of each head by 1/K, where K is the number of unroll steps. This
ensures that the total gradient has similar magnitude irrespective of
how many steps we unroll for. (2) We also scale the gradient at the start
of the dynamics function by 1/2. This ensures that the total gradient
applied to the dynamics function stays constant.

In the experiments reported in this paper, we always unroll for K = 5
steps. For a detailed illustration, see Fig. 1.

To improve the learning process and bound the activations, we also
scale the hidden state to the same range as the action input ([0,1]):
s = s s

s sscaled
− min()

max() − min()
.

All experiments were run using third-generation Google Cloud ten-
sor processing units (TPUs)49. For each board game, we used 16 TPUs
for training and 1,000 TPUs for self-play. For each game in Atari, in the
20 billion frame setting we used 8 TPUs for training and 32 TPUs for
self-play. In the smaller 200 million frame setting, we used only four
TPUs for training and two TPUs for self-play, equivalent to two weeks
of training on 1 GPU. The much smaller proportion of TPUs used for
acting in Atari is due to the smaller number of simulations per move
(50 instead of 800) and the smaller size of the dynamics function com-
pared with the representation function.

Note that the network is trained separately for each environment
(that is, one model for each different Atari game or board game).
However, in principle, the same model could be shared between
different environments during training, or could be tested in new
environments (that is, zero-shot generalization); this approach is
left to future work.

MuZero Reanalyze. To improve the sample efficiency of MuZero, we
introduced a second variant of the algorithm, MuZero Reanalyze. Mu-
Zero Reanalyze revisits its past time steps and re-executes its search
using the latest model parameters, potentially resulting in a better-quality
policy than the original search. This fresh policy is used as the policy
target for 80% of updates during MuZero training. Furthermore, a target
network39 v f s⋅, = ()θ

− 0
− , based on recent parameters θ−, is used to provide

a fresher, stable n-step bootstrapped target for the value function,
z u γu γ u γ v= + + … + +t t t

n
t n

n
t n+1 +2

−1
+ +

− . In addition, several other hyper-
parameters were adjusted— primarily to increase sample reuse and avoid
overfitting of the value function. Specifically, 2.0 samples were drawn
per state, instead of 0.1; the value target was weighted down to 0.25 com-
pared with weights of 1.0 for policy and reward targets; and the n-step
return was reduced to n = 5 steps instead of n = 10 steps.

Evaluation. We evaluated the relative strength of MuZero (Fig. 2) in
board games by measuring the Elo rating of each player. We estimate
the probability that player a will defeat player b by a logistic function
p a b(defeats) = (1 + 10)c e b e a[()− ()] −1elo , and estimate the ratings e(⋅) by
Bayesian logistic regression, computed by the BayesElo program50
using the standard constant celo = 1/400.

Elo ratings were computed from the results of an 800-simulations-
per-move tournament between iterations of MuZero during training,
and also a baseline player: either Stockfish, Elmo or AlphaZero, respec-
tively. Baseline players used an equivalent search time of 100 ms per
move. The Elo rating of the baseline players was anchored to publicly
available values5.

In Atari, we computed mean reward over 1,000 episodes per game,
limited to the standard 30 min or 108,000 frames per episode51, using
50 simulations per move unless indicated otherwise. To mitigate the
effects of the deterministic nature of the Atari simulator, we employed
two different evaluation strategies: 30 noop random starts and human
starts. For the former, at the beginning of each episode, a random num-
ber of between 0 and 30 noop actions are applied to the simulator
before handing control to the agent. For the latter, start positions are
sampled from human expert play to initialize the Atari simulator before
handing the control to the agent51.

Data availability
MuZero is trained only on data generated by MuZero itself; no external
data were used to produce the results presented in the article. Data for
all figures and tables presented are available in JSON format in the Sup-
plementary Information.

Code availability
The Arcade Learning Environment3 is available open source at https://
github.com/mgbellemare/Arcade-Learning-Environment. The Go and
chess environments are available open source in OpenSpiel52 at https://
github.com/deepmind/open_spiel. The pseudocode for the MuZero
algorithm can be found in the file pseudocode.py in the Supplementary
Information. All the neural architecture details and hyperparameters
are described in Methods.

43. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550,

354–359 (2017).
44. Kocsis, L. & Szepesvári, C. Bandit based Monte-Carlo planning. In European Conference

on Machine Learning 282–293 (Springer, 2006).
45. Rosin, C. D. Multi-armed bandits with episode context. Ann. Math. Artif. Intell. 61, 203–230

(2011).
46. Schadd, M. P., Winands, M. H., Van Den Herik, H. J., Chaslot, G. M.-B. & Uiterwijk, J. W.

Single-player Monte-Carlo tree search. In International Conference on Computers and
Games 1–12 (Springer, 2008).

47. Pohlen, T. et al. Observe and look further: achieving consistent performance on Atari.
Preprint at https://arxiv.org/abs/1805.11593 (2018).

48. Schaul, T., Quan, J., Antonoglou, I. & Silver, D. Prioritized experience replay. In
International Conference on Learning Representations (2016).

49. Cloud TPU. Google Cloud https://cloud.google.com/tpu/ (2019).
50. Coulom, R. Whole-history rating: a Bayesian rating system for players of time-varying

strength. In International Conference on Computers and Games 113–124 (2008).
51. Nair, A. et al. Massively parallel methods for deep reinforcement learning. Preprint at

https://arxiv.org/abs/1507.04296 (2015).
52. Lanctot, M. et al. OpenSpiel: a framework for reinforcement learning in games. Preprint at

http://arxiv.org/abs/1908.09453 (2019).

Acknowledgements We thank L. Bennett, O. Smith and C. Apps for organizational assistance;
K. Kavukcuoglu for reviewing the paper; T. Anthony, M. Lai, N. Tomasev, U. Paquet, S. Ghaisas
for many discussions; and the rest of the DeepMind team for their support.

Author contributions J.S., I.A., T.H. and D.S. designed the MuZero algorithm with advice from
A.G., K.S., L.S., E.L., T.L. and T.G.; J.S., I.A., T.H. and S.S. implemented the MuZero program, ran
experiments and analysed data. D.S., J.S., I.A. and T.H. wrote the paper with contributions from
A.G., K.S., L.S., E.L., T.L., T.G. and D.H.

Competing interests DeepMind filed Greek patent GR20200100037 on 28 January 2020,
covering the MuZero algorithm described in this paper, listing the authors J.S., I.A. and T.H. as
inventors. The other authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-
03051-4.
Correspondence and requests for materials should be addressed to D.S.
Peer review information Nature thanks Jaap van den Herik and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://github.com/mgbellemare/Arcade-Learning-Environment
https://github.com/mgbellemare/Arcade-Learning-Environment
https://github.com/deepmind/open_spiel
https://github.com/deepmind/open_spiel
https://arxiv.org/abs/1805.11593
https://cloud.google.com/tpu/
https://arxiv.org/abs/1507.04296
http://arxiv.org/abs/1908.09453
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
http://www.nature.com/reprints

	Mastering Atari, Go, chess and shogi by planning with a learned model
	Previous work
	MuZero algorithm
	Results
	Conclusions
	Online content
	Fig. 1 Planning, acting and training with a learned model.
	Fig. 2 Evaluation of MuZero throughout training in chess, shogi, Go and Atari.
	Fig. 3 Evaluations of MuZero on Go, all 57 Atari games and Ms.
	Table 1 Comparison of MuZero against previous agents in Atari.

