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Braess’s paradox and programmable 
behaviour in microfluidic networks

Daniel J. Case1, Yifan Liu2, István Z. Kiss2, Jean-Régis Angilella3 & Adilson E. Motter1,4*

Microfluidic systems are now being designed with precision as miniaturized fluid 
manipulation devices that can execute increasingly complex tasks. However, their 
operation often requires numerous external control devices owing to the typically 
linear nature of microscale flows, which has hampered the development of integrated 
control mechanisms. Here we address this difficulty by designing microfluidic 
networks that exhibit a nonlinear relation between the applied pressure and the flow 
rate, which can be harnessed to switch the direction of internal flows solely by 
manipulating the input and/or output pressures. We show that these 
networks— implemented using rigid polymer channels carrying water—exhibit an 
experimentally supported fluid analogue of Braess’s paradox, in which closing an 
intermediate channel results in a higher, rather than lower, total flow rate. The 
harnessed behaviour is scalable and can be used to implement flow routing with 
multiple switches. These findings have the potential to advance the development of 
built-in control mechanisms in microfluidic networks, thereby facilitating the creation 
of portable systems and enabling novel applications in areas ranging from wearable 
healthcare technologies to deployable space systems.

Fulfilment of the promise of microfluidics to operate as autonomous 
microscale networks in which fluids can be transported, mixed, reacted, 
separated and processed is no longer limited by experimental fabrica-
tion challenges, but rather by difficulties in creating built-in controls1–3. 
The importance of this limitation can be appreciated by noting that the 
development of the modern microelectronics that form the basis of 
computer microprocessors was ultimately determined by the creation 
of integrated circuits, with all components fabricated on the same sub-
strate. Microfluidics have already reached a level of integration in which 
networks with thousands of components, including control devices, 
are built on a single compact chip. However, in contrast with electronic 
integrated circuits, existing on-chip fluid control devices still need to 
be actuated externally. For example, microfluidic circuits fabricated 
from flexible polydimethylsiloxane (PDMS) can now incorporate a large 
number of control valves, which nevertheless have to be operated using 
control fluids through a control layer that lies on top of the working fluid 
network4,5. As a result, microfluidics are still predominantly controlled 
by external hardware, despite substantial efforts over the past 20 years 
to develop systems with new control schemes6–10. The construction of 
systems that forgo the current reliance on external hardware is crucial to 
further the development of portable microfluidic systems for pressing 
applications, ranging from point-of-care diagnostics and health monitor-
ing wearables to analysis kits for field research11–14. This requires devel-
oping next-generation integrated circuits in which not only the control 
devices but also the operation of those devices is integrated on-chip. The 
development of such a level of integration has been fundamentally lim-
ited by the fact that, at the microscale, fluid flows tend to respond linearly 
to pressure changes and thus cannot be easily amplified or switched.

In this Article, we explore new physics that emerges by combining 
network theory and fluid mechanics to induce nonlinear behaviour 
in microfluidics and effectively create a passive two-terminal flow-
switch device that is entirely operated on-chip, directly by the work-
ing fluid. Previous work that has achieved built-in control capabilities 
(often externally actuated), including oscillatory flows15–18 and flow rate 
regulation19,20, generally relied on flexible membranes and surfaces. 
Microfluidics with such flexible components require flows with very 
low Reynolds numbers—a regime in which fluid inertia, and thus the 
only nonlinear term of the Navier–Stokes equations for incompressible 
fluids, becomes negligible. This has led researchers to often discount the 
potential effects of fluid inertia on the flows (as reviewed, for example, 
in refs. 21,22). Recent work has shown, however, that inertial forces can 
serve as a powerful on-chip tool to manipulate microfluidic dynam-
ics locally23,24, including shaping streamlines25,26, mixing fluids27 and 
directing particles28,29. Here, we present networks designed to amplify 
inertial effects by incorporating properties of porous media that can be 
used for non-local fluid routing and manipulation of output patterns.

Figure 1a shows a schematic representation of a microfluidic system 
with the fundamental network structure we consider. It consists of 
five segments arranged as two parallel channels connected by a link-
ing channel, where the inlets are kept at a common pressure Pin and 
the outlets are held at a common, lower, pressure, Pout. One of the 
outlet channels is modified to generate a nonlinear pressure–flow 
relationship, which is achieved by introducing an array of cylindrical 
obstacles. Our principal results are supported by theory, simulations 
and experiments, and they show that we can: (i) induce a flow direc-
tion switch through the linking channel solely by varying the pressure 

https://doi.org/10.1038/s41586-019-1701-6

Received: 4 September 2018

Accepted: 1 August 2019

Published online: 23 October 2019

1Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA. 2Department of Chemistry, Saint Louis University, St Louis, MO, USA. 3Normandie Université, UNICAEN, 
UNIROUEN, ABTE, Caen, France. 4Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA. *e-mail: motter@northwestern.edu

https://doi.org/10.1038/s41586-019-1701-6
mailto:motter@northwestern.edu


648 | Nature | Vol 574 | 31 October 2019

Article

difference between the inlets and outlets; and (ii) identify a pressure 
difference above which the total flow rate between the inlets and out-
lets increases on closing the linking channel. We also predict negative 
conductance transitions when the linking channel is equipped with 
an offset fluidic diode, which are transitions associated with non-
monotonic pressure–flow relations analogous to those previously 
realized using flexible diaphragm valves30. The counter-intuitive 
behaviour described in (ii) is formally equivalent to the so-called 
Braess’s paradox originally established for traffic networks31,32, where 
closing a shortcut road has the possible effect of increasing net traffic 
flow. We demonstrate integration of the flow switch described in (i) 
by considering larger microfluidic networks, as illustrated in Fig. 1b, 
which incorporate multiple linking channels and are thus capable 
of exhibiting multiple flow switches. Flows through these networks 
are driven by a single pressure difference and yet can be designed to 
exhibit a variety of flow states by programming the pressure at which 
each flow switch occurs.

System design and nonlinearity
We consider conditions under which all channel segments have the same 
width w, the working fluid is water, and all surfaces (including obstacles) 
have no-slip boundaries. We assume, without loss of generality, that the 
pressure Pout at the outlets is zero, and consider scenarios in which either 
the static or the total pressure is controlled at the inlets (Methods). We 
examine two network configurations of the system in Fig. 1a: the con-
nected configuration, in which the two parallel channels are allowed 
to exchange fluid through the linking channel; and the disconnected 
configuration, in which the linking channel is closed or removed. In 
our theoretical analysis and simulations, the flows are assumed to be 
two-dimensional, yet the main results carry over to three dimensions, 
as verified in our experiments.

For a straight microfluidic channel of length ≫L w  without obstacles, 
an approximate steady-state solution of the Navier–Stokes equations 
in two dimensions yields a linear relation between the total volumetric 
flow rate per unit depth Q and the pressure drop ΔP along the channel:

P
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w
Q−Δ =

12
(1)3

where μ is the dynamic viscosity of the fluid. To induce deviations from 
this linear regime, we consider the effect of introducing multiple sta-
tionary obstacles in the channel. Figure 2a, b shows simulations of the 
Navier–Stokes equations for a channel with ten cylindrical obstacles 
of radius r = w/5 (Methods). We observe recirculation regions forming 
near the obstacles for sufficiently large Reynolds number Re ≡ 2ρQ/μ, 
where ρ is the fluid density. The recirculation regions first appear for 
Re of the order of 10, and their number and size depend on Re. These 
localized structures are hallmarks of fluid inertia effects (and thereby 
of nonlinearity). We investigate how fluid inertia effects compound to 
impact the total flow rate by performing simulations across moderate 
values of Re when different numbers of obstacles are present. We find 
that a nonlinear relation between the pressure drop ΔP and flow rate 
Q = μRe/2ρ emerges as soon as obstacles are introduced, and that the 
nonlinearity becomes more pronounced as the number of obstacles is 
increased (Supplementary Information section S3.1 and Supplementary 
Fig. 3).

The nonlinearity we observe in the relation between ΔP and Q con-
forms to the Forchheimer effect in porous media, which characterizes 
flow through many interconnected microchannels when local inertial 
effects at the points of interconnection are non-negligible, even for 
laminar flow33–35. We use the Forchheimer equation to derive a relation 
between ΔP and Re for the channel with obstacles, given by

P
αμ L

ρw
βμ L

ρw
−Δ =

2
Re +

4
Re (2)

2 2

2
2

where α is the reciprocal permeability and β is the non-Darcy flow coef-
ficient, both depending solely on the system geometry (Methods).

The physical mechanism giving rise to this nonlinearity is the increase 
in flow recirculation and velocity gradients for larger Re, as evidenced 
in Fig. 2a, b for Re = 1 and 220. To test the impact of the inertial effects 
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the eye and indicates an approximately quadratic relation between pressure loss 
and flow rate.
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in realistic systems, we perform experiments using microchannels 
fabricated from stiff PDMS (hardened by curing). Figure 2c, d shows 
experimental evidence of the increase in the number and size of  
the recirculation regions with Re, in agreement with our simula-
tions. An approximately linear relation between −ΔP/Re and Re (and  
thus an approximately quadratic relation between −ΔP and Q) for  
a channel containing 20 obstacles is shown in Fig. 2e, which contrasts 
with the constant relation measured for a channel without obstacles 
in Fig. 2f.

Switching and Braess’s paradox
We incorporate the channel segment with obstacles characterized above 
into a network by considering the microfluidic system presented in Fig. 1a. 
We take the common static pressure Pin at the inlets to be the controlled 
variable in the system. The total flow rate through the network is now 
simply the sum of the flows at the outlets, (Q4 + Q5). In Fig. 3, we present 
results for this system from direct simulations of the steady-state solu-
tions of the Navier–Stokes equations. As Pin is increased from zero, the 
flow rate through the linking channel Q3 is initially positive before chang-
ing direction and becoming negative once a critical pressure, defined as 

⁎Pin, is reached (Fig. 3). This flow switch results from the nonlinear change 
in pressure loss along the channel segment containing obstacles, which 
causes a switch in the sign of the pressure difference along the linking 
channel ΔP21 (approximately P2 − P1) as the flow rate through the system 
increases with Pin. We define QC to be the total flow rate for the connected 
system configuration and QD to be the total flow rate for the disconnected 
system configuration, where both are regarded as functions of Pin.

Figure 3 shows Q Q QΔ ≡ −C D  for a range of applied pressures Pin. 
Intuition may suggest that QΔ  is positive for all values of Pin because the 
linking channel in the disconnected system can be considered to have 
an infinite fluidic resistance, while for the connected system configura-
tion the resistance of the linking channel is finite. Hence, reducing the 
resistance of any component of the system may seem to imply that the 
total flow rate should increase for fixed Pin. We observe, however, that 

QΔ  becomes negative for Pin above the critical pressure that marks the 
flow switch, ⁎Pin, meaning that an open linking channel between the par-
allel channels results in a lower total flow rate. Figure 3 also shows that 
the flow rate through the channel segment with obstacles, Q4, remains 
largely unchanged between the two configurations. Therefore, the 

difference in the total flow rate exists primarily in the difference in Q5, 
and Q3 acts as a controlling variable of Q5.

The observation of a lower total flow rate for the connected configu-
ration compared to the disconnected configuration for fixed Pin is a 
manifestation of a fluid analogue of Braess’s paradox. Indeed, if we 
consider the disconnected system driven by an inlet pressure ⁎P P>in in, 
the addition of the linking channel can result in a decrease in the total 
steady-state flow rate (as large as 10% in our simulations). The value of 
the critical pressure ⁎Pin depends, of course, on the dimensions of the 
channels, but we find that the onset of Braess’s paradox and the flow 
switch always occur at the same pressure for the range of parameters 
investigated. We obtain similar results for Braess’s paradox and flow 
switching when instead the total pressure is controlled at the inlets 
(Supplementary Information section S3.4). Our observation of Braess’s 
paradox and flow switching also has the potential to lead to additional 
control features when existing microfluidic components are integrated 
into our system. For example, by incorporating an offset fluidic diode36 
in the linking channel, the system can undergo negative (and positive) 
conductance transitions, where an increase in Pin leads to an abrupt 
decrease in the total flow rate (Supplementary Information section S4).

Experimental results
We performed experiments to validate our predictions of flow switch-
ing and Braess’s paradox in a network with dimensions typical of micro-
fluidics. A schematic of the experimental apparatus is presented in 
Fig. 4a, where an open/close valve is used to implement the addition/
removal of the linking channel (Methods). With the valve open, a flow 
switch is observed at a critical driving pressure ⁎Pin in the range 5–10 kPa, 
as demonstrated in Fig. 4a by images of the flows through the channel 
junctions at the end points of this pressure range. (The switching behav-
iour has no reliance on the valve, as explicitly shown in Supplementary 
Fig. 11.)

A confirmation of Braess’s paradox in this system is shown in Fig. 4b 
for driving pressures above ⁎Pin, as observed in our simulations. The 
measured total flow rate is higher when the linking channel valve is 
closed than when it is open, thus demonstrating the paradox, and the 
magnitude of the paradox is observed to be larger for higher driving 
pressures. A breakdown of how the flow rate changes in channel seg-
ments 4 and 5 individually is shown in Fig. 4c, d. Closing the valve causes 
the flow rates through both channels to increase, which is in agreement 
with direct simulations and is yet another striking aspect of Braess’s 
paradox in this system; it would be, at first, intuitive to expect that Q5 
would decrease when the in-flow from the linking channel is switched 
off. Time series of the flow rates measured as the linking channel is 
sequentially opened and closed further illustrate the transitions under-
lying the paradox (as shown in Supplementary Fig. 12).

In our experiments, the total pressure is controlled at the inlets and 
the experimental results are in full qualitative agreement with simula-
tions performed under the same pressure boundary conditions (Sup-
plementary Information section S3.4). This illustrates the robustness of 
the phenomenon, given that our simulations are in two dimensions and 
three-dimensional effects are expected to be present in the experiments. 
We note that different aspects of the paradox have been considered in 
fluid networks, but only for macroscopic (that is, non-microfluidic) 
systems and while modelled by ad hoc flow equations37–39. Analogues 
of the paradox have also been studied in several other areas, includ-
ing electrical, mechanical, biological, and contemporary traffic net-
works40–44. These examples show that Braess’s paradox is a potentially 
general network phenomenon, which has remained unexplored in 
microfluidic networks.

Network model
To characterize the microfluidic system in Fig. 1a, we construct an ana-
lytic model that captures the flow properties observed in our simula-
tions and experiments. The model consists of pressure–flow relations 
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for each channel segment and, crucially, includes the most dominant 
term resulting from minor pressure losses at the channel junctions45,46 
(Methods). We model the contribution of the latter as an additive term 
K(Q3/Q1)f(Q5) to the pressure–flow equation for channel segment 5, 
where the scaling factor f and the coefficient K are increasing func-
tions for Pin ≥ 0 such that f(0) = K(0) = 0. Several results are obtained 
from this model for Pin > 0, as assumed throughout. First, if β = 0 (that 
is, the quadratic term is zero in equation (2)) when the static pressure 
is controlled or the dynamic pressure is negligible, then flow switching 
does not occur, in agreement with direct simulations (Supplementary 
Information section S3.2). Second, when β > 0, a steady-state solution 
can be found satisfying Q3 = 0 provided that the following geometric 
condition is satisfied:

⁎L
L L

αw L
L<

12
= (3)1

2 5
2

4

This solution identifies the critical pressure ⁎Pin. Third, for flow rates in 
the linking channel, the model predicts that a variation δQ3 is negatively 
related to a variation δPin around ⁎Pin. This indicates that Pin above (below) 

⁎Pin results in a negative (positive) flow rate through the linking channel. 
The first result implies that, in our experiments, the Forchheimer effect 
is necessary to achieve a flow switch. The second and third results, which 
hold even for when dynamic pressure is non-negligible, show that this 
model captures the flow switching behaviour observed in the simulations 
and experiments. Importantly, we validate the flow-switching condition 
in equation (3) by demonstrating quantitative agreement between the 
model and simulations both when the static pressure and when the total 
pressure is controlled (Supplementary Information section S3.2).

The model also predicts Braess’s paradox as observed in our experi-
ments and simulations. Specifically, under the condition that equation (3) 
is satisfied and dynamic pressure is small (or static pressure is controlled), 
the model predicts the paradox to occur for δPin > 0 if and only if









K βf

a
β

c′(0) > (4)

where a and c are positive parameters and prime denotes derivative. If 
total pressure is controlled and dynamic pressure terms are included, 
the paradox is also predicted for δPin > 0 provided that a relation similar 
to equation (4) is satisfied (details for both cases are presented in Sup-
plementary Information section S2). The dependence of condition (4) 
on β and K′(0) underlines the crucial roles of nonlinearity and minor 
losses in giving rise to Braess’s paradox in our experiments, and shows 
in particular that minor losses have to be sufficiently large. Indeed, if the 
effect of minor losses is neglected, a manifestation of Braess’s paradox 
is still predicted to occur, but with much smaller magnitude and only 
for δPin < 0, which is inconsistent with our simulations and experiments 
(Supplementary Information section S2.3).

The result in equation (4) also highlights a fundamental difference 
between microfluidic and electronic circuits, namely that minor losses 
(that is, energy losses associated with interactions between circuit com-
ponents) do not have direct analogues in common electronics. Given 
the central role played by such losses in equation (4), we posit that this 
difference might be the reason why no equivalent of the Braess paradox 
effect we present has been observed in electrical networks, even though 
aspects of it have40. We further investigated the impact of interactions 
between channel segments by varying the junction angles to show that 
the paradox can be further enhanced by manipulating the minor losses 
(Supplementary Information section S3.3).

Networks with multiple programmed switches
The system considered thus far can be generalized to create larger 
microfluidic networks with multiple flow switches—that is, networks 
with multiple disjoint channel segments in which the flow initially in one 
direction can be individually ‘switched’ to move in the opposite direction 
through the manipulation of one driving pressure alone. In our design, 
the linking channel plays the role of a switch (and can be referred to as 
such). Figure 1b shows the multiswitch generalization of the network 
in Fig. 1a, which incorporates multiple linking channels and a subset 
of channel segments with obstacles. We experimentally demonstrate 
an instance of a six-switch network that exhibits flow switching in all 
linking channels (as presented in Supplementary Information section 

Pressure
pump

Open/close
valve

Channel 4

Channel 5

Pin = 5 kPa

Q2

Q1

Q4

Q5

Q3

Pin = 5 kPa Pin = 10 kPa 

Pin = 10 kPa

a

 
Open valve 

b

c

d

 
Closed valve 

200 μm 200 μm

200 μm 200 μm

475

485

495

1,225

1,325

1,425

Pin = 20 kPa Pin = 100 kPa

1,610

1,620

1,630

5,450

5,550

5,650

2,085

2,105

2,125

6,750

6,900

7,050

To
ta

l �
ow

 r
at

e,
Q

4 
+

 Q
5 

(μ
l m

in
–1

)
C

ha
nn

el
 4

 �
ow

 r
at

e,
Q

4 
(μ

l m
in

–1
)

C
ha

nn
el

 5
 �

ow
 r

at
e,

Q
5 

(μ
l m

in
–1

)

Open Closed Open Closed

Open Closed Open Closed

Open Closed Open Closed

Fig. 4 | Experimental observation of flow switch and Braess’s paradox.  
a, Experimental setup of the system presented in Fig. 1a, with flow tracking 
images (insets) at the junctions. An air-pressure pump is used to equally 
pressurize two vials containing red and blue dyed water, where each vial is 
connected to one of the system inlets. The linking channel is equipped with an 
open/close valve and channel 4 contains 20 obstacles. Images of the dyed flows 
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right insets) the flow switching pressure ⁎Pin , where the flow directions are 
indicated by the arrows. b, Total flow rate (Q4 + Q5) when the linking channel valve 
is ‘open’ or ‘closed’ (see diagrams at right) for two different driving pressures 
above ⁎Pin. c, d, Breakdown of the total flow rate into Q4 (c) and Q5 (d) for the two 
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S6.2). Multiswitch networks can be designed by extending the network 
model presented above.

One such network with ten linking channels is presented in Fig. 5a. By 
marking each inlet flow with a different colour, we show that a variety 
of patterns can form in the outlet flows (coloured circles in Fig. 5). The 
specific pattern at an outlet depends on the order in which the flow 
switches occur as Pin is varied. The network model for larger systems 
is constructed by combining pressure–flow relations for each channel 
segment with flow rate conservation equations for each junction. Using 
this model, we can design a network for which each flow switch occurs 
near a target value of Pin by optimizing the dimensions of the channel 
segments (Methods).

As illustrated in Fig. 5, a set of 11 different internal flow states and 17 
unique colour combinations at the outlets are possible for the switching 
sequence realized in Fig. 5b. Figure 5c, d shows the agreement between the 
model predictions of these flow states and results from direct simulations 
of the Navier–Stokes equations. This variety of states (and output patterns) 
is achieved with only three channel segments containing obstacles and  
is parameterized by a single control variable—the driving pressure Pin. 
Moreover, the switching is implemented solely through the working fluid, 
which differs from existing approaches that rely on flexible valves and 
additional control flows15. Thus, multiswitch networks exhibit several prop-
erties exploitable in the design of new controllable microfluidic systems.

More generally, for a multiswitch network with nc horizontal channels 
interconnected by nl linking channels, the number of possible internal 
flow states is nl + 1 if each linking channel exhibits a flow switch. In addition, 
the possible number of unique colour combinations in the outlet flows is 
nc(nc + 1)/2 if each inlet flow is marked with a different colour. All colour 
combinations can be realized over the set of all switching sequences, 
provided that there exist flow paths allowing mixing of every set of k adja-
cent colours for k ranging from 1 to nc. The myriad states possible in such 
multiswitch networks underlie their ability to process inputs into multiple 
outputs and thus to support various applications, including implement-
ing different mixing orders of chemical reagents and devising schemes 
for the parallel generation of mixtures with tunable concentrations.

Conclusions and outlook
The flow switch, conductance transitions and Braess’s paradox estab-
lished in this study are all emergent behaviours of common origin result-
ing from nonlinearity and interactions between different parts of the 
system. The nonlinearity is directly determined by fluid inertia effects, 
which can be enhanced and manipulated through the placement of 
obstacles and has the advantage of not being reliant on flexible com-
ponents, fluid compressibility or dedicated control flows. The onset of 
Braess’s paradox is marked by the flow-switching pressure, above which 
the increased resistance of the nonlinear channel causes the flow to be 
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the network programmed with a chosen switching sequence as Pin is increased. 
Each column of coloured circles denotes the outlet flows after the 
corresponding flow switch occurs, where mixing between different coloured 

fluids is assumed to occur when passing through the same channel segment.  
c, d, Model predictions (c) and simulation results of the Navier–Stokes equations 
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Positive flow rates correspond to flow in the upward direction in a, and each flow 
switch occurs when the corresponding curve crosses the horizontal axis. The 
segment dimensions that give rise to the particular switching order in b–d are 
reported in Supplementary Table 1. All 21 possible outlet flow colour 
combinations are realized between the switching sequence presented here and 
those in Supplementary Fig. 13.
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routed in the negative direction through the linking channel. When 
constrained by a diode, the switch in flow direction also enables  nega-
tive conductance transitions. Our results demonstrate an approach 
for routing and switching in microfluidic networks through control 
mechanisms that are coded into the network structure, thus responding 
to the call for design strategies that allow diverse microfluidic systems 
to be assembled from a small set of core components2,47.

Here we considered the scenario in which the inlets and the outlets 
are (separately) held at the same pressure, rendering the network a two-
terminal system in all cases, because this is the most stringent scenario 
for flow manipulation. If a multi-terminal system is configured, by allow-
ing the pressures at each of the inlets (and/or outlets) to be varied inde-
pendently, then the effects that we presented may be further enhanced. 
Finally, although we focused on boundary conditions in which the inlet 
pressures are controlled, it would be natural to explore in future research 
the scenario in which the controlled variables are the inlet flow rates. We 
anticipate, for example, that the negative conductance transitions would 
then be converted into pressure amplification (pressure release) transi-
tions in which the inlet–outlet pressure difference increases (decreases) 
abruptly at the transition point. Accordingly, Braess’s paradox is also 
expected to take a complementary form in which closing the linking 
channel causes the inlet–outlet pressure difference to drop. Incidentally, 
it is this complementary form of Braess’s paradox that has been previ-
ously established for electrical circuits40, thus suggesting an additional  
correspondence between electronic and microfluidic circuits.
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Methods

Navier–Stokes simulations
The numerical simulations were performed using48 OpenFOAM version 
4.1. We used meshes with an average cell area ranging from 10 μm2 to 
340 μm2, where the finest meshing was applied near the obstacles. All 
meshes were generated using Gmsh49. The two-dimensional solutions 
were found using the simpleFoam solver within OpenFOAM, employ-
ing second-order numerical schemes, where a fixed static pressure of 
zero was set for the boundary conditions at the outlets. At the inlets, 
the static (total) pressure was fixed for the static (total) pressure con-
trolled cases. For simulations of the multiswitch network in Fig. 5, the 
same geometry and dimensions were used as for the model predictions, 
provided in Supplementary Table 1, and equal driving pressures were 
applied at each of the six inlets.

Reynolds numbers
The characteristic length scale used in defining the Reynolds number of 
the flow is the hydraulic diameter of the channels, defined as 4A/P, where 
A is the area and P is the perimeter of the channel cross-section (common 
to all segments). The hydraulic diameter in two and three dimensions is 
2w and 2wh/(w + h), respectively, where h is the height of the channels in 
the three-dimensional case. The characteristic velocity used in two and 
three dimensions is Q/w and Q/wh, respectively. Therefore, we define 
Re = 2ρQ/μ for our simulations in two dimensions and Re = 2ρQ/μ(w + h) 
for our experiments in three dimensions. The undeclared ranges of Re 
for the channel segment with obstacles considered in the presented data 
are: 21–385 (Fig. 3), 12–121 (Fig. 4), 1–220 (Fig. 5), 1–380 (Supplementary 
Fig. 2), 4–111 (Supplementary Fig. 4), 40–385 (Supplementary Fig. 7), 
20–400 (Supplementary Fig. 8), 2–10 (Supplementary Fig. 11b), 75–85 
(Supplementary Fig. 11c), 76–89 (Supplementary Fig. 12), 10–20 (Sup-
plementary Fig. 14b) and 110–120 (Supplementary Fig. 14c).

Pressure boundary conditions
We consider two different boundary conditions for the driving pressure 
Pin at the system inlets. Under one condition, total pressure is controlled 
and the inlets open directly into a high-pressure reservoir. Under the 
other condition, static pressure is controlled and the inlets are connected 
to the reservoir by pressure regulators. Total pressure is the sum of 
static pressure and dynamic pressure, where dynamic pressure is defined 
as ρv1

2
2 for a fluid with density ρ and velocity v. The distinction between 

these boundary conditions is often neglected in the microfluidics lit-
erature when the Reynolds number is less than one50, but it can become 
important for larger Reynolds numbers (even though the flow remains 
laminar)51.

Pressure–flow relations
We use equation (1) to describe the pressure–flow relation for straight, 
obstacle-free channels; it is derived directly from the Navier–Stokes 
equations by assuming plane Poiseuille flow through a two-dimensional 
channel. To describe the nonlinear pressure–flow relation observed 
for the channel with obstacles, we refer to the Forchheimer equation: 
−ΔP = αμLV + βρLV2, where V is the average fluid velocity. In two dimen-
sions, V = Q/w = μRe/2ρw and, thus, the Forchheimer equation can be 
written in the form of equation (2). In agreement with equation (2), we 
find an excellent linear fit between −ΔP/Re and Re for a channel with ten 
obstacles, and we validate the fit by predicting flows through the same 
channel for a fluid with a different viscosity (Supplementary Information 
section S3.1). We observe no unsteady flow through the channel with 
obstacles due to vortex shedding for Re of up to 400, as expected for 
systems with highly confined obstacles52, which permits the use of the 
steady-state relation in equation (2) over the range of Re considered here. 
We experimentally verify the source of nonlinearity in PDMS channels 
with obstacles, which were designed to have approximately square cross-
sections to minimize deformation (which could lead to other forms of 

nonlinearity53,54). Through additional experiments, we confirmed that 
pressure–flow relations similar to those in Fig. 2e, f hold for channels 
constructed from materials with both higher rigidity (SU-8 photoresist) 
and lower rigidity (Flexdym) than the PDMS (Supplementary Informa-
tion section S5 and Supplementary Fig. 10). We note that porous-like 
structures have been previously used both to study non-inertial effects 
in microfluidics, such as droplet formation55 and viscous fingering56, 
and to study inertial effects in larger systems57. In our system, inertial 
effects arise at the microfluidic scale even for a much smaller number 
of obstacles than the typical number in porous-like materials.

Network flow model construction
The analytic model used to describe the system in Fig. 1a is constructed 
as follows: (i) we consider the pressure at the inlets Pin to be in the vicin-
ity of ⁎Pin; (ii) we approximate the pressure–flow relation through the 
linking channel as Q3 = κ(γP1 − P2), where κ is the channel conductivity 
and γ is a free parameter allowing for an effective pressure difference; 
(iii) the flow equation for each other channel segment without obstacles 
is written as in equation (1), where −ΔP is the pressure drop along the 
segment and L is the segment length; (iv) for the channel segment with 
obstacles, we take the flow equation to be in the form of equation (2) 
(with Re expressed as 2ρQ/μ); (v) we include the most dominant term 
resulting from minor pressure losses at the channel junctions. Therefore, 
the model consists of five pressure–flow relations, in addition to two 
flow conservation equations at the junctions: Q3 + Q2 − Q4 = 0 and 
Q3 + Q5 − Q1 = 0. When the static pressure is controlled at the inlets, the 
only nonlinearity that exists in the model comes from the Forchheimer 
term due to the presence of obstacles and the minor loss term. The 
model can also be adapted for when total pressure is controlled by tak-
ing the static pressure at each inlet to be Pin − kρQ2/2w2, where Pin now 
denotes total pressure and the coefficient k is a constant of order unity 
that only depends on the shape of the inlet velocity profile (k ≈ 1 for a 
uniform velocity profile at the inlet, as considered here). However, the 
dynamic pressure term ρQ2/2w2 is often negligible in real microfluidic 
systems because of the high pressures needed to drive fluid though the 
channels. Indeed, in our experiments, the dynamic pressure near ⁎Pin 
was smaller than the static pressure by two orders of magnitude and 
smaller than the pressure loss due to the Forchheimer effect by one 
order of magnitude. This can also be seen in Fig. 2f, where a constant 
relation between Re and ΔP/Re is measured. Details of the model are 
presented in Supplementary Information section S1.

Designing multiswitch networks
For a network with multiple switches and a given set of channel dimen-
sions, the value of Pin for which a specific flow switch occurs can be deter-
mined through the addition of a constraint to the model that enforces 
the flow through the corresponding linking channel to be zero. Then, 
the dimensions of a chosen subset of channel segments may be varied 
through an optimization procedure in order to design a network for 
which each flow switch occurs near a target value of Pin. Depending on 
which dimensions are allowed to be adjusted, the desired relative order 
of the switches can be achieved exactly, and the final set of switching 
pressures can be very close to the target ones (often <5% difference), 
where the former is expected to be more important in applications. 
Further details on the design of multiswitch networks are presented 
in Supplementary Information section S6.1.

PDMS channel fabrication
The flow channels were assembled by sealing a patterned PDMS chip 
against a glass slide. The PDMS chip was made by pouring a mixture of 
PDMS oligomer and cross-linking curing agent (Sylgard 184) at a weight 
ratio of 10:1 into a mould after being degassed under vacuum. The mixture 
was cured at 74 °C for 1 h and then peeled off from the mould to yield the 
microchannel design. The dimensions of the channels in Figs. 2 and 4 were 
200 μm (width) × 185 μm (height), and the diameter of the obstacles was 
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97 μm. After punching the holes for inlet and outlet connections, the PDMS 
chip was thermally aged at 200 °C for 12 h to reduce pressure-induced 
deformation58, yielding a chip with a Young’s modulus of59 approximately 
3 MPa. Both the PDMS chip and the glass substrate were cleaned with 
isopropanol and treated by plasma for 90 s before bringing them into 
contact. Once the PDMS chip was sealed against the glass slide, the device 
was placed in an oven for 30 min at 74 °C to improve bonding quality.

The mould used was a silicon wafer containing microchannel pat-
terns created by soft photolithography using a negative photoresist60,61. 
A 4-inch silicon wafer (test grade, University Wafer, Boston, MA) was 
cleaned with acetone and isopropanol and dried with nitrogen gas. The 
wafer was then coated with SU-8 50 negative photoresist (MicroChem 
Corp., Newton, MA) on a spin coater (Laurell Technologies Corp., North 
Wales, PA) operating at 600 rpm for 30 s. After a pre-exposure bake at 
65 °C and subsequently at 95 °C, each for 60 min, the coated wafer was 
exposed to UV light (Autoflood 1000, Optical Associates, Milpitas, CA) 
through a negative transparent photomask that contained the desired 
channel design. Following a 3.5 min post-exposure bake at 95 °C, the 
wafer was developed in SU-8 developer (MicroChem Corp., Newton, 
MA) for 60 min to obtain the pattern.

Flexdym channel fabrication
Flexdym (Blackholelab Inc., Paris) is a thermoplastic elastomer (Young’s 
modulus of 1.18 MPa) with a rapid and easy moulding process for micro-
fluidic devices62. After fabrication of the silicon wafer mould containing 
the channel designs, a sheet of Flexdym (6 cm × 4 cm) was placed directly 
above the mould with another sheet of unpatterned PDMS (about 1 mm 
thick) placed above the Flexdym for protection. The whole set was then 
placed on a heat press between two Teflon sheets. The plate on the heat 
press was heated to 175 °C before starting to mould the Flexdym. Once 
the target temperature was reached, the lever on the heat plate was 
locked down with a timer set for 5 min. After the process was finished, 
the lever was released and the Flexdym sheet was inspected visually to 
make sure that no bubbles were trapped around the channel. The chip 
was allowed to cool down for 5 min before unfolding the layers. The 
Flexdym was permanently sealed with a glass slide by following the same 
sealing procedure used for the PDMS channels. The dimensions of the 
cross-section of the channels were 201 μm (width) × 166 μm (height), 
and the diameter of the obstacles was 99 μm.

SU-8 photoresist channel fabrication
To make microfluidic channels directly from SU-8 photoresist, an inverse 
mask was designed and printed on transparency. The desired channel 
was printed on the inverse mask in black with transparent dots mark-
ing the obstacles, and the rest of the mask was left transparent. The 
same procedure used to make the silicon wafer master as described in 
Methods section ‘PDMS channel fabrication’ was followed to fabricate 
the channels on glass slides. The chip was then sealed by 3M VHB tape 
to another glass slide with holes for connections. The dimensions of the 
cross-section of the channels were 209 μm (width) × 196 μm (height), 
and the diameter of the obstacles was 90 μm. The Young’s modulus of 
SU-8 photoresist is 2 GPa (from the table of properties for SU-8 perma-
nent photoresists, MicroChem Corp., Newton, MA, available at http://
microchem.com/pdf/SU-8-table-of-properties.pdf).

Flow rate measurement
Experimental measurements in Figs. 2 and 4 were made with the sys-
tem shown in Fig. 4a. When measuring the relation between pressure 
and flow rate, the linking channel valve was closed to allow separate 
measurement of the channel with and the channel without obstacles. 
Deionized (DI) water was pumped through each channel and a pressure 
scan from 0 to 100 kPa was performed using an Elveflow OB1 pressure 
controller. The flow rate was measured by an Elveflow MFS5 flow sen-
sor (0.2–5 ml min−1). To verify Braess’s paradox, the same instruments 
were used and the pressure was set constant while recording the flow 

rate at each outlet. Red (3 g l−1, FD&C Red #40, Flavors & Colours) and 
blue (1.5 g l−1, FD&C Blue #1, Flavors & Colours) dyes were added into DI 
water to demonstrate the switching behaviour. The concentrations of 
the dyes were adjusted for similar flow rate under the same pressure. 
The flow rate measurements in Supplementary Fig. 10 were performed 
using isolated channels constructed from Flexdym and SU-8 photore-
sist, respectively.

Fluorescence imaging
Fluorescent polyethylene microspheres (10–20 μm) were suspended 
in Tween 80 solution (Cospheric LLC, Santa Barbara, CA) and pumped 
through a single microfluidic channel with obstacles by an Elveflow OB1 
pressure controller. Two different pressures were applied, 3 kPa and 
100 kPa, to demonstrate different flow profiles around the obstacles. 
Fluorescence images were captured with an Olympus BX51 microscope 
equipped with a NIBA filter through an Infinity 3 CCD camera.

Measured flow rate data and statistics
Savitsky–Golay filtering was applied to all flow rate data collected 
through experiments, using a window length of 11 data points and a 
second-order polynomial. For each of the fixed pressures presented 
in Fig. 4b–d, a 60 s time series of flow rate data was collected at each 
of the outlets with a sampling rate of 10 Hz. Over the 60 s interval, the 
linking channel valve was sequentially opened/closed every 15 s. For 
each time series, the 15 s intervals in which the valve was open (closed) 
were averaged to create a single 15 s time series for each outlet. The total 
flow rate (Q4 + Q5) was calculated when the valve is open and closed, 
respectively, by summing the 15 s time series for the two outlets point-
by-point. The statistics presented in Fig. 4 are the average and standard 
deviation of the resulting series. For Supplementary Fig. 12, the flow rate 
at each of the two outlets was measured experimentally at a sampling 
rate of 100 Hz over a 180 s interval, during which the linking channel 
was sequentially opened/closed every 30 s. The total flow rate in Sup-
plementary Fig. 12c was calculated by summing, point-by-point, the 
data in Supplementary Fig. 12a, b.

Parameters in simulations and experiments
In the simulations, we set ρ = 103 kg m−3, μ = 10−3 Pa s, ν = μ/ρ = 10−6 m2 s−1, 
w = 500 μm for the width of all channels, and r = 100 μm for the radius of 
all obstacles, unless otherwise noted. In all experiments, DI water was 
used as the working fluid. The other undeclared dimensions were as fol-
lows. In Fig. 2a, b, the length of the (partially shown) channel was 1.25 cm. 
In Fig. 2c–e, the channel length was 4.3 cm, and in Fig. 2f the channel 
length was 2.0 cm (see Methods section ‘PDMS channel fabrication’ for 
the remaining dimensions). In Fig. 3, L1 = 0.17 cm, L2 = 1.0 cm, L3 = 0.1 cm, 
L4 = 1.25 cm, and L5 = 1.0 cm. In Fig. 4, L1 = 0.6 cm, L2 = 2.9 cm, L4 = 1.4 cm 
and L5 = 1.4 cm. For the linking channel, the switch valve was connected 
to the two parallel channels through 15 cm of round tubing and 0.7 cm of 
microchannel on each side. Each inlet was connected to the pressurized 
vials through 62 cm of tubing, and each outlet was attached to 50 cm of 
tubing. The inner diameter of all tubing was 0.79 mm.

Data availability
The datasets generated and/or analysed during the current study are 
available from the corresponding author on reasonable request.

Code availability
Custom Python code is available from the corresponding author on 
request.
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