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Coherent encoding of subjective spatial position in 
visual cortex and hippocampus
Aman B. Saleem1,2,5*, e. Mika Diamanti1,3,5, Julien Fournier1, Kenneth D. Harris4,6 & Matteo Carandini1,6

A major role of vision is to guide navigation, and navigation 
is strongly driven by vision1–4. Indeed, the brain’s visual and 
navigational systems are known to interact5,6, and signals related 
to position in the environment have been suggested to appear 
as early as in the visual cortex6,7. Here, to establish the nature of 
these signals, we recorded in the primary visual cortex (V1) and 
hippocampal area CA1 while mice traversed a corridor in virtual 
reality. The corridor contained identical visual landmarks in two 
positions, so that a purely visual neuron would respond similarly 
at those positions. Most V1 neurons, however, responded solely 
or more strongly to the landmarks in one position rather than the 
other. This modulation of visual responses by spatial location was 
not explained by factors such as running speed. To assess whether 
the modulation is related to navigational signals and to the animal’s 
subjective estimate of position, we trained the mice to lick for a water 

reward upon reaching a reward zone in the corridor. Neuronal 
populations in both CA1 and V1 encoded the animal’s position 
along the corridor, and the errors in their representations were 
correlated. Moreover, both representations reflected the animal’s 
subjective estimate of position, inferred from the animal’s licks, 
better than its actual position. When animals licked in a given 
location—whether correctly or incorrectly—neural populations in 
both V1 and CA1 placed the animal in the reward zone. We conclude 
that visual responses in V1 are controlled by navigational signals, 
which are coherent with those encoded in hippocampus and reflect 
the animal’s subjective position. The presence of such navigational 
signals as early as a primary sensory area suggests that they permeate 
sensory processing in the cortex.

To characterize the influence of spatial position on the responses of 
area V1, we took mice expressing the calcium indicator GCaMP6 in 
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Fig. 1 | Responses in V1 are modulated by spatial position. a, Mice 
ran on a cylindrical treadmill to navigate a virtual corridor. The corridor 
had two landmarks that repeated after 40 cm, creating visually matching 
segments (red and blue bars). b, Screenshots showing the right half of the 
corridor at pairs of positions 40 cm apart. c, Example retinotopic map of 
the cortical surface. Grey curve shows the border of V1. Squares denote 
the field of view in two-photon imaging sessions targeted to medial V1 
(inset shows the field with green frame). We analysed responses from 
neurons with receptive field centres greater than 40° azimuth (curve). 
d, Normalized response as a function of position in the corridor for six 
example V1 neurons. Dotted lines show predictions, assuming identical 
responses in matching segments of the corridor. e, Normalized response 
as a function of position, obtained from odd trials, for 4,958 V1 neurons. 

Neurons are ordered by the position of their maximum response. f, As in 
e for even trials. Curves indicate preferred position (yellow) and preferred 
position ± 40 cm (blue and red). g, Cumulative distribution of the spatial 
modulation ratio in even trials: response at non-preferred position (40 cm 
from peak response) divided by response at preferred position for cells 
with responses within the visually matching segments (median ± m.a.d., 
0.61 ± 0.31; significantly less than 1, P < 10−104, n = 2,422, Wilcoxon two-
sided signed rank test). h, As in g, stratifying the data by running speed 
and considering a model without spatial selectivity, the non-spatial model. 
The curves corresponding to low (cyan) and high (purple) speeds overlap 
and appear as a single dashed curve (P = 0.21, Wilcoxon two-sided signed 
rank test). Grey curve, spatial modulation ratios from a non-spatial model 
considering visual and behavioural factors (Extended Data Fig. 7).
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excitatory cells and placed them in a corridor in virtual reality (Fig. 1a). 
The corridor had a pair of landmarks (a grating and a plaid) that 
repeated twice, thus creating two visually matching segments 40 cm 
apart (Fig. 1a, b; Extended Data Fig. 1). We identified V1 using the 
retinotopic map measured using wide-field imaging (Fig. 1c). We then 
used a two-photon microscope to view medial V1, focusing our analysis 
on neurons with receptive field centres more lateral than 40° azimuth 
(Fig. 1c), which were driven as the mouse passed the landmarks. As 
expected, given the repetition of visual scenes in the two segments of 
the corridor, some V1 neurons had a response profile with two equal 
peaks 40 cm apart (Fig. 1d). Other V1 neurons, however, responded  
differently to the same visual stimuli in the two segments (Fig. 1d). These 
results indicate that visual activity in V1 can be strongly modulated  
by an animal’s position in an environment.

This modulation of visual responses by spatial position occurred in 
the majority of V1 neurons (Fig. 1e–g). We imaged 8,610 V1 neurons 
across 18 sessions in 4 mice and selected 4,958 neurons with receptive 
field centres beyond 40° azimuth and reliable firing along the corridor 
(see Methods). We divided the trials in half, and used the odd-numbered  
trials to find the position at which each neuron fired maximally. The 
resulting representation reveals a striking preference of V1 neurons 
for spatial position (Fig. 1e), with most neurons giving stronger 
responses in one position (preferred position) than in the visually  
matching position 40 cm away (non-preferred position). To avoid  
circularity, we quantified this preference on the other half of the data 
(the even-numbered trials) and found that the preference for position 
was robust (Fig. 1f). Indeed, among the neurons that responded when 
the mouse traversed the visually matching segments (n = 2,422), the 
responses at the non-preferred position were markedly smaller than 
at the preferred position (Fig. 1g; Extended Data Fig. 2). We defined 
a spatial modulation ratio for each cell as the ratio of responses at the 
two visually matching positions (non-preferred/preferred, in the even  
trials). The median spatial modulation ratio was 0.61 ± 0.31 ( ± median 

absolute deviation, m.a.d.), significantly less than 1 (P < 10−104, 
Wilcoxon two-sided signed rank test). Neurons preferred the first or 
second sections in similar proportions (49% versus 51%), making it 
unlikely that a global factor such as visual adaptation could explain 
their preference.

The modulation of V1 responses by spatial position could not be 
explained by visual factors. To confirm that the receptive fields of most 
neurons saw similar stimuli in the two visually matching locations, we 
ran a model of receptive field responses (a simulation of V1 complex 
cells) on the sequences of images. As expected, this model generated 
spatial modulation ratios close to 1 (0.97 ± 0.17, Extended Data Fig. 3). 
We next asked whether the different responses seen in the two locations 
could be due to differences in images far outside the receptive field, 
particularly the end (grey) wall of the corridor. To test this, we placed 
two additional mice in a modified virtual reality environment, in which 
the two sections of the corridor were pixel-to-pixel identical (Extended 
Data Fig. 4). The spatial modulation ratio was again overwhelmingly 
less than 1 (0.62 ± 0.26; P < 10−81; n = 1,044 neurons), confirming that 
spatial modulation of V1 responses could not be explained by distant 
visual cues.

Spatial modulation of V1 responses could also not be explained by 
running speed, deviations in pupil position and diameter, or reward. 
Given that V1 neurons are influenced by running speed and visual 
speed8,9, their different responses in visually matching segments of the 
corridor could reflect speed differences. To control for this, we stratified  
the data according to three running speed ranges (low, medium, or high; 
Extended Data Fig. 5). Even within a group (medium speed), the spatial 
modulation ratio was substantially below 1 (0.47 ± 0.22; P < 10−33). 
Moreover, the spatial ratio of responses was identical at low and high 
speeds (Fig. 1h). We could also exclude a role of reward or deviations 
in pupil position and size, as the spatial modulation ratio was markedly  
below 1 even in sessions during which the animals ran without  
a reward (0.57 ± 0.37; P < 10−14), or when there were no changes in pupil 
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Fig. 2 | V1 and CA1 neural populations represent spatial positions 
in the virtual corridor and make correlated errors. a, Example of 
reconstructed electrode tracks (red: DiI); green shows cells labelled with 
DAPI. Panel shows tracks from one array (four shanks) in CA1, and a 
second electrode (one shank) in V1. b, In the task, water was delivered 
when mice licked in a reward zone (green area). c, Normalized activity 
as a function of position in the corridor, for 226 V1 neurons (8 sessions). 
Neurons are ordered by the position of their maximum response. Curves 
indicate preferred position (yellow) and preferred position ± 40 cm (blue 
and red). d, Similar plot for CA1 place cells (334 neurons; 8 sessions). 
e, Density map showing the distribution of position decoded from the 
activity of simultaneously recorded V1 neurons (y-axis) as a function of 
the animal’s position (x-axis), averaged across recording sessions (n = 8), 

and considering only correct trials. The red diagonal stripe indicates 
accurate estimation of position. f, Similar plot for CA1 neurons. g, Density 
map showing the joint distribution of position decoding errors from V1 
and CA1 in one example session at one position (74 cm; left), together with 
a similar analysis on data shuffled while preserving the correlation due 
to running speed and position (right). h, Pearson’s correlation coefficient 
of decoding errors in V1 and CA1 for each recording session (n = 3,800; 
21,000 time points), against similar analysis of shuffled data. Correlations 
are above shuffling control (P = 0.0115, two-sided t-test, n = 8 sessions).  
i, Difference between joint distribution of V1 and CA1 decoded position 
and shuffled control, for the example in g. j, Difference between joint 
density map of V1 and CA1 decoded position, and shuffled control, 
averaged across positions (n = 50) and sessions (n = 8).
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size (0.63 ± 0.33, P < 10−45) or pupil position (0.63 ± 0.33, P < 10−27; 
Extended Data Fig. 6). To assess the joint contribution of visual, task- 
related, and position variables, we developed three prediction models 
(Extended Data Fig. 7). The first depended only on the visual scenes, 
which repeat twice, and on trial onset and offset, which introduce  
transients (visual model). The second additionally depended on  
running speed, reward times, pupil size, and eye position (non-spatial  

model). The third, in addition, allowed responses to differ in amplitude  
in the matching segments (spatial model). Only the last model could 
fit the activity of cells with unequal peaks, thus matching the spatial 
modulation ratios seen in the data (Extended Data Fig. 7c, d). By  
contrast, the first two models predicted spatial modulation ratios closer 
to 1 (Fig. 1h; Extended Data Fig. 7c, d).

Having established that V1 responses are modulated by spatial position,  
we next investigated whether the underlying modulatory signals reflect 
the spatial position encoded in the brain’s navigational systems (Fig. 2). 
We recorded simultaneously from V1 and hippocampal area CA1 using 
two 32-channel electrodes (Fig. 2a). To gauge a mouse’s estimate of 
position, we trained the mice to lick a spout for water reward upon 
reaching a specific region of the corridor (Fig. 2b; Supplementary 
Video 1; Extended Data Fig. 8). All four mice (wild type) learned to 
perform this task with more than 80% accuracy and relied strongly on 
vision: performance persisted when we changed the gain relating wheel 
rotation to progression in the corridor3,10 and performance decreased 
when we lowered visual contrast (Extended Data Fig. 8).

Many neurons in both visual cortex and hippocampus had place- 
specific response profiles, thus encoding the mouse’s spatial position 
(Fig. 2c–f). Consistent with our observations from two-photon imaging,  
V1 neurons responded more strongly in one of the two visually matching  
segments of the corridor (Fig. 2c, Extended Data Fig. 9c). In turn,  
hippocampal CA1 neurons exhibited place fields3,10,11, responding in a 
single corridor location (Fig. 2d, Extended Data Fig. 9a–c). Therefore, 
responses in both V1 and CA1 encoded the position of the mouse in 
the environment, with no ambiguity between the two visually matching  
segments. Indeed, an independent Bayes decoder was able to read 
out the mouse’s position from the activity of neurons recorded from 
V1 (33 ± 17 neurons per session, n = 8 sessions; Fig. 2e) or from CA1 
(42 ± 20 neurons per session, n = 8 sessions; Fig. 2f).

Furthermore, when the visual cortex and hippocampus made errors 
in estimating the mouse’s position, these errors were correlated with 
each other (Fig. 2g, h). The distributions of errors in position decoded 
from V1 and CA1 peaked at zero (Fig. 2g) but were significantly  
correlated (Fig. 2h; ρ = 0.125, P = 0.0129, two-sided t-test, n = 8). In 
principle, this correlation could arise from a common modulation 
of both regions by behavioural factors such as running speed, which 
affects responses of both visual cortex8,9 and hippocampus12–14. To 
isolate the effect of speed, we shuffled the data between time points 
while preserving the relationship between speed and position 
(see Supplementary Methods). After shuffling, the correlation between 
decoding errors in V1 and CA1 decreased substantially from 0.125 
to 0.022 (P = 0.0115; Fig. 2g, h). Moreover, when we subtracted the 
shuffled distribution from the original joint distributions, the residual  
decoding errors were distributed along the diagonal (Fig. 2i, j),  
indicating that representations in V1 and CA1 are more correlated than 
expected from common speed modulation. This correlation could also 
not be explained by common encoding of behavioural factors such as 
licking (Extended Data Fig. 9d–f). Indeed, a prediction of V1-encoded 
position from all external variables (true position, running speed, licks 
and rewards) could still be improved by the position decoded from CA1 
activity (Extended Data Fig. 10).

We next tested whether the spatial position encoded by V1 and 
CA1 relates to the mouse’s subjective estimate of position (Fig. 3a–f). 
CA1 activity is influenced by the performance of navigation tasks15–18, 
and may reflect the animal’s subjective position more than its actual  
position15,17,19. We assessed a mouse’s subjective estimate of position 
from the location of its licks. We divided trials into three groups: early 
trials, in which too many licks (usually 4–6) occurred before the reward 
zone, causing the trial to be aborted; correct trials, during which one 
or more licks occurred in the reward zone; and late trials, in which the 
mouse missed the reward zone and licked afterwards. To understand 
how spatial representations in V1 and CA1 related to this behaviour, 
we trained the Bayesian decoder on the activity measured in correct 
trials, and analyzed the likelihood of decoding different positions in 
the three types of trial. Decoding performance in early and late trials 
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the V1 population, as a function of the animal’s actual position, on trials in 
which mice licked early. The decoder was trained on separate trials during 
which mice licked in the correct position. b, Same plot for trials during 
which mice licked late. c, The average decoded probability that the mouse 
is in the reward zone, as a function of distance from the reward. The curve 
for early trials (red) peaks before the reward zone, whereas the curve 
for late trials (blue) peaks after it, consistent with V1 activity reflecting 
subjective position rather than actual position. Probabilities were 
normalized relative to the probability of being in the reward zone in the 
correct trials (green). Red dots, positions at which the decoded probability 
of being in the reward zone differed significantly between early and correct 
trials (P < 0.05, two-sample two-sided t-test). Blue dots: same, for correct 
versus late trials. Shaded regions indicate mean ± s.e.m., n = 68 early trials 
(red), 334 correct trials (green), and 30 late trials (blue). d–f, Same as a–c, 
for decoding using the population of CA1 neurons. g, Position decoded 
from V1 activity as a function of mouse position, in an example session. 
Crosses show positions when the animal licked during early (red) or late 
trials (blue). Late trials can include some early licks. These distributions 
(mean ± s.d.) are summarized as shaded ovals for early trials (red, n = 20 
licks) and late trials (blue, n = 12 licks). Green regions mark the reward 
zone. h, Summary distributions for all sessions (n = 8). i, Fraction of licks 
as a function of distance from reward location in positions decoded from 
V1 activity. j–l, Same as in g–i, for CA1 neurons.
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showed systematic deviations: in early trials, V1 and CA1 overestimated 
the animal’s progress along the corridor (deviation above the diagonal,  
Fig. 3a, d), whereas in late trials they underestimated it (deviation 
below the diagonal, Fig. 3b, e). Accordingly, the probability of being in 
the reward zone, predicted from both CA1 and V1, peaked before the 
reward zone in early trials and after it in late trials (Fig. 3c, f). These 
consistent deviations suggest that the representations of position in V1 
and CA1 correlate with the animal’s decisions to lick and thus reflect 
its subjective estimate of position.

The licks provide an opportunity to gauge when the mouse’s  
subjective estimate of position lies in the reward zone. If activity in V1 
and CA1 reflects subjective position, it should place the animal in the 
reward zone whether the animal correctly licked in that zone or incor-
rectly licked earlier or later. To test this prediction, we decoded activity in 
V1 and CA1 at the time of licks. By definition, the distributions of licks 
in early, correct, and late trials were spatially distinct (Fig. 3g, h, j, k).  
However, when plotted as a function of decoded position, these distri-
butions came into register over the reward zone, whether the decoding 
was done from V1 (Fig. 3g–i) or from CA1 (Fig. 3j–l). Thus, regardless 
of the animal’s position, when a mouse licked for a reward, the activity 
of both V1 and CA1 indicated a position in the reward zone.

Together, these results indicate that visual responses in V1 are 
modulated by the same spatial signals as those represented in the  
hippocampus, and that these signals reflect the animal’s subjective  
estimate of position. This modulation may become stronger as environ-
ments become familiar6,7, perhaps contributing to the changes observed 
in V1 as animals learn behavioural tasks20–22. The correlation between 
representations in V1 and CA1 may be due to feed-forward signals 
from vision or feedback signals from navigational systems. Although 
V1 and CA1 are not directly connected, they could share spatial signals 
through indirect connections23,24; these could involve the retrosplenial, 
parietal, entorhinal, or prefrontal cortices, which are known to carry 
spatial information25,26. Further insights into the nature of these signals 
could be obtained by modulating the relationship between actual posi-
tion and distance run3,10 or time27, and by investigating more natural 
2D environments28–30. In such environments, however, it would be  
difficult to control and repeat visual stimulation, which proved essential  
in our study. Our results show that signals related to an animal’s own 
estimate of position appear as early as in primary sensory cortex. 
This observation suggests that the mouse cortex does not keep a firm  
distinction between navigational and sensory systems; rather, spatial 
signals may permeate cortical processing.

Online content
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MEthodS
All experiments were conducted according to the UK Animals (Scientific 
Procedures) Act, 1986 under personal and project licenses issued by the Home 
Office following ethical review.

For simultaneous recordings in V1 and CA1, we used four C57BL/6 mice 
(all male, implanted at 4–8 weeks of age). For calcium imaging experiments, we 
used double or triple transgenic mice expressing GCaMP6 in excitatory neurons 
(5 females, 1 male, implanted at 4–10 weeks of age). The triple transgenic mice 
expressed GCaMP6 fast31(Emx1-Cre;Camk2a-tTA;Ai93, 3 mice). The double 
transgenic mice expressed GCaMP6 slow32 (Camk2a-tTA;tetO-G6s, 3 mice). 
Because Ai93 mice may exhibit aberrant cortical activity33, we used the GCamp6 
slow mice to validate the results obtained from the GCaMP6 fast mice. Additional 
tests33 confirmed that none of these mice displayed the aberrant activity that is 
sometimes seen in Ai93 mice. No randomization or blinding was performed in this 
study. No statistical methods were used to predetermine sample size.
Virtual environment and task. The virtual reality environment was a corridor 
adorned with a white noise background and four landmarks: two grating stimuli 
oriented orthogonal to the corridor and two plaid stimuli (Fig. 1a). The corridor 
dimensions were 100 × 8 × 8 cm, and the landmarks (8 cm wide) were centred  
20, 40, 60 and 80 cm from the start of the corridor. The mice navigated the  
environment by walking on a custom-made polystyrene wheel (15 cm wide, 18 cm 
diameter). Movements of the wheel were captured by a rotary encoder (2,400 pulses 
per rotation, Kübler, Germany), and used to control the virtual reality environment 
presented on three monitors surrounding the animal, as previously described9. 
When the mouse reached the end of the corridor, it was placed back at the start 
of the corridor after a 3–5-s presentation of a grey screen. Trials longer than 120 s 
were timed out and were excluded from further analysis.

Mice used for simultaneous V1 and CA1 recordings (n = 4 animals, 8 sessions) 
were trained to lick in a specific region of the corridor, the reward zone. This 
zone was centred at 70 cm and was 8 cm wide. Trials in which the animals were 
not engaged in the task, that is, when they ran through the environment without 
licking, were excluded from further analysis. The animal was rewarded for cor-
rect licks with ~2 μl water using a solenoid valve (161T010; Neptune Research, 
USA), and licks were monitored using a custom device that detected breaks in 
an infrared beam.

Mice used for calcium imaging (n = 6 animals, 25 recording sessions) ran the 
two versions of the virtual corridor, with no specific task.

In the standard version of the corridor, two of the mice (10 sessions) were moti-
vated to run with water rewards: one mouse received rewards at random positions 
along the corridor and the other at the end of the corridor. To control for the 
effect of the reward on V1 responses, no reward was delivered to two other mice 
( 8 sessions).

To ensure that the spatial modulation of V1 responses could not be explained 
by the end wall of the corridor being more visible in the second half than in the 
first half, two additional mice used for calcium imaging were trained in a modified 
version of the corridor, where visual scenes were strictly identical 40 cm apart  
(7 sessions). In this environment, mice ran the same distance as before (100 cm) and 
were also placed back at the start of the corridor after a 3–5-s presentation of a grey 
screen. The same four landmarks were also centred in the same positions as before. 
However, the corridor was extended to 200 cm length, repeating the same sequence 
of landmarks (Extended Data Fig. 4). The virtual reality software was modified 
to render only up to 70 cm ahead of the animal, ensuring the visual scenes were 
strictly identical in the sections between 10 and 50 cm and 50 and 90 cm; the white 
noise background also repeated with the same 40 cm periodicity. Prior to recording  
in the 200 cm corridor, mice were first exposed to 5 sessions in the 100 cm  
corridor, then placed in the 200 cm corridor and allowed to habituate to the new 
environment for another two or three sessions before the start of recordings.
Surgery and training. The surgical methods are similar to those described previ-
ously9,34. In brief, a custom head-plate with a circular chamber (3–4 mm diameter 
for electrophysiology; 8 mm for imaging) was implanted on 4–10-week-old mice 
under isoflurane anaesthesia. For imaging, we performed a 4-mm craniotomy over 
the left visual cortex by repeatedly rotating a biopsy punch. The craniotomy was 
shielded with a double coverslip (4 mm inner diameter; 5 mm outer diameter). 
After 4 days of recovery, some mice were water restricted (>40 ml/kg/day) and 
were trained for 30–60 min, 5–7 days/week.

Mice used for simultaneous V1 and CA1 recordings were trained to lick selec-
tively in the reward zone using a progressive training procedure. Initially, the animals  
were rewarded for running past the reward location on all trials. After this, we 
introduced trials in which the mouse was rewarded only when it licked in the 
rewarded region of the corridor. The width of the reward region was progressively 
narrowed from 30 cm to 8 cm across successive days of training. To prevent the 
animals from licking all across the corridor, trials were terminated early if the 
animal licked more than a certain number of times before the rewarded region. We 
reduced this number as the animals performed more accurately, typically reaching 

a level of 4–6 licks by the time recordings were made. Once a sufficient level of 
performance was reached, we controlled on some (random) trials that the animal 
performed the task visually by measuring the performance when we decreased 
visual contrast or changed the distance to the reward zone (Extended Data Fig. 8). 
Training was carried out for 3–5 weeks. Animals were kept under light-shifted 
conditions (9 a.m. light off, 9 p.m. light on) and experiments were performed 
during the day.
Widefield calcium imaging. For widefield imaging we used a standard epi- 
illumination imaging system35,36 together with an SCMOS camera (pco.edge, PCO 
AG). A Leica 1.6× Plan APO objective was placed above the imaging window and 
a custom black cone surrounding the objective was fixed on top of the headplate to 
prevent contamination from the monitors’ light. The excitation light beam emitted 
by a high-power LED (465 nm LEX2-B, Brain Vision) was directed onto the imaging  
window by a dichroic mirror designed to reflect blue light. Emitted fluorescence 
passed through the same dichroic mirror and was then selectively transmitted by 
an emission filter (FF01-543/50-25, Semrock) before being focused by another  
objective (Leica 1.0 Plan APO objective) and finally detected by the camera.  
Images of 200 × 180 pixels, corresponding to an area of 6.0 × 5.4 mm, were 
acquired at 50 Hz.

To measure retinotopy we presented a 14° wide vertical window containing a 
vertical grating (spatial frequency 0.15 cycles per degree), and swept37,38 the hori-
zontal position of the window over 135° of azimuth angle, at a frequency of 2 Hz. 
Stimuli lasted 4 s and were repeated 20 times (10 in each direction). We obtained 
maps for preferred azimuth by combining responses to the two stimuli moving in 
opposite directions, as previously described37.
Two-photon imaging. Two-photon imaging was performed with a standard  
multiphoton imaging system (Bergamo II; Thorlabs) controlled by ScanImage439. 
A 970 nm laser beam, emitted by a Ti:sapphire laser (Chameleon Vision, Coherent), 
was targeted onto L2/3 neurons through a 16× water-immersion objective (0.8 NA, 
Nikon). The fluorescence signal was transmitted by a dichroic beamsplitter and 
amplified by photomultiplier tubes (GaAsP, Hamamatsu). The emission light path 
between the focal plane and the objective was shielded with a custom-made plastic 
cone, to prevent contamination from the monitors’ light. In each experiment, we 
imaged four planes set apart by 40 μm. Multiple-plane imaging was enabled by a 
piezo focusing device (P-725.4CA PIFOC, Physik Instrumente), and an electro- 
optical modulator (M350-80LA, Conoptics Inc.), which allowed us to adjust the 
laser power with depth. Images of 512 × 512 pixels, corresponding to a field of 
view of 500 × 500 μm, were acquired at a frame rate of 30 Hz (7.5 Hz per plane).

Pre-processing of raw imaging movies was done using the Suite2p pipeline40 and 
involved: 1) image registration to correct for brain movement; 2) ROI extraction 
(that is, cell detection); and 3) correction for neuropil contamination. For neuropil 
correction, we used an established method41,42. We used Suite2p to determine a 
mask surrounding each cell’s soma, the ‘neuropil mask’. The inner diameter of the 
mask was 3 μm and the outer diameter was <45 μm. For each cell we obtained a 
correction factor, α, by regressing the binned neuropil signal (20 bins in total) from 
the fifth percentile of the raw binned cell signal. For a given session, we obtained 
the average correction factor across cells. This average factor was used to obtain 
the corrected individual cell traces, from the raw cell traces and the neuropil signal,  
assuming a linear relationship. All correction factors fell between 0.7 and 0.9.

To manually curate the output of Suite2p, we used two criteria: one anatomical 
and one activity-dependent. One of the anatomical criteria in Suite2p is ‘area’, that 
is, mean distance of pixels from ROI centre, normalized to the same measure for a 
perfect disk. We used this criterion (area <1.04) to exclude ROIs that were likely 
to correspond to dendrites rather than somata. The activity-related criterion is the 
standard deviation of the cell trace, normalized to the standard deviation of the 
neuropil trace. We used this criterion to exclude ROIs whose activity was too small 
relative to the corresponding neuropil signal (typically with std(neuropil corrected 
trace)/std(neuropil signal) < 2). We finally excluded cells that fired extremely  
seldom (once or twice within a 20 min session).
Pupil tracking. We tracked the eye of the animal using an infrared camera (DMK 
21BU04.H, Imaging Source) and a zoom lens (MVL7000, Navitar) at 25 Hz. Pupil 
position and size were calculated by fitting an ellipsoid to the pupil for each frame 
using a custom software. X and Y positions of the pupil were derived from the 
centre of mass of the fitted ellipsoid.
Electrophysiological recordings. On the day before the first recording session, 
we made two 1-mm craniotomies, one over CA1 (1.0 mm lateral, 2.0 mm anterior 
from lambda), and a second one over V1 (2.5 mm lateral, 0.5 mm anterior from 
lambda). We covered the chamber using KwikCast (World Precision Instruments) 
and the mice were allowed to recover overnight. The CA1 probe was lowered 
until all shanks were in the pyramidal layer, which was identified by the increase 
in theta power (5–8 Hz) of the local field potential and an increase in the number 
of detected units. The V1 probe was lowered to a depth of ~800 μm. We waited 
~30 min for the tissue to settle before starting the recordings. In two mice, we 
dipped the probes in red-fluorescent DiI (Fig. 2a). In these mice, we had only 
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one recording session. The other two mice underwent two and four recording 
sessions, respectively.

Offline spike sorting was carried out using the KlustaSuite43 package, with auto-
mated spike sorting using KlustaKwik44, followed by manual refinement using 
KlustaViewa43. Hippocampal interneurons were identified by their spike time auto-
correlation and excluded from further analysis. Only time points with running 
speeds greater than 5 cm/s were included in further analyses.
Data analysis and modelling methods. See Supplementary Methods for details 
of analysis and models.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. The custom code from this study is available from the corre-
sponding author upon reasonable request.
Data availability. The data from this study are available from the corresponding 
author upon reasonable request.
 
 31. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors 

and effectors with high specificity and performance. Neuron 85, 942–958 
(2015).

 32. Wekselblatt, J. B., Flister, E. D., Piscopo, D. M. & Niell, C. M. Large-scale imaging 
of cortical dynamics during sensory perception and behavior. J. Neurophysiol. 
115, 2852–2866 (2016).

 33. Steinmetz, N. A. et al. Aberrant cortical activity in multiple GCaMP6-expressing 
transgenic mouse lines. eNeuro https://doi.org/10.1523/
ENEURO.0207-17.2017 (2017).

 34. Ayaz, A., Saleem, A. B., Schölvinck, M. L. & Carandini, M. Locomotion  
controls spatial integration in mouse visual cortex. Curr. Biol. 23, 890–894 
(2013).

 35. Ratzlaff, E. H. & Grinvald, A. A tandem-lens epifluorescence macroscope: 
hundred-fold brightness advantage for wide-field imaging. J. Neurosci. Methods 
36, 127–137 (1991).

 36. Carandini, M. et al. Imaging the awake visual cortex with a genetically encoded 
voltage indicator. J. Neurosci. 35, 53–63 (2015).

 37. Kalatsky, V. A. & Stryker, M. P. New paradigm for optical imaging: temporally 
encoded maps of intrinsic signal. Neuron 38, 529–545 (2003).

 38. Yang, Z., Heeger, D. J. & Seidemann, E. Rapid and precise retinotopic mapping 
of the visual cortex obtained by voltage-sensitive dye imaging in the behaving 
monkey. J. Neurophysiol. 98, 1002–1014 (2007).

 39. Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for 
operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

 40. Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon 
microscopy. Preprint at https://www.biorxiv.org/content/
early/2017/07/20/061507 (2016).

 41. Peron, S. P., Freeman, J., Iyer, V., Guo, C. & Svoboda, K. A cellular resolution 
map of barrel cortex activity during tactile behavior. Neuron 86, 783–799 
(2015).

 42. Dipoppa, M. et al. Vision and locomotion shape the interactions between 
neuron types in mouse visual cortex. Neuron 98, 602–615.e8 (2018).

 43. Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 
19, 634–641 (2016).

 44. Kadir, S. N., Goodman, D. F. M. & Harris, K. D. High-dimensional cluster  
analysis with the masked EM algorithm. Neural Comput. 26, 2379–2394 
(2014).

© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1523/ENEURO.0207-17.2017
https://doi.org/10.1523/ENEURO.0207-17.2017
https://www.biorxiv.org/content/early/2017/07/20/061507
https://www.biorxiv.org/content/early/2017/07/20/061507


LetterreSeArCH

Extended Data Fig. 1 | Design of virtual environment with two 
visually matching segments. a, The virtual corridor had four prominent 
landmarks. Two visual patterns (grating and plaid) were repeated at two 
positions, 40 cm apart, to create two visually matching segments in the 
room, from 10 cm to 50 cm and from 50 cm to 90 cm (red and blue bars 
in the left panel), as illustrated in the right panel. b, Example screenshots 
of the right visual field displayed in the environment when the animal 
is at different positions. Each row displays screen images at positions 
approximately 40 cm apart.
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Extended Data Fig. 2 | Spatial averaging of visual cortical activity 
confirms the difference in response between visually matching 
locations. a, Mean response of V1 neurons as a function of the distance 
from the peak response location (2,422 cells with peak response between 
15 and 85 cm along the corridor). To ensure that the average captured 
reliable, spatially specific responses, the peak response location for each 
cell was estimated only from odd trials, whereas the mean response was 
computed only from even trials. b, Population average of responses shown 
in a. Lower values of the side peaks compared to central peak indicate 
strong preference of V1 neurons for one segment of the corridor over the 
other visually matching segment (40 cm from peak response).

© 2018 Springer Nature Limited. All rights reserved.



LetterreSeArCH

Extended Data Fig. 3 | Simulation of purely visual responses to 
position in VR. a–f, Responses of six simulated neurons with purely 
visual responses, produced by a complex cell model with varying spatial 
frequency, orientation, or receptive field location. The images on the left 
of each panel show the quadrature pair of complex cell filters; traces on 
the right show the cell’s simulated response as a function of position in 
the virtual environment. Simulation parameters matched those that are 
commonly observed in mouse V1 (spatial frequency: 0.04, 0.05, 0.06 or 
0.07 cycles per degree; orientation: uniform between 0° and 179° but with 

twice as many cells for cardinal orientations; receptive field positions 40°, 
50°, 70° and 80°, similar to the V1 neurons we considered for analysis. In 
rare cases (as in f) when the receptive fields do not match the features of 
the environment, there is little selectivity along the corridor. These cases 
lead to lower spatial modulation ratios. g, The spatial modulation ratios 
calculated for the complex cell simulations are close to 1 (0.97 ± 0.17), and 
different from the ratios calculated for V1 neurons. Black curve is the same 
as in Fig  1g.
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Extended Data Fig. 4 | The spatial modulation of V1 responses is not 
due to end-of-corridor visual cues. a, Diagram of the 200-cm virtual 
corridor, containing the same grating and plaid as the regular corridor, 
repeated four times instead of twice. b, Visual scenes from locations 
within the first 100 cm of the extended corridor, separated by 40 cm, are 
visually (pixel-to-pixel) identical. c, Cumulative distribution of the spatial 
modulation ratio across the two mice that were placed in the long corridor 

(7 sessions, 2 mice; median ± m.a.d: 0.62 ± 0.26; 1,044 neurons, black 
line). Grey line shows the spatial modulation ratio predicted by the non-
spatial model (which predicts activity from the visual scene, trial onset 
and offset, speed, reward, pupil size and displacement from the central 
position of the eye; see Extended Data Fig. 7, non-spatial model). The two 
distributions are significantly different (two-sided Wilcoxon rank sum 
test; P < 10−14).
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Extended Data Fig. 5 | The spatial modulation of V1 responses cannot 
be explained by speed. a, Speed–position plots for all single-trial 
trajectories in three example recording sessions. b, Response profile of 
example V1 cells in each session as a function of position in the corridor, 

stratified for three speed ranges corresponding to the shading bands in 
a. c, Two-dimensional response profiles of the same example neurons 
showing activity as a function of position and running speed for speeds 
higher than 1 cm s−1.
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Extended Data Fig. 6 | The spatial modulation of V1 responses cannot 
be explained by reward, pupil position or diameter. a, Normalized 
response as a function of position in the virtual corridor, for sessions 
without reward (1,173 neurons). Data come from two out of four mice 
that ran the environment without reward (8 sessions, 2 mice). Responses 
in even trials (right) are ordered according to the position of maximum 
activity measured in odd trials (left). b, Distribution of spatial modulation 
ratio for unrewarded sessions (8 sessions; median ± m.a.d. = 0.57 ± 0.37; 
cyan) and for modelled ratios obtained from the non-spatial model on 
the same sessions (black, see Extended Data Fig. 7). The two distributions 
are significantly different (two-sided Wilcoxon rank sum test; P < 10−8). 
c, Pupil position as a function of location in the virtual corridor, for 
an example session with steady eye position. Sessions with steady eye 
positions were defined as those with no significant difference in eye 

positions between visually matching positions 40 cm apart (with unpaired 
t-test, P < 0.01). Thin red curves: position trajectories on individual trials; 
thick curves, average. Top and bottom panels: x and y coordinates of the 
pupil, respectively. d, Distribution of spatial modulation ratio for sessions 
with steady eye position (10 sessions; median ± m.a.d. = 0.63 ± 0.33; 1,154 
neurons, red) and for modelled ratios obtained from the non-spatial 
model on the same sessions (black). The two distributions are significantly 
different (two-sided Wilcoxon rank sum test; P < 10−14). e, Pupil size as a 
function of position for an example session with steady pupil size.  
f, Distribution of spatial modulation ratio for sessions with steady pupil 
size (5 sessions; median ± m.a.d. = 0.63 ± 0.33; 1,069 neurons, red) and for 
modelled ratios obtained from the non-spatial model on the same sessions 
(black). The two distributions are significantly different (two-sided 
Wilcoxon rank sum test; P < 10−13).
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Extended Data Fig. 7 | Observed values of spatial modulation ratio 
can be modelled only using spatial position. a, b, We constructed three 
models to predict the activity of individual V1 neurons from successively 
larger sets of predictor variables. In the simplest, the visual model, 
activity is required to depend only on the visual scene visible from the 
mouse’s current location, and is thus constrained to be a function of 
space that repeats in the visually matching section of the corridor. The 
second, non-spatial model, also includes modulation by behavioural 
factors that can differ within and across trials: speed, reward times, 
pupil size, and eye position. Because these variables can differ between 
the first and second halves of the track, modelled responses need no 
longer be exactly symmetrical; however, this model does not explicitly 
use space as a predictor. The final, spatial model, extends the previous 
model by also allowing responses to the two matching segments to vary 
in amplitude, thereby explicitly including space as a predictor. Example 

single-trial predictions are shown as a function of time in a, together with 
measured fluorescence. Spatial profiles derived from these predictions 
are shown in b. c, Cumulative distributions of spatial modulation ratio 
for the three models (purple). For comparison, the black curve shows 
the ratio of peaks derived from the data (even trials) (median ± m.a.d: 
visual model, 0.99 ± 0.03; P < 10−40, two-sided Wilcoxon rank sum test; 
non-spatial model, 0.83 ± 0.18; P < 10−40; spatial model, 0.60 ± 0.27; 
P = 0.09, n = 2,422 neurons). d, Measured spatial modulation ratio versus 
predictions of the three models. Each point represents a cell; red ellipse 
represents best fit Gaussian, dotted line measures its slope. The purely 
visual model (top) does poorly, and is improved only slightly by adding 
predictions from speed, reward, pupil size, and eye position (middle). 
Adding an explicit prediction from space provides a much better match to 
the data (bottom). r, Pearson’s correlation coefficient, n = 2,422 neurons;  
θ, orientation of the major axis of the fitted ellipsoid.

© 2018 Springer Nature Limited. All rights reserved.



Letter reSeArCH

Extended Data Fig. 8 | Behavioural performance in the task. 
 a, Illustration of the virtual reality environment with four prominent 
landmarks, a reward zone, and the zones that define trial types: early, 
correct and late. b, Percentage of trials during which the animal makes 
behavioural errors, by licking either too early or too late at three different 
contrast levels: 18% (low), 60% (medium) or 72% (high). c, Illustration 
of performance on all trials of one example recording session. Each row 
represents a trial, black dots represent positions where the animal licked, 
and cyan dots indicate the delivery of a water reward. Coloured bars 
indicate the outcome of the trial (red, early; green, correct; blue, late).  
d–f, Successful performance relies on vision. d, The mouse did not lick 
when the room was presented at zero contrast. e, On some trials, we 
changed the gain between the animals’ physical movement and movement 
in the virtual environment, thus changing the distance to the reward zone 
(high gain resulting in shorter distance), while visual cues remained in 
the same place. When plotted as a function of the distance run, the licks 
of the animal shifted, indicating that the animal was not relying simply on 
the distance travelled from the beginning of the corridor. f, If the position 
of the visual cues was shifted forward or back (high or low room length 
(RL)), the lick position shifted accordingly, indicating that the animals 
relied on vision to perform the task.

© 2018 Springer Nature Limited. All rights reserved.



LetterreSeArCH

Extended Data Fig. 9 | Comparison of response properties between 
V1 and CA1 neurons and correlation of V1 and CA1 errors in the two 
halves of the environment. a, Cumulative distribution of the stability of 
V1 and CA1 response profiles. Tuning stability (the stability of responses) 
was computed as the correlation between the spatial responses measured 
from the first half and the second half of the trials. V1 and CA1 responses 
were highly stable within each recording session: the tuning stability was 
>0.7 for more than 60% of neurons in both V1 and CA1. b, Cumulative 
distribution of the Skaggs information (bits per spike) carried by V1 and 
CA1 neurons. Note that while V1 and CA1 neurons had comparable 
amounts of spatial information, this does not suggest that V1 represents 
space as strongly as CA1, because the Skaggs information metric mixes 
the influences of vision and spatial modulation. c, Normalized firing rate 
averaged across V1 or CA1 neurons as a function of distance from the 
peak response (similar to Extended Data Fig. 2b). Unlike CA1, the mean 

response averaged from V1 neurons shows a second peak at ±40 cm, 
consistent with the repetition of the visual scene. d, e, Pearson’s correlation 
between position errors estimated from V1 and CA1 populations in the 
first half of the corridor (shown in d). Each point represents a behavioural 
session (n = 8 sessions); x-axis values represent measured correlations; 
y-axis values represent correlations calculated after having shuffled the 
data within the times where the speed was similar (similar to Fig. 2h). The 
occurrence of error correlations in the unshuffled data indicates that these 
correlations are not due to rewards (which did not occur in this half of the 
maze) or licks (which were rare, and the 100-ms periods surrounding the 
few that occurred were removed from analysis). The significance of the 
difference between the measured and shuffled correlations was calculated 
using a two-sided two-sample t-test. f, Similar to e for the second half of 
the corridor.
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Extended Data Fig. 10 | Position decoded from CA1 activity helps to 
predict position decoded from V1 activity (and vice versa). a, To test 
whether the positions encoded in V1 and CA1 populations are correlated 
with each other beyond what would be expected from a common influence 
of other spatial and non-spatial factors, we used a random forests decoder 
(Tree Bagger implementation in MATLAB) to predict V1 or CA1 decoded 
positions from different predictors. We then tested whether the model 
prediction was further improved when we added the position decoded 

from the other area as an additional predictor (that is, using the positions 
decoded from CA1 to predict V1 decoded positions and vice versa).  
b, Adding CA1 decoded position as an additional predictor improved the 
prediction of V1 decoded positions in every recording session (that is, 
reduced the prediction errors). V1 and CA1 decoded positions are thus 
correlated with each other beyond what can be expected from a common 
contribution of position, speed, licks and reward to V1 and CA1 responses. 
c, Same as b for predicting CA1 decoded position.
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