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Predicting the dynamics of quantum systems far from equilibrium 
represents one of the most challenging problems in theoretical 
many-body physics1,2. While the evolution of a many-body system 
is in general intractable in all its details, relevant observables can 
become insensitive to microscopic system parameters and initial 
conditions. This is the basis of the phenomenon of universality. 
Far from equilibrium, universality is identified through the 
scaling of the spatio-temporal evolution of the system, captured 
by universal exponents and functions. Theoretically, this has 
been studied in examples as different as the reheating process 
in inflationary Universe cosmology3,4, the dynamics of nuclear 
collision experiments described by quantum chromodynamics5,6, 
and the post-quench dynamics in dilute quantum gases in non-
relativistic quantum field theory7–11. However, an experimental 
demonstration of such scaling evolution in space and time in a 
quantum many-body system has been lacking. Here we observe the 
emergence of universal dynamics by evaluating spatially resolved 
spin correlations in a quasi-one-dimensional spinor Bose–Einstein 
condensate12–16. For long evolution times we extract the scaling 
properties from the spatial correlations of the spin excitations. 
From this we find the dynamics to be governed by an emergent 
conserved quantity and the transport of spin excitations towards 
low momentum scales. Our results establish an important class 
of non-stationary systems whose dynamics is encoded in time-
independent scaling exponents and functions, signalling the 
existence of non-thermal fixed points10,17,18. We confirm that 
the non-thermal scaling phenomenon involves no fine-tuning of 
parameters, by preparing different initial conditions and observing 
the same scaling behaviour. Our analogue quantum simulation 
approach provides the basis with which to reveal the underlying 
mechanisms and characteristics of non-thermal universality classes. 
One may use this universality to learn, from experiments with 
ultracold gases, about fundamental aspects of dynamics studied 
in cosmology and quantum chromodynamics.

Isolated quantum many-body systems offer particularly clean set-
tings for studying fundamental properties of the underlying unitary 
time evolution19. For systems initialized far from equilibrium, different 
scenarios have been identified, including the occurrence of many-body 
oscillations20 and revivals21, the manifestation of many-body locali-
zation22, and quasi-stationary behaviour in a prethermalized stage of 
the evolution23.

Here we observe a new scenario associated with the notion of 
non-thermal fixed points. This is illustrated schematically in Fig. 1a: 
starting from a class of far-from-equilibrium initial conditions, the 
system develops a universal scaling behaviour in time and space. This 
is a consequence of the effective loss of details about initial conditions 
and system parameters long before a quasi-stationary or equilibrium 
situation may be reached. The transient scaling behaviour is found to be 
governed by the transport of an emergent collective conserved quantity 
towards low momentum scales.

For our experimental study we employ an elongated Bose–Einstein 
condensate of about 70,000 87Rb atoms. We use the F = 1 hyperfine 
manifold with its three magnetic sublevels mF = 0, ±1 as a spin-1 sys-
tem with ferromagnetic interactions24. Initially, all atoms are prepared 
in the mF = 0 sublevel, forming a spinor condensate with zero spin 
length. The dynamics is initiated by instantaneously changing the 
energy splitting of the F = 1 magnetic sublevels by means of microwave 
dressing (see Methods). Consequently, spin excitations develop in the 
Fx–Fy plane12 as sketched in Fig. 1b. Our experimental setup allows the 
extraction of the spin distribution in terms of the spin component 

ψ ψ ψ= + + . . /+ −F y y y yˆ ( ) [ ˆ ( ) ( ˆ ( ) ˆ ( )) h c ] 2x 0
†

1 1   where ψ yˆ ( )m
†  is the 

creation operator of an atom in the magnetic sublevel m at position 
y and h.c. denotes the Hermitian conjugate. At a given time t this is 
achieved by a spin rotation from the Fx–Fy plane to the Fz-direction  
and subsequently detecting the atomic density difference 
Fz(y) = n+1(y)− n−1(y) (see Methods for details). Representative 
absorption images are shown in Fig. 1c together with the extracted spin 
profiles (green lines). The histograms in Fig. 1c show the probability 
distribution of Fx for all positions y and experimental realizations for 
the corresponding evolution time (see Extended Data Fig. 1 for all  
evolution times). Results are presented for characteristic stages associ-
ated with the initial condition (1), the nonequilibrium instability 
regime (2), the universal scaling regime (3) and the departure from the 
non-thermal fixed point (4), as also indicated in Fig. 1a.

We find that during the time evolution the angular orientation θ of 
the transverse spin (see Fig. 1b) becomes the relevant dynamical degree 
of freedom. For short evolution times unstable longitudinal spin modes 
grow exponentially25, well described by Bogoliubov theory, but non-
linear evolution quickly takes over (after about 100 ms). This leads to 
a double-peaked structure of the histograms (see Fig. 1c) indicating 
that the spin has a mean length and a random orientation in the Fx–Fy 
plane. On the basis of this observation we extract the mean spin length 
| |⊥F t( ) , where F⊥ = Fx + iFy, and its fluctuations using a fit. Building 

on that knowledge, we extract the local angle from the profiles as 
θ = / | |⊥y t F y t F t( , ) arcsin( ( , ) ( ) )x  (see Methods for details).

The time evolution of the fluctuations of the spin orientation is 
described in terms of correlation functions of the scalar field θ(y,t). The 
fluctuations are analysed by evaluating the two-point correlation func-
tion C(y,y ′;t) = 〈θ(y,t)θ(y ′,t)〉. To distinguish the role of different length 
scales we consider a momentum-resolved picture of the dynamics. 
Hence we evaluate the structure factor, which is the Fourier transform 
of C(y,y ′;t) with respect to the relative coordinate ¯ = −′y y y, averaged 
over y:

¯ ¯ ¯∫ ∫= + − πθf k t y yC y y y t i ky( , ) d d ( , ; )exp( 2 ) (1)

In general, the structure factor fθ is a function of momentum k which 
evolves in time t in a way determined by the system parameters and  
initial conditions. In Fig. 2a, we plot fθ(k,t) as a function of k on a double- 
logarithmic scale for times between 4 s and 9 s. A characteristic shift of 
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Fig. 1 | Universal dynamics and experimental procedure. a, Starting 
from a class of far-from-equilibrium initial conditions, universal 
dynamical evolution indicates the emergence of a non-thermal fixed point. 
Experimentally, we probe the system at different evolution times during 
the stages indicated by numbers 1 to 4. b, A condensate is prepared in the 
mF = 0 state of the F = 1 hyperfine manifold, that is, with a vanishing mean 
spin length (left spin sphere). With microwave dressing (see Methods) 
we initiate spin-exchange dynamics, which leads to a growth of spin 
orthogonal to the magnetic field B in the Fx–Fy plane (right spin sphere). 

Subsequently, spatial structures of the spin orientation θ are found along 
the cloud. c, Exemplary absorption images of the three hyperfine levels 
taken after a π/2 spin rotation and Stern–Gerlach separation together with 
the inferred local spin Fx(y) (green lines). Furthermore, histograms for 
around 160 experimental realizations are shown. In the universal regime 
(see step 3 in panel a) we extract the spin length and its fluctuation by a 
fit to the double-peaked structure of the histogram, as indicated in the 
corresponding plot (see Methods).
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Fig. 2 | Scaling in space and time at a non-thermal fixed point.  
a, Structure factor fθ(k,t) as a function of the spatial momentum k = 1/λ in 
the scaling regime between 4 s and 9 s. The colour indicates the evolution 
time t. The statistical error is of the order of the size of the plot markers. 
In the infrared the structure factor shifts in time to smaller k (bigger 
wavelengths), which is connected to transport of excitations towards lower 
momenta. Characteristic for the non-thermal fixed point dynamics is the 

rescaling of the amplitude with universal exponent α and rescaling of the 
length scale with β (see inset). b, By rescaling the data with tref = 4.5 s, 
α = 0.33 and β = 0.54 the data collapses to a single curve. We parameterize 
the universal scaling function with fs ∝ 1/[1 + (k/ks)ζ]. Using a fit (grey 
solid line) we find ζ ≈ 2.6 and ks ≈ 1/133 µm−1. The quality of the rescaling 
is revealed by the small and symmetric scatter of the rescaled data divided 
by the fit (see inset).
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the structure factor towards smaller momenta as well as an increase of 
the low-momentum amplitude with time is observed.

In fact, instead of separately depending on k and t we find that in this 
regime the datasets collapse to a single curve if the rescaled distribution 
t−αfθ is plotted as a function of the single variable tβk. This implies that 
the data satisfy the scaling form

=θ
α βf k t t f t k( , ) ( ) (2)s

with universal scaling exponents α, β and scaling function fs. Figure 2b 
shows this collapse, where the same data points as in Fig. 2a are plot-
ted with times normalized to the reference time tref = 4.5 s. The ability 
to reduce the full nonequilibrium time evolution of the correlation 
function in the scaling regime to a time-independent, so-called fixed-
point distribution fs(k) and associated scaling exponents is a striking 
manifestation of universality.

We find the amplitude scaling exponent to be α = 0.33 ± 0.08 and the 
momentum scaling exponent to be β = 0.54 ± 0.06. The errors corre-
spond to one standard deviation obtained from a resampling technique 
(see Methods). However, the actual uncertainty for α is expected to be 
larger since the rescaling analysis is much less constraining on α than  
on β. We find that fθ(k,t) develops a plateau at the lowest momenta and an 
approximate power-law fall-off above a characteristic length scale in the 
scaling regime. To parameterize the universal scaling function, we fitted 
the rescaled data with a function of the form26: fs(k) ∝1/[1 + (k/ks)ζ]  
and find ζ ≈ 2.6, with ks ≈ 1/133 µm−1 for our system. The value of  
ζ becomes constant after about 4 s (see Fig. 3a). Analysing fθ(k = 0, t) 
as shown in Fig. 3b reveals that the occupation of k = 0, which cannot 
be seen on the logarithmic scale employed in Fig. 2, builds up in the 
scaling regime. This growth is consistent with the power law propor-
tional to tα with α obtained from the rescaling analysis, as indicated by 
the solid line. After 9 s the system departs from the scaling behaviour.

The nature of the observed scaling phenomenon is explained by 
the emergence of an approximately conserved quantity and its trans-
port. In terms of our dynamical degree of freedom θ(y,t) we identify 
∫dk〈|θ(k,t)|2〉 ≡ ∫dk fθ(k,t) as the conserved quantity. In fact, Fig. 3c 
shows that the sum over all modes k for different evolution times—
after a fast initial rise due to the instability—settles around a constant 
within the scaling regime (see also Extended Data Fig. 2). According to 
the scaling (2), ∫dk fθ(k,t) = tα−β∫dk fs(k) ≈ const. corresponds to α ≈ β 
so that in our case only one independent dynamical scaling exponent 
remains. A distinct feature is the transport of the conserved quantity 
directed towards the infrared, corresponding to a positive sign of β. 
Theoretically it is expected to find the scaling only for momenta smaller 
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Fig. 3 | Characterization of the scaling regime. a, For each evolution 
time (see Fig. 2) we extract the power-law exponent ζ from a fit. After 
4 s it settles to about 2.6 (red solid line), revealing the build-up of the 
universal scaling function. The grey-shaded region indicates the scaling 
regime. b, The transport to the infrared in the scaling regime is connected 
to a monotonic increase of the occupation of k = 0. The solid line depicts 

the expected scaling fθ(k = 0,t) ∝ tα with α = 0.33. After 9 s a rapid decay 
signals the departure from the scaling regime. c, The emergence of a 
conserved quantity is signalled by the sum over all k-modes of fθ(k,t). 
After a fast initial growth this observable is approximately constant in the 
scaling regime and starts to decay after 9 s.
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Fig. 4 | Robustness of universal dynamics at a non-thermal fixed point. 
a, Absorption images of all three mF components after spin rotation 
with the extracted transversal spin (solid lines) of three different initial 
conditions. The preparations show different initial amplitudes in the 
Fourier transform of the transversal spin. b, All initial conditions lead 
to scaling dynamics. The data shown were obtained in a time window 
between 4 s and 9 s after preparation of the initial state. In the inset the 
scaling exponents of all four initial conditions, including the preparation 
in mF = 0 (see Fig. 1), are shown; the error bars are 1 s.d., obtained from a 
resampling method (see Methods). The mean values (red and blue solid 
lines) of α and β are used to rescale the data. We allow for overall scaling 
factors in k and amplitude for each initial condition.
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than some scale10 (in our case about 0.04 µm−1; see Extended Data 
Fig. 3). The transport towards the infrared is in contrast to the turbulent 
transport into the ultraviolet observed in direct cascades27.

These experimental findings of scaling behaviour, implying univer-
sality, allow comparison with predictions in a variety of models in the 
non-thermal universality class, which is defined by the scaling func-
tion fs and α = dβ for given spatial dimension d. N interacting Bose 
gases with equal intra- and interspecies Gross–Pitaevskii couplings 
are described by an O(N) symmetric model. This is closely related to 
O(N) symmetric scalar models28, such as the relativistic Higgs sector 
of the Standard Model with N = 4 for d = 3. For these types of models, 
both Gross–Pitaevskii and relativistic, a universal value of β ≈ 0.5 has 
been predicted and found to be insensitive to the spatial dimension10 
for d ≥ 2. This describes the self-similar transport of excitations of the 
relative phases between the components to lower wavenumbers. The 
scaling function fs is known to depend on dimensionality29 and has not 
yet been theoretically estimated for d = 1. Our setup is, to our knowl-
edge, the first realization of an effective N = 3 model for the transport 
of conserved quantities associated with non-thermal fixed points in 
a quasi-one-dimensional situation. Finding scaling behaviour in one 
dimension was not expected and sheds new light on the concept of 
universality classes far from equilibrium.

We emphasize that the non-thermal scaling phenomenon studied 
here involves no fine-tuning of parameters. This is in contrast to equi-
librium critical phenomena, which require a careful adjustment of sys-
tem variables, such as the temperature, to a critical value30. To illustrate 
this insensitivity we employ the high level of control of the atomic spin 
system and prepare three qualitatively different initial conditions (for 
details see Methods). The corresponding absorption images of single 
realizations are shown in Fig. 4a along with the Fourier transform of 
the spatial correlation function of Fx(y).

We find universal dynamics for all initial conditions with comparable 
inferred scaling exponents (see inset of Fig. 4b). We rescale the data 
with the same exponents obtained from the mean of all four meas-
urements and take into account overall scaling factors and reference 
momentum scales. This procedure leads to a collapse of all data, man-
ifesting the robustness of non-thermal fixed point scaling.

The level of control demonstrated here and the accessible observables 
on our platform open the door to the discovery of further non-thermal 
universality classes. This represents a crucial step towards a compre-
hensive understanding of out-of-equilibrium dynamics with potential 
impact in various fields of science.

(We note that similar phenomena have recently been observed by 
the Schmiedmayer group31 in Vienna in a single-component Bose gas, 
where a scaling exponent β ≈ 0.1 was extracted.)
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MEthods
Microscopic parameters. The dynamics of the spinor Bose gas is described by 
the Hamiltonian

∫= + 




+ + + + + + 


+ −H H V c n c F F F q n n pFˆ ˆ d :

2
ˆ

2
( ˆ ˆ ˆ ) : ( ˆ ˆ ) ˆ (3)x y z z0

0 2 1 2 2 2
1 1

where ψ ψ=n̂ ˆ ˆ
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† the bosonic field creation operator of the magnetic 

substate m ∈ {0,±1}, and : : denotes normal ordering. Ĥ0 contains the spin- 
independent kinetic energy and trapping potential. The spin operators are given 
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= −+ −F n nˆ ˆ ˆz 1 1. The parameter p describes the linear Zeeman shift in a magnetic 
field. For the hyperfine spin F = 1 of 87Rb the spin interaction is ferromagnetic, 
that is, c1 <  0.

For the experimental control parameter q > 2n|c1|, with n being the total den-
sity, the mean-field ground state is the polar state, which corresponds to all atoms 
occupying the mF = 0 state. In the range 0 < q < 2n|c1| a spin with non-vanishing 
length in the x–y plane is energetically favoured (easy-plane ferromagnet)32. This 
is the parameter regime employed in the experiment.
Experimental system. We prepare a Bose–Einstein condensate of about 70,000 
atoms in the state (F,mF) = (1, 0) in an optical dipole trap of 1,030 nm light with 
trapping frequencies ωǁ ≈ 2π × 2.2 Hz and ω⊥ ≈ 2π × 250 Hz.

The control parameter q is given by q = qB − qMW, where qB ≈ 2π × 56 Hz is the 
second-order Zeeman splitting in a magnetic field of B ≈ 0.884 G and qMW = Ω2/4δ 
is the energy shift due to the microwave dressing. For dressing33 we use a power- 
stabilized microwave generator with resonant Rabi frequency Ω ≈ 2π × 5.3 kHz 
and δ ≈ 2π × 137 kHz blue detuned with respect to the (1, 0) ↔ (2, 0) transition. 
For the spin dynamics we adjust Ω and δ so that q ≈ n|c1| (with nc1 ≈ −2π × 2 Hz). 
To monitor the long-term stability of q we do a reference measurement every 4 h 
(corresponding to about 250 experimental realizations). For this we observe spin 
dynamics for a fixed evolution time of 4 s as a function of the control parameter 
q (changing the detuning δ). Analysing the integrated side mode population we 
infer that the drifts of q are well below 0.5 Hz.
Preparation of different initial conditions. We prepare three initial conditions 
(see Fig. 4) that differ from the polar state. For initial condition 1 the control 
parameter is first set to q ≈ n|c1|+1 Hz. After 500 ms of spin dynamics at this 
value we quench to the final value q ≈ n|c1|. For the preparation of initial condition 
2 we apply a resonant π/5 radio-frequency pulse to populate the (1, ±1) states. 
After a hold time of 100 ms at a magnetic field gradient of around 0.2 µG µm−1 in 
the longitudinal trap direction we apply a second π/5 radio-frequency pulse. The 
combination of q and an inhomogeneous p during the hold time leads to a spatially 
modulated transversal spin on a length scale of λ ≈ 80 µm. For initial condition 3  

we populate homogeneously the (1, ±1) states with a short radio-frequency pulse 
such that (n+1 + n−1)/n ≈ 0.1.
Spin read-out. The spin dynamics is initiated by quenching the control parameter. 
After a fixed evolution time t we apply a short magnetic field gradient pulse (Stern–
Gerlach) in the z-direction and switch off the waveguide potential. Following a 
short time of flight (about 1 ms) we perform high-intensity absorption imaging 
with a resonant light pulse of duration 15 µs. The resolution of the imaging system  
is about 1.2 µm, corresponding to three pixels on the charge-coupled-device  
camera34; we accordingly bin the spin profiles by three pixels. As our Stern–Gerlach 
analysis is oriented in the z-direction, for the read-out of the spin in the x–y plane 
we apply, before the magnetic field gradient, a radio-frequency pulse resonant with 
the transitions (1, 0) ↔ (1, ±1).

The radio-frequency pulse can be modelled as a spin rotation described by the 
Hamiltonian Ω=H Fˆ

ŷrf rf  with resonant Rabi frequency Ωrf ≈ 2π × 17.5 kHz. 
Applying a π/2-pulse of duration 14.3 µs, the observable F̂x  is mapped to the  
measurable density difference n+1 − n−1.
Inferring the spin orientation. The double-peaked spin distributions in the  
scaling regime (see Extended Data Fig. 1) resemble a distribution of a transversal 
spin with random orientation. To extract the corresponding ensemble average 
length ⟨∣ ∣⟩⊥F  of the transversal spin and its fluctuation σ we fit a probability  
density of the form ∝ / − / | |⊥p F F F( ) 1 1 ( )x x

2 convolved with a Gaussian distri-
bution with root-mean-square σ. Under the assumption of a homogeneous  
spin length the spatial profile of the angular orientation is given by 
θ = / | |⊥y F y F( ) arcsin( ( ) )x . If the maximal amplitude is larger than σ| | −⊥F  we 
use the maximal amplitude of the single realization instead of ⟨∣ ∣⟩⊥F .
Extraction of scaling exponents. After rescaling the results of the discrete Fourier 
transform according to equation (2) we interpolate with cubic splines to obtain a 
common k-grid for all evolution times. We vary the scaling exponents α and β to min-
imize the sum of the squared relative differences of all structure factors fθ. To estimate 
the statistical error on the exponents we employ a jackknife resampling analysis35.
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Extended Data Fig. 1 | Spin distributions for all evolution times.  
a, The panels show the distributions of the transversal spin, Fx, measured 
at different evolution times as indicated. Initially, we find a narrow 
Gaussian distribution corresponding to the prepared coherent spin state. 
The excitations developing in the transversal spin lead to a double-peaked 
distribution within the interval of 2 s to 10 s. For long evolution times, 

t > 12 s, the distribution resembles a Gaussian, which is much broader 
than the initial distribution. b, The spin length and its root-mean-
square fluctuation as a function of evolution time are extracted by a fit 
(see Methods). We find a slow decay of the spin length and nearly constant 
root-mean-square fluctuations in the scaling regime.
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Extended Data Fig. 2 | Build-up of transversal spin in momentum 
space. Since the angular orientation θ cannot be extracted reliably for 
short evolution times, we choose to show the Fourier transform of the 
transversal spin for regimes 1–3 (see Fig. 1). The initial condition, all 
atoms prepared in mF = 0, is characterized by a flat distribution. There 
is a fast build-up of long-wavelength spin excitations by more than two 
orders of magnitude within the first second. This process is followed by 
a redistribution of momenta leading to the scaling form for times longer 
than 4 s.
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Extended Data Fig. 3 | Scaling of structure factor for all experimentally accessible length scales. Same data as shown in Fig. 2. a, Unscaled data.  
b, Data rescaled with the scaling exponents reported in the main text. The rescaling does not apply for large momenta, k > 0.04 µm−1.
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