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The quantum nature of an oscillating mechanical object is anything 
but apparent. The coherent states that describe the classical motion 
of a mechanical oscillator do not have a well defined energy, but 
are quantum superpositions of equally spaced energy eigenstates. 
Revealing this quantized structure is only possible with an apparatus 
that measures energy with a precision greater than the energy of a 
single phonon. One way to achieve this sensitivity is by engineering 
a strong but nonresonant interaction between the oscillator and 
an atom. In a system with sufficient quantum coherence, this 
interaction allows one to distinguish different energy eigenstates 
using resolvable differences in the atom’s transition frequency. For 
photons, such dispersive measurements have been performed in 
cavity1,2 and circuit quantum electrodynamics3. Here we report an 
experiment in which an artificial atom senses the motional energy 
of a driven nanomechanical oscillator with sufficient sensitivity 
to resolve the quantization of its energy. To realize this, we build 
a hybrid platform that integrates nanomechanical piezoelectric 
resonators with a microwave superconducting qubit on the same 
chip. We excite phonons with resonant pulses and probe the resulting 
excitation spectrum of the qubit to observe phonon-number-
dependent frequency shifts that are about five times larger than the 
qubit linewidth. Our result demonstrates a fully integrated platform 
for quantum acoustics that combines large couplings, considerable 
coherence times and excellent control over the mechanical mode 
structure. With modest experimental improvements, we expect that 
our approach will enable quantum nondemolition measurements 
of phonons4 and will lead to quantum sensors and information-
processing approaches5 that use chip-scale nanomechanical devices.

In the last decade, mechanical devices have been brought squarely 
into the domain of quantum science through a series of remarkable 
experiments exploring the physics of measurement, transduction and 
sensing6–13. Two paradigms for obtaining quantum control over such 
systems are those of cavity optomechanics, where the position x̂ of a 
mechanical oscillator parametrically couples to a higher-frequency 
electromagnetic cavity6, and quantum acoustics, where an artificial 
atom or qubit exchanges quanta with a mechanical oscillator. The latter 
is the acoustic analogue of cavity or circuit quantum electrodynamics 
(cQED), the archetypal playground of quantum optics, which has ena-
bled a vast range of experiments probing quantum physics14 and led to 
the emergence of the superconducting approach to quantum informa-
tion processing15. In quantum acoustics systems, the exchange of 
quanta between a qubit and a mechanical oscillator is described by the 
Hamiltonian Ĥ σ σ= + +− +g b b(ˆ ˆ )( ˆ ˆ )int

†
  , where g is the coupling rate 

and σ σ+ −ˆ (ˆ )  and b bˆ ( ˆ)
†

 are the raising and lowering operators of the 
qubit and mechanical modes, respectively. Strong coupling of the sys-
tem is realized for a g value greater than the decoherence rates of the 
qubit (γ) and the mechanical mode (κ) in this limit, and a single excita-
tion can be resonantly swapped multiple times before being lost to the 
environment. Experiments in this regime have demonstrated quantum 

control of mechanical systems at the single-phonon level7,12,16, as well 
as preparation of higher Fock states using more elaborate protocols11.

In both cavity optomechanics and quantum acoustics, approaches to 
probing the phonon-number states of a mechanical resonator invaria-
bly involve swapping phonons into a resonator or qubit acting as a 
meter. Alternatively, we can build a measurement apparatus that 
directly senses the mechanical energy stored in a resonator without the 
need to exchange excitations13. This quantum nondemolition (QND) 
approach to measuring motion has numerous advantages and remains 
a challenge in the study of mechanical systems in the quantum regime. 
Cavity optomechanical approaches to QND attempt to couple the 
detector to the x̂2, instead of the x̂, observable of the mechanical sys-
tem17, but require optomechanical coupling rates beyond the current 
experimental capabilities18,19 to achieve phonon-number resolution. 
In quantum acoustics, detuning the transition frequency of the qubit 
ωge = ωm + Δ (where ∣ ⟩g  is the ground state and ∣ ⟩e  is the excited 
state) from the mechanical frequency ωm by |Δ| ≫ g prevents the direct 
swap of real excitations between the two systems. Instead, it leads to an 
off-resonant interaction between the qubit and mechanical system that 
results in an energy-dependent shift of the qubit frequency induced by 
virtual transitions. The effective Hamiltonian
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†
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†

where σ̂z denotes the Pauli z operator, accurately describes the system 
in this off-resonant regime3. Under Ĥeff, the only interaction between 
the two systems manifests as a qubit frequency shift χn2 ˆ, which is 
dependent on the phonon number =n b bˆ ˆ ˆ†

. For superconducting charge 
qubits operating in the transmon regime, the effects of the higher 
excited level ∣ ⟩f( )  must also be taken into account when calculating 
χ. The resulting expression for the dispersive coupling rate χ is distinct 
from that for the two-level atom case, and is given by20

χ
Δ

α
Δ α

= −
−

g (2)
2

where α = ωge − ωef is the transmon anharmonicity. Because Ĥeff com-
mutes with both the phonon-number operator n̂ and with σ̂z, the two 
systems cannot exchange energy, so measurements of the qubit excit-
ed-state population σ+ /(1 ˆ ) 2z  do not perturb the phonon number. 
Furthermore, in the limit χ ≫ max{γ, κ}, the frequency shift 2χ 
induced by the presence of a single phonon in the oscillator becomes 
resolvable in the qubit excitation spectrum (see Fig. 1 for a schematic 
representation). We call this the phonon-number-splitting regime, in 
analogy to the dispersive regime of cQED, where photons in an elec-
tromagnetic cavity3,21 or other bosonic excitations22 lead to an energy- 
dependent atomic-transition frequency. In cQED, the dispersive regime 
has been instrumental in implementing new approaches to quantum 
measurement and error correction5.
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Several technical hurdles have prevented phonon-number split-
ting from being observed in quantum acoustics. The sub-micrometre 
wavelength of gigahertz-frequency acoustic phonons—much smaller 
than the scale of the electrodes comprising the qubit circuits—leads 
to an enormous phonon mode density being accessible at the qubit 
transition frequency. Uncontrolled coupling to phonons is a known 
source of dissipation in cQED23 and represents a major challenge in 
combining qubits with the strong piezoelectrics needed for phonon 
sensing and control. Systems designed to have large coupling rates  
tend to couple strongly to parasitic modes, reducing the overall  
coherence of the qubits as well as the availability of viable operat-
ing frequencies. Approaches to mitigating these losses have included 
tunable couplers that isolate the qubit from the piezoelectric mate-
rial by rapidly turning off the coupling after interaction12, and bulk 
wave resonators in which the participation ratio of the qubit elec-
tric field with the piezoelectric is reduced11,16. Our approach avoids 
sacrificing coupling, while maintaining qubit coherence. We reduce 
the density of accessible mechanical modes that the qubit can radiate 
into by confining the phonons to a very small piezoelectric region 
where only a few mechanical modes are present at the frequencies of 
interest. Ordinarily, the leakage of phonons out of this region through 
its supporting anchors would lead to rapid decoherence of both the 
mechanical system and the qubit. To realize leakage-free anchors, we 
create a periodic patterning of the elastic material that opens a pho-
nonic bandgap. Equivalently, we can view the mechanical resonator 
as a defect in a phononic crystal bandgap material that is etched into 
a piezoelectric film.

To fabricate the chip-scale system, we integrate microwave Josephson 
junction qubits (aluminium on high-resistivity silicon) with piezoelec-
tric nanomechanical devices patterned from thin-film lithium niobate 
(LiNbO3; LN) (see Methods for fabrication details). As seen in Fig. 2, 
our system utilizes a transmon qubit of the type presented in ref. 24, 
which is controlled via on-chip microwave lines and read out disper-
sively using a coplanar waveguide microwave readout resonator. The 
transmon is coupled to an array of one-dimensional phononic crystal 
defect resonators through the piezoelectricity of LN. Each mechani-
cal structure consists of a narrow, suspended beam of patterned LN 
(Fig. 2b) with a periodicity of a = 1 μm that opens a complete bandgap 
in the region ~2−2.4 GHz. The defect site at the centre of the phononic 
crystal supports highly confined mechanical modes with frequencies 
that lie within the bandgap (Fig. 2c, d). To address these modes, we 
place aluminium electrodes directly on top of the phononic crystal 
anchors. With one terminal grounded and another terminal contact-
ing the transmon, the voltage fluctuations of the qubit create an elec-
tric field in the defect site, which is linearly coupled to its mechanical 
deformation by the piezoelectric effect. The structure is designed such 
that at least one of the localized modes generates a polarization that is 
aligned with the electric field produced by the electrodes (see Methods 
for design details).

We first probe the mechanical resonances by measuring the qubit 
excitation spectrum as we tune its transition frequency ωge across the 
phononic bandgap region. Here, frequency control is provided by a 
magnetic flux applied via an on-chip flux line, and the qubit is excited 
using a dedicated charge line. The state of the qubit is measured by 
using its dispersive interaction with the microwave readout resonator. 
We scatter a pulse off the resonator and monitor the transmitted com-
plex voltage (amplitude and phase) as we sweep the frequency of the 
spectroscopy pulse. After subtracting the voltage transmitted with the 
qubit in its ground state, the amplitude of the resulting signal is directly 
proportional to the qubit excited-state population. The results of these 
measurements are shown in Fig. 3a, where we observe a series  
of anticrossings corresponding to various defect modes. From these 
data we obtain the frequencies ω{ }i

m
( )  and coupling rates {gi} of the five 

most strongly coupled modes, each corresponding to an individual 
resonator in the array. We measure coupling rates in the range 
g/2π = 13−16 MHz, in fairly good agreement with finite-element  
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Fig. 1 | Phonon-number-splitting scheme. The state of a mechanical 
oscillator is described in quantum mechanics by a linear superposition of 
equally spaced energy eigenstates ∣ ⟩n , each representing a state of n 
phonons in the system. This quantized structure is normally not resolvable 
because all of the transitions between the energy levels occur at the same 
frequency ωm. By coupling the resonator to a qubit of transition frequency 
ωge with a rate of g, we cause splitting in the qubit spectrum that is 
parameterized by the dispersive coupling rate χ. This allows us to 
distinguish between the different phonon-number states that are present in 
the oscillator.
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Fig. 2 | Fabricated device. a, False-colour optical micrograph of the 
device, showing the readout resonator (purple), transmon qubit (green) 
and nanomechanical resonators (white box). The qubit flux control (Z) 
and excitation (XY) lines are shown in white. b, False-colour scanning 
electron micrograph of the suspended resonators. Each resonator consists 
of a defect site embedded in a phononic crystal that supports a complete 
phononic bandgap in the frequency range ~2−2.4 GHz. The structures are 
fabricated from a 250-nm-thick film of lithium niobate (dark blue) that is 
suspended above a silicon substrate, and are coupled to the qubit via thin 
aluminium electrodes (light blue) that address the defect modes. We form 
a connection between the electrodes and the qubit using superconducting 
bandages, which are visible as small squares at the edges of the LN-
supporting slabs. c, Scanning electron micrograph of a phononic crystal 
defect. d, Finite-element method simulation of a mechanical defect mode, 
showing the localized deformation of the structure and the electrostatic 
potential φ(r) (colour scale) generated through the piezoelectricity of LN.
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simulations (see Methods). We also observe a set of anticrossings  
corresponding to a small number of additional, weakly coupled  
defect modes. For the phonon-number-splitting measurements  
presented later, we use the highest-lying mechanical mode at 
ω / π = .2 2 405 GHzm

(1) , for which we perform a ringdown measurement 
to find its decay rate, κ/2π = 370 kHz. Next, to characterize the coher-
ence of the qubit we tune it to ωge/2π = 2.301 GHz, sufficiently far from 
all of the mechanical modes, and measure a qubit energy relaxation 
time of T1 = 1.14 μs and a total qubit linewidth of γ/2π ≈ 600 kHz. 
Finally, we extract the qubit anharmonicity α/2π = 138 MHz using a 
two-tone spectroscopy measurement of the ∣ ⟩ ∣ ⟩→g e  and ∣ ⟩ ∣ ⟩→e f  
transitions. All together, these parameters place the system deep in the 
strong-coupling regime (g ≫ κ, γ) and open up the possibility of 
observing phonon-number splitting, with an expected dispersive shift 
of 2χ/2π ≈ 3 MHz.

To observe phonon-number splitting, we perform a pump–probe 
measurement consisting of a short phonon excitation pulse followed 
by a longer qubit spectroscopy pulse (Fig. 4 inset), along with a readout 
pulse at the end to infer the qubit excited-state population as described 
earlier. The phonon pulse is sent to the XY line of the qubit. Because 
the qubit and the mechanical system are weakly hybridized when 
far-detuned, the pulse drives the mechanical system into an approxi-
mately coherent state. The duration τ of the spectroscopy pulse is cho-
sen to balance two competing effects: the pulse bandwidth ~ 1/τ needs 
to be sufficiently small to resolve the narrowest spectroscopic features, 
which have a width of about γ in our system, while τ cannot be much 
longer than the phonon lifetime, 1/κ, because the mechanical mode 
must remain excited during the measurement. Of the two require-
ments, τ ≫ γ−1 = 270 ns and τ ≲ κ−1 = 430 ns, the first is necessary to 
observe phonon-number splitting and the second determines the effec-
tive size of the observed mechanical state. We choose τ = 1.5 μs, which 
satisfies the first—but not the second—condition to obtain better 

resolution for the phonon-number peaks. As we perform the measure-
ment, the mechanical mode experiences considerable dissipation, 
which limits the mean number of phonons that we can observe in this 
experiment to ≈n̂ 1. Additionally, the qubit frequency undergoes a 
slow drift during the course of the measurement. To account for this, 
we periodically measure the qubit frequency with the phonon pulse 
turned off and use this to offset the data before averaging them 
(see Methods for a detailed discussion).

We use the highest-lying mechanical mode at ω / π = .2 2 405 GHzm
(1)  

and detune the qubit by Δ ≈ −6g to ωge/2π = 2.317 GHz. By varying 
the amplitude of the preparation pulse, we prepare states of varying 
phonon occupations, resulting in the qubit spectra found in Fig. 4. In 
addition to the original ∣ ⟩ ∣ ⟩→g e  qubit transition, we observe a series 
of peaks corresponding to different phonon-number states ∣ ⟩n  popu-
lated by the preparation pulse. The peaks are uniformly separated by 
2χ/2π ≈ 3 MHz, in close agreement with the dispersive shifts that are 
expected for our device parameters. The amplitude of the nth peak is 
an indirect measure of the population of state ∣ ⟩n , as evidenced by the 
fact that the relative heights of the peaks associated with n > 0 increase at 
higher excitation voltages. We also observe phonon-number-dependent  
linewidths for each peak, which can be understood as dephasing of the 
qubit due to the more rapid decay nκ of higher-lying Fock states25. This 
broadens higher-phonon-number peaks and obscures the quantization 
of the mechanical oscillator’s energy. Therefore, at sufficiently large 
phonon occupations we enter a regime in which the effect of the 
mechanical motion on the qubit spectrum is that of an a.c. Stark shift 
induced by a coherent field13,26.

We numerically model our measurement using time-domain  
master-equation simulations that evolve the joint state ρ tˆ( ) of the 
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Fig. 3 | Qubit spectroscopy and mechanical-mode structure. a, Qubit 
spectrum as a function of the externally applied magnetic flux, Φe (Φ0 is 
the magnetic flux quantum). The arrows indicate the strongly coupled 
mechanical modes associated with each of the five phononic crystal defect 
resonators. The qubit frequency at the flux sweet spot (Φe = 0) is 
ω / π = .2 2 417 GHzge

(max) , in close proximity to the highest-lying mechanical 
mode at ω / π = .2 2 405 GHzm

(1)  that is used for the phonon-number-
splitting experiment. A small number of weakly coupled features are 
present in the spectrum, corresponding to additional localized defect 
modes. a.u., arbitrary units. b, Close-up of the anticrossing with the 
mechanical mode at 2.257 GHz (dashed box in a). The vertical slice at zero 
detuning is shown in white to the right, and is used to calculate a coupling 
rate g/2π = 15.2 MHz.
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Fig. 4 | Phonon-number splitting. The qubit excitation spectrum is 
measured following a phonon excitation pulse of duration τmech = 175 ns 
and of varying amplitude (see inset for the pulse sequence). The  
detuning on the horizontal axis is relative to the qubit frequency 
ωge/2π = 2.317 GHz in the absence of a phonon excitation pulse. The 
initial phonon populations prepared by the pulse decay over the course of 
the measurement but are nevertheless visible as individual peaks separated 
by twice the dispersive coupling rate, 2χ. At the highest drive amplitudes 
we are able to resolve states with phonon numbers up to n = 3. We fit the 
data (blue points) using numerical master-equation simulations of the full 
pulse sequence (solid grey lines), with the mechanical drive strength as the 
only free fit parameter in the Hamiltonian. From these simulations we 
extract the mean phonon number ⟨ ⟩τ τ= + /n n̂( 2)mech  midway through 
the qubit spectroscopy pulse, which we indicate next to each spectrum.
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mechanical mode and qubit over the course of the pulse sequence 
(see Supplementary Information). We use the full Hamiltonian to 
evolve the state—as opposed to the dispersive Hamiltonian of equa-
tion (1)—in order to correctly model the excitation of phonons via the 
transmon. The final state of the system following the excitation  
and spectroscopy pulses is given by ρ ρ τ τ= +ˆ ˆ( )f mech  and is used to 
calculate the qubit excited-state populations, ρ=p e etr{ ˆ }e f . These 
are overlaid with the data in Fig. 4. The parameters used in the simu-
lation are obtained from an independent set of calibrations, as described 
in Methods. The only free parameter is a correction factor (of the order 
of 1) for the mechanical drive strength. An offset and a scaling factor 
are used to overlay the simulated excitation spectrum on the measure-
ments. To provide an approximate measure of the size of the mechanical 
states in the resonator, we indicate the mean phonon number 
¯ ρ τ τ= + /n b btr{ ˆ( 2) ˆ ˆ}mech

†
 midway through the spectroscopy pulse next 

to each spectrum in Fig. 4.
We have demonstrated a platform for quantum acoustics that com-

bines phononic crystal defect modes with superconducting qubits. 
By using a phononic crystal bandgap, we reduce the mechanical and 
qubit dissipation rates while maintaining a large phonon–qubit cou-
pling, g. This enables us to dispersively resolve the phonon-number 
states of a mechanical resonator—a key step towards realizing QND 
measurements of a solid mechanical object and detecting quantum 
jumps of the phonon number4. Looking forward, we expect phononic- 
crystal-based quantum acoustics to enable a new class of hybrid 
quantum technologies and provide a natural platform for integrating 
strongly piezoelectric materials with superconducting qubits. These 
types of mechanical resonator are also suited for efficient optical read-
out owing to their large mechanical-mode confinement and can pro-
vide a route to the networking of microwave quantum machines27,28. 
Moreover, very long coherence times of the order of 300 μs have now 
been demonstrated on phononic-crystal devices implemented in sili-
con29, suggesting that the mechanical dissipation of our devices can be 
improved with further investigation. Ultracoherent mechanical resona-
tors integrated with qubits provide a route to realizing quantum acous-
tic processors in which phononic registers act as quantum memories 
that may simplify the scaling of superconducting quantum machines30. 
Finally, by moving into the strong dispersive regime, our work enables 
further demonstrations, such as QND detection of single phonons4 
and generation of ‘Schrödinger cat’ states of motion31. In this context, 
we highlight a recent, independent observation of phonon-number 
splitting in a surface acoustic-wave device32.
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Methods
Device fabrication. Our fabrication process begins with a 500-nm-thick film of 
lithium niobate on a 500-μm-thick high-resistivity (ρ > 3 kΩ cm) silicon substrate. 
The LN film is first thinned to approximately 250 nm by blanket argon milling. 
We then pattern a mask on negative resist (hydrogen silsesquioxane) with elec-
tron-beam lithography and transfer it to the LN with an angled argon milling 
step33. After stripping the resist, we perform a thorough acid clean to remove 
re-deposited amorphous LN. This is critical, as any remaining residue substantially 
lowers the quality of the electrodes deposited in a later step. Next, we define the 
aluminium ground plane, feedlines and transmon capacitor on the exposed sili-
con substrate using photolithography, electron-beam evaporation and liftoff. The  
Al/AlOx/Al Josephson junctions are then formed using a standard Dolan bridge 
technique and double-angle evaporation34,35. Following junction growth, we 
deposit 50-nm-thick aluminium electrodes directly on top of the phononic crys-
tals to couple the defect modes to the qubit. This liftoff mask is patterned using 
electron-beam lithography with alignment precision of about 10 nm to the existing 
LN structures. In the final metallization step, we evaporate aluminium bandages 
that form the superconducting connections between the qubit capacitor, the elec-
trodes, the junctions and the ground plane36. The bandages are 500 nm thick to 
smoothly connect the phononic crystal electrodes—resting on the 250-nm-thick 
LN film—with the qubit capacitor and the ground plane below. After dicing the 
sample into individual chips, the LN structures are released with a masked XeF2 dry 
etch that attacks the underlying silicon with high selectivity37. Finally, the release 
mask is stripped in solvents, and individual chips are packaged for low-temperature 
measurement.
Device parameters. Extended Data Table 1 gives the device parameters for the 
qubit, the five strongly coupled mechanical modes and the coplanar waveguide 
readout resonator. The maximum qubit frequency ωge

(max) is extracted from a fit to 
the flux tuning curve, ω Φ ω Φ Φ= | π / |( ) cos( )ge e e 0ge

(max) . The transmon anharmonic-
ity α = ωge − ωef can also be extracted from the flux tuning curve, and we confirm 
this value with a separate two-tone measurement of the ∣ ⟩ ∣ ⟩→g e  and ∣ ⟩ ∣ ⟩→e f  
transitions. Additionally, the qubit is characterized by its energy relaxation time, 
T1, and its total linewidth, γ. These parameters are measured using the techniques 
described in section ‘Characterization of qubit and mechanical oscillator’, from 
which we obtain an estimate for the dephasing time Tφ through γ = 1/2T1 + 1/Tφ. 
The five strongly coupled mechanical modes are characterized by their resonance 
frequencies ω{ }i

m
( )  and their coupling rates {gi} to the qubit, which are obtained by 

measuring the normal-mode splittings in the flux tuning dataset (Fig. 3a). We note 
that the extraction of g3 and g5 is complicated by the presence of additional weakly 
coupled modes. The decay rate κ of the mechanical mode ωm

(1) (used for the pho-
non-number-splitting experiment) was obtained via a ringdown measurement 
similar to the measurement of a qubit T1 (see section ‘Characterization of qubit 
and mechanical oscillator’). Finally, χ is the dispersive coupling rate between the 
transmon and the mechanical mode at the detuning Δ ω ω= −ge m

(1) used in the 
experiment, where Δ/2π = −88 MHz. We also list the frequency ωr and linewidth 
κr of the readout resonator.
Control of qubit and mechanical oscillator. The experimental setup is shown 
in Extended Data Fig. 1. In these experiments, we generate all qubit- and phonon 
excitation pulses using an arbitrary waveform generator (AWG) (Tektronix series 
5200) with a rate of 5 × 109 samples per second. Because the qubit has a relatively 
low transition frequency (ωge/2π ≈ 2.4 GHz), the pulses are produced directly 
using the instrument’s built-in digital IQ mixer without further need for upcon-
version. The AWG output is then low-pass filtered at room temperature to remove 
Nyquist images, spurious intermodulation signals and clock bleedthrough. We 
use a separate AWG channel to generate the phonon excitation pulses, which are 
then combined with the qubit pulses at room temperature. Once in the cryostat, 
the signals are attenuated and filtered at various temperature stages before being 
routed to the qubit through a dedicated charge line on the device (labelled XY in 
Extended Data Fig. 1). Flux biasing is performed using a programmable voltage 
source (SRS SIM928), which is low-pass filtered at the 3-K stage (Aivon Therma-
24G) and at the 7-mK stage; the d.c. signal is then sent to an on-chip flux line 
(labelled Z in Extended Data Fig. 1).
Qubit readout. The qubit state is read out dispersively via a superconducting 
coplanar waveguide resonator38. Square-envelope readout pulses are generated 
directly by the AWG with a carrier frequency of ωr/2π = 3.026 GHz, which roughly 
matches the resonance frequency of the readout resonator. One end of the resona-
tor is capacitively coupled to the qubit, while the other end is inductively coupled 
to a through-feedline with a coupling rate of κr/2π = 1.3 MHz. After passing 
through two isolators (Quinstar QCY-030150S000), the signal is amplified at 3 K 
by a high-electron-mobility-transistor amplifier (Caltech CITCRYO1-12A), and at 
room temperature by two low-noise amplifiers (Miteq AFS4-02001800-24-10P-4 
and AFS4-00100800-14-10P-4). Next, the signal is down-converted to an inter-
mediate frequency (IF) of 125 MHz using a separate local oscillator (Keysight 

E8257D) and a double-balanced mixer (Marki ML1-0220I). Finally, the IF signal 
is amplified, low-pass filtered and digitized by an acquisition card (AlazarTech 
ATS9350) with 12-bit resolution and a sampling rate of 500 × 106 samples per sec-
ond. The data are first stored on-board and then transferred to a graphics process-
ing unit for real-time processing. Additionally, a vector network analyser (Rhode 
& Schwarz ZNB20) is used in the readout chain to calibrate the frequency of the 
readout pulses.
Characterization of qubit and mechanical oscillator. As described in section 
‘Control of qubit and mechanical oscillator’, the system is driven through the trans-
mon XY line at a time-dependent Rabi rate of Ω(t) = Ω0f(t), where f(t) is a normal-
ized pulse envelope and Ω0 = AkVd is directly proportional to the drive voltage Vd. 
The conversion factor Ak, with k = {1, 3}, depends on which AWG channel is used 
to drive the qubit (see Extended Data Fig. 1) and varies with frequency. We first 
calibrate the qubit excitation pulses through a Rabi oscillation measurement with 
the qubit at ωge/2π = 2.318 GHz, the frequency at which we performed the phon-
on-number-splitting measurements (see Extended Data Fig. 2a). Here we use 
Gaussian pulses σ= − /f t t( ) exp( 2 )2

t
2  of width σt = 50 ns and varying amplitude 

Ω0(Vd) = A1Vd. From these data, we extract A1 = 2π × 93.9 MHz V−1. We infer 
≈A A23 1 from the presence of the extra 3-dB attenuator.

To measure the qubit energy relaxation time, T1, we use the calibration to choose 
an appropriate π-pulse amplitude and prepare the qubit approximately in the 
excited state, ∣ ⟩e . We then measure the excited-state population (Extended Data 
Fig. 2b) as we vary the delay between preparation and readout. The resulting data 
are fitted with an exponential to extract T1. We perform this measurement at a 
variety of qubit frequencies, all of them sufficiently separated from the strongly 
coupled mechanical modes, and measure relaxation times in the range 
T1 = 1.0−1.4 μs. In addition, we perform steady-state spectroscopy with the qubit 
at the frequency of the phonon-number-splitting experiment to extract the total 
qubit linewidth, γ/2π ≈ 600 kHz.

We perform a ringdown measurement to extract the decay rate κ of the mechan-
ical mode used for the phonon-number-splitting experiment. Here, the qubit  
is first detuned by an amount Δ ≫ g to avoid hybridizing the modes (see 
Supplementary Information), and we then send a nearly resonant pulse at  
frequency ω ω≈d m

(1) to excite the mechanical mode. The mean mechanical occu-
pation ⟨ ⟩b bˆ ˆ†

 shifts the readout resonator through a small cross-Kerr interaction 
induced by the qubit. We therefore use this shift as an approximate measure of the 
occupation, in the same way that we measure the excited-state population of the 
qubit. Sweeping the delay between excitation and readout produces the ringdown 
curve shown in Extended Data Fig. 2b, with a decay rate of κ/2π = 370 kHz, cor-
responding to an energy relaxation time of κ−1 = 430 ns.

All the parameter estimates obtained from these characterization measurements 
are later used in the numerical simulations of the pulse sequence, which are dis-
cussed in Supplementary Information.
Pulse sequence. The phonon-number-splitting data were obtained using a pump–
probe scheme in which a short phonon excitation pulse is sent at the mechanical 
frequency ωm and is immediately followed by a weak spectroscopy pulse. These 
pulses are generated with separate AWG channels and are later combined before 
entering the cryostat (see section ‘Control of qubit and mechanical oscillator’). 
Both pulses have cosine-shaped envelopes of the form V(t) = V0[1 − cos(2πt/τ)]/2, 
which are synthesized at a baseband frequency of νIF = 125 MHz and then digitally 
upconverted to their final carrier frequencies. For all of the phonon-number- 
splitting measurements, the length of the phonon excitation pulse is held fixed at 
τmech = 175 ns while its voltage is varied to prepare states with different mean 
phonon numbers ⟨ ⟩b bˆ ˆ†

. The length and voltage of the qubit spectroscopy pulse are 
set to τ = 1.5 μs and V0 = 7.5 mV, respectively, corresponding to a Rabi rate of 
Ω0/2π ≈ 700 kHz (see section ‘Characterization of qubit and mechanical oscilla-
tor’) for details on pulse calibration). We separately verified that these pulse settings 
do not result in power broadening of the qubit line. Immediately following the 
spectroscopy pulse, a 2-μs square-envelope pulse is sent to the readout port of  
the device. We measure the I and Q quadratures of the scattered pulse and subtract 
the reference values I0 and Q0 recorded with the system in the ground state. The 
resulting signal is then an indirect measure of the excited state population.
Flux drift correction and qubit tracking. Our experiment uses a frequency-tunable  
transmon qubit that is tuned away from its flux sweet spot, making it susceptible 
to flux noise and drift. We take several precautions to reduce drift in the qubit fre-
quency induced by variations in the environmental magnetic field. These include 
low-temperature magnetic shielding, vibrational isolation and low-pass filtering 
of the d.c. flux bias. Nonetheless, some of the data presented here required more 
than one hour of averaging. The slow drift in the qubit frequency—of the order of 
the linewidth of the qubit over one hour—smears out the peaks, which we correct 
in post-processing.

The drift correction scheme is realized by alternating between measurements 
of the qubit frequency and the phonon-number-splitting spectrum (Extended 
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Data Fig. 3), and using the qubit frequency as a reference to align the phon-
on-number-splitting data for averaging. This is done by creating a two-part AWG 
sequence: in the first part of the sequence, we measure the qubit spectroscopic 
line in a narrow window around the expected (noiseless) qubit frequency while 
the mechanical system is left unexcited. The next part of the sequence performs 
the phonon-number-splitting measurement, that is, phonon excitation followed by 
qubit spectroscopy. The resulting IQ averages are returned for data collection every 
20 s. In post-processing, the frequency drift is extracted from the qubit-tracking 
spectrum, then used to offset the phonon-number-splitting data. This scheme is 
able to reduce the apparent qubit linewidth from 2.8 MHz to 1.1 MHz during an 
hour-long measurement, allowing us to compensate for slow (sub-hertz) flux drift 
and to improve the resolution of the phonon-number states (Extended Data Fig. 3).

We note that fluctuations in the qubit frequency cause small (about 1.5%) 
changes in the qubit–phonon detuning Δ = ωge − ωm, which in turn cause dis-
persion in χ. Namely, for small changes δΔ in the detuning, we expect variations 
δχ in the dispersive shift per phonon of order

χ
χ

Δ α
Δ α

Δ
Δ

δ
≈ −





−
−





δ2 (3)

Over the duration of the phonon-number-splitting measurements, we estimate 
that the peak-to-peak splitting varies by up to 75 kHz (δχ/χ ≈ 2.5%) given our 
operating parameters. Although this effect is small, it is preferable to reduce flux 
noise by more direct measures—post-processing can only improve the spectral 
clarity of phonon-number peaks to the extent that δχ ≪ γ, κ. One solution is to 
move to fixed-frequency qubits and use the a.c. Stark shift for frequency control, 
as done in other quantum acoustics experiments11.
Phononic crystal resonator design. As described in the main text, the mechanical 
resonators used in this work are one-dimensional phononic crystal resonators; 
each resonator is formed by introducing a single defect site to an artificial lattice 
that is patterned onto the LN. This localizes a set of vibrational modes at the defect 
site, provided that the modes lie widthin the bandgap of the surrounding lattice. 
This configuration can be thought of as a wavelength-scale resonator surrounded 
by acoustic Bragg mirrors. Each unit cell of the mirror region is comprised of a 
square-shaped block of LN uniformly covered by a 50-nm-thick aluminium layer. 
As shown in Extended Data Fig. 4a, the mirror cell is parameterized by its lattice 
constant a, strut length sl and strut width sw. Additionally, there are other geomet-
ric parameters that we cannot tightly control during fabrication, such as the LN 
thickness tLN, the sidewall angle θsw and the corner fillet radius R. We numerically 
simulate39 the eigenmodes of the mirror cell using Floquet boundary conditions, 
sweeping the wavevector k over the first Brillouin zone k ∈ [0, π/a]. This produces 
a band diagram such as the one shown in Extended Data Fig. 4b, where we use the 
same set of mirror cell parameters as those of the fabricated device. The diagram 
shows all possible bands of the structure within the frequency range of interest—
including all polarizations and symmetries—and exhibits a clear phononic bandgap 
over the approximate range [1.6 GHz, 2.0 GHz]. This gap is similar in size to that 
observed in the experiment (about 400 MHz) but is centred at a lower frequency, 
which could be due to differences in the material properties of our films and those 
used for the simulations. As a final step, we verify the robustness of the phononic 
bandgap to variations in the mirror cell parameters to ensure that fabrication- 
induced fluctuations will not drastically alter the size or position of the gap.

The defect cell is created by stretching the local lattice constant to a larger value 
adef > a and introducing a break in the aluminium metallization, effectively form-
ing a pair of electrodes separated by a gap of lgap (Extended Data Fig. 4a). This con-
figuration supports modes that lie within the phononic bandgap and are therefore 
localized to the defect site (Extended Data Fig. 4c, d). Through the piezoelectric 
effect, the strain Sjk associated with each mode induces a polarization of Pi = eijkSjk 
in the crystal, where eijk is the piezoelectric coupling tensor. The modes of the 
structure can couple strongly to the qubit if the polarization field P overlaps with 
the electric field of the electrodes and is predominantly aligned along the same 
direction. Our devices are fabricated on X-cut LN, with the direction of propaga-
tion of the phononic crystals pointing along the Y crystal axis. This orientation 

allows for defect modes that have the ‘correct’ polarization, as shown in Extended 
Data Fig. 4c. Using the techniques outlined in ref. 40, we calculate coupling rates of 
g/(2π) ≈ 20−22 MHz for the fabricated defect geometries, in modest (difference 
of about 30%) agreement with our measurements (Extended Data Fig. 4e). In 
addition, the defects generally support other localized modes that do not couple 
as strongly (g/(2π) ≲ 5 MHz).

The device used in this experiment contains an array of five resonators that have 
the same mirror design, but different values of the defect width wdef. As discussed 
earlier, each resonator supports a small number of localized modes (Extended Data 
Fig. 4e), but only one of them has the correct polarization. In Extended Data Fig. 4f 
we show the simulated frequencies of such modes for the values of wdef used in our 
device. These simulation results clearly show that each of the five strongly coupled 
modes that we observe corresponds to a separate resonator in the array, and explain 
the origin of additional weakly coupled modes that are present in the spectrum.
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Extended Data Fig. 1 | Experimental setup. The sample is located at the 
mixing-chamber plate of a dilution refrigerator, packaged in a microwave 
printed circuit board with a copper enclosure, and surrounded by 

cryogenic magnetic shielding. All instruments are phase-locked by a 10-MHz  
rubidium frequency standard (SRS SIM940). HEMT, high-electron-
mobility transistor.
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Extended Data Fig. 2 | Characterization of qubit and mechanical modes.  
a, Rabi oscillation measurement used to calibrate the qubit excitation 
pulses. b, Energy relaxation of the qubit (green) and the mechanical  
system (blue), with lifetimes of T1 = 1.14 μs and 430 ns, respectively.  
This measurement of the qubit lifetime T1 was obtained at ωge/(2π) =  
2.301 GHz. At this same frequency, we performed the ringdown 
measurement of the mechanical mode at ω / π = .(2 ) 2 405 GHzm

(1) .
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Extended Data Fig. 3 | Qubit frequency tracking. a, Raw qubit-tracking 
spectrum, obtained at 1 h elapsed time. First, the bare qubit spectrum is 
averaged over a 20-s interval, with a full spectral measurement performed 
every about 1 ms; all of the raw 20-s tracking spectra taken during the 
hour-long experiment are overlaid (grey circles). Then, these spectra 
are averaged without post-processing to obtain the effective bare qubit 
spectrum (green curve), resulting in an effective linewidth of about 
2.8 MHz. b, Qubit-tracking spectrum with post-processing. The same 
qubit spectra as in a, but each 20-s tracking spectrum is aligned to the 
average qubit frequency using post-processing peak detection. The 
effective qubit linewidth is now improved to about 1.1 MHz. c, Alignment 
of bare qubit spectra through time. Each horizontal slice represents a 20-s 

tracking spectrum, showing that the qubit drifts by ±1.5 MHz during the 
experiment. d, Raw phonon-number-splitting spectrum. We interleave 
phonon-number-splitting measurements between the tracking spectra 
shown in a, alternating between the two every about 0.5 ms. When all of 
the raw spectra (grey points) are averaged without frequency correction 
(green curve), phonon-number splitting is visible but the peaks are poorly 
resolved. e, Post-processed phonon-number-splitting spectrum. Using the 
frequency corrections applied in b, we adjust the frequencies of each slice 
and improve the resolution of the peaks. f, Alignment of phonon-number-
splitting spectra through time. The zero- and one-phonon peaks are easily 
visible with a splitting of 2χ ≈ 3 MHz.
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Extended Data Fig. 4 | Phononic crystal resonator design. a, Simulation 
geometries of the mirror cell (top) and defect cell (bottom). b, Complete 
band diagram (including all polarizations and symmetries) of the mirror 
regions. A bandgap over the approximate range [1.6 GHz, 2.0 GHz] 
is clearly visible. For these simulations we use the same mirror cell 
parameters as those of the fabricated devices: a = 1 μm, sl = 330 nm, 
sw = 150 nm, tAl = 50 nm, tLN = 230 nm and θsw = 11°. The discrepancy 
between the observed and simulated bandgap positions is not understood 
and could be attributed to a number of factors, including possible 
differences in the material constants of our LN films and those used for 
the simulations. c, Deformation u(r) (top) and electrostatic potential 
φ(r) (bottom) of a localized defect mode at ν ≈ 1.9 GHz. Here we use 
adef = 1.3 μm, wdef = 1.25 μm and lgap = 500 nm. The mode deformation 
is predominantly polarized in the plane of the phononic crystal, and the 

polarization generated by the piezoelectricity in LN is predominantly 
aligned along the direction of the electric field produced by the electrodes, 
as is evident by the electrostatic potential. d, Deformation of the same 
mode as that in c, with a view of the entire resonator. The colour indicates 
log10|u(r)|/|umax|, illustrating that even with N = 4 mirror cells the mode 
is tightly localized to the defect region. In the measured devices, N = 8. 
e, Imaginary part of the electromechanical admittance Ym(ω), obtained 
from finite-element simulations of the structure shown in d. Using Foster 
synthesis we extract the coupling rates g of each of the modes associated 
with the pole/zero pairs that are visible in the response. f, Frequency of the 
strongly coupled modes as a function of wdef. Their distribution (although 
not their absolute values) agrees fairly well with that of the observed 
modes.
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extended data table 1 | device parameters

Parameters of the qubit, strongly coupled mechanical modes and readout resonator.
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