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Universal prethermal dynamics of Bose gases 
quenched to unitarity
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Understanding strongly correlated phases of matter, such as the 
quark–gluon plasma and neutron stars, and in particular the 
dynamics of such systems, for example, following a Hamiltonian 
quench (a sudden change in some Hamiltonian parameter, such as 
the strength of interparticle interactions) is a fundamental challenge 
in modern physics. Ultracold atomic gases are excellent quantum 
simulators for these problems, owing to their tunable interparticle 
interactions and experimentally resolvable intrinsic timescales. 
In particular, they provide access to the unitary regime, in which 
the interactions are as strong as allowed by quantum mechanics. 
This regime has been extensively studied in Fermi gases1,2. The 
less-explored unitary Bose gases3–11 offer possibilities12 such as 
universal physics controlled solely by the gas density13,14 and new 
forms of superfluidity15–17. Here, through momentum- and time-
resolved studies, we explore degenerate and thermal homogeneous 
Bose gases quenched to unitarity. In degenerate samples, we observe 
universal post-quench dynamics in agreement with the emergence 
of a prethermal state18–24 with a universal non-zero condensed 
fraction22,24. In thermal gases, the dynamic and thermodynamic 
properties generally depend on the gas density and the temperature, 
but we find that they can still be expressed in terms of universal 
dimensionless functions. Surprisingly, we find that the total quench-
induced correlation energy is independent of the gas temperature. 
These measurements provide quantitative benchmarks and 
challenges for the theory of unitary Bose gases.

In ultracold atomic gases, two-body contact interactions are char-
acterized by the s-wave scattering length a, and the unitary regime is 
realized in the limit a → ∞, with a tuned using magnetic Feshbach 
resonances25. In Bose gases, tuning a to infinity also enhances three-
body recombination, which leads to particle loss and heating, making  
unitary Bose gases inherently dynamic, non-equilibrium systems. 
Experimentally, these systems are studied by rapidly quenching a to 
infinity (Fig. 1a), which initiates the non-equilibrium dynamics. If 
starting with a Bose–Einstein condensate (BEC) in the k ≈ 0 momen-
tum state, after the quench the momentum distribution broadens (the 
kinetic energy increases) owing to lossless correlation dynamics and 
to recombination heating (Fig. 1b). The interplay between these two 
processes raises many questions, such as whether the gas attains a 
strongly correlated quasi-equilibrium steady state before degeneracy 
is lost.

The timescales of the different processes are set by the natural length 
scales of the system. Within the universality hypothesis14, in a homo-
geneous degenerate unitary gas the only relevant length scale is the 
interparticle spacing n−1/3, where n is the particle density, which (in 
analogy with Fermi gases) sets the Fermi momentum ħkn = ħ(6π2n)1/3, 
energy = /E ħ k m(2 )n n

2 2  and time tn = ħ/En, where m is the particle mass 
and ħ is the reduced Planck constant. Additional, potentially relevant 
length scales are the sizes of the Efimov trimer states that exist as a 
result of resonant two-body interactions17,26–31. Three-body correla-
tions8 and Efimov trimers9 have been observed experimentally, but all 

degenerate-gas dynamics have been consistent with tn being the only 
characteristic timescale6,9,10. This universality has so far made it impos-
sible to disentangle the lossless from the recombination-induced 
dynamics. Experimental evidence has suggested that the lossless pro-
cesses are faster, sufficiently so that the gas attains a degenerate steady 
state6,10; however, almost nothing could be established about the nature 
of this state. Here we isolate the effects of the lossless post-quench 
dynamics through momentum- and time-resolved studies of degener-
ate and thermal Bose gases.

We prepare a homogeneous 39K Bose gas in an optical-box trap10 
with a volume of around 3 × 104 μm3 and use a Feshbach resonance 
centred at8 402.70(3) G. Initially, we prepare either a quasi-pure BEC 
or a thermal gas. In both cases, we start with a weakly interacting sys-
tem, with na3 < 10−4, then quench the gas to unitarity (within 2 μs) 
and let it evolve for a time thold; in our box trap, tn is a global variable 
and after the quench all parts of the system evolve in the same way. 
After the time thold, we quench the gas back to low a, release it from 
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Fig. 1 | Dynamics of a degenerate Bose gas quenched to unitarity.  
a, Quench protocol. The red circles depict atoms, and their sizes the 
interaction strength, which is limited at unitarity by the interparticle 
spacing; a is the s-wave scattering length and thold is the hold time at 
unitarity. b, Momentum distribution nk(k) for different thold values; the 
initial gas density is n = 5.1 μm−3, corresponding to a Fermi momentum of 
kn = 6.7 μm−1 and a Fermi time of tn = 27 μs. c, Populations of individual k 
states show rapid initial growth, saturation at (quasi-)steady-state values of 
n k( )k  (dashed lines) and long-time heating. The error bars reflect 1 s.e.m. 
(not visible when smaller than the symbol size). The solid lines are sigmoid 
fits used to extract the initial-growth half-way times τ(k).
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the trap and measure its momentum distribution nk(k); we normalize 
nk so that

∫ π =k n k4 d 1k
2

See Methods for further experimental details.
We first present our study of degenerate gases. In Fig. 1b we show 

nk(k) for an initial BEC density of n = 5.1 μm−3 and various thold. In 
Fig. 1c we illustrate our key experimental observation. By looking at 
nk values for individual k states, we discern separate stages in the evo-
lution of nk: after a rapid initial growth, nk reaches a (quasi-)steady-
state plateau, before the long-time heating takes over. All timescales 
are of order tn, but distinguishable. We discern such time separation 
for k/kn ≳ 0.8. For each k in this range, we identify the plateau occupa-
tion nk (dashed lines in Fig. 1c) and use sigmoid fits (solid lines) to 
extract the characteristic time τ(k) for the initial rapid growth of nk, 
defined such that τ = /n k k n k( , ( )) ( ) 2k k  . We note that tn and kn corre-
spond to the initial n; for our longest τ we observe particle loss of 
approximately 20%.

In Fig. 1c we also see that the curves for different k values are not 
aligned in time; nk(2kn) shows signs of heating before nk(kn) reaches its 
steady-state value. This finding illustrates why lossless and recombina-
tion dynamics could not be separated quantitatively by considering all 
k at the same evolution time6,10, such as by looking at the kinetic energy 
per particle E(thold)10. Instead, we separately obtain nk for different k 
values and piece together the function n k( )k . Doing so does not give the 
momentum distribution at any specific time, but allows us to infer what 
the steady-state nk(k) would be if the gas did not suffer from losses and 
heating. We assume that at early times = Ot t( ( ))nhold , all non-zero-k 
states are primarily fed from the macroscopically occupied BEC 
(Fig. 1b).

In Fig. 2 we plot the dimensionless τ/tn and n kk n
3 versus the dimen-

sionless k/kn, for three BEC densities. By expressing all quantities in 
dimensionless form, all of our data fall onto universal curves (within 
experimental errors).

In the experimentally accessible range of momenta, our data are con-
sistent with the scaling τ/tn ∝ kn/k at low k and τ/tn ∝ (kn/k)2 at high k. 
These scalings were predicted for the emergence of a prethermal steady 
state20–24. According to this prediction, at short times after the quench, 
the excitations are similar to the Bogoliubov modes in a weakly inter-
acting BEC—which are phonons at low k and particles at high k—but 
with the usual mean-field energy replaced by an energy of order En. 
The speed of sound is then of order ħkn/m and the crossover between 
the two regimes is at = Ok k( )n . Finally, τ(k) is set by the dephasing 
time, which is given approximately by the inverse of the excitation 
energy.

The form of the universal n kk n
3 curve was not anticipated and poses 

a new theoretical challenge. Empirically, over three orders of magnitude 

of n kk n
3, our data are well captured by a simple exponential, 

Aexp(−Bk/kn), with A = 1.53(5) and B = 3.62(2) (where the errors are 
1σ fitting errors). This function implies a condensed fraction of

¯∫η π= − =k n k1 4 d 19(4)%k
2

Up to k ≈ 3kn we do not observe the asymptotic form nk ~ 1/k4 that is 
expected32 at very high k; however, even if nk changed to this more 
slowly decaying form immediately outside of our experimental range, 
η would change by less than 3%. Previous theoretical work22,24 has pre-
dicted values of η in the prethermal state that are close to our estimate, 
but the exponential form of n kk n

3 has not previously been predicted. 
Explaining this experimental observation may require explicit consid-
eration of the quench back to low a.

We now turn to thermal gases, which reveal some simplifications, but 
also more surprises. A simplification is that, while in a thermal gas the 
three-body recombination and the lossless dynamics are both slowed 
down compared to the degenerate-gas case, the three-body recombi-
nation is slowed down more4,5,33. As shown in Fig. 3a, now E(thold) 
exhibits two separate stages in the post-quench dynamics: a rapid 
initial growth (here for thold ≲ 100 μs) and long-time heating (for thold 
≫ 100 μs). The shape of the curve is similar to those for individual k 
states in Fig. 1c and the long-time energy growth matches the theory of 
recombination heating4,10. These results reinforce our interpretation of 
the two-step dynamics, both for degenerate and for thermal gases. We 
now focus on the early-time dynamics. As we show in Fig. 3b, nk(k) is 
essentially identical at 60 μs and 126 μs, meaning that on this timescale 
a steady state is established for all k.

In a thermal gas, even before the quench to unitarity, nk is substantial 
for all k ≲ 1/λ, where λ = / πh mk T2 B  is the thermal wavelength, T is 
the initial temperature (before the quench to unitarity), kB is the 
Boltzmann constant and h = 2πħ. We therefore look at the redistribution 
of particles in k space, in particular, the change δnk(k) with respect to 
thold = 0 and the corresponding change δε in the spectral energy density 
ε = ħ2/(2m) × 4πk4nk. An additional challenge in understanding the 
thermal-gas case is that we have two relevant length scales, n−1/3 and λ, 
and it is not a priori clear whether the dynamic and thermodynamic 
properties can be expressed in terms of dimensionless universal 
functions.

In Fig. 3c we show time-resolved population changes in different 
spherical shells in k space, 4πk2δnk. For some special k0 (dotted line), 
the population remains essentially constant. In Fig. 3d we show vertical 
cuts through Fig. 3c for k < k0, k = k0 and k > k0. Away from k0, we use 
sigmoid fits (solid lines) to extract τ(k), both for diminishing and for 
growing populations. Near k0 we see only a small wiggle in δnk, to which 
we cannot assign a single timescale.

In Fig. 3e, f we show τ(k) and the steady state εδ k( ) for two  
different combinations of n and T. The εδ k( ) curve conveys the  
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Fig. 2 | Universal post-quench dynamics and the steady-state 
momentum distribution in the degenerate Bose gas. a, b, The 
momentum-dependent half-way time τ(k) for reaching the steady state (a) 
and the steady-state momentum distribution n k( )k  (b), for three different 
BEC densities n. Expressing all quantities in dimensionless form, using the 

Fermi time tn and momentum kn as the natural scales, collapses all of our 
data onto universal curves. The error bars show fitting errors (not visible 
when smaller than the symbol size). The solid line in b is an exponential 
fit, ¯ = . − . /n k k k1 53exp( 3 62 )k n n
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redistribution of particles from k < k0 to k > k0 and the resulting 
energy growth

∫ ε∆ = δE kd

The dispersive shape of τ(k) was not anticipated and invites further 
theoretical work. Here, we empirically investigate whether these curves 
can be scaled into universal dimensionless functions.

For the horizontal scaling we find that the natural scale for k is 1/λ, 
independent of n. In Fig. 4a we plot τ(k) versus kλ, for 15 combinations 
of n and T (corresponding to phase-space densities nλ3 between 0.2 
and 2). Similarly, in Fig. 4d we plot ε λδ /k( )  versus kλ, so that the area 
under each curve is still ∆E n T( , ). In both cases, we see horizontal 
alignment of all of the curves, with k0 = 4.4/λ.

A more challenging question is whether these n- and T-dependent 
curves may be collapsed vertically, by scaling them by some time 
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Fig. 3 | Thermal Bose gas quenched to unitarity. a, The kinetic energy 
per particle E shows rapid growth for thold ≲ 100 μs and substantial heating 
only for thold ≫ 100 μs; the black line is the prediction for recombination 
heating. Here, and in b–d, the initial gas density and temperature are 
n = 5.6 μm−3 and T = 150 nK, respectively. b, Momentum distribution 
nk(k) for different hold times at unitarity. The initial redistribution of 
particles from low k to high k (indicated by the dotted arrow) is essentially 
complete within 60 μs, and nk is almost identical at 126 μs and 60 μs.  
c, Population changes in different k-space shells, 4πk2δnk(k); the 

population in k0 = 6.0 μm−1 (dotted line) remains essentially unchanged. 
d, Vertical cuts through the plot in c. Solid lines are sigmoid fits used to 
extract the half-way time τ(k). e, f, τ(k) and the change in the spectral 
energy density (between the initial, pre-quench state and the post-quench 
steady state), ¯εδ ∝ δk k n k( ) ( )k

4 . Here we show data for n = 5.6 μm−3 and 
T = 150 nK (blue) and for n = 1.3 μm−3 and T = 70 nK (red). For the data 
in a and d, 1 s.e.m. error bars are smaller than the symbol size. In e and f, 
the error bars (in most cases smaller than the symbol size) show fitting 
errors.

Fig. 4 | Universal dynamic and thermodynamic functions for the 
thermal Bose gas quenched to unitarity. a, d, Plotting the half-way time τ 
for reaching the post-quench steady state (a) and the change in the spectral 
energy density ε λδ /  (where λ is the thermal wavelength; d) versus kλ 
horizontally aligns all of our curves for 15 different combinations of the 
initial gas density n and temperature T (see key). The vertical grey line 
corresponds to k0. b, Supposing that the characteristic timescale for the 
dynamics is ∝ α

λ
βt t tns

t t, where tλ = ħ/(kBT), we obtain the best data collapse, 

corresponding to the minimum of σ/σ0 (see text for details), for 
αt ≈ βt ≈ 1/2 (dashed cross indicates αt = βt = 1/2). This suggests that 

= λt t tns . e, Similarly, for the energy scale ∝ α βE E k T( )ns B
E E, we find αE ≈ 1 

and βE ≈ 0, which suggests that Es = En. c, f, The dimensionless τ/ λt tn  (c) 
and ε λδ / E( )n  (f) are, to within experimental errors, universal functions of 
the dimensionless kλ. All error bars (not visible when smaller than the 
symbol size) show fitting errors.
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ts(n, T) and energy Es(n, T). We conjecture that ∝ α
λ
βt t tns

t t, where tλ = ħ/
(kBT), and similarly ∝ α βE E k T( )ns B

E E, and determine for which αt,E and 
βt,E we get the best collapse. We treat αt,E and βt,E as independent, but 
physically (if there are no other relevant scales) we expect 
αt + βt = αE + βE = 1.

We quantify the degree of the data collapse by a single number σ, 
which is obtained by calculating the standard deviation of the data for 
all n and T at a fixed kλ and then summing over kλ. In Fig. 4b, e, we 
show plots of σ/σ0 for τ and ε λδ / ; here, σ0 corresponds to no scaling.

For the temporal scaling, in Fig. 4b we find the lowest σ near 
αt = βt = 1/2, which suggests that = λt t tns . In Fig. 4c we plot τ/ λt tn  
and see that all of our data collapse onto a universal curve (within 
experimental scatter). For this scaling we have an intuitive interpreta-
tion. In a thermal gas, particles do not overlap, so to feel the unitary 
interactions after the quench they must first meet. The ts that we find, 

λ∝ /λ
− /t t n m ħn

1 3 , matches the expected scaling for the characteristic 
time until meeting, which is given by the ratio of the interparticle spac-
ing n−1/3 and the characteristic thermal velocity ħ/(mλ).

In Fig. 4e we find that the optimal values of αE and βE are αE ≈ 1 and 
βE ≈ 0, suggesting that Es = En. This scaling implies that, surprisingly, 
whereas εδ k( ) naturally depends on n and T, its integral ∆E is inde-
pendent of T; in Fig. 4f we see that this scaling collapses all of our data 
onto a universal curve.

This lack of T dependence suggests that ∆ /E En in a thermal gas 
should also be equal to /̅E En in a degenerate gas (where ̅∆ =E E ). 
Bearing in mind the caveat that we do not observe very high-k tails 
experimentally, from the data in Fig. 4f we estimate that ∆ / = .E E 0 7(1)n  
for a thermal gas; from the exponential n kk n

3 in Fig. 2b, we obtain a 
consistent value of /̅ = .E E 0 74(4)n  for a degenerate gas.

Our experiments establish a comprehensive view of the prethermal 
dynamics and thermodynamics of homogeneous Bose gases quenched 
to unitarity, at low and high temperatures. They provide quantitative 
benchmarks and new questions for the theory of unitary Bose gases. 
Open problems include explaining the forms of our experimentally 
observed universal dynamic and thermodynamic functions, and 
elucidating the connections between these universal features and 
previously observed signatures8,9 of non-universal Efimov physics. 
Experimentally, an important future challenge is to probe the coher-
ence and the potential superfluid properties of the prethermal state of 
a degenerate unitary Bose gas.

While this paper was under review, we learned of two other exper-
iments that observe universality in the many-body dynamics of 
out-of-equilibrium quantum systems34,35.
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MEthods
Optical-box trap and sample preparation. As described previously36,37, our box trap 
is formed by blue-detuned, 532-nm laser beams. It is cylindrical in shape, with a diam-
eter of about 30 μm and a length of about 45 μm. We deduce n from the measured atom 
number, and take into account the fact that the trap walls are not infinitely steep36, 
owing to the diffraction limit on the sharpness of the laser beams, so the effective trap 
volume depends slightly on the energy per particle in the initially prepared sample.

Our clouds are in the lowest hyperfine ground state and we initially prepare 
them at a field of approximately 399.1 G. At this field, the scattering length is 
ai ≈ 400a0, where a0 is the Bohr radius.
Quench protocol and measurement details. At the end of thold we quench a back 
to ai using an exponential field ramp with a time constant of 1 μs. We use the fastest 
ramp that is technically possible to minimize the conversion of atoms into mole-
cules9,10. We then release the gas from the trap and simultaneously (within about 
3 ms) completely turn off interactions (a → 0). After letting the cloud expand for 
6–12 ms of time of fight, we take an absorption image of it. We typically repeat 
each measurement about 20 times. To reconstruct nk(k) from the two-dimensional 
absorption images, which give the momentum distribution integrated along the 
line of sight, we average each image azimuthally, then average over the experi-
mental repetitions, and finally perform the inverse Abel transform. Owing to the 
initial cloud size and non-infinite time of flight, our measurements of nk(k) are not 
quantitatively reliable for k < 2 μm−1.

Extrapolation of n kk n
3 in a degenerate gas. We also use our experimental data to 

estimate how the function n kk n
3 extrapolates to lower k/kn, without presuming its 

functional form. For k/kn < 0.8, we do not see clear steady-state plateaux in 
nk(thold), such as indicated by the dashed lines in Fig. 1c. However, we can extrap-
olate τ ∝ tnkn/k according to the dashed line in Fig. 2a; then, assuming that heat-
ing effects are not yet substantial at thold = τ(k) and following our definition of τ, 
we estimate τ=n n2 ( )k k , where nk(τ) is the nk measured at the extrapolated τ. 
These extrapolated values of n kk n

3 are shown by open symbols in Extended Data 
Fig. 1. They fall on the same exponential curve that fits our directly measured 
values of n kk n

3 (solid symbols), lending further support for this unexpected func-
tional form.

Data availability
The data that support the findings of this study are available in the Apollo reposi-
tory (https://doi.org/10.17863/CAM.30242). Any additional information is avail-
able from the corresponding authors on reasonable request.
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Extended Data Fig. 1 | Extrapolation of n kk n
3 in a degenerate gas to 

lower k/kn. Solid symbols show directly measured values (also shown in 
Fig. 2b), here combining the data for all three BEC densities. Open 
symbols show experimentally extrapolated values, for all three densities, as 
described in Methods. The solid line is the same as in Fig. 2b.

© 2018 Springer Nature Limited. All rights reserved.


	Universal prethermal dynamics of Bose gases quenched to unitarity
	Online content
	Acknowledgements
	Reviewer information
	Fig. 1 Dynamics of a degenerate Bose gas quenched to unitarity.
	Fig. 2 Universal post-quench dynamics and the steady-state momentum distribution in the degenerate Bose gas.
	Fig. 3 Thermal Bose gas quenched to unitarity.
	Fig. 4 Universal dynamic and thermodynamic functions for the thermal Bose gas quenched to unitarity.
	Extended Data Fig. 1 Extrapolation of in a degenerate gas to lower k/kn.




