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An integrative systems genetic analysis 
of mammalian lipid metabolism
Benjamin L. Parker1,13, Anna C. Calkin2,3,13*, Marcus M. Seldin4,13, Michael F. Keating2,3,5, Elizabeth J. Tarling6,7, Pengyi Yang8, 
Sarah C. Moody2,5, Yingying Liu2,5, Eser J. Zerenturk2,5, Elise J. Needham1, Matthew L. Miller7, Bethan L. Clifford6,  
Pauline Morand9, Matthew J. Watt10, Ruth C. R. Meex10, Kang-Yu Peng11, Richard Lee12, Kaushala Jayawardana11, Calvin Pan4, 
Natalie A. Mellett11, Jacquelyn M. Weir11, Ross Lazarus11, Aldons J. Lusis4, Peter J. Meikle11, David E. James1,  
Thomas Q. de Aguiar Vallim6,7,9,14* & Brian G. Drew3,5,14*

Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and 
metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options 
for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we 
interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and 
network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict 
pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-
related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. 
Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown 
lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and 
provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.

There is an increasingly urgent need to understand the causal factors 
that contribute to excess lipid accumulation in the liver known as hepa-
tosteatosis, and an equally important need to discover biomarkers and 
interventions for its early diagnosis and treatment. A major proportion 
of current and predicted global health burden stems from conditions in 
which hepatosteatosis is an underlying pathology1. Defining the mech-
anisms that causally influence hepatosteatosis has historically proven 
challenging, largely owing to an ill-defined interaction between genetic 
and environmental factors2. This, together with the insufficient ability 
for standard genome-wide association studies to capture the effect of 
environment on complex traits, probably explains why only a small 
fraction of the estimated 30% heritability for hepatosteatosis has been 
assigned to specific gene variants3.

Genetic reference panels (GRPs) have become a more tractable 
way of studying the influence of genetics and environment on com-
plex traits, because unlike studies in humans, GRPs allow for accurate 
control of environment as well as access to critical metabolic tissues. 
Importantly, integrating intermediate phenotypes such as transcrip-
tomics, proteomics, metabolomics and lipidomics from such tissues 
facilitates the discovery of previously unknown linkages between  
several layers of molecular information. Some previous studies have 
integrated GRPs and intermediate phenotype data in Drosophila  
and mice to reveal genetic variants that influence complex traits4–16, 
highlighting the potential of these approaches to generate important 
biological insights.

Here we have engaged a GRP of 107 inbred mouse strains and per-
formed lipidomics and proteomics in more than 300 individual mice. 

Integration of these data with genomics has generated a powerful 
resource for the study of mammalian lipid metabolism.

Multi-layered proteomic and lipidomic diversity
An overview of the study is presented in Fig. 1a. Male mice at approx-
imately 60 days of age were fasted overnight before tissue collection. 
Proteomic analysis17 of cryo-milled livers detected 7,775 proteins, 
with 4,311 proteins quantified in more than 50 strains (Supplementary 
Table 1). Targeted lipidomics on the same cryo-milled livers and corre-
sponding plasma samples quantified 311 lipid species across 23 classes18 
(Supplementary Tables 2 and 3).

Technical coefficients of variation for the proteomic and lipid-
omic analyses were both less than 10%, and inter-strain variation was 
higher than intra-strain variation (Extended Data Fig. 1a, b). Analysis 
of replicate mice from hybrid mouse diversity panel (HMDP) strains 
enabled unsupervised hierarchical clustering and analysis of varia-
tion. Proteomics data clustered 278 out of 307 (90%) samples into the 
respective strains, and the liver and plasma lipidomics clustered 125 
out of 292 (43%) and 151 out of 293 (51%), respectively (Extended 
Data Fig. 1c–e). Marked inter-strain lipid variation was observed in 
both the liver and plasma, particularly with triacylglycerols, which var-
ied by 27-fold and 16-fold, respectively (Fig. 1b, top). This is notable 
considering all mice were matched for gender, age and environmental 
conditions. For comparison, the triacylglycerol content at the upper 
end of this spectrum was similar to that observed in C57BL/6J mice 
fed a high-fat diet for 12 weeks (Extended Data Fig. 2). Substantial 
variation was also observed in diacylglycerols (15-fold and 6-fold in 
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the liver and plasma, respectively) (Fig. 1b, bottom), ceramides (4-fold 
and 3-fold), cholesterol esters (11-fold and 3-fold) and plasmalogens 
such as alkenylphosphatidylethanolamine (PE(P)) (5-fold and 4-fold) 
(Extended Data Fig. 3a–e).

Correlation analysis revealed that most lipid classes as a whole were 
not significantly correlated between liver and plasma (Supplementary 
Table 4). However, closer investigation of individual species revealed 
several lipids that were significantly correlated between liver  
and plasma, including alkylphosphatidylcholines, monohexosyl-
ceramides (MHC; also known as Hex1Cer) and PE(P)s (Fig. 1c). 
Most notably, C14/15-containing triacylglycerols were highly posi-
tively correlated with each other in the liver and plasma, as well as  
with numerous other acylglycerols. Because the accumulation 
of pathological lipids in the liver has been suggested to underpin 
hepatic lipotoxicity19,20, we focused on correlations between plasma 
lipids and some of the proposed hepatic pathological lipids including 
cholesterol esters, ceramides, free cholesterol, diacylglycerol, MHC, 
alkylphosphatidylcholine, PE(P) and triacylglycerol (Fig. 1c, right). 
Plasma MHC lipid species significantly correlated with total liver 
MHC, whereas plasma C14/15-containing triacylglycerols species  
positively correlated with the abundance of total hepatic acylg-
lycerols. Conversely, plasma alkylphosphatidylcholine negatively  
correlated with the abundance of total liver diacyl- and triacylglycerol, 
which highlights several intricate patterns of inter-compartment lipid 
regulation.

Prediction of hepatic pathological lipid abundance
Being able to predict the accumulation of pathological lipids in the 
liver is currently an unmet clinical need. We postulated that the pat-
terns of correlation observed between plasma and liver lipids might 
be exploited to develop potential blood-based biomarkers for hepatic 
lipotoxicity. We therefore established machine-learning models in an 
attempt to predict hepatic pathological lipid abundance. We used a 
correlation model of pairwise ratios that were prioritized using corre-
lation coefficients, similar to those previously published21–23, to predict 
the hepatic content of diacylglycerol, triacylglycerol, ceramides, PE(P), 
cholesterol esters and free cholesterol. Predictions were generated using 
clustering-based representative feature selection followed by Lasso 
regression analysis24. High predictability (100% of tests were positive) 
was obtained for the abundance of hepatic triacylglycerol and diacylg-
lycerol, and median (50–99%) predictability for ceramides, cholesterol 
esters and PE(P) (Fig. 1d). Testing of these plasma signatures across 
the entire HMDP dataset revealed highly significant predictability for 
the abundance of total hepatic ceramides, triacylglycerol and diacylg-
lycerol (Fig. 1e, top). To investigate the translational relevance of these 
findings, we tested these plasma lipid ratios in a small human cohort 
of obese individuals with varying degrees of hepatosteatosis (n = 58; 
mean body mass index > 35)25. The identified ratios demonstrated a 
significant ability to predict total hepatic triacylglycerol and diacylg-
lycerol in these individuals, with a trend to predict hepatic ceramide 
abundance (Fig. 1e, bottom). Thus, we have identified lipid signatures 
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Fig. 1 | Lipidomic analysis of HMDP provides unique insights into lipid 
regulation and prediction. a, Study overview depicting integration of 
systems genetic and correlation analysis in replicate mice from the HMDP. 
b, Fold change in plasma (blue dots) and liver (pink bars) triacylglycerol 
(TG) and diacylglycerol (DG) abundance across all strains of the HMDP. 
Data shown as fold change from the lowest strain = 1. Left, liver scale; 
right, plasma scale. c, Heat map of biweight midcorrelation of 190 lipid 
species between plasma (rows) and liver (columns). CE, cholesterol ester; 
Cer, ceramide; COH, free cholesterol; MHC, monohexosylceramide; 
PC, phosphatidylcholine; PC(O), alkylphosphatidylcholine; PE(P), 
alkenylphosphatidylethanolamine. Bicor, biweight midcorrelation; positive 

values are in purple; negative values are in green. Plots on the right depict 
correlations between individual plasma lipids and total abundance of 
liver lipids. Zoomed boxes on the right highlight plasma lipids correlating 
with total MHC or total diacylglycerol or triacylglycerol. d, Linear model 
significance of procedure to predict hepatic abundance of indicated 
lipids (each dot represents an individual trial). Tests were classified 
into predictability based on the number of trials (n = 50) that passed 
significance (P < 0.05, dotted line). e, Pearson correlation of the linear 
model between the three indicated plasma lipid ratios and total liver lipid 
classes in mouse (HMDP) (top panels, n > 268 mice) and a human cohort 
of obese individuals (bottom panels; n = 58)25.
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in our mouse HMDP datasets, with potential prognostic and diagnostic 
biomarker applications for hepatic lipotoxicity in humans.

Protein correlation analysis for biological insight
Proteome-wide correlation analysis has been used previously to inves-
tigate the role of genetic variants on protein complex abundance11 and 
define new protein–protein interactions26. We therefore undertook a 
similar approach to identify unique cellular and protein networks asso-
ciated with lipid metabolism.

To identify co-regulated protein networks in the liver, we performed 
correlation analysis of 4,311 proteins quantified in more than 50 strains 
of HMDP mice (Supplementary Table 5), and integrated these data with 
previously published datasets (CORUM, HINT and BioGRID27–31) to 
generate a high-confidence mouse hepatic protein interactome map 
(Extended Data Fig. 4a). This approach identified many well-defined 
protein complexes including those from mitochondria, proteasome, 
ribosome and spliceosome (Extended Data Fig. 4a), as well as hundreds 
of unique proteins of interest with previously undefined interactions 
(Extended Data Fig. 4b–e).

We engaged this network to determine subcellular localization and 
function of unknown proteins that correlated with hepatic and plasma 
lipid abundance. Localization was inferred using organelle-specific 
proteins designated from the Cell Atlas32 as ‘baits’, and performing 
pathway enrichment analysis on proteins that correlated with these 
baits. This analysis demonstrated marked fidelity in defining subcel-
lular organelles including the endoplasmic reticulum, Golgi apparatus,  
lysosome, mitochondria, peroxisome and plasma membrane (Fig. 2a–f).  
We focused on unique proteins identified within the peroxisome 
compartment, owing to its known role in lipid metabolism33,34 and 
the many correlations observed between peroxisomal proteins and 
lipid abundance (Fig. 2g). For example, ACAD11 was correlated with 
several peroxisomal proteins and numerous lipid classes, suggesting 
a potential role in peroxisomal lipid metabolism (Fig. 2h). We con-
firmed a predominant co-localization of ACAD11 with peroxisomes 
via confocal microscopy (Fig. 2i, j), western blotting (Fig. 2k) and 
affinity purification–mass spectrometry (AP–MS) analysis. AP–MS 
analysis identified 17 ACAD11-interacting proteins, 9 of which also 
correlated with ACAD11 across the HMDP reference panel (Fig. 2l, m 
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Fig. 2 | Subcellular co-regulated networks associated with lipid 
metabolism. a–f, Enrichment analysis using Fisher’s exact test with 
Benjamini–Hochberg correction of the co-regulated protein networks 
associated with organelle-specific proteins validated in the Cell Atlas32. 
g, Biweight midcorrelation analysis of peroxisome protein abundance 
with liver lipid abundance (red denotes positive; blue denotes negative) 
(n = 306 mice). Left, peroxisomal proteins annotated from the Cell Atlas; 
right, proteins highly correlated with the peroxisome in the HMDP 
network with no previous localization in the Cell Atlas. Edges denote 
only significant protein:lipid (P:L) correlations (n > 50 strains, q < 0.05). 
h, Enrichment analysis using Fisher’s exact test with Benjamini–Hochberg 
correction of the ACAD11 co-regulated proteome (n > 50 strains, 
q < 0.05) i, Representative confocal microscopy images (from ten images 
per well, in up to five biologically independent replicates) of green 

fluorescent protein (GFP)-tagged ACAD11 and red fluorescent protein 
(RFP)-tagged peroxisomal, mitochondrial, endosomal or lysosomal 
markers in HEK293 cells. Scale bars, 10 µm. j, Quantification (average of 
ten images per replicate) of confocal images plotting Pearson’s correlation 
r value of co-localized green and red pixels (ACAD11–GFP with RFP 
organelles). Data are mean ± s.e.m., n > 3. k, Western blots on cellular 
fractions of HEK293 cells for ACAD11, PEX14, PORIN and 14-3-3, 
representative of three independent experiments. l, Scatter plot showing 
enrichment of proteins identified by AP–MS of Flag-tagged ACAD11 in 
HEK293 cells. Purple dots denote significantly enriched (q < 0.05, n = 5 
replicate wells). m, ACAD11 interaction network integrating proteins 
significantly enriched after AP–MS, and those that correlated (bicor) with 
ACAD11 in the HMDP network.
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and Supplementary Table 6). The two proteins most significantly asso-
ciated with ACAD11 were bona fide peroxisomal proteins, HSD17B4 
and HSDL2. All three proteins correlated with several hepatic lipids, 
suggesting a previously unexplored role for these proteins in hepatic 
peroxisomal acylglycerol metabolism. Hence, these analyses demon-
strate the ability of our co-regulated protein network to interrogate 
protein function and probe the localization and interaction of unique 
proteins that correlate with lipid abundance.

Genetic regulation of protein and lipid abundance
To identify genetic variants that influence proteome and lipidome 
abundance across the HMDP, we performed quantitative trait loci 
(QTL) mapping. These analyses identified significant cis-regulation 
of the proteome (cis-protein QTLs; pQTLs) with 97,819 unique sin-
gle nucleotide polymorphisms (SNPs) corresponding to 976 unique 
proteins at a q-value of <0.1 (±10 Mb of the gene; local adjusted 
P < 1 × 10−4)11 (Supplementary Table 7). QTL mapping of lipidomic 
datasets identified lipid QTLs (lQTLs) for 227 liver and 252 plasma 
lipids (73% and 81% of all lipids quantified, respectively) corresponding 
to 3,981 and 6,765 unique SNPs, respectively (Supplementary Tables 8 
and 9). Integrating the pQTL and lQTL datasets identified 1,984 com-
mon SNPs that were associated with the abundance of both a protein 
and a lipid in the liver. Finally, we overlaid these loci with protein:lipid 
correlation data for liver (Fig. 3a) and plasma (Fig. 3b). These com-
bined datasets identified 281 SNPs in 17 loci that contained a pQTL, 
lQTL and a direct correlation between the mapped protein and lipid in  
the liver (Supplementary Table 10). The GLO1 locus had a highly  
significant cis-pQTL (Fig. 3c) and lQTLs for hepatic triacylglycerol  
species, whereas GLO1 protein positively correlated with nine individual  

triacylglycerol species in the liver (Supplementary Table 11). GLO1 was 
recently identified in genome-wide association studies to be strongly 
associated with coronary artery disease and non-alcoholic fatty liver 
disease35,36 and therefore our data implicate GLO1 as a causal regula-
tor of acylglycerol metabolism with potential links to cardiometabolic 
disease.

We also identified 3,342 common SNPs in 27 loci that co-mapped 
to both a hepatic protein and a plasma lipid, in which the protein and 
plasma lipid also correlated (Supplementary Table 12). For example,  
SNPs mapping to ABHD1 protein, co-mapped with plasma C14-
containing lysophosphatidylcholines, and significant negative 
correlations were observed between liver ABHD1 and plasma  
lysophosphatidylcholines, which suggest that ABHD1 is involved in 
the regulation of LPCs in the plasma (Fig. 3d). Separately, a cis-pQTL  
for PPAT on chromosome 5 was associated with MHC abundance 
(Fig. 3e). Specifically, homozygous allelic variation (CC>TT) 
at rs13462198 in the PPAT locus associated with the abundance of liver 
PPAT protein and  with the abundance of both liver and plasma MHC. 
These findings implicate PPAT as a key regulator of whole-body MHC 
abundance. Collectively, our systems genetics approach has identified 
many unique proteins that are likely to be causal in the regulation of 
hepatic and plasma lipid abundance.

Protein pathways that regulate lipid abundance
We next investigated global correlations between the lipidomics and  
proteomic datasets to identify a total of 14,172 and 22,692 individual  
protein:lipid correlations in the liver and plasma, respectively (q < 0.05 
false discovery rate (FDR)) (Supplementary Tables 11 and 13). KEGG 
enrichment analysis provided an overview of the protein pathways 
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species c, Back-to-back Manhattan plots highlighting a locus significantly 
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and liver GLO1 protein (n = 105 strains). Inset summarizes proposed 
genetic interaction. d, Back-to-back Manhattan plots highlighting a locus 
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14:0 abundance and liver ABHD1 protein levels. Inset (dashed line) 
shows Pearson correlation between liver ABHD1 and plasma LPC 14:0 
(n = 306 mice), inset on right summarizes proposed genetic interaction. 
e, Manhattan plot highlighting a locus associated with abundance of liver 
PPAT protein (n = 105 strains), and box-and-whisker plots (black bars 
denote median; boxes denote upper and lower quartiles; whiskers denote 
extremes) demonstrating that allelic variation at the lead SNP 
(rs13462198) within the PPAT cis-pQTL is also associated with the 
abundance of monohexosylceramides in both the liver and plasma 
(n = 105 strains).
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associated with a subset of hepatic lipids (Extended Data Fig. 5). 
Proteins highly correlated with cholesterol esters, diacylglycerol and 
triacylglycerol included PLIN2, and fatty acid metabolism enzymes 
such as EHHADH, ACC1, ACC2, CRAT, CPT2, ACOT1-4 and LPIN2. 
Notably, proteolysis-associated proteins were strongly correlated with 
hepatic lipid abundance. Specific mapping of correlations between  
proteasomal-associated proteins and lipids in the liver and plasma 
demonstrated a prominent association between PSMD9 and lipid  
abundance (Fig. 4a). PSMD9 was positively correlated with 39 
hepatic lipids and negatively correlated with 65 plasma lipid species. 
Furthermore, QTL mapping identified significant cis-pQTLs at the 
PSMD9 locus, which also co-mapped to several lQTLs for plasma  
triacylglycerols (TG 14:0-16:1-18:2, shown in Fig. 4b). These data suggest 
that genetic variation at the PSMD9 locus drives changes in PSMD9 
protein abundance and triacylglycerol levels in the plasma. This is  
further supported by evidence that allelic variation (AA>GG) at the 
peak SNP within the PSMD9 pQTL (rs29770398) associates with a  
significant twofold differential in plasma triacylglycerol species  
(triacylglycerol 14:0-18:2-18:2 and 14:0-16:1-18:2) (Fig. 4c).

PSMD9 regulates lipid metabolism
PSMD9 has previously been shown to associate with the proteasome37; 
however, no known function has been identified. Human genome-
wide association studies have demonstrated that PSMD9 is associated 
with risk of adiposity, type 2 diabetes and cardiovascular disease38–40. 
Furthermore, data from the UK Biobank S-PrediXcan (https://imlab.
shinyapps.io/gene2pheno_ukb_neale/) demonstrate that hepatic 
PSMD9 correlates with numerous indices of adiposity, across approx-
imately 500,000 individuals (Extended Data Table 1). These findings 
collectively provide strong evidence that PSMD9 may have an impor-
tant role in lipid metabolism in rodents and humans.

To investigate a direct role for PSMD9 in regulating lipid metabolism, 
we performed gain-of-function and loss-of-function studies in mice. 
Hepatic PSMD9 overexpression in mice using adenovirus resulted in 
significant alterations in lipid abundance including distinct increases 
in plasma acylglycerols (Extended Data Fig. 6a–c), which suggests 

that upregulating PSMD9 promotes lipid accrual. To investigate loss-
of-function effects of PSMD9, we performed silencing studies using 
antisense oligonucleotides (ASOs) in two strains of mice (C57BL/6J 
and DBA/2J). PSMD9 protein abundance was significantly reduced in 
the livers of mice after one week of ASO administration (Fig. 5a), with 
no indication of liver toxicity (Extended Data Fig. 7a–c). Proteomic 
analysis revealed that 52 proteins were differentially regulated in the 
liver across both strains (Fig. 5b and Supplementary Table 14), many 
of which are known glucose and lipid regulatory proteins (Fig. 5c). 
However, only modest changes in hepatic lipid abundance were 
observed (Supplementary Table 15), probably owing to the acute silenc-
ing period and absence of a lipotoxic intervention.

To investigate the effect of PSMD9 silencing in lipotoxic conditions, 
we performed studies in mice that were treated with ASOs and con-
currently fed a Western diet (Research Diets D12079B). PSMD9 silenc-
ing in this setting was associated with decreased expression of genes 
and proteins involved in de novo lipogenesis including Acaca, Acacb 
and Scd1 (Fig. 5d–f); however, the protein abundances of FASN and 
ACC (encoded by Acaca and Acacb, respectively) were significantly 
decreased only in DBA/2J mice. Twenty-eight days of a Western diet 
promoted an accrual of hepatic acylglycerols in both mouse strains 
(Fig. 5g and Supplementary Table 16), which was largely prevented by 
silencing Psmd9 in DBA/2J mice, and to a lesser extent in C57BL/6J 
mice (Fig. 5g). Histological analysis corroborated these findings, 
demonstrating reduced steatosis and hepatocyte ballooning in DBA/2J 
but not C57BL/6J mice (Fig. 5h). Notably, acylglycerol levels were also 
decreased in the plasma suggesting that lipid abundance per se was 
reduced after PSMD9-ASO, as opposed to being redirected from the 
liver (Extended Data Fig. 7d).

Given the observed effects of PSMD9 silencing on lipogenesis  
pathways, we sought to measure de novo lipogenesis in vivo using  
deuterium-labelled water. PSMD9 silencing led to a significant 
reduction in the synthesis of fatty acids in the liver of DBA/2J but not 
C57BL/6J mice (Fig. 5i, j). PSMD9-ASO was not associated with signif-
icant changes in the plasma levels of aspartate transaminase or alanine 
aminotransferase, food consumption or body weight (Extended Data 
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Fig. 7e–g). These data confirm that PSMD9 directly regulates hepatic 
and plasma lipid abundance in a strain-dependent manner, at least in 
part via reductions in hepatic de novo lipogenesis, thus warranting 
further investigations into the utility of silencing PSMD9 as a potential 
strategy to reduce hepatic lipotoxicity.

Conclusion
We have generated a systems genetics resource that incorporates quanti-
tative lipidomics and proteomics to interrogate mammalian lipid metab-
olism in replicate animals from 107 strains of a mouse GRP. Our study 
takes advantage of the inherent genetic diversity across the GRP, which 
results in significant variations in the hepatic lipidome and proteome 
in a setting of relatively limited environmental influence. Integration of 
these datasets has allowed us to interrogate central and circulating lipid 
metabolism at a systems level, which has improved our understanding 
of the complex pathways that contribute to lipid dysregulation. We have 
used this resource to reveal new pathways that are important in lipid 
regulation, identified promising diagnostic and prognostic biomarkers, 
and uncovered potential sub-cellular localization and function of unique 
lipid regulatory proteins. Moreover, we identified PSMD9 as a regula-
tor of lipid metabolism, with potential therapeutic implications. Finally, 
these datasets and methodologies may serve to both complement and 
validate existing and forthcoming discovery resources.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-0984-y.
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Fig. 5 | Modulating PSMD9 regulates hepatic and plasma lipid 
abundance in mice. a, Western blots of PSMD9 and protein disulfide 
isomerase (PDI; loading control) in the livers of C57BL/6J and DBA/2J 
mice treated for 7 days (7-d) with control or PSMD9 ASOs (25 mg kg−1, 
n = 4 independent mice). b, Heat map of significantly (P < 0.05, analysis 
of variance (ANOVA)) regulated proteins from lipid and glucose 
metabolism pathways in the livers of C57BL/6J and DBA/2J mice treated 
with control or PSMD9 ASOs for 7 days (n = 4 mice per group). Scale 
represents average relative abundance (label-free quantification (LFQ) 
score). Orange denotes high abundance; aqua denotes low abundance.  
c, Pathway enrichment analysis of the 52 proteins significantly regulated 
by PSMD9 ASOs in both strains using Fisher’s exact test with Benjamini–
Hochberg correction. FA, fatty acid. d, Relative mRNA expression in livers 
of both mouse strains fed a Western diet (WD) for 28 days and treated 
with control ASOs (green) or PSMD9 ASOs (yellow) (presented as fold 
change from control ASO = 1). Data are mean ± s.e.m., n = 8 mice per 
group. e, f, Quantification of proteins (presented as fold change from 
control ASO = 1, mean ± s.e.m., n = 6 control ASO; n = 8 PSMD9 ASO 

mice per group) (e) as determined by western blot (f) in livers of both 
mouse strains fed a Western diet for 28 days and treated with ASOs.  
g, Plots (fold change from chow-fed control ASO = 1) of the abundance 
of hepatic diacylglycerol and triacylglycerol in mice treated with control 
ASOs on a chow diet (white) or Western diet (green), or treated with 
PSMD9 ASOs (yellow) on a Western diet. Data are mean ± s.e.m., n = 4 
chow, n = 6 all WD except n = 5 DBA/2J control ASO DG, DBA/2J 
PSMD9 ASO TG and n = 4 DBA/2J control ASO TG mice per group.  
h, Haematoxylin and eosin staining of liver sections from both strains of 
mice fed a Western diet and treated with control ASOs (top) or PSMD9 
ASOs (bottom) for 28 days. Data are representative of five independent 
mice. Dotted lines segregate regions of microsteatosis and hepatocyte 
ballooning. Original magnification, ×200. i, j, Plot (mean ± s.e.m., 
n = 6 control ASO, n = 8 PSMD9 ASO, mice per group) for synthesis of 
individual fatty acid species in both strains after a Western diet for 28 days 
and treatment with control ASOs (green) or PSMD9 ASOs (yellow) . Data 
presented as percentage of hepatic fatty acid pool enriched with deuterium 
label. *P < 0.05, **P < 0.01, compared to control ASO WD.
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Methods
Data reporting. No statistical methods were used to predetermine sample 
size. Samples for all mass spectrometry-based analysis were randomized before  
acquisition. All animals for in vivo experiments were chosen randomly to receive 
treatment. Investigators were not blinded to allocation during experiments, but 
were blinded in assessment of analysis and outcome.
HMDP mice. All mice were sourced from The Jackson Laboratory and were sub-
sequently bred and housed at University of California, Los Angeles, to generate 
offspring used in this study as previously described41,42. Male mice were maintained 
on a chow diet (Ralston Purina Company, 5001) until 8–10 weeks of age before 
being fasted for 16 h in a bedding-free cage. Mice were anaesthetized, exsanguin-
ated and livers were immediately removed and snap-frozen. All protocols for these 
studies were compliant with those approved by the Institutional Care and Use 
Committee at University of California, Los Angeles.
Proteomics: liver proteomic sample preparation. Frozen liver (10 mg) was 
homogenized in 6 M urea, 2 M thiourea, 50 mM triethylammonium bicarbonate 
(TEAB), pH 8.0, containing protease inhibitor cocktail (Roche, 11873580001) by 
tip-probe sonication and centrifuged at 16,000g for 10 min at 4 °C. Lysates were  
precipitated with 6 volumes of acetone overnight at −30 °C. Protein pellets were cen-
trifuged at 10,000g, 10 min at 4 °C resuspended in 6 M urea, 2 M thiourea, 50 mM  
TEAB, pH 7.9, and quantified by Qubit fluorescence (Thermo Fisher, Q33212). 
Concentrations were normalized and 100 µg of protein reduced with 10 mM  
dithiothreitol (DTT) for 60 min at 25 °C followed by alkylation with 25 mM iodo-
acetamide for 30 min at 25 °C in the dark. The reaction was quenched to a final 
concentration of 20 mM DTT and digested with lysyl endopeptidase Lys-C (Wako 
Pure Chemical Industries, 125-05061) at a 1:50 enzyme-to-substrate ratio for 2 h 
at 25 °C. The mixture was diluted fivefold with 25 mM TEAB, and digested with 
trypsin (Promega, V5111) at a 1:50 enzyme-to-substrate ratio for 16 h at 30 °C. 
The peptide mixture was acidified to a final concentration of 2% formic acid, 0.1% 
trifluoroacetic acid (TFA) and centrifuged at 16,000g for 15 min. Peptides were 
desalted using hydrophilic lipophilic balance–solid phase extraction (HLB-SPE) 
96-well plates (Waters, 186000128) followed by elution with 50% acetonitrile, 0.1% 
TFA, and dried by vacuum centrifugation. For proteomic analysis of the HMDP 
by tandem mass tag (TMT) multiplexing, peptides were resuspended in 30 µl of 
250 mM TEAB, pH 8.5, quantified by Colorimetric Peptide Assay (Thermo Fisher, 
23275) and normalized to 10 µg per 10 µl. Peptides were labelled with 10-plex 
TMTs according to the manufacturer’s instructions (Thermo Fisher, 90110, lot 
PI202555). Each 10-plex experiment contained 9 different strains with a 10th ref-
erence label (either 126 or 131 isobaric label) made up of the same peptide digest 
from pooled mix of C57BL/6J livers. A list of the sample labelling strategy and 
replicates is available in PRIDE proteomeXchange. Peptides were labelled in a 
final concentration of 50% acetonitrile for 90 min at room temperature followed 
by de-acylation with 0.25% hydroxylamine for 15 min at room temperature and 
quenching with 0.1% TFA. Peptides from each 10-plex experiment were pooled 
and desalted using HLB–SPE and dried by vacuum centrifugation. Approximately 
12 µg of peptide was fractionated into 9 fractions on an in-house packed TSKgel 
amide-80 HILIC column as previously described43. For proteomic analysis of ASO 
treated livers by LFQ, purified peptides were resuspended in 2% acetonitrile, 0.1% 
TFA, quantified by Qubit and normalized to 1 µg per 3 µl.
Affinity purification proteomic sample preparation. HEK293 cells were trans-
fected with either a control pcDNA3.1 DNA plasmid or N-terminal Flag-tagged 
ACAD11 in pcDNA3.1 DNA plasmids were lysed in 0.3% CHAPS, 150 mM NaCl, 
5% glycerol in 50 mM Tris, pH 7.5,containing protease inhibitor cocktail (Roche, 
11873580001) by passing through a 22- and 27-gauge needle at 4 °C. Cellular debris 
was removed by centrifugation at 20,000g, 10 min at 4 °C and quantified by BCA 
(Thermo Fisher, 23225). Two milligrams of protein was incubated with 40 µl of 
μMACS Anti-DYKDDDDK beads (Miltenyi Biotech, 130-101-591) for 45 min 
with rotation at 4 °C. The suspension was separated with a μMACS column and 
magnetic separator, and washed with lysis buffer containing only 0.01% CHAPS 
followed by lysis buffer containing no CHAPS. Proteins were eluted with 2 M 
urea in 50 mM Tris, pH 7.5, containing 1 mM DTT, 5 mM iodoacetamide and 125 
ng of trypsin (Promega, V5111), and digested overnight at room temperature. 
Peptides were acidified to 1% TFA and desalted using styrene divinylbenzene-re-
versed-phase sulfonate (SDB-RPS) microcolumns and eluted with 80% acetonitrile 
in 2% ammonium hydroxide followed by vacuum concentration.
Proteomic liquid chromatography–tandem mass spectrometry. TMT-labelled 
peptides were analysed on a Dionex 3500RS nanoUHPLC coupled to an Orbitrap 
Fusion mass spectrometer in positive mode. For proteomic analysis of the HMDP 
livers by TMT multiplexing, peptides were separated using an in-house packed 
75 μm × 40-cm pulled column (1.9-μm particle size, C18AQ; Dr Maisch) with 
a gradient of 2–30% acetonitrile containing 0.1% formic acid over 100 min at 
250 nl min−1 at 55 °C. An MS1 scan was acquired from 350–1,400 m/z (120,000 
resolution, 4 × 105 automatic gain control (AGC), 50-ms injection time) followed 
by MS/MS data-dependent acquisition with collision-induced dissociation and 

detection in the ion trap (1 ×104 AGC, 70-ms injection time, 30% normalized 
collision energy, 1.6 m/z quadrupole isolation width). Multi-notch isolation of 
the top 10 most intense MS/MS ions from 400–1,000 m/z excluding the precursor 
ion and neutral loss clusters <40 m/z were subjected to MS3 with higher energy 
collisional dissociation (HCD) and detection in the orbitrap (1 × 105 AGC, 200-ms 
injection time, 55% normalized collision energy, 2 m/z ion trap isolation width, 
100–500 m/z)17. For proteomic analysis of ASO-treated livers and affinity-enriched 
ACAD11 interactions by LFQ, peptides were separated using an in-house packed 
75 μm × 50 cm pulled column (1.9-μm particle size, C18AQ, Dr Maisch) with a 
gradient of 2–30% acetonitrile containing 0.1% formic acid over 180 min at 300 nl 
min−1 at 55 °C. An MS1 scan was acquired from 300–1,500 m/z (60,000 resolution, 
5 × 105 AGC, 50-ms injection time) followed by MS/MS data-dependent acquisi-
tion with HCD and detection in the orbitrap (1 × 105 AGC, 60-ms injection time, 
30% normalized collision energy, 1.6 m/z quadrupole isolation width).
Proteomic data analysis. TMT-labelled data were processed with Proteome 
Discoverer (v.2.2) using Sequest44, Byonoic45 and Mascot. The precursor MS tol-
erance was set to 20 p.p.m. and the MS/MS tolerance was set to 0.8 Da with a 
maximum of two miss-cleavages. The peptides were searched with oxidation of 
methionine set as a variable modification, and TMT tags on the peptide N ter-
minus and lysine residues and the carbamidomethylation of cysteine set as fixed 
modifications. All data were searched as a single batch and the peptide spectral 
matches of each database search filtered to 1% FDR using a target/decoy approach 
with Percolator46. The filtered peptide spectral matches from each database search 
were grouped and q-values were generated at the peptide level with the Qvality 
algorithm47. Finally, the grouped peptide data were further filtered to 1% protein 
FDR using Protein Validator. Quantification was performed with the reporter 
ion quantification node for TMT quantification in Proteome Discoverer. TMT 
precision was set to 20 p.p.m. and corrected for isotopic impurities. Only spectra 
with <50% co-isolation interference were used for quantification with an average 
signal-to-noise filter of >10. LFQ data were processed with MaxQuant (v.1.5.3.30) 
using Andromeda48 against the UniProt mouse or human databases.
Lipidomics. Sample preparation. Liver tissue was cryo-milled, suspended in PBS, 
sonicated and approximately 50 µg of protein in 10 µl of solution was transferred 
to a fresh tube for extraction. Ten microlitres of plasma was used for extraction. 
Lipids were extracted from samples and were processed and analysed by multiple 
reaction monitoring (MRM) liquid chromatography–tandem mass spectrometry 
(LC–MS/MS) as previously described21.

A detailed description of the method is as follows. Lipidomic analysis was per-
formed by liquid chromatography–electrospray ionization–tandem mass spec-
trometry (LC–ESI–MS/MS) on an Agilent 1290 liquid chromatography system, 
using Mass Hunter software. Liquid chromatography was performed on a Zorbax 
Eclipse Plus 1.8 μm C18, 50 × 2.1 mm column (Agilent Technologies). Solvents 
A and B consisted of tetrahydrofuran:methanol:water in the ratios 30:20:50 and 
75:20:5, respectively, both containing 10 mM ammonium formate. Columns were 
heated to 50 °C and the auto-sampler regulated to 25 °C. Lipid species (1 μl injec-
tion) were separated under gradient conditions at a flow rate of 400 μl min−1. The 
gradient was as follows; 0% solvent B to 40% solvent B over 2.0 min, 40% solvent B 
to 1000% solvent B over 6.5 min, 0.5 min at 100% solvent B, a return to 0% solvent 
B over 0.5 min then 0.5 min at 0% solvent B before the next injection (total run 
time of 10 min).

The mass spectrometer was operated in dynamic/scheduled multiple reac-
tion monitoring (dMRM) mode. There were 310 unique lipid species measured 
together with 15 stable isotope or non-physiological lipid standards. The mass 
spectrometer voltages used for the acquisition of data were as follows: fragmentor 
voltage 380 V and cell accelerator voltage 5 V. The collision energy voltage was 
set individually for each lipid class and subclass. Acquisition windows were set to 
between 0.7 and 1.76 min depending on the chromatographic properties of the 
lipid. Furthermore, there were several sets of isobaric lipid species which shared 
the same nominal parent ion mass and also give rise to the same product ions. 
Specifically, for isobaric species of phosphatidylcholine, alkylphosphatidylcholine 
and PC(P) the parent and product ions (m/z 184) the same. As a result, a sin-
gle MRM transition was used to measure the corresponding species within each 
subclass, using an increased MRM window time (22 combinations). In addition, 
there were eight occurrences of isobaric phosphatidylethanolamine and PE(P) 
lipid species (representing the neutral loss of 141 Da), and these were similarly 
combined into a single dMRM transition. Analysis of triacylglycerols was based 
on single ion monitoring. To perform this analysis in the dMRM mode, both Q1 
and Q3 were set to the [M + NH4]+ values for each triacylglycerol species and the 
collision energy was reduced to 5 V to minimise collision induced dissociation.

Although most lipid classes and subclasses have similar response factors for lipid 
species within the class, some classes show greater variation in response factors 
between species and consequently, correction factors were applied for some lipid 
classes. For example, fragmentation of the ammoniated adducts of diacylglycerol 
and triacylglycerol leads to the loss of ammonia and a fatty acid. In this context, it 
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is important to recognize that for species that contain more than one of the same 
fatty acid, the loss of that fatty acid will result in an enhanced signal, as it is the end 
product from two competing pathways. Consequently, where we used an MRM 
transition that corresponded to the loss of a fatty acid that was present more than 
once, we divided by the number of times that fatty acid was present. Although we 
recognize that the response factor for different species of triacylglycerol varied 
substantially, the lack of suitable standards precluded the determination of suitable 
response factors for each triacylglycerol species.
Cholesteryl ester. Response factors were determined with seven commercially 
available species and used to create a formula to extrapolate for all cholesterol 
ester chain lengths and double bonds. Saturated species were characterized by 
the following relationship: y = 0.1486x – 1.5917, in which y is the response factor 
relative to the cholesterol ester 18:0 d6 internal standard and x is the carbon chain 
length. For monounsaturated species, the response factor was multiplied by 1.84 
and for polyunsaturated species by 6.0.

A single response factor was calculated for all phosphatidylinositol species 
to account for the use of the phosphatidylethanolamine 17:0/17:0 as the inter-
nal standard for this lipid class. A nine-point standard curve was created using 
commercially available phosphatidylinositol 32:0 and subsequently spiked into 
solvent containing a fixed concentration of phosphatidylethanolamine 17:0/17:0. 
The standard curve resulted in a linear response and indicated a response factor of 
1.44 for phosphatidylinositol species relative to phosphatidylethanolamine stand-
ard. Other lipid species were not corrected.
Quality control samples. Two types of quality control sample were used in this 
study. Historical plasma samples from six healthy volunteers were pooled and 
split into multiple aliquots as previously described49. We refer to these samples 
as plasma quality control (PQC) samples. These samples were then subjected to 
extraction and LC–MS analysis alongside study samples to provide a measure of 
analytical variability across the cohort as a whole. In addition, we used identical 
lipid extracts, which were prepared by pooling the lipid extracts from multiple 
PQC samples using this mixture to prepare multiple aliquots which were referred 
to as technical quality control (TQC) samples. Analysis of these samples captures 
only the variation associated with the LC–MS performance. Within the analytical 
process every 25 plasma samples a PQC and TQC were included.
Data pre-processing. In this study, HMDP liver samples were run in two batches. 
An extraction batch consisted of approximately 200 samples each including PQC, 
TQC and blanks. A median-centring approach was used for correction of the batch 
effect. The median PQC concentration of each lipid for each batch was used as a 
reference point to align the samples with the entire cohort. The alignment was 
performed by calculating a correction factor to adjust the concentration of each 
PQC lipid in each batch to the median value for all batches.
Bioinformatics and data analysis. Biweight midcorrelation analyses were per-
formed using R and q-values estimated using a ranked Benjamini–Hochberg multi-
ple comparison test with significance quoted at q < 0.05. Proteomic and lipidomic 
comparisons following modulation of Psmd9 and ACAD11 AP–MS were compared 
to respective controls using either two-way t-tests or ANOVA, and P-value data 
are presented as permutation-based FDR-corrected with significance quoted at 
P < 0.05. To perform unsupervised hierarchical clustering of the HMDP pro-
teomes and lipidomes, data were first median-centred and the similarity of each 
strain was assessed using Euclidean distance metric. Hierarchical clustering with 
complete agglomeration method was then applied to cluster strains with respect 
to their global profiles. To identify plasma lipid signatures to predict liver lipid, we 
computed pairwise ratios of plasma lipids. Given the large number of plasma lipid 
ratios and the much smaller mouse sample size (P > > n), we applied a two-step 
approach to identify from all plasma lipid ratios, the ones that are potentially pre-
dictive to the total amount of the six liver lipid classes (cholesterol ester, ceramide, 
diacylglycerol, triacylglycerol, free cholesterol and PE(P)). In the first step, we 
filtered plasma lipid ratios using their Pearson’s correlation with the total amount 
of the liver lipids by retaining the top-10% most correlated ratios for each of the 
six liver lipid classes. In the second step, we used a clustering-based representative 
feature selection approach24 to identify a set of diverse and representative plasma 
lipid ratios from all remaining lipids after step 1. This procedure led to a reduction 
of plasma lipid ratios from 29,403 to approximately 50 for each of the six liver lipid 
classes. Lastly, we used a Lasso regression approach with a repeated (10 times) 
fivefold cross-validation procedure to test the capability of the selected plasma lipid 
ratios to predict the total amount of each of the six liver lipid class. This prediction 
procedure leads to 50 prediction results that were referred to as ‘trials’. We classified 
the predictability of each of the 6 liver lipid into high, median and low, based on 
the significance of models fitted on plasma lipid ratios in the 50 trials. The results 
of these tests were classified into high (100%), median (50–99%) or low (<50%) 
predictability based on the number of trials that passed significance (P < 0.05) of 
the fitted model. Circos plot50 was used to visualize the three-way genetic interac-
tion between SNPs, proteins and lipid species. KEGG and Gene Ontology analysis 
was performed using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID v.6.8) hosted by the National Institute of Allergy and Infectious 
Diseases (NIAID), NIH51. In brief, target lists were generated from external analy-
ses and then entered as a gene list in DAVID. Background adjustment was enabled 
against the Mus musculus reference gene set and functional annotation clustering 
was performed with the classification stringency set at medium and P-value data 
presented as Benjamini–Hochberg-corrected. Network analysis was performed in 
Cytoscape52 and integrated data from the HINT and BioGRID databases30,53, and 
protein complexes from the CORUM database54.
QTL mapping of proteins and lipids. Datasets of liver lipidomics, proteomics or 
plasma lipids were mapped for association of each SNP using a linear mixed model. 
Although a minimum threshold of 50 strains was used as a requirement for detec-
tion of each protein for correlation analysis, both the entire lipidome (liver and 
plasma) as well as nearly 2,500 proteins were detected in all 307 mice. We applied 
an efficient mixed-model association (fast-lmm) to identify SNPs associating with 
indicated traits as described below:

µ β= + + +xy n u e1

in which n is the number of individuals; µ is the mean; β is the allele effect of the 
SNP; x is the (n × 1) vector of observed genotypes of the SNP. This model takes 
population structure into account, as u is the random effects due to genetic relat-
edness with var.(u) = σ2uK, and e denotes the random noise with var.(e) = σ2eI. 
Here, K indicates the identity-by-state kinship matrix estimated using all SNPs; 
I represents the (n × n) identity matrix; and 1n is the (n × 1) vector of ones. 
σ2u and σ2e were estimated using restricted maximum likelihood and computed 
P values using the standard F-test to test the null hypothesis in which β = 0. 
Genome-wide significance threshold and genome-wide association mapping were 
determined as the family-wise error rate as the probability of observing one or 
more false positives across all SNPs for a given phenotype. To correct for false dis-
covery, q-values were estimated from the distribution of P values using the linear 
mixed model from the R package ‘q value’ as previously described11. This model 
has been tested rigorously7, and the HMDP used to determine many validated 
QTLs for quantitative traits13,41,42,55,56, including liver lipid species56 and protein 
levels55,57. Significance was calculated at q-value < 0.1 (cis-pQTL = ±10 Mb  
of the gene, approximated local adjusted P < 1 × 10−4; lQTLs = approximated 
global adjusted P < 4.2 × 10−6).
Cell cultures and treatments. HEK293 cells obtained from ATCC were maintained  
in DMEM with 10% FBS and regularly tested for mycoplasma. For transfections, 
cells were plated onto cell-culture-treated plates or onto acid-stripped coverslips 
at 60% confluence in growth medium in the morning. Later that day or the next 
day, cells were transfected with 500 µg of the appropriate plasmids using FuGene6 
(Promega) according to the manufacturer’s instructions. Then 24–48 h later, cells 
were collected for downstream processing (western blot, fractionation or proteom-
ics) or fixed and mounted for confocal imaging.
Cloning and expression vectors. PCR amplification of genes of interest was per-
formed from cDNA as previously described58 using Phusion DNA polymerase 
(Thermo Fisher). Human ACAD11 was cloned from Hep3B cell cDNA, and mouse 
Psmd9 was cloned from mouse liver cDNA. Amplified open-reading frames were 
cloned into expression vectors using Gateway Technology, restriction enzyme 
digest or Gibson assembly reactions (pDEST-47 GFP, C-term 3xFlag) or pAdEasy 
system (Agilent). Expression vectors were sequence verified and subsequently 
amplified and purified by midi-prep (Promega) before use in downstream pro-
tocols. Fluorescently tagged organelle constructs were purchased from AddGene 
(plasmid 1817: Lamp1-RFP, 54503: DsRed2-Peroxisomes-4 and 58014: mTa-
gRFP-T-Endosomes-14).
Confocal imaging. Cells were plated and transfected as described above. When 
ready, cells were washed, fixed in 10% formalin for 30 min and then washed again 
before briefly being stored in PBS. Coverslips were mounted on the stage of a Nikon 
A1r-Plus SI NIR Modified inverted scanning confocal microscope, covered with 
PBS and imaged using a 60× water immersion lens. Images were captured using 
NIS-Elements software and post-capture images were processed and standardized 
using ImageJ software.
Immunoblot analysis. Cells or tissue samples were homogenized in RIPA lysis 
buffer containing freshly added protease (complete EDTA-free, Roche) and phos-
phatase (Sigma) inhibitors as previously described59. Resolved proteins were trans-
ferred to PVDF membranes and subsequently probed with the following antibodies: 
PSMD9 (Sigma), β-actin, PDI, FASN, ACC and SCD1 (Cell Signaling Technologies), 
ACAD11 (Invitrogen), PORIN (also known as VDAC1) (Mitosciences), PEX14 
(Proscitech), pan 14-3-3 (Santa Cruz Biotechnology). Densitometric analysis was 
performed using GE Software or BioRad Quantity One software.
Quantitative RT–PCR. Tissues were homogenized in RNAzol reagent and RNA 
was isolated by addition of 1-bromo-3-chloropropane (BCP) or chloroform and 
precipitated in isopropanol60. RNA was pelleted and washed twice in 70% ethanol  
and then resuspended in molecular-grade water. cDNA synthesis was per-
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formed using 1 μg of RNA with M-MLV reverse transcriptase (Thermo Fisher). 
Quantitative PCR (qPCR) reactions were prepared using iTaq Fast SYBR Green 
Supermix (Biorad) or KAPA SYBR fast LC480 mix (Roche) with 10–20 ng of cDNA 
template and performed on an ABI Fast 7500 real time detection system or Roche 
LC480. Quantification of a given gene, expressed as relative mRNA level compared 
with control, was calculated using the ΔΔCt method or an efficiency corrected 
method (Roche) after normalization to a standard housekeeping gene (RPLP0 
(also known as 36B4) or PPIA (also known as cyclophilin A). Primers sequences 
are available upon request.
Mice fed with a high-fat diet. Eight-week-old male C57BL/6J mice were fed a 
chow diet (n = 11) or high-fat diet (n = 10) (SF04-001, Speciality Feeds) for 12 
weeks before plasma and liver collection in accordance with the AMREP Animal 
Ethics Committee at the Baker Heart & Diabetes Institute. Lipid content of livers 
was analysed by lipidomic analysis as described.
Adenovirus in mice. Mouse PSMD9 (mPSMD9) was cloned as described above and 
shuttled into adenoviral expression vectors. The generation of pAd-mPSMD9 and 
pAd-control was carried out as previously described61. Adenovirus particles were 
prepared using the AdEasy system (Agilent) and purified by CsCl gradient centrif-
ugation. The virus was dialysed for 48 h and stored at −80 °C. Particles were quan-
tified by serial dilution methods by detection of plaques in HEK293Ad (Agilent) 
cells. Male C57BL/6J and DBA/2J mice (Jackson Labs, 8 weeks old, n = 9–10) were 
injected with 109 plaque-forming units of adenovirus via tail-vein injection. Livers 
and plasma were collected 5–7 days after infection after fasting for 4–5 h.
ASOs in mice. ASOs were designed and synthesized by Ionis Pharmaceuticals.  
Chimeric 16-oligonucleotide phosphorothioate oligonucleotides targeted to  
mouse Psmd9 (5′-CTCTATGGGTGCCAGC-3′) or control (5′-GGCCAATACGCC 
GTCA-3′) sequences were synthesized and purified as previously described62. In 
the first study, ASOs were delivered by intraperitoneal injection twice weekly to 
chow-fed 8-week-old C57BL/6J or DBA/2J mice (Jackson Laboratories) at a dose 
of 25 mg kg−1 for 1 week (vehicle, n = 4 mice per group). Livers were analysed 
by western blot, proteomics and lipidomics. In the second study, male C57BL/6J 
and DBA/2J mice were treated with vehicle (PBS), control ASO or Psmd9 ASO at  
25 mg kg−1 by intraperitoneal injection, twice weekly. Mice were treated for 28 days,  
and fed a Western diet for the same period (Research Diets, D12079B) (n = 8 mice 
per group). Mice were culled and tissues and plasma were obtained for lipidomic 
analysis as well as Western blotting and qPCR. For the third study, male C57BL/6J 
and DBA/2J mice were fed a Western diet for 4 weeks and treated with vehicle 
(PBS, n = 6 per group), control ASO (n = 6 per group) or Psmd9 ASO (n = 8 
per group) at 25 mg kg−1 by intraperitoneal injection weekly. Body weight and  
composition (determined by NMR, Bruker) were measured weekly, and food 
intake (daily weighing of hoppers) was monitored in the final two weeks. For 
the final week of diet, mice were provided with 5% deuterium oxide (Sigma) 
in the drinking water before tissues were obtained. Plasma ALT and AST were  
analysed using a commercial kit according to the manufacturer’s instructions 
(TECO Diagnostics).
In vivo de novo lipogenesis studies. Livers were homogenized in ice-cold PBS using the 
OMNI Bead Ruptor and lipids extracted by mild acid methanolysis using concentrated  
HCl supplemented with trinonadecanoin (Nu-chek Prep, T-165) as internal standard 
for fatty acid methyl esters (FAMES) analysis. After extraction of resulting FAMES 
with 1 ml hexane, 20 μl of sample was analysed for FAMES by gas chromatography– 
mass spectrometry (GC–MS) using an Agilent 7890B/5977A with DB-WAX UI  
column (Agilent, 122-7032 UI). Complete GC–MS configurations and running  
programs are available upon request. Quantification of all ions was determined using 
custom python Tkinter software by comparison of sample data with serial dilutions 
of Nu-Check-Prep Fatty Acid Standard Mix (GLC 20a) that contain a mixture of var-
ious long-chain fatty acid species (methyl myristate, palmitate, palmitoleate, stearate, 
oleate, linoleate and linolenate). Integration of all ions (samples and standards) was 
performed on MassHunter Quantitative Analysis Program (Agilent Technologies). 
De novo lipogenesis analysis was evaluated by labelled isotopic enrichment of FAMES 
after correcting for the natural abundance of stable isotopes using the modern least-
squares implementation of the skewed matrix correction method63.
Code availability. msAnalyzer source code is available at https://github.com/
gcalmettes/labUtils.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.
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Extended Data Fig. 1 | Assessment of proteomic and lipidomic data 
reproducibility. a, b, Coefficient of variation (CV) analysis of the 
proteomics (a) and lipidomics (b) data. Box-and-whisker plots (described 

as in Fig. 3e). c–e, Unsupervised hierarchical clustering of the liver 
proteomics (c), liver lipidomics (d) and plasma lipidomics (e) data.
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Extended Data Fig. 2 | Total liver triacylglycerol levels in C57BL/6J mice. Mice were fed either a normal chow diet (NCD) or a high-fat diet (HFD) for 
12 weeks. P value determined by Student’s t-test. Data are mean ± s.e.m., n = 11 chow group; n = 10 HFD group.
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Extended Data Fig. 3 | Average strain abundance of designated lipid 
classes in liver and plasma. a–e, Abundance is expressed as area under  
the curve per mg liver protein or per ml of plasma. Liver scale on left, 

plasma scale on right a, Triacylglycerol. b, Diacylglycerol. c, Ceramide.  
d, Cholesterol esters. e, PE(P).
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Extended Data Fig. 4 | Correlation network analysis of the HMDP 
liver proteome. a, Protein:protein (P:P) correlations in the HMDP liver 
proteome, integrated with CORUM-annotated proteins and protein 
interactions previously identified by AP–MS. Numbers indicate CORUM 
accessions, orange lines are HMDP P:P correlations; purple lines are 
correlations observed in both HMDP and CORUM. b–e, P:P correlations 
of selected CORUM complexes including associations not previously 

identified by AP–MS (green lines). Biweight midcorrelation analyses 
performed using ranked Benjamin–Hochberg multiple comparison test. 
Purple lines are known CORUM interactions, orange lines are HMDP 
P:P and CORUM interactions, green lines are previously unidentified 
interactions from HMDP P:P data. A thicker line represents a higher bicor 
value (q < 0.05, n > 50 strains).
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Extended Data Fig. 5 | Biweight midcorrelation of 108 liver lipid species 
against 378 liver proteins mapped onto annotated KEGG pathways. 
Highlighted are various correlations (orange is positive, aqua is negative) 
between individual lipid species and proteins in pathways associated with 
unsaturated fatty acid metabolism, fatty acid degradation and metabolism, 

lysosomal degradation, and proteolysis. Only proteins containing more 
than one significant correlation to a lipid and annotated to the KEGG 
database are shown (biweight midcorrelation using ranked Benjamin–
Hochberg multiple comparison test, q < 0.05, n > 50).
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Extended Data Fig. 6 | Overexpression of PSMD9 in C57BL/6J and 
DBA/2J mice. Adenoviral overexpression of PSMD9 in C57BL/6J and 
DBA/2J mice (n = 9, 7 days after tail-vein injection of 109 plaque-
forming units). a, b, Western blot (a) and densitometry (b) of PSMD9 
and PDI (loading control) in the livers of mice treated with either control 
adenovirus (pAdV) or PSMD9 adenovirus. Data are mean ± s.e.m. c, Liver 

and plasma lipidomics of adenovirus-treated mice. Top panel (above first 
dotted line) shows relative fold change of total lipid classes. Middle and 
bottom panels show relative fold changes of individual diacylglycerol and 
triacylglycerol lipid species, respectively. P values determined by t-test 
with permutation-based FDR correction. Filled bubbles are significant 
(q < 0.05) changes, larger bubbles indicate greater significance.
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Extended Data Fig. 7 | ASO knockdown of PSMD9 in C57BL/6J and 
DBA/2J mice. a–c, Assessment of hepatotoxicity as measured by plasma 
levels (U/L) of aspartate transaminase (AST) and alanine transaminase 
(ALT) (a), percentage of liver weight to body weight (b) and total body 
weight (c) of mice on a normal chow diet and treated with PBS, control 
ASO or PSMD9 ASO for 7 days (n = 4 per group, twice-weekly injection 
at 25 mg kg−1). d, Lipidomic analysis of total diacylglycerols and 
triacylglycerols in the plasma of mice on a chow diet (n = 4 C57BL/6J, 
n = 3 DBA/2J mice per group) or a Western diet (n = 6 mice per group, 

except n = 5 DBA/2J control ASO mice per group) and treated with either 
control or PSMD9 ASOs (twice-weekly ASO injection at 25 mg kg−1). 
e–g, Assessment of hepatotoxicity as measured by plasma AST and 
ALT levels (e), percentage change in body weight from baseline (f), and 
food consumption normalized to body weight (g) from in vivo de novo 
lipogenesis experimental animals (n = 6 control ASO, n = 8 PSMD9 ASO, 
28 days on diet and weekly injection of ASO injection at 25 mg kg−1). 
*P < 0.05, **P < 0.01 control ASO versus PSMD9 ASO, t-test. Data are 
mean ± s.e.m.
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Extended Data Table 1 | Correlations between PSMD9 gene expression and indices of adiposity

Top 20 correlations (elastic net 0.5 algorithm) between PSMD9 expression quantified across 48 tissues (n = 200) and 2,400 phenotypes measured in patients in the UK Biobank (n = 500,000). Nine of 
the top twenty correlations are observed between hepatic PSMD9 expression and measures of adiposity.
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ACAD11 was validated by overexpression and by cell fractionation.  
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