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Wearable sensors are integrated analytical devices that 
combine typical characteristics of point-of-care systems 
with mobile connectivity in autonomously operating, 
self-contained units. Such devices allow for the contin-
uous monitoring of the biometrics of an individual in 
a non-invasive or minimally invasive manner, enabling 
the detection of small physiological changes from base-
line values over time1. Wearables have existed for dec-
ades (Fig. 1a); for example, the Holter monitor, a medical 
sensor used for measuring the electrical activity of the 
heart, dates back to the 1960s2. Although the total num-
ber of components might vary depending on the spe-
cific application, the common building blocks (Fig. 1b) of 
wearable devices are the substrate and electrode mate-
rials, sensing units (elements for interfacing, sampling, 
biorecognition, signal transduction and amplification), 
decision-making units (components for data collection, 
processing and transmission) and power units3.

Modern wearables can perform high-quality meas-
urements comparable to those of regulated medical 
instruments. Hence, the divide between consumer 
and medical wearable devices is increasingly blurred. 
First-generation wearables, in the form of watches, 
shoes or headsets, have mainly focused on biophysical 
monitoring by tracking the physical activity, heart rate 
or body temperature of an individual1,4,5. With the wide 
adoption and success of first-generation wearables, the 

focus has been slowly shifting towards non-invasive or 
minimally invasive biochemical and multimodal moni-
toring, which is the next step in realizing truly individu-
alized health care6–8. These second-generation wearables 
encompass form factors such as on-skin patches, tattoos, 
tooth-mounted films, contact lenses and textiles, as well 
as more invasive microneedles and injectable devices9–11. 
A key characteristic of second-generation wearables is 
the use of biofluids, whereby biorecognition elements are 
used to convert the presence of a specific analyte into a 
detectable signal. Most of these examples are laboratory 
prototypes, but there are some commercial exceptions 
(including the FreeStyle Libre glucose monitoring sys-
tem and the Gx Sweat Patch)1. Wearable biochemical 
and biophysical sensors have been used to detect and 
manage diseases1,12–15 and for wellness applications16–18. 
The use of wearable devices, however, extends beyond 
human-centred health and well-being as their applica-
tions have also proliferated in animal health monitoring 
for the pet and animal husbandry markets19.

This Review details the recent developments in 
the field of wearable sensors with a particular focus 
on the sensing, decision-making and power units to 
establish a framework for the design and implemen-
tation of wearable devices. As we examine the various 
building blocks of wearable sensors, we also analyse 
the current trends, discuss the challenges and provide 
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recommendations to establish a vision for how this field 
might evolve in the next decade to transform health care.

Assembling wearable devices
As first-generation wearables that primarily use physical 
sensors are mature, with many commercial examples, 
we place more emphasis on the ongoing development of 
second-generation wearables by highlighting key aspects 
of the sampled biofluids as well as the biorecognition 
elements used for analyte sensing.

Substrate materials
The unique operating constraints of a wearable sensor 
requires the careful selection of substrate materials with 
key properties. The overall materials in a device must not 
only have the properties necessary for the functioning of 
the device components but also the range of mechanical 
properties requisite for any wearable garment or acces-
sory: flexibility, elasticity and toughness. We focus on 
the four most widely used classes in wearables develop-
ment: natural materials, synthetic polymers, hydrogels 
and inorganic materials (Table 1).

Natural materials have been used in making cloth-
ing for millennia and are thus the foundational weara-
ble material class, providing a combination of flexibility 
and mechanical robustness. These materials are derived 
from biological sources20 and include cotton, wool, silk, 
hemp, linen and chitin. One benefit of using natural 
materials in wearables is that the attendant fabrication 
methods, such as weaving and knitting21, for creating 
textiles with the mechanical properties required for 
clothing, have been extensively explored. Furthermore, 
these materials have already been selected to have the 
necessary mechanical strength, flexibility and user 
comfort required of a wearable substrate. Owing to the 
extensive supply chains of the textile industry, there are 
a considerable variety of materials and the cost is low. 
Being biological in nature, they are biocompatible and 
sustainable, which are key advantages for wearable mate-
rials. However, natural materials inherently lack certain 
desirable physical properties, including conductivity and 
optical attributes that are of interest for smart weara-
ble components, although there are ongoing attempts  
to modify them to acquire these properties22,23. Owing to  
this limitation, natural materials are often used as a sub-
strate for wearables on which other functional mate-
rials are incorporated. The route of incorporation can 
occur through alteration of the material itself before 
higher-order assembly, as illustrated by doping of a 

cotton thread with nanotubes24, coating of wool fibres 
with silver nanowires25, decorating nanocellulose with 
optically active nanoparticles26 or modifying silk fabrics 
with graphene27. Alternatively, natural materials can be 
combined with other materials during the fabrication 
process to create a mosaic material, such as the incorpo-
ration of optical fibres into the weft of a fabric for prob-
ing material-integrated reactions28 or large-scale digital 
knitting of multi-material textiles29.

Synthetic polymers are the functional materials most 
widely used in creating wearable sensors, owing to two 
factors. First, polymers have a wide range of fabrication 
methods available to them, including methods such as 
weaving that have traditionally been the provenance of 
natural materials. Synthetic polymers can also be fabri-
cated using scalable methods such as moulding, extru-
sion, lamination, deposition, photolithography, milling 
or newer additive techniques such as 3D printing30,31. This 
versatility readily enables access to diverse form factors 
for creating wearable sensor components with the desired 
mechanical properties, such as stretchable substrates and 
textiles or layer-by-layer assembled semi-flexible circuits. 
Second, the properties of polymeric systems can be modi-
fied through an expansive range of physical and chemical 
functionalizations. For decades, polymers have been used 
to tune the mechanical and/or hydrophobic properties 
of commercial fabrics to achieve tough, flexible, water-
proof and/or breathable clothing. There are industrial 
polymers with inherent strength, high heat resistance, 
conductivity and optics, among other properties. With 
such a varied palette of functional materials, complex 
devices composed of synthetic polymers enable the devel-
opment of a panoply of flexible and shape-conforming 
circuits32, sensors33, energy harvesters34, waveguides35, 
light-emitting displays36 and antennas37 for wearables. 
Although there are synthetic polymers that inherently 
possess the aforementioned properties, most wearable 
devices have used polymer–inorganic composites, in 
which the synthetic polymer serves as the bulk flexible 
substrate, to achieve the greatest functionality. Wearable 
sensors can thus consist of multiple ultrathin layers of dif-
ferent synthetic polymer and composite materials assem-
bled in a complex but low-cost manner. Many polymers 
are inert and biocompatible, including polydimethyl-
siloxane (PDMS), polylactic acid, polyvinylidene fluo-
ride, polytetrafluoroethylene, polyimide and silicone, 
whereas others may not be skin safe for long-term direct 
exposure and would require careful determination of 
potential hazards. Most wearable devices fabricated 
from synthetic polymers are designed as single use or 
with a limited lifetime, which, combined with the diffi-
culty in recycling advanced polymers, makes polymers 
poorly sustainable. In response, researchers are pushing 
the frontiers of green polymer chemistry to create a new 
generation of soft functional materials38.

Although hydrogels can be considered a subset of 
natural materials or synthetic polymers, their distinc-
tive properties and unique applications in wearables 
warrant a discussion of them as a separate class of 
materials. The development of hydrogels has largely 
occurred in the biomedical engineering field owing 
to their high biocompatibility39, with a focus on their 
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use as implantable materials or ex vivo cellular scaf-
folds. Hydrogels are soft, deformable and transpar-
ent materials, and their hydrophilic properties and 
porous networks allow for a high water content that 
makes them especially biologically friendly. Many 
natural and synthetic polymers can be used to form 
hydrogels, including polyethylene glycol, polyacryla-
mide, alginate, polyvinyl alcohol and gelatine. Facile 
polymerization processes enable moulding, additive 
manufacturing and even in situ formation. The porous 
nature of hydrogels provides a scaffold for creating soft 
electrodes40, microneedle arrays41, wicking structures 
for the collection of bodily fluids42,43, or even transpar-
ent batteries44. For wearables, the biocompatibility of 
hydrogels makes them suitable for applications involv-
ing on skin, wound or body interfacing. Hydrogels 
have been used in wearable devices for mechanical 
and chemical sensing45,46, as a depot for drug delivery47  
and in the maintenance of cell-based living sensors48. 
The properties of zwitterionic hydrogels make them 
ideal materials for use as protective barriers to prevent 
biofouling, which can occur from interactions between 

a sensor and complex biofluids49. Nevertheless, although 
there are exceptions50, many hydrogels lack the desired 
mechanical properties, such as flexibility and toughness, 
for continuous robust operation. Moreover, hydrogels 
tend to cost more than other polymer systems leading 
to their use in specialty applications.

The last material class we consider is inorganic mate-
rials, which encompasses metals, semiconductors and 
nanomaterials. These materials have desirable proper-
ties, such as high conductivity, that are not achievable 
with other material classes. In addition, many nano-
materials have outstanding mechanical characteristics 
in terms of the flexibility and elasticity required for 
wearable devices. With the increasing interest in flex-
ible electronics, there has been rapid development of 
advanced fabrication techniques for these materials, 
such as printing of metal51 or nanomaterial inks52 in ser-
pentine patterns53 or even weaving of metal threads54, 
that allow for their incorporation into deformable wear-
able substrates. The use of this class is indispensable for 
wearables in which the general approach is the miniatur-
ization and conversion of traditional electrical devices 

1962 1982 1999 2002 2011 2014 2015 2016 2017 2018 2019 2020 2021

First wearable 
sensor: Holter 
monitor for 
cardiac 
monitoring

Conductive 
fabrics for smart 
textiles for 
temperature and 
motion sensing283

Commercial
Research stage

2012

Integrated 
wearable 
sensor 
arrays for
multiplexed
perspiration 
analysis10

Paper-based 
wearable
sensors for 
continuous 
breath 
chemistry 
monitoring99

First 
wearable 
glucose 
monitoring 
system 
(‘FreeStyle 
Libre’ by 
Abbott)

Smartwatches
for the early 
detection of  
symptomatic and
pre-symptomatic
COVID-19 
(refs.12,13)

Introduction 
of epidermal 
electronics284

Graphene-based 
biosensor 
integrated onto 
tooth enamel
for bacteria 
detection285

Passive 
perspiration
biofuel cells
for energy-
autonomous
wearable 
sensors288

Wireless heart 
rate monitor from 
Polar Electro

First commercial reverse 
iontophoresis-based sensing 
platform for non-invasive 
glucose determination
(‘GlucoWatch’ by Cygnus)

Contact lens 
biosensors
for non-invasive 
glucose
monitoring

Synthetic 
biology-enabled 
wearable 
biosensors28

Integrated 
mouthguard
biosensor for 
salivary uric acid 
monitoring286

Microneedle 
biosensors
for real-time,
minimally 
invasive drug 
monitoring244

Smart face 
mask for 
respiration 
monitoring 
(‘Spyras’)

Glove-based 
biosensors for 
on-site 
detection of 
chemical 
threats287

a  Development of wearable sensors

b  Building blocks of wearable sensors
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Fig. 1 | Timeline of major milestones in the development of wearable 
sensors and a summary of their building blocks. a | Major commercial and 
research-stage milestones in the development of wearable devices for 
health-care monitoring10,12,13,28,99,244,283–288. Advances in telecommunication 
technologies, materials science, bioengineering, electronics and data 
analysis, together with the rapidly increasing interest in monitoring health 
and well-being, have been the primary drivers of innovation in modern 
wearable sensors148. More recently, the considerable reductions in cost have 
enabled the penetration of modern wearable sensors into many segments 

of the (consumer) population and geographical regions of the world, 
unlocking continuous monitoring at a scale never seen before. In addition, 
advances in fabrication methods have enabled greater sophistication at 
increasingly smaller dimensions, enabling sensor platforms to reach scales 
amenable to integration into personal technologies. b | Building blocks  
of wearable devices, including the substrate and electrode materials and  
the components of the sensing, decision-making and power units.  
ISF, interstitial fluid. Panel b (on-tooth sensor) adapted from ref.285,  
Springer Nature Limited.
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(namely, circuits, sensors55, antennas56 and integrated 
power systems57) into a wearable format. Integration of 
inorganic materials such as metals or semiconductors 
can be achieved through layer-by-layer strategies, with 
a popular approach being spin coating of thin metal foils 
onto a polymeric substrate such as polyimide or PDMS 
to create flexible, complex, multilayer electronics, such 
as ultrasound transducers58. Conductive metal–synthetic 
polymer blends as inks have even been used to assem-
ble highly conformal ultrathin devices directly on the 
skin59. As the most electrically conductive metal, silver 
has been used extensively in wearable circuits42, although 
other conductive and semiconductive metals have been 
explored, including copper43, titanium carbide60 and 
various alloys61. Graphene, owing to its excellent con-
ductive and mechanical properties, has been used to 
realize wearable strain sensors, printed circuit paths, 
transistors62 and capacitors63. There are also accessible 
protocols for the routine functionalization of graphene 
to develop highly sensitive and lightweight sensors 
for measuring proteins64, metabolites65 and gases66. 
Furthermore, thin films of graphene are transparent and 
extremely flexible, allowing for lightweight and ultrathin 
wearables such as electronic tattoos67. Cheaper inorganic 
materials, such as carbon fibres, have also been used to 
create durable wearable motion sensors68. The incorpo-
ration of inorganic materials in wearables is typically 
limited to key functional components, which limits the 
costs. The biocompatibility of inorganic materials is one 
area of concern, with nanomaterials in particular pos-
ing potential biohazard risks69. Hence, these materials 
are typically restricted to parts of wearables that are not 

intimately in contact with the user. Another considera-
tion is the poor sustainability of inorganic materials, as 
their minute presence in complex wearable devices does 
not make extraction and recycling feasible.

With such a diverse assortment of available materi-
als, several factors must be considered when contem-
plating the design of a wearable device, including the 
specific application of interest, the desired level of per-
formance, the target form factor, ease of fabrication dur-
ing prototyping and scale-up manufacturing, cost and 
sustainability.

Sensing unit
The core of the sensing unit of second-generation wear-
ables is the sampling of the biofluid that contains the 
analyte. The molecular interaction between the target 
and biorecognition element is then converted to a sensor 
output and amplified with the signal transduction and 
amplification unit.

Biofluids and sampling. In this section, we review dif-
ferent types of biofluid targeted by second-generation 
wearables, with a focus on the considerations and chal-
lenges for biosampling with wearable sensors, depending 
on the analyte of interest, target application and other 
device components (Table 2).

Interstitial fluid (ISF) fills the extracellular space 
between cells and tissue structures. This bodily fluid 
mainly seeps from capillaries into tissues and then drains 
through the lymphatic system back to vascular circulation. 
Thus, ISF can be considered a filtered cell-free fraction  
of blood plasma. ISF contains similar proteomic and 

Table 1 | Substrate materials

Material 
class

Examples Fabrication 
methods

Flexibility 
and elasticity 
(elastic 
modulus range)

Fabrication 
scalability

Functionalization Biocompatibility Sustainability Refs.

Natural 
materials

Cotton, silk, 
wool, hemp, 
chitin

Weaving, 
knitting

Good 
(2–20 GPa)215,216

High, with 
mature man-
ufacturing 
processes

Poor Excellent Excellent 20,23–29, 

217–222

Synthetic 
polymers

PDMS, silicone, 
PVA, PMMA, 
polyimide, 
rubber

Weaving, knit-
ting, casting, 
photolithogra-
phy, mechanical 
punching, lami-
nation, extrusion, 
layer-by-layer 
assembly

Excellent 
(0.25 MPa to 
3.5 GPa)223–226

High, with 
mature 
manu-
facturing 
processes

Excellent, 
with various 
functionalization 
chemistries

Fair Poor 30,32–35, 

37,38, 

227–229

Hydrogels Alginate, agarose, 
PEG, PHEMA, 
polyacrylamide, 
PVA

Casting, pho-
tolithography, 
mechanical 
punching

Excellent (1 kPa 
to 10 MPa)230–232

Fair Excellent, 
with various 
functionalization 
chemistries

Excellent Poor, with the 
exception 
of naturally 
derived 
polymers

39–41, 

45,46,49, 

50,129, 

233–236

Inorganic 
materials

Copper, gold, 
silver, platinum, 
chromium, 
graphene, 
gold NPs, silver 
NPs, silver 
NWs, carbon 
nanotubes

Wet etching, 
deposition, 
screen printing, 
lamination

Fair (73 GPa to 
2.4 TPa)237

Poor Fair Poor Poor 32,52, 

54–59, 

59–61, 

64,66,68, 

238–241

NP, nanoparticle; NW, nanowire; PDMS, polydimethylsiloxane; PEG, polyethylene glycol; PHEMA, poly-(2-hydroxyethyl methacrylate); PMMA, polymethyl 
methacrylate; PVA, polyvinyl alcohol.
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Table 2 | Comparison and characteristics of biofluids

Biofluid Target 
biomarkers

Sampling 
volume

Sampling 
methods

Wearable 
format

Demonstrated 
diagnostic 
examples

Advantages Disadvantages Refs.

Interstitial 
fluid

Metabolites, 
electrolytes, 
metals, proteins, 
peptides, amino 
acids, fatty acids, 
coenzymes, 
hormones, neu-
rotransmitters, 
circulating RNAs

Low 
(1–10 ml)

Microneedle 
patches, 
reverse 
iontophoresis

On-skin 
patch

Metabolite 
detection: glucose, 
lactate, ketone 
bodies, alcohol and 
uric acid

pH sensing

Neurotransmitter 
detection

Drug monitoring

Rich 
source of 
biomarkers

Location 
(near the 
skin surface) 
ideal for 
wearable 
devices

Sampling is invasive

Discomfort from 
sampling approaches

Low sample volume for 
analysis

Lag between blood and 
interstitial analyte levels

Skin thickness variation 
between sites and 
individuals

70–74, 

79,80, 

242–245

Sweat Metabolites, 
electrolytes, 
metals, proteins, 
hormones, neu-
rotransmitters, 
peptides, fatty 
acids

Low to 
medium 
(1–100 ml)

Reverse ion-
tophoresis, 
capillary 
wicking

On-skin 
patch, 
tattoos

Metabolite 
detection: glucose, 
lactate, alcohol and 
uric acid

Protein biomarker 
detection: IL-1β, 
IL-6, IL-8, TNF, CRP

Hormone 
detection: cortisol, 
neuropeptide Y

Chronic disease 
monitoring: 
cystic fibrosis, 
inflammatory bowel 
disease

Convenient 
non-invasive 
sample 
source

Location 
(on the skin 
surface) 
ideal for 
wearable 
devices

Low volumes at normal 
sweat rates

Evaporative loss

Contamination

Dilute analyte 
concentrations

Variation in sweating 
rates

Compositional variation 
depending on the area 
of sampling

2,8,11, 

20,59, 

139–141, 

146–152, 

160–163

Breath Metabolites 
(volatilized or 
in aerosols); 
bacteria and 
viruses

Very low 
(1–10 ml, 
as 
aerosols)

Aerosol 
capture or 
condensation

Face mask Metabolite 
detection: hydrogen 
peroxide

SARS-CoV-2 testing

Convenient 
non-invasive 
sample 
source

Sample 
continuously 
generated

Limited biomarkers, with 
the exception of VOCs

Requires wearable 
device integration into a 
face mask, which might 
be uncomfortable for 
user

Unique sampling 
requirements for aerosol 
capture

VOC detection would 
require notable sensor 
engineering

3,28,96, 

99,144, 

246,247

Tear fluid Metabolites, 
electrolytes, 
proteins, 
hormones, lipids

Low 
(1–10 ml)

Direct 
contact or 
immersion

Contact lens Metabolite 
detection: glucose 
and lactate

Convenient 
non-invasive 
sample 
source

Sample 
continuously 
secreted

Location on the eye 
requires considerable 
device engineering

Lag between blood and 
tear analyte levels

Correlation between 
blood and tear analyte 
might be weak

248–250

Saliva Metabolites, 
electrolytes, 
proteins, 
hormones, 
bacteria and 
viruses

High 
(1–10 ml; 
average 
total daily 
output 
is ~1 l)

Direct 
contact or 
immersion

Mouthguard, 
on-tooth 
patch

Metabolite 
detection: glucose, 
lactate, alcohol and 
uric acid

Specific bacterial 
monitoring

Drug and hormone 
testing

Convenient 
non-invasive 
sample 
source

Sample 
continuously 
secreted

High viscosity might 
pose sampling problems

Variation in analyte 
correlation between 
blood and saliva

Changes in saliva 
production due to 
talking, eating or 
drinking

Contamination due  
to eating or drinking

Form factor for 
comfortable  
long-term use

3,251–257
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metabolomic profiles to blood, and is thus a rich source 
of biomarkers. However, ISF is considerably less invasive 
to access than blood, making it an ideal fluid analyte for 
wearable sensing. In addition, ISF might contain disease 
biomarkers that are absent in blood70.

There are two main approaches for wearable ISF 
sampling: microneedles and iontophoretic extraction. 
Both sampling technologies are relatively mature, with 
decades of development and various commercial prod-
ucts using them. Microneedles consist of a single or an 
array of microscopic structures, usually fabricated from 
biocompatible synthetic polymers or hydrogels71, that 
are designed to puncture through the stratum corneum 
and epidermis to access the dermis72. Initially developed 
for drug delivery, microneedles have become a common 
approach for minimally invasive biofluid sampling in 
wearables. The architecture of microneedles can vary. 
Hollow microneedles sample ISF by extraction, whereas 
microneedles constructed of a porous material absorb 
the surrounding fluid. Alternatively, the microneedles 
can serve as solid penetration structures, with the anal-
ysis occurring on the surface of the needles by optical 
or electrochemical means73. Depending on the applica-
tion, microneedle devices can be designed for continual 
ISF sampling, although the total time of use is typically 
hours to a day. Many of the challenges of microneedle 
patches relate to the optimization of mechanical strength 
to prevent buckling or fracturing of the microneedles, 
skin resealing of the puncture wounds after removal of 
the arrays and local pain responses during use74.

Iontophoresis is the use of an applied low-voltage 
electric current to a region of the skin, which causes 
the electromotive migration of charged molecules75. For 
wearable sensing, the electrode arrangement is adjusted 
to extract ISF out of the body and into an external sen-
sor, which is known as reverse iontophoresis76. This pro-
cess is minimally invasive, making it a convenient ISF 
sampling method. One of the first commercial wearable 
sensing devices, a wrist-worn glucose monitor, used 
iontophoresis to extract ISF for analysis77. More recent 
designs of iontophoretic-based wearables are fabricated 
by layer-by-layer printing to create extremely thin tat-
too sensors78. The on-demand sampling by electronic 
circuit control makes iontophoresis an ideal approach 
for exploring continuous wearable sensing platforms. 

Moreover, the electronic nature of this method ena-
bles integration of the sensing and sampling functions 
into the same electrode system79. One challenge for 
prolonged continuous use is that the amount of fluid 
extracted through reverse iontophoresis is limited by 
the amount of current applied to the skin, with higher 
currents causing irritation and pain. An alternative mag-
netohydrodynamic approach has been used to extract 
ISF in a non-invasive manner, allowing for faster extrac-
tion with reduced irritation when compared with reverse 
iontophoresis80.

Most sensors that target sweat have focused on 
metabolite detection for fitness applications, with elec-
trolytes, nutrients and lactate being common targets81,82. 
Beyond personal fitness, sweat has been explored in 
personal medical monitoring applications for glucose83, 
cortisol84 and alcohol85. Sweat might also provide a use-
ful avenue for wearable monitoring of pathogenic states 
such as viral infections86, cystic fibrosis87 or chronic 
inflammatory diseases, including gout8 or inflammatory 
bowel disease88. Neuropeptide biomarkers in sweat can 
be used as potential assessors of neurological disorders89. 
Although it is a highly convenient biofluid, analysis of 
sweat has several sampling challenges (Table 2).

Sweat can be collected by capillary wicking into 
microfluidic pores fabricated into a synthetic poly-
mer membrane that is directly in contact with the skin 
surface90–93. Although this approach is straightforward to 
implement, it suffers from low sample volumes. An alter-
native strategy involves active sweat induction and uses 
iontophoresis11,94 to locally deliver sweat-stimulating 
compounds; the sweat sample is then extracted by 
reverse iontophoresis. Using reverse iontophoresis has 
the added advantage of coupling sample collection 
of sweat and ISF into a single system to broaden the 
available biomarkers and enable cross-correlation of 
different biofluids95. Active strategies that use reverse 
iontophoresis11,94 for sweat induction are also utilized, 
and share the same challenges as described for ISF 
extraction.

A healthy person respires at a resting rate of 12–16 
breaths per minute, with each breath containing a dis-
tribution of aerosols of different sizes. These breath 
aerosols are generated by shear forces in the lower res-
piratory system and can greatly increase during activities 

Biofluid Target 
biomarkers

Sampling 
volume

Sampling 
methods

Wearable 
format

Demonstrated 
diagnostic 
examples

Advantages Disadvantages Refs.

Urine Metabolites, 
electrolytes, 
metals, toxins, 
proteins, pep-
tides, amino 
acids, fatty acids, 
coenzymes, 
hormones, neu-
rotransmitters, 
circulating RNA 
and DNA

High  
(hundreds 
of milli
litres; 
average 
total daily 
output is 
0.8–2 l)

Direct 
contact or 
immersion

Diaper Metabolite 
detection:  
glucose, nitrate

pH sensing

Rich source 
of biomarkers

Convenient 
non-invasive 
sample source

Applications in 
wearables limited  
to urination events

3,258–263

CRP, C-reactive protein; IL, interleukin; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TNF, tumour necrosis factor; VOC, volatile organic compound.

Table 2 (cont.) | Comparison and characteristics of biofluids
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such as talking, coughing or sneezing96. These aerosols 
act as transmission vectors and are, therefore, a nota-
ble source of respiratory pathogen biomarkers97,98. 
Wearable sampling and analysis of breath aerosols can 
be non-invasively achieved using a face mask. This con-
cept was demonstrated for the detection of COVID-19 
viral nucleic acids in aerosols through the use of face 
mask-integrated biosensors28. Another example is the 
detection of hydrogen peroxide, a biomarker for res-
piratory illnesses, using a face mask-integrated electro-
chemical sensor99. Given the range of diseases that can be 
assessed using breath components and the increasing use 
of face masks for limiting the spread of respiratory dis-
eases, this wearable format presents a relatively under-
explored modality for widespread health monitoring. 
For aerosol-based analyses, optimizing the automated 
collection of deposited or condensed breath samples 
and integration into a biosensor (which typically oper-
ates in an aqueous environment) is a technical challenge.  
In addition, more than 3,500 volatile organic compounds 
are expelled during breathing3. Miniaturization of vola-
tile organic compound sensors for face mask integration 
is a barrier that, if surmounted, would enable wearable 
monitoring of this important biomarker source.

Other biofluids of interest for wearable sensors, 
namely, saliva, tear fluid and urine, are discussed in the 
Supplementary information and their characteristics are 
compared in Table 2.

Signal transduction and amplification. For wearable 
sensors, the method of signal transduction must provide 
a stream of data over a period (days, weeks or longer) for 
continuous monitoring, which has limited the types of 
sensing method that can be used. The preferred detec-
tion modalities in wearable sensors have therefore been 
electromechanical, electrical, optical and electrochemi-
cal techniques for quantifying biochemical and biophys-
ical signals6,100,101. These signal transduction methods 
can be implemented with low-cost materials and elec-
tronics, are low power and can directly access the signal 
under study. Whereas electrical and electromechanical 
transduction have been mostly used for the continuous 
acquisition of biophysical signals, such as electrocar-
diography, motion or posture analysis, and breathing 
(first-generation wearables), optical and electrochemi-
cal measurements are more widely used for biochemical 
analysis (second-generation devices). Biocompatibility 
constraints of the device materials, poor signal-to-noise 
ratio (SNR) and complex integration of the transduction 
elements with other structures or electronics within the 
wearable have so far limited the number of detectable 
biologically relevant analytes, resulting in the relatively 
slow development of wearable sensors for biochemical 
analysis1,3,4. Transduction modes can also be combined 
for multimodal analysis to improve the performance 
or range of capabilities available for continuous 
physiological monitoring8,10,102,103.

Electromechanical sensors transduce mechanical 
deformation or movement into electrical signals, mostly 
through changes in capacitance or resistance of the sens-
ing structures under stimulus. Microelectromechanical 
systems accelerometers, popularized by the first iPhone, 

are probably the most widely used electromechani-
cal transducers in wearable sensing104. These sensors, 
microfabricated on a silicon substrate in a cleanroom, 
can be produced at low cost and in high volumes, with 
integration of the interface electronics in the same pack-
age, which makes them easy to use by non-specialists. 
In addition to commercially available microelectro
mechanical systems accelerometers, stretchable elec-
tromechanical transducers made from a composite of 
a polymer matrix with nanoscale or microscale inor-
ganic fillers105–112 have also been developed by academic 
laboratories. These materials conform to the body or 
skin when worn and typically sense strain due to the 
changes in the conduction paths within the matrix  
of the material. Although affordable and easy to man-
ufacture through printing113,114 or moulding115,116, com-
posite transducers do not contain integrated interface 
electronics. These transducers are also susceptible to drift  
and hysteresis, mostly caused by the polymer matrix, and  
hence require frequent calibration. An emerging area 
within electromechanical transducers involves acoustic 
and ultrasonic sensors. These sensors rely on piezoe-
lectric and composite materials with skin-like mechan-
ical properties to convert subtle acoustic vibrations 
produced by vasoconstriction and vasodilation events 
into electrical signals for the continuous monitoring 
of cardiovascular events19,58,117. Analogue and digi-
tal signal processing methods are often applied to the 
captured waveforms to remove motion artefacts and 
improve the SNR; multisensor configurations can also 
be used for active noise-cancelling and localization by 
beamforming118,119. Other emerging approaches are 
focused on the use of fabrics such as cotton and silk, 
both as substrates and transducers in pressure-sensitive 
wearables. These devices are not required to be tight fit-
ting to the body, enabling their integration into loose 
garments, which are more comfortable to wear on a reg-
ular basis. These fabric transducers can detect pressures 
in the range 10–100 kPa and can be used to monitor 
physiological pulse, respiration and phonation120–122.

Electrical transducers are used in wearable sensors 
to monitor biopotentials, such as electroencephalo
graphy123, electrocardiography124,125 and electromy-
ography1,126,127. Additional applications include the 
monitoring of sweat production, skin hydration levels, 
electrolyte concentrations and respiratory rates128,129. 
The stability of an electrically robust and conformal 
connection between the skin and device is still one of 
the main challenges in this type of sensor, which gener-
ally requires a conductive gel for operation to reduce the 
electrical impedance at the contact point130. Advanced 
materials such as ultrathin functionalized hydrogels129 
and improved structural layouts100 are some of the solu-
tions for increasing the skin–device conformity and the 
quality of the signals acquired. These advances have led 
to the reintroduction of dry electrodes as an option for 
first-generation wearables. Initially withdrawn because 
of skin irritation, noise propensity and high impedance 
that masked signals, improved combinations of con-
ductive and biocompatible electrode materials (such 
as poly(3,4-ethylenedioxythiophene):polystyrene sul-
fonate (PEDOT:PSS) or polyurethane131) and circuit 
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designs59 have made dry electrodes a viable alternative 
to gel electrodes.

Optical transduction includes colorimetric, plas-
monic, fluorometric and absorption-based or reflection- 
based methods for the quantification of both biophysical 
and biochemical signals28,132,133. Colorimetric wearable 
sensors can be produced on flexible substrates, are inex-
pensive and are easily read by the naked eye or with the 
help of a smartphone camera, but are semi-quantitative 
at best93,134. Recent improvements towards fully quantita-
tive colorimetric systems include the integration of image 
analysis and predictive algorithms into smartphone 
software; for example, the Gx Sweat Patch is the first 
commercial personalized performance tracking device 
that provides individual recommendations of hydration 
based on sweat rate and sodium levels in real time by 
utilizing such a custom algorithm for predictive colori-
metric analysis135. More recent approaches for wearable 
biochemical sensing have explored methods developed 
in the field of synthetic biology28. The incorporation of 
freeze-dried, cell-free synthetic biological circuits into 
flexible substrates enabled the detection of molecular 
targets (drugs, metabolites or viruses) in breath and 
the environment by colorimetry, fluorescence and bio-
luminescence. Of course, non-colorimetric methods 
would require additional instrumentation to perform 
the measurement, increasing the cost and complexity. 
Optical methods can also be used to non-invasively 
measure body temperature, heart rate, blood oxygen 
saturation and respiration132,136,137. These methods exploit 
the absorption or reflection of light, which is generally 
produced by a low-cost light-emitting diode, to monitor 
physiology. Because optical biophysical analysis is inex-
pensive and non-invasive, it is commonly integrated into 
commercial wearable consumer electronics138,139. High 
power consumption, the overall size of active systems 
and the instability of chemical reagents (owing to photo
bleaching) are some of the critical challenges that limit 
the expansion of optical wearable sensors4.

Electrochemical transducers relate an electrical sig-
nal (current, potential or conductance) obtained from 
a biofluid sample to the analyte concentration in it. On 
the basis of the electrical parameter evaluated at the 
electrode–biofluid interface, electrochemical transduc-
ers can be divided into four categories: potentiometric 
(measuring potential against a reference), amperomet-
ric (measuring current at a constant potential), volta-
metric (measuring current over a potential scan) or 
conductometric (measuring the capacity to transport 
electric current)4,140. Given their simplicity and direct 
output, potentiometric and amperometric systems are 
the dominant electrochemical modalities used in wear-
able systems but are still in their infancy because of the 
difficulty in implementing the regeneration chemistries 
that are necessary to perform continuous measurements 
in biofluids. Other factors hindering their transition are 
the variability in analyte diffusion in biofluids and bio-
fouling of sensing surfaces4. Advances in electrochem-
ical wearable sensors, including multilayered reference 
electrodes with supporting electrolytes141, biocompati-
ble coatings and microfluidic integration for uniform 
sampling or biofluid transport142, have enabled early 

demonstrations of the continuous measurement of bio-
chemical and biophysical signals in sweat, breath, tears 
and saliva6,99,142–144.

The analogue signals generated by the transducer are 
digitized using an analogue-to-digital converter for digi-
tal processing, communication and storage. Conversion 
of the analogue signals to digital is ‘lossy’ as some of 
the information contained in the analogue signal is lost 
during digitization; this is also known as the quantiza-
tion error. It is therefore crucial to choose the correct 
analogue-to-digital converter resolution to minimize 
conversion losses. The sampling frequency must also be 
greater than twice the highest frequency of the analogue 
signal being converted to satisfy the Nyquist–Shannon 
sampling criterion.

To compete with the gold-standard techniques and 
sensing devices used in clinical analysis, the analytical 
performance of wearable sensors might require enhance-
ment through signal amplification4,7. Target signal 
amplification improves the sensitivity and specificity by 
increasing the SNR. Signal amplification can be accom-
plished through various strategies, including chemical, 
electrical and digital approaches. Chemical amplification 
can be achieved using catalysts, nanoparticles, conduc-
tive polymers and/or genetic circuits, which produce a 
higher output signal or concentration of a detectable 
analyte4,28,99,100,142. An example of the potential of chemi-
cal amplification in wearables is a fully integrated sensor 
array for perspiration analysis, in which several enzymes 
and mediators were used to enable the simultaneous 
monitoring of glucose and lactate as well as sodium and 
potassium ions10. Electrical amplification can be easily 
achieved using operational amplifiers or other electronic 
components, which can be combined with analogue fil-
ters to further improve the signal quality10,145. For exam-
ple, the combination of ultraflexible organic differential 
amplifiers and post-mismatch compensation of organic 
thin-film transistor sensors enabled monitoring of weak 
electrocardiography signals by simultaneously amplify-
ing the target biosignal and reducing the noise, improv-
ing the SNR by 200-fold145. The subtraction of signals 
registered by two sensors closely located on skin119 or the 
use of analogue or digital improvements (such as imped-
ance bootstrapping or the control of amplifier gain)146 
are some approaches adopted to reduce motion artefacts. 
Digital signal amplification can take the form of digital 
filters or more advanced machine learning (ML) tech-
niques to improve sensor data quality. The additional 
intelligence provided by digital techniques can establish 
optimal sample collection times or identify superior 
sample analysis approaches, while enabling sensitive 
recognition of disease data patterns, which are all key 
factors for early diagnosis5,147,148.

Biorecognition elements. Biorecognition elements medi-
ate the key molecular interaction that links the presence 
of a biomarker to a sensor output and are key elements of 
second-generation wearable sensors. These components 
directly participate in sensitive and specific detection of 
a target analyte, but must also be compatible with the 
desired operating mode of the sensor and the target 
application. Biorecognition elements can be naturally 
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occurring or synthetically selected proteins, peptides, 
nucleic acids or a combination thereof (Table 3). As with 
many of the other components of wearable sensors, 
biorecognition elements have been directly adapted 
from laboratory-based diagnostic assays. All elements 
share similar challenges for their adaptation into wear-
able sensors: operation in a flexible format at room or 
skin surface temperature, chemistries for immobilization 
onto a flexible electrode, automation of biofluid sam-
pling and sensor exposure, prevention of electrode foul-
ing and passivation, and regeneration of the bioreceptors 
for continuous use. Various factors must be considered 
when selecting a biorecognition element for use in a 
wearable sensor (Box 1).

Enzymes were one of the earliest biorecognition  
elements used in wearables; in particular, redox enzymes 
such as glucose oxidase have been used for glucose- 
sensing applications149. Enzymes are particularly  
well suited for the sensitive detection of small mole-
cules, such as metabolites. Moreover, owing to their cat-
alytic turnover, enzymes enable signal amplification. As 
metabolites are generated by enzymatic processes, there 
is a wealth of natural enzymes that can be selected from 
for creating biosensors. Most enzyme-based sensors 
couple a redox event generated during a catalytic event  

with the detection of direct150 or mediator-based151 
electron transfer to an electrode. If needed, multiple 
enzymes can be used in coupled reaction cascades to 
assemble a desired input–substrate and output–product 
pathway152. An advantage of enzyme-based wearable 
sensors is that owing to the catalytic turnover, they are 
well suited for continuous monitoring, providing that 
product inhibition effects are addressed. Care must be 
taken to select an enzyme that lacks broad substrate 
specificity, which could lead to confounding results from 
the promiscuous binding of similar substrates and is a 
particular concern for heterogeneous biofluids. Other 
considerations include the stability of the enzyme and 
ease of immobilization, depending on the application. 
Moreover, the byproducts from redox reactions can 
result in self-inactivation of enzymatic systems, and 
another challenge is that it can be difficult to chemically 
modify enzymes and proteins for immobilization153,154.

Affinity proteins bind to a target biomarker, most 
commonly other proteins and peptides, although they 
might also recognize smaller molecules, such as drugs, 
metabolites or carbohydrates. Natural affinity proteins 
are typically antibodies, whereas synthetic affinity pro-
teins are based on antibody derivatives or other protein  
scaffolds. As protein-based biomarkers are widely 

Table 3 | Biorecognition elements

Biorecognition 
element

Recognized 
analytes

Detection 
mode

Synthesis 
approach

Inherent 
amplifi­
cation

Chemical 
functionali­
zation

Continuous 
measure­
ment

Advantages Disadvantages Refs.

Enzymes Metabolites, 
small 
molecules

Catalysis Natural or 
recombinant 
production

Yes Poor Good Many enzymes 
are available for 
metabolites and 
substrates; can 
be extremely 
sensitive

Stability might 
be a concern

150,152

Affinity 
proteins

Metabolites, 
small 
molecules, 
proteins, 
peptides, 
nucleic 
acids, lipids

Direct 
binding

Natural or 
recombinant 
production

No Poor Poor Many affinity 
proteins are 
available and 
well-developed 
assays for them 
exist; can be 
extremely 
sensitive

Stability might 
be a concern; 
considerable 
effort to create 
a novel affinity 
protein

158,264,265

Affinity 
peptides

Proteins, 
peptides, 
nucleic 
acids, 
materials

Direct 
binding

Chemical 
synthesis

No Good Good Small size; chem-
ical synthesis 
enables a wide 
range of func-
tionalizations; 
very stable

Can exhibit 
poor sensitivity 
and specificity

266,267

Aptamers Metabolites, 
small 
molecules, 
proteins, 
peptides, 
nucleic 
acids, lipids

Direct 
binding

In vitro 
synthesis 
or chemical 
synthesis

No Good Good Chemical syn-
thesis enables 
a wide range 
of functionali-
zations; some 
aptamers can 
be reversibly 
unfolded

Stability might 
be a concern 
owing to nucle-
ases; might 
require consid-
erable effort to 
create a novel 
aptamer

159,268

CRISPR Nucleic 
acids

Direct 
binding or 
catalysis

Natural or 
recombinant 
production

Yes: 
Cas12, 
Cas13 and 
Cas14 only

Poor Poor Easy to 
use; highly 
programmable 
for nucleic acid 
targeting

Probe mole-
cules needed 
for CRISPR 
sensing are 
labile owing  
to nucleases  
in sample

28,36,161, 

163–165, 

269,270
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used in clinical laboratory assays for the detection of 
physiological changes or pathological states, there is a 
large body of knowledge regarding the structure, func-
tion and engineering of affinity proteins. Their sensi-
tivity and specificity can be exceptional, and further 
improvements can be made through rational design155 
or directed evolution156. Another advantage is the ability 
of affinity proteins to operate robustly in a complex mix-
ture, which can be problematic for other bioreceptors. 
Careful thought must be given to how the binding event 
between the affinity protein and target biomarker is con-
verted into an output by the wearable platform. Similar 
to enzymes, a major challenge is the integration of the 
chemical modifications required for protein immobi-
lization for use in a sensor. Regeneration of saturated 
antibody-based sensors for continuous mobile sensing 
applications is a notable obstacle, with demonstrated 
strategies requiring additional auxiliary microfluidic 

systems, harsh regeneration steps or the engineering 
of variants with fast dissociation kinetics157,158. To date, 
integrated regeneration of an affinity protein has not 
been demonstrated for a wearable device. Hence, most 
studies that use affinity proteins in wearable sensors are 
demonstrations of single-use devices. Another barrier 
is the considerable effort required to generate a suitable 
affinity protein for a novel target and to establish an eco-
nomical production system. In addition, although some 
antibodies are highly stable, with the ability to be stored 
in a lyophilized format, most are not, which affects the 
storage lifetimes of antibody-based sensors.

Peptide-based recognition elements are short poly
peptides, of less than 50 amino acids, with limited tertiary 
structure. Their small size and limited folding make them 
more stable than the larger affinity proteins. In addition, 
peptides can be assembled through chemical synthesis, 
enabling scalable production and chemical modification  

Box 1 | Selecting a biorecognition element

When selecting a biorecognition element for use in a wearable device, 
several factors must be carefully weighed. Here, we detail these various 
considerations and provide example applications for each.

Target biomarker
The appropriate classes of biorecognition elements can be narrowed  
on the basis of the biomarker to be monitored. There is functional overlap 
between the target molecules accessible with each class. For example, 
detection of a small-molecule metabolite could be accomplished by 
enzymes, affinity proteins or aptamers. If one instead wanted to target 
specific nucleic acid markers, the selection of sensing elements could  
be limited to CRISPR-based, toehold-based or potentially aptameric 
systems. This selection process is best accomplished by focusing on 
published literature of the biomarker in which the methods used for 
analytical characterization would contain details on the biorecognition 
elements used.

Sensitivity and specificity
A crucial aspect that affects the performance of the entire wearable 
biosensor is the biochemical sensitivity and specificity of the selected 
biorecognition element. Among the considerations when assessing the 
prospect of adapting a biorecognition element are whether the sensing 
element has a required amplification step; the sources of background 
noise, false positives or false negatives; whether there are interfering 
elements in the biofluid sample that are incompatible with the 
biorecognition element; and the kind of sample preparation that the 
recognition element requires for optimal performance. One area of 
caution is in extrapolating the performance of these sensing units from 
their use in highly controlled laboratory assays to the more demanding 
environment of a field-deployable wearable. It should be expected that 
the sensitivity and specificity of the element will be altered to at least 
some degree upon converting it from a laboratory benchtop reaction  
to a wearable format.

Compatibility with other device elements and key considerations 
for implementation parameters
The sensing element should also be assessed in a holistic manner with 
regard to the other anticipated device elements. According to the 
application, particular device components might be fixed, whereas others 
might be flexible in their implementation. In particular, modules that 
directly interface with the recognition element should be carefully 
reviewed to ensure proper signal acquisition and transduction. The 
engineer should consider what kind of conjugation chemistries are 
available for the desired elements and if immobilization to a substrate is 
necessary. Another aspect to examine is the potential adjustments to the 
overall system design (for instance, the addition of new modules such as 

regeneration schemes), which might be required to balance the limitations 
of the selected recognition element with the desired device performance 
characteristics. Beyond the device itself, the designer should reflect  
on how suitable a particular sensing element is for the desired field 
implementation. For example, if a wearable device is to be designed  
for operation and storage at ambient temperatures, the stability 
characteristics of the element should be carefully explored.

Output modality
Related to the compatibility with other device elements is the consideration 
of the desired output modality (for example, colorimetric, fluorescent, 
electrical current or resistivity) of the device. This consideration will 
typically require the careful balancing of the attributes of the components 
along the biorecognition element–signal transduction–output module axis. 
Some recognition elements might be limited in the kinds of outputs they 
can access. For example, there are only a few strategies for a visual (that is, 
colorimetric) output using binding peptides as a recognition element. Other 
desired outputs from a particular biorecognition element might require 
substrates, additives or specialized conditions that should be investigated.

Biorecognition element regeneration
For applications in which continuous detection is required, the 
appropriateness of different classes of sensing elements should be 
deliberated. Enzymes are the most suitable owing to their turnover 
dynamics, although they are primarily limited to small-molecule 
detection. Affinity proteins might be more applicable to important 
protein biomarkers as well as small-molecule metabolites, but 
regeneration schemes to reset the sensor to the unbound state adds a 
layer of complexity. In many cases, regeneration cycles result in loss in 
the performance of the biosensor owing to a subpopulation of the 
elements that are either recalcitrant to the regeneration or degraded 
from the regeneration process.

Availability, cost and other factors
Pragmatic factors could dominate the selection of sensing elements,  
such as whether they can be readily purchased, and, if not, how much 
effort, time and cost it would take to produce them in-house. Many 
biorecognition elements might not be available commercially at the 
desired quantities. Pursuing the creation of a recognition element  
for a desired biomarker target is a considerable undertaking that can  
be a project in its own right. Another practical consideration is the  
level of expertise required for implementing particular elements.  
Some biorecognition elements might require a high level of expertise to 
obtain satisfactory results. In addition, proper equipment and laboratory 
space could be a limiting factor for working with some elements, such as 
nuclease-free workspaces for handling nucleic acids.
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for a wide range of immobilization chemistries. Selection 
technologies such as phage display are well-established, 
enabling rapid isolation of binding peptides against a 
particular molecular target. A drawback of affinity pep-
tides is that owing to the limited molecular recognition 
surface available, the binding affinity tends to be lower 
than that of affinity proteins, which could be problematic,  
especially for complex samples.

Aptamers are affinity molecules that can be con-
structed from RNA, single-stranded DNA or non-natural 
(xenobiotic) nucleic acid scaffolds. Selection and enrich-
ment methods have been established for the rapid gen-
eration of binding aptamers that can rival antibodies in 
terms of binding affinity and specificity. Furthermore, 
aptamers can be chemically synthesized, allowing for 
various chemical modifications and, thus, integration 
into existing electronic sensor platforms159. In general, 
apatamers are more stable than antibodies and can be 
refolded after exposure to denaturing solvents or heat, 
allowing for various regeneration strategies for continu-
ous wearable monitoring. However, a particular obstacle 
to using aptamers is their rapid degradation owing to  
the high levels of nuclease present in biofluids. This issue 
can be ameliorated by the use of non-natural nucleoside 
analogues that are nuclease resistant160.

CRISPR-based sensing systems enable the precise 
discrimination of nucleic acid signatures — an applica-
tion that is relatively unexplored for wearable sensors. 
Nucleic acid sensors would enable wearable detection 
of external pathogen exposure161, local cellular damage 
or even cancer surveillance162. Using the highly specific 
nucleic acid targeting activity of CRISPR ribonucleic 
proteins and the unique collateral cleavage activity 
of some variants, robust field-deployable platforms 
(non-wearable) have been developed with detection sen-
sitivities that exceed that of laboratory-based PCR with 
reverse transcription (RT–PCR)163. The target-activated 
nonspecific nuclease activity enables signal amplification 
for extremely sensitive detection. Cas13a and Cas12a 
platforms have been developed for RNA or DNA target 
detection, respectively164,165. Moreover, CRISPR-based 
sensors can be easily reprogrammed by replacement 
of the guide RNA, which is the target-determining ele-
ment. To date, CRISPR-based systems have been used 
only in wearable sensors for exposure detection and 
breath-based face mask detection of viruses28.

An overarching challenge for any biorecognition 
sensing element is sustaining continual operation for 
long-term longitudinal monitoring. One aspect of this 
difficulty is the integration of efficient regeneration 
schemes into wearables to reset the sensors to their ini-
tial state. The required regeneration chemistry is unique 
to the kind of sensor being used. Another problem is 
biofouling or surface passivation, which can gener-
ate false-positive or false-negative signals, or erode 
the sensitivity of the sensor over time. These issues 
will be of particular concern as non-invasive wearable 
sensors advance towards long-term continuous mon-
itoring, requiring constant sensor exposure to highly 
heterogeneous biofluids.

The literature is replete with wearable device proto-
types that reuse established biorecognition elements. 

However, wearables also provide the opportunity for the 
development of new biosensors — with wearable device 
considerations taken into account from the outset — 
which could enable new specific functions. Validating 
new sensing modalities and exploring regeneration 
strategies would unlock devices for new biomarkers 
and enable more avenues for continuous monitoring, 
respectively. Furthermore, implementation of multi-
modal or multiplexed analysis would reduce false pos-
itives and provide multiple outputs that correlate to a 
physiological state for active calibration and correction. 
One interesting approach is to integrate multiple inputs 
from different biofluids for a comprehensive approach 
to a health or disease target3.

Decision-making unit
Wearables enable access to physiological information 
through distributed arrays of sensing units, creating a 
diverse database that spans from the individual to larger 
populations. In this high-dimensional multilayered 
‘data landscape’, the role of the decision-making unit 
is to convert raw data into a human-readable format. 
Conventional strategies can only be applied within  
a restricted point of view, using selected features for a 
predefined task under human supervision. By contrast, 
data-driven methods have the potential to augment our 
capabilities in extracting patterns and relationships with-
out squandering the potential of data fusion166–170. These 
data can be exchanged over the body area network (that 
is, a network of multiple, interconnected sensing units 
worn on or implanted in the body) and analysed with the 
help of data-driven methods to reduce environmental 
artefacts by using correlations between sensory inputs 
and the physiological state of the body (Table 4).

For a given hardware configuration, sensing units 
translate physiological data into digital signals, which 
initiates the ‘data pipeline’ (Fig. 2a). Raw data collected 
from the sensors first goes into a data conversion unit, 
where the digital signals (for example, current or voltage) 
are transformed into secondary data (such as heart rate, 
pH or metabolite concentration) using the correspond-
ing algorithms. This process can be expressed as a con-
version function, which extracts the assumed correlation 
between the digital signal and the biomarker or quan-
tity measured for each sensing unit. These conversion 
functions are determined by regression analysis, relying 
on human supervision. This step might involve addi-
tional assumptions that are hidden from the downstream 
application, as well as data filtering, smoothing, denois-
ing or downsampling, depending on the application. 
Therefore, the data conversion unit can act as a ‘black 
box’ and complicate secondary data interpretation.

Substitution of human supervision with ML algo-
rithms would automate this conversion process, mak-
ing it possible to connect to the downstream models 
and establish a process that is ‘end-to-end learnable’. 
Furthermore, ML methods can help to extract highly 
nonlinear patterns between the obtained signals and 
desired output, with high accuracy and computational 
efficiency. Data-driven methods can be particularly 
useful when the measured variable is a product of com-
plex physiological events, for which one digital signal 
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(one feature of the model) might not contain sufficient 
information for quantitative analysis. In such cases, 
digital signals collected from various sensors could be 
processed together as multiple features to identify these 
complex patterns — a task for which ML algorithms 
excel over conventional methods.

At the next step, secondary data are prepared for the 
downstream model (Fig. 2a). These steps might include 
outlier and anomaly detection, clustering of the input 
data, noise reduction, handling of missing features, data 
normalization, dimensionality reduction and baseline 
correction. A combination of these tools should be 
selected according to the model requirements. In the 
case of similarity-based learning, for example, normali-
zation is not an option, but rather a necessity. Typically, 
each feature is individually scaled around a common 
mean and standard deviation (–1,0,1), so that the dis-
tance between any two data points is not dictated by 

the feature that has the largest absolute value. By con-
trast, statistical methods assume the data come from a 
steady process; hence, any trends or seasonality in the 
data must be handled through baseline correction171,172. 
Manipulation of the secondary data using such tools is 
commonly referred to as feature engineering.

In feature engineering, the objective is to max-
imize the relevant information density within the 
high-dimensional data for the given task. The essen-
tial idea is to discard a less useful fraction of the fea-
ture space, as any additional information with marginal 
effect on the outcome creates a burden for the learn-
ing process. Feature engineering practises include 
combining secondary data features into new variables, 
appending data statistics as additional features, dimen-
sionality reduction while conserving the data variance 
(for example, reducing 20 secondary features into  
10 new features), and coordinate transformation  

Table 4 | Examples of combining data-driven methods with wearables for health-care applications

Application Wearables Measured parameters ML method Number of participants 
in study

Unobtrusive?a Refs.

Glucose-level 
prediction

Dexcom G6+ Interstitial glucose 
concentration, 
electrodermal activity, skin 
temperature, activity

DT 16 Yes, at home 271

Dexcom C4, Dexcom C7 
plus, Medtronic iPro2

Glucose concentration NN 278 Yes, with 
follow-up visits

272

Abbott FreeStyle Libre Glucose concentration ARIMA, RF, SVM 25 Yes 273

Epilepsy 
management

Empatica E4 Motor seizures DNN-LSTM 38 No, in controlled 
environment

274

Face action, 
fatigue and 
drowsiness 
monitoring

Eyeglass platform with 
accelerometer, gyroscope 
and electrooculography 
sensors

Facial action detection, 
blinks, percentage of eye 
closure

CNN, LR 17 No, in controlled 
environment

275,276

Parkinson 
disease

Six Opal IMU sensors Balance and gait features NN, SVM, kNN, 
DT, RF, GB, LR

524 patients with 
Parkinson disease and  
43 patients with essential 
tremor

No, in controlled 
environment

277

Great Lakes 
NeuroTechnologies wrist 
and ankle accelerometers

Free movement gyroscope 
data

Ensemble 
methods (LSTM, 
1D CNN-LSTM, 
2D CNN-LSTM)

24 No, in controlled 
environment

278

Mood 
disorder

Mi Band 2 supported with 
clinician report, self-report 
and smartphone use log 
through app

Daily phone usage, sleep 
data, step count data, 
self-evaluated mood scores 
of the user

SVM, RF, kNN 334 Yes, with 
follow-up visits

279

Respiratory 
disorders and 
diseases

Two wireless wearables 
attached to the chest 
(non-commercial)

Respiratory behaviours RF 11 No, in controlled 
environment

280

SARS-CoV-2 
detection

Fitbit Heart rate, activity data LAAD 25 patients positive for 
COVID-19, 11 patients 
negative for COVID-19 
and 70 healthy individuals

Yes 281

Everion Biofourmis Heart rate, heart rate 
variability, respiration 
rate, oxygen saturation, 
blood pulse wave, skin 
temperature, actigraphy

LVR 34 patients positive for 
COVID-19

No, in controlled 
environment

282

ARIMA, autoregressive integrated moving average; CNN, convolutional neural network; DNN, deep neural network; DT, decision tree; GB, gradient boosting 
classifier; IMU, inertial measurement unit sensor; kNN, k-nearest neighbours; LAAD, LSTM-based autoencoder for anomaly detection; LR, logistic regression; LSTM, 
long short-term memory; LVR, linear vector regression; ML, machine learning; NN, neural network; RF, random forest; SARS-CoV-2, severe acute respiratory 
syndrome coronavirus 2; SVM, support-vector machines. aUnobstrusive collection and analysis of data from the participant under study. Testing wearable devices 
within an unobtrusive analysis might reduce biases, as it reflects the natural behaviours of test participants in their daily life.
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(for instance, transforming 20 secondary features into 
20 new features)173. Interpretation of the secondary data 
after feature engineering can also be concatenated with 
alternative forms of the same information (that is, the 
digital signal and/or secondary data) along the data 
pipeline (Fig. 2a). Such skip connections have enabled 
the solution of complex problems in image or video 
processing174 by ensuring information flow within the 
model. The same strategy can also be applied for sen-
sory data management in wearable networks to ensure 
that crucial information is still accessible after two 
consecutive data transformations. Although feature 
engineering can be managed by human supervision, 
artificial intelligence-driven methods can also be applied 
to discover alternative combinations of the original 
feature space (Fig. 2b).

Subsequently, the high-dimensional data aug-
mented with engineered features are fed to a (prefera-
bly data-driven) model. The model can be interpreted 
as an automated process that extracts patterns from the 

data given a particular objective. The functionality of 
this process is typically interpreted within the context  
of classification, regression, clustering and dimensional-
ity reduction tasks173, which in turn depend on whether 
the data are labelled. The labels explain the hidden 
physiological state of the body related to the high-level 
objective and are either categorical or numerical infor-
mation assigned by human supervision. In supervised 
learning, the model is trained to predict the hidden state 
of the body by using these labelled examples. Therefore, 
predictive capabilities of the model are bounded by the 
biases and accuracy of the human-supervised labelling 
process. In this regard, training examples should be 
representative for the whole population of interest, the 
number of examples should be high enough to alleviate 
sampling noise, training and evaluation strategies should 
consider the inherent class imbalances in the problem 
(such as disease prevalence14), and the level of confidence 
in the ‘ground truth’ must be increased through multiple 
expert opinions168. Furthermore, data-driven learning is 

Wearables

Data

Discrete

Continuous
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Continuous

Classification (SVM, ANN, kNN, DT, RF, etc.)

Regression (linear, SVM, ANN, Bayesian regression, etc.)

Partially labelled
(semi-supervised)

Clustering (k-means, GDBSCAN, GM, HC)

Dimensionality reduction
Feature extraction
Pattern recognition

Generative models

Reinforcement learning
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(supervised)
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(unsupervised)

b

a

Emergency services
Health-care providers
Administrative authorities

Data conversion unit

Digital
signal array

Secondary
data

Smart lenses (intraocular pressure)
Face masks (breathing pattern,
airborne pathogens,
inflammation markers)

Electronic epidermal
tattoos (stress
biomarkers, glucose)

Smartwatches (activity,
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2
 levels)
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conversion function

f
1
 = Filtering

f
2
 = Smoothing

f
i
 = Downsampling

f
1
 = Clustering

f
2
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f
i
 = Dimensionality reduction

Supervised learning,
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generative models, etc.

Preprocessing II:
feature engineering Decision model

Skip connections

Wristbands (electrolytes,
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Smart textiles  
(skin temperature,
metabolites)

On-teeth sensors (drugs)
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+

80 bpm

Fig. 2 | The decision-making unit and its working principles. a | Conceptualization of the data pipeline. The combination 
and processing of multiple wearables with multiple sensing strategies provides access to physiologically relevant 
parameters and biomarkers to better explain the non-linearity in human physiology. The black and red lines indicate  
the data processing and model training pathways, respectively. b | Overview of data-driven methods. Post-processing  
of big data to explore the complex links between the measured signals and physiological status of individuals is possible 
with machine learning algorithms. ANN, artificial neural network; DT, decision tree; GDBSCAN, generalized density-based 
spatial clustering of applications with noise; GM, Gaussian means; HC, hierarchical clustering; kNN, k-nearest neighbours; 
RF, random forest; SVM, support-vector machines. Panel a (top part) adapted from ref.14, Springer Nature Limited.
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an ill-posed problem; that is, several models with differ-
ent complexities can be used to solve the same problem. 
Hence, the model complexity should match the volume 
and dimensionality of the data to minimize generaliza-
tion error. Another remedy is to use ensemble learning, 
in which multiple models that rely on different learning 
theories (for example, example-based, error-based or 
similarity-based learning) are used together to make a 
decision. In health-care monitoring, model complexity 
is particularly crucial, as it is linked to the individual-
ization of the detection process. In cases in which the 
data are likely to exhibit unique individual patterns, 
such as the detection of epileptic seizures from elec-
troencephalographic signals, the training data become 
limited such that an ensemble of weak learners (that is, 
an ML model that has a low model complexity), such as 
support-vector machines and random forests, are typi-
cally more successful than deep neural networks. With 
such non-representative, small datasets, a deep neural 
network could memorize the patterns instead of learning 
from them, which leads to inaccurate predictions when 
a new and unknown case is introduced. If the symptoms 
are stereotypical, as in the case of arrhythmia detection, 
a large volume of data can be collected and used in  
the training with more complex models. In addition, the 
core algorithm of the data-driven model should be built 
by considering the physical nature of the problem. For 
example, in the case of COVID-19, building blocks of 
the model as well as the underlying mathematics were 
tailored to leverage multiple physiologically relevant 
acoustic markers, such as muscular degradation, respira-
tory tract alterations and changes in vocal cord sounds, 
to increase sensitivity175.

An alternative approach to extract the hidden state 
within the data is to use artificial intelligence, rather 
than human supervision. In unsupervised learning, 
examples are either discretely clustered into similar 
groups (based on a similarity score) or analysed as a 
whole (Fig. 2b). Clustering of examples into subgroups 
can be performed even when the structural hierarchy is 
unknown. The strength of such algorithms lies in their 
ability to detect patterns within high-dimensional data 
and identify relationships between input variables. In 
wearables, unsupervised learning can be deployed to 
mine the high-dimensional data stream from a body 
area network, which is difficult to analyse by human 
supervision. Unsupervised learning can also facilitate 
the interpretation of the collected data by identifying 
the most informative features using noise reduction and 
outlier detection.

Depending on the design objective, the model out-
put can be generated discretely or continuously. The  
next decision to be made in the design process is  
the data management protocol173. Model outputs can be 
exchanged between wearable sensors and their software, 
as well as external smart devices (such as smartwatches 
or smartphones) within the body area network, which 
makes it possible to record and wirelessly transfer phys-
iologically relevant data in real time. The selection of 
the data transmission mode relies on the power con-
sumption expectations and the application (real-time 
or single-point analysis). In the long term, wireless 

data transmission through Bluetooth and LoRa-based 
solutions might enable fast, short-range and long-range 
transmission without compromising power consump-
tion. At present, however, the power consumption 
of radio transmission is much higher than the power 
needs of the local sensing–amplification–data conver-
sion process. Therefore, in the near future, data trans-
mission should be minimized by localizing either the 
whole decision-making unit or the data compression 
component on the sensors.

Depending on the nature and complexity of the 
task, the data storage requirements of wearables vary. 
Data storage units can be classified as volatile or 
non-volatile memory176. Although volatile storage pro-
vides high-speed data fetching, storage is restricted to 
active periods; that is, the stored data are deleted when 
the system is turned off. Volatile data storage has a huge 
effect on the system performance and power unit, as 
it needs frequent refreshing of the data to retain con-
tent. By contrast, non-volatile storage enables relatively 
low-power storage of high-density data, but the data 
transfer is much slower. It is also possible to integrate 
a cloud-based service that oversees the whole process 
and sends the physiological data to emergency services, 
health-care providers and/or administrative authorities 
as needed. Such an infrastructure would rely heavily on 
local and long-distance communications between dif-
ferent components, which is accompanied by intrinsic 
challenges, including optimization of the data collection 
frequency, the degree of sensor circuitry integration and 
power management as well as ethical concerns relating 
to the collection of sensitive information, access to regu-
lated medical data, user compliance, and data safety and 
encryption177 (Supplementary information).

Power unit
The power requirement of wearable sensors depends 
on the application and the building blocks used1,3. Most 
wearables require a power unit that is applied to provide 
the supply voltage (either battery-powered or based on 
a specific harvesting source) and, in the case of energy 
harvesting, to extract energy from the environment or 
body. As wearable sensors are designed to monitor bod-
ily activities, the materials used in their power units are 
also expected to meet essential characteristics of wear-
ables. Ideally, such power units should be non-toxic, 
miniature, recyclable and either harvest energy or offer 
a high energy density for a long lifetime.

Energy harvesting can be accomplished through 
different phenomena: piezoelectricity, triboelectricity, 
thermoelectricity, optoelectronics, electromagnetic radi-
ation, catalytic reactions or a combination thereof. Each 
approach takes advantage of specific energy sources in 
the human body or the external environment. These 
sources can be used to enable self-powered wearables 
driven by biomechanical (motion or heat), electromag-
netic (light or radio frequency), biochemical (metabo-
lites in bodily fluids) or a combination of processes (such 
as a hybrid system that combines triboelectric generators 
with biofuel cells)178,179.

Piezoelectric and triboelectric phenomena con-
vert slight and uneven mechanical energy (including 
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walking, heartbeats and respiration movements) into 
electricity. Mechanical stress or strain generates an 
internal electric field in piezoelectric materials (Fig. 3a) 
such as zinc oxide nanorods or nanostructured piezoe-
lectric harvesters, including lead zirconate titanate and 
barium titanate180. In triboelectric harvesters, motion 
provokes the physical contact and separation of two 
materials with different electronegativities, which trig-
gers electron flow, thereby producing a voltage181 (Fig. 3b). 
In this context, triboelectric power units use an electron 
acceptor material that attracts electrons from an electron 
donor material. The electron acceptors most commonly 
used in triboelectric nanogenerators are polytetrafluo-
roethylene, PDMS, fluorinated ethylene propylene and 
Kapton, whereas aluminium, copper, skin and nylon 
are the most common electron donors in this field182. 
Piezoelectric and triboelectric generators with stretch-
able electrodes and size flexibility (ranging from tens of 
square millimetres to tens of square centimetres) can be 
worn on the skin or incorporated into textile materials. 
These generators also offer higher power densities than 
other types of generator (up to 810 mW m–2 (ref.183) for 
piezoelectric and 230 mW m–2 (ref.184) for triboelectric 
harvesters) and have proved stable across high numbers 
of operating cycles. However, the integration of piezo
electric generators into wearables is challenging, as their 
output is an alternating current with an instantaneous 
pulse wave nature, which requires transformation into 
direct current. Triboelectric generators cannot meet the 
real-time energy consumption of portable electronics, 
although they can provide relatively high output voltage. 

In addition, the longevity of wearable triboelectric gen-
erators remains an issue, as most use metallic organic 
polymers, which have inherent stability and durability 
limitations185. As wearable piezoelectric and triboelec-
tric generators depend on biomechanical energy, they 
have a low-frequency excitation source; hence, it is hard  
for these generators to serve as the sole energy supply for  
wearable devices, especially those containing multi-
plexing functions, intended for continuous monitoring 
or connected with other power-hungry elements such 
as displays. Antijamming capability is another consid-
eration, as a jamming signal can be triggered during 
complex bodily activities (such as walking, running or 
jumping), thereby interrupting the desired capture of 
target signals. Moreover, the design, miniaturization, 
encapsulation and manufacture of highly deformable 
and fatigue-free electrodes are crucial for the develop-
ment of piezoelectric and triboelectric harvesters that 
are stable in wearable sensors and can, for example, 
withstand high or low temperatures, high humidity and 
washing conditions.

Thermoelectric generators convert tiny amounts of 
heat into electricity (Fig. 3c). Wearable thermoelectric 
generators can thus take advantage of the heat generated 
from human metabolic activities, thereby producing 
electricity to power wearable sensors in a virtually per-
petual manner. Generally, thermoelectric harvesters are 
rigid and heavy; however, composite versions based on 
conductive polymers, hybrid organic–inorganic mate-
rials, continuous inorganic films186 and liquid metals 
are well suited for flexible thermoelectric generators187. 
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Fig. 3 | Energy harvesting methods. a | Piezoelectricity is generated by mechanical motion, which activates a 
piezoelectric material. b | Triboelectricity is produced by motion that results in the physical contact and separation of two 
materials with different electronegativities. c | Thermoelectricity is generated when the surface of conductor A is heated 
and this energy is then transferred to conductor B, which triggers the motion of charge carriers (such as electrons and 
holes) and generates a voltage. d | Photovoltaic energy is generated when a photovoltaic material is irradiated with light.  
e | Electromagnetic radiation is managed by antennas that transform electromagnetic waves into a voltage or current.  
f | Wearable biofuel cells create energy from a catalytic reaction, which occurs between the fuel provided by a biofluid 
(such as sweat) and an enzyme; the reaction is generally enhanced by a mediator that boosts the electron transfer process 
between the enzymes and the electrodes.
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The thermoelectric harvesters that are integrated into 
wearables mostly have heatsink-like shapes, making 
them difficult to clean and not particularly aesthetic. 
In comparison with piezoelectric and triboelectric 
generators, thermoelectric harvesters are much larger 
(around tens of square centimetres) but the power den-
sities achieved are lower (up to 200 mW m–2)188. Major 
challenges in the development of highly stable wearable 
thermoelectric generators include low energy conver-
sion rates, biocompatibility issues, maintaining reliable 
contact with the heat source and adjusting to body heat 
temperature changes in different environments189.

Photovoltaic materials are a common power source 
and can be used to develop solar-powered wearable sen-
sors (Fig. 3d). Similarly to thermoelectric generators, pho-
tovoltaic harvesters are usually rigid. However, stretchable, 
twistable and bendable photovoltaic harvesters have been 
developed based on transparent electrodes190 or smart 
textiles made from deformable hybrid thin films and/or  
soft composite materials, respectively. Smart textiles 
have enabled photorechargable power sources191, some 
of which are even washable192. However, miniaturization 
is still a major challenge in photovoltaic harvesters as they 
are mostly bulky (tens of square millimetres to square 
centimetres in size) and not particularly lightweight 
for tasks that require a higher energy density, with the 
energy storage elements occupying most of the space of 
the resulting wearable device193.

As a promising alternative, flexible antennas enable 
the use of electromagnetic radiation as a power source 
and endow wearables with the capability to transfer not 
only power but also data between devices194 (Fig. 3e) in 
a wireless and battery-free manner195. Several materials, 
including polymers, textiles, graphene-related materi-
als, neoprene rubber, wool, cellulose and silk, as well 
as composites incorporating materials such as ceram-
ics or MXenes, have been used to fabricate wearable 
antennas196. The printability of the substrates is a key 
issue in designing flexible antennas; different conduc-
tive materials can be printed, commonly copper, but also 
other ink formulations197. Beyond these materials, new 
physical effects and materials are being investigated198,199 
to advance the field of wireless power transfer.

Ideally, the size of a wearable antenna should be 
less than 25 cm2 (ref.200) and their operation frequen-
cies should range from 900 MHz to 38 GHz (ref.196). 
Wearable antennas have proved useful in the monitoring 
of body motion or position, including the monitoring of 
walking and fall states201 and the detection of bending 
positions202. The main challenges for developing wear-
able antennas include the design considerations of the 
coupling between the antenna geometry and the human 
body, which will affect the behaviour of the antenna and 
performance during high electromagnetic exposure; 
managing antenna alterations when it is constantly 
deformed during complex bodily activities; ensuring 
stability over time; reducing signal fade due to human 
body shadowing effects203; and enhancing performance 
of the antenna during motion or rotation of the wearer, 
and under different external conditions (such as temper-
ature, humidity, proximity to the body and other clothes, 
and washing frequency).

Another power source for wearable sensors are 
biofuel cells, in which enzymes are used as catalysts to 
convert chemical energy into electricity (Fig. 3f). For 
example, lactate has the potential to be an outstanding 
fuel for self-powered wearable devices as it can be easily 
oxidized by oxidase enzymes (lactate oxidase or lactate 
dehydrogenase) and its concentration in sweat is rela-
tively abundant (in the millimolar range)204,205. In addi-
tion, sweat also contains myriad analytes, allowing for 
sweat-activated biofuel cells for wearable sensors that 
target pH and multiple analytes, including glucose, urea 
and NH4

+, even in a multiplexed manner206. The current 
challenges of wearable biofuel cells include increasing the 
energy density, increasing the stability and longevity of 
the catalyst, the limited fuel availability, and miniaturiza-
tion and proper system integration206. Moreover, enzymes 
can degenerate when they operate in a non-ideal envi-
ronment. To address this, nanozymes, which are cata-
lytically active nanoparticles with enzyme-like kinetics, 
can replace enzymes as catalysts in biofuel cells204,207. In 
addition, the incorporation of nanomaterials such as car-
bon nanotubes and electrodes with a high surface area 
can lead to highly efficient self-chargeable biofuel cells208. 
Current on-skin biofuel cells for wearables have a size on 
the order of square centimetres and deliver promising 
power densities of up to 3.5 mW cm−2.

Wearables that require long-term operation and a 
high energy density to power multiplexed sensors and 
other components can incorporate an energy storage 
element209. To this end, low-cost, comfortable and safe 
batteries or supercapacitors that are deformable are 
highly desired. However, most of the available wear-
able energy storage devices have risks associated with 
toxicity and flammability210,211. To overcome this issue, 
fibre-like electrodes made of carbon nanotube yarn 
can act as supercapacitors with a power density of up 
to 2.6 μWh cm–2 (ref.212). Textile-like electrodes made 
of 2D heterostructures have also led to innovative 
supercapacitors with a maximum energy density of 
167.05 mWh cm–3 and excellent cycling stability. Using 
these textile-like electrodes, a wearable energy-sensor 
system has been shown to monitor physiological sig-
nals in real time, including wrist pulse, heartbeat and 
body-bending signals213.

The power demand of wearables depends on the 
complexity of the measurement (for example, single 
analyte or multianalyte, continuous or single, and quan-
titative or qualitative), and is typically determined by the 
decision-making unit3. Therefore, the power demand 
can be estimated based on the desired measurement 
output, and a suitable power supply strategy thus chosen.

Outlook
With continued innovation and development, together 
with the widespread use of wearables, we are now many 
steps closer to fulfilling the prerequisite for proactive 
health care by monitoring the time-resolved variation 
in the physiological state of the body. Yet, there remain 
numerous challenges and areas for development to 
realize the full potential of wearable sensing devices.

From the materials perspective, the develop-
ment of breathable, flexible and stretchable materials 
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(such as superflexible wood214) is still an important 
challenge to satisfy the rigorous requirements of weara-
ble applications (such as adaptation to electronic skins, 
smart patches or textiles). Furthermore, transient and 
recyclable (even compostable) substrate materials are 
desired for the sustainable and low-cost mass produc-
tion of wearable sensors. Another challenge is to develop 
self-powered wearables, including ‘green’ power units 
(such as disposable solar panels or biofuel cells) or pow-
erless options through near-field communication. These 
advances could lead to the evolution of standalone, fully 
integrated wearable sensors, or a biosensing unit that 
operates in combination with other ubiquitous personal 
devices (such as smartphones).

To enable robust long-term (days to weeks) contin-
uous measurement in a wearable format, sensing and 
sampling technologies should be further matured. In this 
regard, future trends for advanced sensing units include 
the use of microneedles, nanoneedles or unconven-
tional sample collection methods (such as face masks) 
for easy and continuous or on-demand sampling as well 
as the further integration of micromaterials or nano-
materials and stabilized synthetic biology reactions for 
signal amplification. Moreover, novel biorecognition ele-
ments or assay technologies (such as aptamers, molec-
ularly imprinted polymers, nanozymes, DNAzymes 
or CRISPR–Cas-powered assays) could be applied to 
increase sensitivity and facilitate long-term use.

The accuracy of wearables could be improved 
through multimodal and/or multiplexed sensing by 
mounting different transducer types and/or simulta-
neously measuring different analytes and/or samples 
on the same platform. In addition, increased use of 
cloud or fog computing, data mining and ML for the 
extremely large datasets produced by wearable sensors 

would also help to enable more accurate predictions 
of the physiological status of users. In this respect, the 
first prerequisite is to conduct larger prospective cohort 
studies using wearable sensors to validate their clinical 
applicability for diagnosis and population-level studies. 
Before starting these trials, data collection and its use 
should be planned by considering their implementa-
tion in ML models, for both training, validation and 
testing of these models. Moreover, social acceptance of 
wearable sensors must be ensured by informing users 
about the advantages and disadvantages and by inte-
grating them into existing wearable devices or appli-
cation ecosystems (such as smartwatches or wearable 
glucometers) and health-care services (such as health 
insurance policies; see Supplementary information 
for further discussion). In addition, the integration of 
wearables into Internet-of-Things applications and the 
adoption of protocols for data safety and handling (such 
as blockchain177) with the establishment of an ethical 
regulatory framework for wearable data networks could 
further promote their use.

In the foreseeable future, extension of the capabil-
ities of wearables beyond diagnostic sensing through 
the integration of feedback loops would pave the way 
for (third-generation) wearable devices for thera-
nostic applications. Smart bandages, for example, 
could allow for real-time monitoring of wound heal-
ing through pH measurement and, in the case of an 
infection, treatment by on-demand delivery of anti
biotics or anti-inflammatory drugs. Another trend is to 
enhance the capabilities of current wearable continuous 
glucose-monitoring systems to release insulin to the 
patient in a closed-loop manner.

Published online 22 July 2022

1.	 Iqbal, S. M. A., Mahgoub, I., Du, E., Leavitt, M. A. & 
Asghar, W. Advances in healthcare wearable devices. 
npj Flex. Electron. 5, 9 (2021).

2.	 Brophy, K. et al. The future of wearable technologies. 
Brief. Pap. 8, 1–20 (2021).

3.	 Ates, H. C. et al. Integrated devices for non-invasive 
diagnostics. Adv. Funct. Mater. 31, 2010388 (2021).

4.	 Heikenfeld, J. et al. Wearable sensors: modalities, 
challenges, and prospects. Lab Chip 18, 217–248 
(2018).

5.	 Gambhir, S. S., Ge, T. J., Vermesh, O., Spitler, R. 
& Gold, G. E. Continuous health monitoring: an 
opportunity for precision health. Sci. Transl. Med. 
13, eabe5383 (2021).

6.	 Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. 
Wearable biosensors for healthcare monitoring. 
Nat. Biotechnol. 37, 389–406 (2019).

7.	 Wang, L., Lou, Z., Jiang, K. & Shen, G. 
Bio-multifunctional smart wearable sensors for 
medical devices. Adv. Intell. Syst. 1, 1900040 (2019).

8.	 Yang, Y. et al. A laser-engraved wearable sensor for 
sensitive detection of uric acid and tyrosine in sweat. 
Nat. Biotechnol. 38, 217–224 (2020).

9.	 Guo, S. et al. Integrated contact lens sensor system 
based on multifunctional ultrathin MoS2 transistors. 
Matter 4, 969–985 (2020).

10.	 Gao, W. et al. Fully integrated wearable sensor arrays 
for multiplexed in situ perspiration analysis. Nature 
529, 509–514 (2016).

11.	 Nyein, H. Y. Y. et al. A wearable microfluidic sensing 
patch for dynamic sweat secretion analysis. ACS Sens. 
3, 944–952 (2018).

12.	 Quer, G. et al. Wearable sensor data and self-reported 
symptoms for COVID-19 detection. Nat. Med. 27, 
73–77 (2021).

13.	 Mishra, T. et al. Pre-symptomatic detection of 
COVID-19 from smartwatch data. Nat. Biomed. Eng. 
4, 1208–1220 (2020).

14.	 Ates, H. C., Yetisen, A. K., Güder, F. & Dincer, C. 
Wearable devices for the detection of COVID-19. 
Nat. Electron. 4, 13–14 (2021).

15.	 Powers, R. et al. Smartwatch inertial sensors 
continuously monitor real-world motor fluctuations in 
Parkinson’s disease. Sci. Transl. Med. 13, eabd7865 
(2021).

16.	 Sempionatto, J. R., Montiel, V. R. V., Vargas, E., 
Teymourian, H. & Wang, J. Wearable and mobile 
sensors for personalized nutrition. ACS Sens. 6, 
1745–1760 (2021).

17.	 Hong, W. & Lee, W. G. Wearable sensors for continuous 
oral cavity and dietary monitoring toward personalized 
healthcare and digital medicine. Analyst 145,  
7796–7808 (2021).

18.	 Ates, H. C. et al. On-site therapeutic drug monitoring. 
Trends Biotechnol. 38, 1262–1277 (2020).

19.	 Cotur, Y. et al. Stretchable composite acoustic 
transducer for wearable monitoring of vital signs.  
Adv. Funct. Mater. 30, 1910288 (2020).

20.	 Kozlowski, R. M. & Muzyczek, M. Natural Fibers  
(Nova Science Publishers, 2017).

21.	 Shaker, K., Umair, M., Ashraf, W. & Nawab, Y.  
Fabric manufacturing. Phys. Sci. Rev. 1, 20160024 
(2016).

22.	 Applegate, M. B., Perotto, G., Kaplan, D. L. & 
Omenetto, F. G. Biocompatible silk step-index optical 
waveguides. Biomed. Opt. Express 6, 4221–4227 
(2015).

23.	 Guidetti, G., Atifi, S., Vignolini, S. & Hamad, W. Y. 
Flexible photonic cellulose nanocrystal films.  
Adv. Mater. 28, 10042–10047 (2016).

24.	 Kim, S. J. et al. Wearable UV sensor based on carbon 
nanotube-coated cotton thread. ACS Appl. Mater. 
Interfaces 10, 40198–40202 (2018).

25.	 Gurarslan, A., Özdemir, B., Bayat, İ. H., Yelten, M. B.  
& Karabulut Kurt, G. Silver nanowire coated knitted 
wool fabrics for wearable electronic applications.  

J. Eng. Fibers Fabr. https://doi.org/10.1177/ 
1558925019856222 (2019).

26.	 Morales-Narváez, E. et al. Nanopaper as an optical 
sensing platform. ACS Nano 9, 7296–7305 (2015).

27.	 Cao, J. & Wang, C. Multifunctional surface modification 
of silk fabric via graphene oxide repeatedly coating  
and chemical reduction method. Appl. Surf. Sci. 405, 
380–388 (2017).

28.	 Nguyen, P. Q. et al. Wearable materials with 
embedded synthetic biology sensors for biomolecule 
detection. Nat. Biotechnol. 39, 1366–1374 (2021).

29.	 Song, Y. et al. Design framework for a seamless smart 
glove using a digital knitting system. Fash. Text. 8,  
6 (2021).

30.	 Loke, G. et al. Structured multimaterial filaments  
for 3D printing of optoelectronics. Nat. Commun. 10, 
4010 (2019).

31.	 Valentine, A. D. et al. Hybrid 3D printing of soft 
electronics. Adv. Mater. 29, 1703817 (2017).

32.	 Kraft, U., Molina-Lopez, F., Son, D., Bao, Z. & 
Murmann, B. Ink development and printing of 
conducting polymers for intrinsically stretchable 
interconnects and circuits. Adv. Electron. Mater. 6, 
1900681 (2020).

33.	 Geng, W., Cuthbert, T. J. & Menon, C. Conductive 
thermoplastic elastomer composite capacitive strain 
sensors and their application in a wearable device  
for quantitative joint angle prediction. ACS Appl. 
Polym. Mater. 3, 122–129 (2021).

34.	 Sala de Medeiros, M., Chanci, D., Moreno, C., 
Goswami, D. & Martinez, R. V. Waterproof, 
breathable, and antibacterial self-powered e-textiles 
based on omniphobic triboelectric nanogenerators. 
Adv. Funct. Mater. 29, 1904350 (2019).

35.	 Wu, C., Liu, X. & Ying, Y. Soft and stretchable optical 
waveguide: light delivery and manipulation at complex 
biointerfaces creating unique windows for on-body 
sensing. ACS Sens. 6, 1446–1460 (2021).

NATure RevIeWS | MATERIALS	  volume 7 | November 2022 | 903

W e a r a b l e  E l e c t r o n i c s  

https://doi.org/10.1177/1558925019856222
https://doi.org/10.1177/1558925019856222


0123456789();: 

36.	 Choi, S. et al. Highly flexible and efficient fabric-based 
organic light-emitting devices for clothing-shaped 
wearable displays. Sci. Rep. 7, 6424 (2017).

37.	 Xu, G. et al. Design of non-dimensional parameters  
in stretchable microstrip antennas with coupled 
mechanics-electromagnetics. Mater. Des. 205, 
109721 (2021).

38.	 Mota-Morales, J. D. & Morales-Narváez, E. 
Transforming nature into the next generation of 
bio-based flexible devices: new avenues using deep 
eutectic systems. Matter 4, 2141–2162 (2021).

39.	 Correa, S. et al. Translational applications of 
hydrogels. Chem. Rev. 121, 11385–11457 (2021).

40.	 Homayounfar, S. Z. et al. Multimodal smart eyewear 
for longitudinal eye movement tracking. Matter 3, 
1275–1293 (2020).

41.	 Turner, J. G., White, L. R., Estrela, P. & Leese, H. S. 
Hydrogel-forming microneedles: current advancements 
and future trends. Macromol. Biosci. 21, 2000307 
(2021).

42.	 Matsuhisa, N. et al. Printable elastic conductors with  
a high conductivity for electronic textile applications. 
Nat. Commun. 6, 7461 (2015).

43.	 Wang, B. et al. Flexible and stretchable metal oxide 
nanofiber networks for multimodal and monolithically 
integrated wearable electronics. Nat. Commun. 11, 
2405 (2020).

44.	 Schroeder, T. B. H. et al. An electric-eel-inspired soft 
power source from stacked hydrogels. Nature 552, 
214–218 (2017).

45.	 Scarpa, E. et al. Wearable piezoelectric mass sensor 
based on pH sensitive hydrogels for sweat pH 
monitoring. Sci. Rep. 10, 10854 (2020).

46.	 Xu, J., Wang, G., Wu, Y., Ren, X. & Gao, G. 
Ultrastretchable wearable strain and pressure sensors 
based on adhesive, tough, and self-healing hydrogels 
for human motion monitoring. ACS Appl. Mater. 
Interfaces 11, 25613–25623 (2019).

47.	 Di, J. et al. Stretch-triggered drug delivery from 
wearable elastomer films containing therapeutic 
depots. ACS Nano 9, 9407–9415 (2015).

48.	 Liu, X. et al. 3D printing of living responsive materials 
and devices. Adv. Mater. 30, 1704821 (2018).

49.	 Herrmann, A., Haag, R. & Schedler, U. Hydrogels and 
their role in biosensing applications. Adv. Healthc. 
Mater. 10, 2100062 (2021).

50.	 Zhao, Y. et al. Hierarchically structured stretchable 
conductive hydrogels for high-performance wearable 
strain sensors and supercapacitors. Matter 3, 
1196–1210 (2020).

51.	 Gibbs, P. & Asada, H. H. Wearable conductive 
fiber sensors for measuring joint movements. 
In IEEE International Conference on Robotics and 
Automation, 2004 Vol. 5, 4753–4758 (IEEE, 2004).

52.	 Xu, S. & Wu, W. Ink-based additive nanomanufacturing 
of functional materials for human-integrated smart 
wearables. Adv. Intell. Syst. 2, 2000117 (2020).

53.	 Hu, X. et al. Stretchable inorganic-semiconductor 
electronic systems. Adv. Mater. 23, 2933–2936 
(2011).

54.	 Yun, M. J., Sim, Y. H., Lee, D. Y. & Cha, S. I. Highly 
stretchable large area woven, knitted and robust 
braided textile based interconnection for stretchable 
electronics. Sci. Rep. 11, 4038 (2021).

55.	 Dincer, C. et al. Disposable sensors in diagnostics, 
food, and environmental monitoring. Adv. Mater. 31, 
1806739 (2019).

56.	 Arun, H. Advancements in the use of carbon 
nanotubes for antenna realization. AEU Int. J. 
Electron. Commun. 136, 153753 (2021).

57.	 Mackanic, D. G. et al. Decoupling of mechanical 
properties and ionic conductivity in supramolecular 
lithium ion conductors. Nat. Commun. 10, 5384 
(2019).

58.	 Wang, C. et al. Monitoring of the central blood 
pressure waveform via a conformal ultrasonic device. 
Nat. Biomed. Eng. 2, 687–695 (2018).

59.	 Ershad, F. et al. Ultra-conformal drawn-on-skin 
electronics for multifunctional motion artifact-free 
sensing and point-of-care treatment. Nat. Commun. 
11, 3823 (2020).

60.	 Uzun, S. et al. Knittable and washable multifunctional 
MXene-coated cellulose yarns. Adv. Funct. Mater. 29, 
1905015 (2019).

61.	 Sim, K. et al. Metal oxide semiconductor 
nanomembrane-based soft unnoticeable multifunctional 
electronics for wearable human-machine interfaces.  
Sci. Adv. 5, eaav9653 (2019).

62.	 Carey, T. et al. Fully inkjet-printed two-dimensional 
material field-effect heterojunctions for wearable  
and textile electronics. Nat. Commun. 8, 1202  
(2017).

63.	 Abdelkader, A. M. et al. Ultraflexible and robust 
graphene supercapacitors printed on textiles for 
wearable electronics applications. 2D Mater. 4, 
35016 (2017).

64.	 Wang, Z. et al. An ultraflexible and stretchable 
aptameric graphene nanosensor for biomarker 
detection and monitoring. Adv. Funct. Mater. 29, 
1905202 (2019).

65.	 Lee, H. et al. A graphene-based electrochemical device 
with thermoresponsive microneedles for diabetes 
monitoring and therapy. Nat. Nanotechnol. 11,  
566–572 (2016).

66.	 Punetha, D., Kar, M. & Pandey, S. K. A new type 
low-cost, flexible and wearable tertiary nanocomposite 
sensor for room temperature hydrogen gas sensing. 
Sci. Rep. 10, 2151 (2020).

67.	 Kabiri Ameri, S. et al. Graphene electronic tattoo 
sensors. ACS Nano 11, 7634–7641 (2017).

68.	 Araromi, O. A. et al. Ultra-sensitive and resilient 
compliant strain gauges for soft machines. Nature 
587, 219–224 (2020).

69.	 Ou, L. et al. Toxicity of graphene-family nanoparticles: 
a general review of the origins and mechanisms.  
Part. Fibre Toxicol. 13, 57 (2016).

70.	 Tran, B. Q. et al. Proteomic characterization  
of dermal interstitial fluid extracted using a novel 
microneedle-assisted technique. J. Proteome Res.  
17, 479–485 (2018).

71.	 He, R. et al. A hydrogel microneedle patch for  
point-of-care testing based on skin interstitial fluid. 
Adv. Healthc. Mater. 9, 1901201 (2020).

72.	 Makvandi, P. et al. Engineering microneedle patches 
for improved penetration: analysis, skin models and 
factors affecting needle insertion. Nano Micro Lett. 
13, 93 (2021).

73.	 Kim, Y. & Prausnitz, M. R. Sensitive sensing of 
biomarkers in interstitial fluid. Nat. Biomed. Eng. 5, 
3–5 (2021).

74.	 Moussi, K., Bukhamsin, A., Hidalgo, T. & Kosel, J. 
Biocompatible 3D printed microneedles for 
transdermal, intradermal, and percutaneous 
applications. Adv. Eng. Mater. 22, 1901358 (2020).

75.	 Prausnitz, M. R. The effects of electric current applied 
to skin: a review for transdermal drug delivery.  
Adv. Drug Deliv. Rev. 18, 395–425 (1996).

76.	 Giri, T. K., Chakrabarty, S. & Ghosh, B. Transdermal 
reverse iontophoresis: a novel technique for 
therapeutic drug monitoring. J. Control. Release 246, 
30–38 (2017).

77.	 Tamada, J. A. et al. Noninvasive glucose 
monitoringcomprehensive clinical results. JAMA 282, 
1839–1844 (1999).

78.	 Bandodkar, A. J. et al. Tattoo-based noninvasive 
glucose monitoring: a proof-of-concept study.  
Anal. Chem. 87, 394–398 (2015).

79.	 Yao, Y. et al. Integration of interstitial fluid extraction 
and glucose detection in one device for wearable 
non-invasive blood glucose sensors. Biosens. 
Bioelectron. 179, 113078 (2021).

80.	 Hakala, T. A. et al. Sampling of fluid through skin  
with magnetohydrodynamics for noninvasive glucose 
monitoring. Sci. Rep. 11, 7609 (2021).

81.	 Currano, L. J. et al. Wearable sensor system for 
detection of lactate in sweat. Sci. Rep. 8, 15890 
(2018).

82.	 Sempionatto, J. R. et al. Epidermal enzymatic 
biosensors for sweat vitamin C: toward personalized 
nutrition. ACS Sens. 5, 1804–1813 (2020).

83.	 Karpova, E. V. et al. Noninvasive diabetes monitoring 
through continuous analysis of sweat using 
flow-through glucose biosensor. Anal. Chem. 91, 
3778–3783 (2019).

84.	 Parlak, O., Keene, S. T., Marais, A., Curto, V. F.  
& Salleo, A. Molecularly selective nanoporous 
membrane-based wearable organic electrochemical 
device for noninvasive cortisol sensing. Sci. Adv. 4, 
eaar2904 (2018).

85.	 Kim, J. et al. Noninvasive alcohol monitoring using  
a wearable tattoo-based iontophoretic-biosensing 
system. ACS Sens. 1, 1011–1019 (2016).

86.	 Jagannath, B. et al. Temporal profiling of cytokines  
in passively expressed sweat for detection of infection 
using wearable device. Bioeng. Transl. Med. 6, 
e10220 (2021).

87.	 Emaminejad, S. et al. Autonomous sweat extraction 
and analysis applied to cystic fibrosis and glucose 
monitoring using a fully integrated wearable platform. 
Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

88.	 Jagannath, B. et al. A sweat-based wearable enabling 
technology for real-time monitoring of IL-1β and CRP 
as potential markers for inflammatory bowel disease. 
Inflamm. Bowel Dis. 26, 1533–1542 (2020).

89.	 Mintah Churcher, N. K., Upasham, S., Rice, P., 
Bhadsavle, S. & Prasad, S. Development of a flexible, 
sweat-based neuropeptide Y detection platform.  
RSC Adv. 10, 23173–23186 (2020).

90.	 Kim, S. et al. Soft, skin-interfaced microfluidic systems 
with integrated immunoassays, fluorometric sensors, 
and impedance measurement capabilities. Proc. Natl 
Acad. Sci. USA 117, 27906–27915 (2020).

91.	 Bandodkar, A. J. et al. Battery-free, skin-interfaced 
microfluidic/electronic systems for simultaneous 
electrochemical, colorimetric, and volumetric analysis 
of sweat. Sci. Adv. 5, eaav3294 (2019).

92.	 Koh, A. et al. A soft, wearable microfluidic device 
for the capture, storage, and colorimetric sensing 
of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

93.	 Xiao, J. et al. Microfluidic chip-based wearable 
colorimetric sensor for simple and facile detection 
of sweat glucose. Anal. Chem. 91, 14803–14807 
(2019).

94.	 Hojaiji, H. et al. An autonomous wearable system for 
diurnal sweat biomarker data acquisition. Lab Chip 
20, 4582–4591 (2020).

95.	 Kim, J. et al. Simultaneous monitoring of sweat and 
interstitial fluid using a single wearable biosensor 
platform. Adv. Sci. 5, 1800880 (2018).

96.	 Patterson, B. & Wood, R. Is cough really necessary for 
TB transmission? Tuberculosis 117, 31–35 (2019).

97.	 Halloran, S. K., Wexler, A. S. & Ristenpart, W. D.  
A comprehensive breath plume model for disease 
transmission via expiratory aerosols. PLoS ONE 7, 
e37088 (2012).

98.	 Wei, J. & Li, Y. Airborne spread of infectious agents 
in the indoor environment. Am. J. Infect. Control 44, 
S102–S108 (2016).

99.	 Maier, D. et al. Toward continuous monitoring of 
breath biochemistry: a paper-based wearable sensor 
for real-time hydrogen peroxide measurement in 
simulated breath. ACS Sens. 4, 2945–2951 (2019).

100.	Xu, C., Yang, Y. & Gao, W. Skin-interfaced sensors in 
digital medicine: from materials to applications. 
Matter 2, 1414–1445 (2020).

101.	Sharma, A., Badea, M., Tiwari, S. & Marty, J. L. 
Wearable biosensors: an alternative and practical 
approach in healthcare and disease monitoring. 
Molecules 26, 748 (2021).

102.	Xu, Y. et al. Pencil–paper on-skin electronics. Proc. Natl 
Acad. Sci. USA 117, 18292–18301 (2020).

103.	Hozumi, S., Honda, S., Arie, T., Akita, S. & Takei, K. 
Multimodal wearable sensor sheet for health-related 
chemical and physical monitoring. ACS Sens. 6, 
1918–1924 (2021).

104.	Aroganam, G., Manivannan, N. & Harrison, D. Review 
on wearable technology sensors used in consumer 
sport applications. Sensors 19, 1983 (2019).

105.	Jing, X. et al. Highly stretchable and biocompatible 
strain sensors based on mussel-inspired super- 
adhesive self-healing hydrogels for human motion 
monitoring. ACS Appl. Mater. Interfaces 10, 
20897–20909 (2018).

106.	Xiao, D. et al. Seeking answers from tradition: facile 
preparation of durable adhesive hydrogel using 
natural quercetin. iScience 23, 101342 (2020).

107.	Sun, X., Yao, F. & Li, J. Nanocomposite hydrogel- 
based strain and pressure sensors: a review. J. Mater. 
Chem. A 8, 18605–18623 (2020).

108.	Jiang, N. et al. Flexible, transparent, and antibacterial 
ionogels toward highly sensitive strain and temperature 
sensors. Chem. Eng. J. 424, 130418 (2021).

109.	Tan, C. et al. A high performance wearable strain 
sensor with advanced thermal management for 
motion monitoring. Nat. Commun. 11, 3530 (2020).

110.	 Kim, K.-H., Jang, N.-S., Ha, S.-H., Cho, J. H. & 
Kim, J.-M. Highly sensitive and stretchable resistive 
strain sensors based on microstructured metal 
nanowire/elastomer composite films. Small 14, 
1704232 (2018).

111.	 Song, H. et al. Hydrogen-bonded network enables 
polyelectrolyte complex hydrogels with high 
stretchability, excellent fatigue resistance and 
self-healability for human motion detection. 
Compos. B Eng. 217, 108901 (2021).

112.	Noshadi, I. et al. Engineering biodegradable and 
biocompatible bio-ionic liquid conjugated hydrogels 
with tunable conductivity and mechanical properties. 
Sci. Rep. 7, 4345 (2017).

113.	Sreenilayam, S. P., Ahad, I. U., Nicolosi, V., Acinas 
Garzon, V. & Brabazon, D. Advanced materials of 
printed wearables for physiological parameter 
monitoring. Mater. Today 32, 147–177 (2020).

114.	Ohm, Y. et al. An electrically conductive silver–
polyacrylamide–alginate hydrogel composite for soft 
electronics. Nat. Electron. 4, 185–192 (2021).

www.nature.com/natrevmats904 | November 2022 | volume 7	

RE  V IE  W S



0123456789();: 

115.	Yu, X.-G. et al. A wearable strain sensor based on a 
carbonized nano-sponge/silicone composite for human 
motion detection. Nanoscale 9, 6680–6685 (2017).

116.	Kim, J. H. et al. Simple and cost-effective method 
of highly conductive and elastic carbon nanotube/
polydimethylsiloxane composite for wearable 
electronics. Sci. Rep. 8, 1375 (2018).

117.	Lin, J. et al. Wearable sensors and devices for 
real-time cardiovascular disease monitoring. 
Cell Rep. Phys. Sci. 2, 100541 (2021).

118.	Sharma, P., Imtiaz, S. A. & Rodriguez-Villegas, E. 
Acoustic sensing as a novel wearable approach for 
cardiac monitoring at the wrist. Sci. Rep. 9, 20079 
(2019).

119.	Ha, T. et al. A chest-laminated ultrathin and 
stretchable E-tattoo for the measurement of 
electrocardiogram, seismocardiogram, and cardiac 
time intervals. Adv. Sci. 6, 1900290 (2019).

120.	Homayounfar, S. Z., Kiaghadi, A., Ganesan, D. & 
Andrew, T. L. PressION: an all-fabric piezoionic 
pressure sensor for extracting physiological metrics in 
both static and dynamic contexts. J. Electrochem. Soc. 
168, 017515 (2021).

121.	Kiaghadi, A., Baima, M., Gummeson, J., Andrew, T. & 
Ganesan, D. Fabric as a sensor: towards unobtrusive 
sensing of human behavior with triboelectric textiles. 
In Proc. 16th ACM Conference on Embedded 
Networked Sensor Systems Vol. 18 199–210 
(Association for Computing Machinery, 2018).

122.	Kiaghadi, A., Homayounfar, S. Z., Gummeson, J., 
Andrew, T. & Ganesan, D. Phyjama: physiological 
sensing via fiber-enhanced pyjamas. Proc. ACM 
Interact. Mob. Wearable Ubiquitous Technol. 3, 
1–29 (2019).

123.	Sterr, A. et al. Sleep EEG derived from behind-the-ear 
electrodes (cEEGrid) compared to standard 
polysomnography: a proof of concept study. Front. 
Hum. Neurosci. 12, 452 (2018).

124.	Zulqarnain, M. et al. A flexible ECG patch compatible 
with NFC RF communication. npj Flex. Electron. 4, 
13 (2020).

125.	Rashkovska, A., Depolli, M., Tomašić, I., Avbelj, V. & 
Trobec, R. Medical-grade ECG sensor for long-term 
monitoring. Sensors 20, 1695 (2020).

126.	Song, M.-S., Kang, S.-G., Lee, K.-T. & Kim, J. Wireless, 
skin-mountable EMG sensor for human–machine 
interface application. Micromachines 10, 879 (2019).

127.	Colyer, S. L. & McGuigan, P. M. Textile electrodes 
embedded in clothing: a practical alternative to 
traditional surface electromyography when assessing 
muscle excitation during functional movements. 
J. Sports Sci. Med. 17, 101–109 (2018).

128.	Sharma, P., Hui, X., Zhou, J., Conroy, T. B. & Kan, E. C. 
Wearable radio-frequency sensing of respiratory rate, 
respiratory volume, and heart rate. npj Digital Med. 3, 
98 (2020).

129.	Lim, C. et al. Tissue-like skin-device interface 
for wearable bioelectronics by using ultrasoft, 
mass-permeable, and low-impedance hydrogels. 
Sci. Adv. 7, eabd3716 (2021).

130.	Liu, J. et al. Recent progress in flexible wearable 
sensors for vital sign monitoring. Sensors 20, 4009 
(2020).

131.	Zhang, L. et al. Fully organic compliant dry electrodes 
self-adhesive to skin for long-term motion-robust 
epidermal biopotential monitoring. Nat. Commun. 11, 
4683 (2020).

132.	Pan, J., Zhang, Z., Jiang, C., Zhang, L. & Tong, L. 
A multifunctional skin-like wearable optical sensor 
based on an optical micro-/nanofibre. Nanoscale 12, 
17538–17544 (2020).

133.	Wang, Y. et al. Wearable plasmonic-metasurface 
sensor for noninvasive and universal molecular 
fingerprint detection on biointerfaces. Sci. Adv. 7, 
eabe4553 (2021).

134.	Vaquer, A., Barón, E. & de la Rica, R. Wearable 
analytical platform with enzyme-modulated dynamic 
range for the simultaneous colorimetric detection 
of sweat volume and sweat biomarkers. ACS Sens. 6, 
130–136 (2021).

135.	Baker, L. B. et al. Skin-interfaced microfluidic system 
with personalized sweating rate and sweat chloride 
analytics for sports science applications. Sci. Adv. 6, 
eabe3929 (2020).

136.	Singh, G., Tee, A., Trakoolwilaiwan, T., Taha, A. & 
Olivo, M. Method of respiratory rate measurement 
using a unique wearable platform and an adaptive 
optical-based approach. Intensive Care Med. Exp. 8, 
15 (2020).

137.	Wang, R. et al. Wearable respiration monitoring using 
an in-line few-mode fiber Mach-Zehnder interferometric 
sensor. Biomed. Opt. Express 11, 316–329 (2020).

138.	Papini, G. B. et al. Wearable monitoring of sleep- 
disordered breathing: estimation of the apnea–
hypopnea index using wrist-worn reflective 
photoplethysmography. Sci. Rep. 10, 13512 (2020).

139.	Kwon, S., Kim, H. & Yeo, W.-H. Recent advances in 
wearable sensors and portable electronics for sleep 
monitoring. iScience 24, 102461 (2021).

140.	Park, H., Park, W. & Lee, C. H. Electrochemically  
active materials and wearable biosensors for the 
in situ analysis of body fluids for human healthcare. 
NPG Asia Mater. 13, 23 (2021).

141.	Manjakkal, L. et al. Flexible printed reference 
electrodes for electrochemical applications. 
Adv. Mater. Technol. 3, 1800252 (2018).

142.	Vinoth, R., Nakagawa, T., Mathiyarasu, J. & 
Mohan, A. M. V. Fully printed wearable microfluidic 
devices for high-throughput sweat sampling and 
multiplexed electrochemical analysis. ACS Sens. 6, 
1174–1186 (2021).

143.	Gillan, L., Teerinen, T., Suhonen, M., Kivimäki, L. 
& Alastalo, A. Simultaneous multi-location wireless 
monitoring of sweat lactate trends. Flex. Print. 
Electron. 6, 034003 (2021).

144.	Güder, F. et al. Paper-based electrical respiration 
sensor. Angew. Chem. Int. Ed. 55, 5727–5732 
(2016).

145.	Sugiyama, M. et al. An ultraflexible organic 
differential amplifier for recording electrocardiograms. 
Nat. Electron. 2, 351–360 (2019).

146.	Seok, D., Lee, S., Kim, M., Cho, J. & Kim, C. Motion 
artifact removal techniques for wearable EEG and PPG 
sensor systems. Front. Electron. 2, 685513 (2021).

147.	Haick, H. & Tang, N. Artificial intelligence in medical 
sensors for clinical decisions. ACS Nano 15, 
3557–3567 (2021).

148.	Ometov, A. et al. A survey on wearable technology: 
history, state-of-the-art and current challenges. 
Computer Netw. 193, 108074 (2021).

149.	Ferri, S., Kojima, K. & Sode, K. Review of glucose 
oxidases and glucose dehydrogenases: a bird’s eye 
view of glucose sensing enzymes. J. Diabetes Sci. 
Technol. 5, 1068–1076 (2011).

150.	Lee, S.-W. et al. Direct electron transfer of enzymes 
in a biologically assembled conductive nanomesh 
enzyme platform. Adv. Mater. 28, 1577–1584 (2016).

151.	Ricci, F. & Palleschi, G. Sensor and biosensor 
preparation, optimisation and applications of Prussian 
blue modified electrodes. Biosens. Bioelectron. 21, 
389–407 (2005).

152.	Kim, S. B. et al. Soft, skin-interfaced microfluidic 
systems with integrated enzymatic assays for 
measuring the concentration of ammonia and ethanol 
in sweat. Lab Chip 20, 84–92 (2020).

153.	Boutureira, O. & Bernardes, G. J. L. Advances in 
chemical protein modification. Chem. Rev. 115, 
2174–2195 (2015).

154.	Spicer, C. D. & Davis, B. G. Selective chemical protein 
modification. Nat. Commun. 5, 4740 (2014).

155.	Whitehead, T. A., Baker, D. & Fleishman, S. J. 
Computational design of novel protein binders and 
experimental affinity maturation. Methods Enzymol. 
523, 1–19 (2013).

156.	Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for 
the continuous directed evolution of biomolecules. 
Nature 472, 499–503 (2011).

157.	Wang, Z. et al. A flexible and regenerative aptameric 
graphene–nafion biosensor for cytokine storm 
biomarker monitoring in undiluted biofluids toward 
wearable applications. Adv. Funct. Mater. 31, 
2005958 (2021).

158.	Fercher, C., Jones, M. L., Mahler, S. M. & Corrie, S. R. 
Recombinant antibody engineering enables reversible 
binding for continuous protein biosensing. ACS Sens. 
6, 764–776 (2021).

159.	Sheibani, S. et al. Extended gate field-effect-transistor 
for sensing cortisol stress hormone. Commun. Mater. 
2, 10 (2021).

160.	Clavé, G., Reverte, M., Vasseur, J. J. & Smietana, M. 
Modified internucleoside linkages for 
nuclease-resistant oligonucleotides. RSC Chem. Biol. 
2, 94–150 (2021).

161.	Binnie, A., Fernandes, E., Almeida-Lousada, H.,  
de Mello, R. A. & Castelo-Branco, P. CRISPR-based 
strategies in infectious disease diagnosis and therapy. 
Infection 49, 377–385 (2021).

162.	Zhang, J. et al. In-depth proteomic analysis of tissue 
interstitial fluid for hepatocellular carcinoma serum 
biomarker discovery. Br. J. Cancer 117, 1676–1684 
(2017).

163.	Gootenberg, J. S. et al. Multiplexed and portable 
nucleic acid detection platform with Cas13, Cas12a 
and Csm6. Science 360, 439–444 (2018).

164.	Chen, J. S. et al. CRISPR-Cas12a target binding 
unleashes indiscriminate single-stranded DNase 
activity. Science 360, 436–439 (2018).

165.	Bruch, R. et al. CRISPR/Cas13a-powered 
electrochemical microfluidic biosensor for nucleic acid 
amplification-free miRNA diagnostics. Adv. Mater. 31, 
1905311 (2019).

166.	Witt, D. R., Kellogg, R. A., Snyder, M. P. & Dunn, J. 
Windows into human health through wearables data 
analytics. Curr. Opin. Biomed. Eng. 9, 28–46 (2019).

167.	Cui, F., Yue, Y., Zhang, Y., Zhang, Z. & Zhou, H. S. 
Advancing biosensors with machine learning. 
ACS Sens. 5, 3346–3364 (2020).

168.	Faes, L. et al. A clinician’s guide to artificial 
intelligence: how to critically appraise machine 
learning studies. Transl. Vis. Sci. Technol. 9, 7 (2020).

169.	Liu, Y., Chen, P. H. C., Krause, J. & Peng, L. How to 
read articles that use machine learning: users’ guides 
to the medical literature. J. Am. Med. Assoc. 322, 
1806–1816 (2019).

170.	King, R. C. et al. Application of data fusion techniques 
and technologies for wearable health monitoring. 
Med. Eng. Phys. 42, 1–12 (2017).

171.	Chakraborty, T. & Ghosh, I. Real-time forecasts and 
risk assessment of novel coronavirus (COVID-19) 
cases: a data-driven analysis. Chaos Solitons Fractals 
135, 109850 (2020).

172.	Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S. 
& Ciccozzi, M. Application of the ARIMA model on  
the COVID-2019 epidemic dataset. Data Brief. 29, 
105340 (2020).

173.	Ates, C. Data driven engineering. GitLab https://git.
scc.kit.edu/em0787/data-driven-engineering (2021).

174.	Huang, G., Liu, Z., van der Maaten, L. & 
Weinberger, K. Q. Densely connected convolutional 
networks. In 2017 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) 2261–2269 
(IEEE, 2017).

175.	Laguarta, J., Hueto, F. & Subirana, B. COVID-19 
artificial intelligence diagnosis using only cough 
recordings. IEEE Open J. Eng. Med. Biol. 1, 275–281 
(2020).

176.	Mishra, S., Singh, N. K. & Rousseau, V. Generic SoC 
architecture components. Syst. Chip Interfaces Low. 
Power Des. 2016, 29–51 (2016).

177.	Altay, A., Learney, R., Güder, F. & Dincer, C. Sensors in 
blockchain. Trends Biotechnol. 40, 141–144 (2022).

178.	Yin, L., Kim, K. N., Trifonov, A., Podhajny, T. & Wang, J. 
Designing wearable microgrids: towards autonomous 
sustainable on-body energy management. 
Energy Environ. Sci. 15, 82–101 (2022).

179.	Yin, L. et al. A self-sustainable wearable multi-modular 
E-textile bioenergy microgrid system. Nat. Commun. 
12, 1542 (2021).

180.	Briscoe, J. & Dunn, S. Piezoelectric nanogenerators — 
a review of nanostructured piezoelectric energy 
harvesters. Nano Energy 14, 15–29 (2015).

181.	Pu, X., An, S., Tang, Q., Guo, H. & Hu, C. Wearable 
triboelectric sensors for biomedical monitoring and 
human-machine interface. iScience 24, 102027 (2021).

182.	Zhang, R. & Olin, H. Material choices for triboelectric 
nanogenerators: a critical review. EcoMat 2, e12062 
(2020).

183.	Song, S. & Yun, K. S. Design and characterization 
of scalable woven piezoelectric energy harvester 
for wearable applications. Smart Mater. Struct. 24, 
045008 (2015).

184.	Dong, K. et al. A stretchable yarn embedded 
triboelectric nanogenerator as electronic skin for 
biomechanical energy harvesting and multifunctional 
pressure sensing. Adv. Mater. 30, 1804944 (2018).

185.	Liu, Z. et al. Wearable and implantable triboelectric 
nanogenerators. Adv. Funct. Mater. 29, 1808820 
(2019).

186.	Wang, Y. et al. Flexible thermoelectric materials and 
generators: challenges and innovations. Adv. Mater. 
31, 1807916 (2019).

187.	Ren, W. et al. High-performance wearable 
thermoelectric generator with self-healing, recycling, 
and Lego-like reconfiguring capabilities. Sci. Adv. 7, 
eabe0586 (2021).

188.	Lee, G. et al. Flexible heatsink based on a 
phase-change material for a wearable thermoelectric 
generator. Energy 179, 12–18 (2019).

189.	Hasan, M. N., Nafea, M., Nayan, N. & 
Mohamed Ali, M. S. Thermoelectric generator: 
materials and applications in wearable health 
monitoring sensors and internet of things devices. 
Adv. Mater. Technol. 7, 2101203 (2021).

190.	Cui, N. et al. Stretchable transparent electrodes for 
conformable wearable organic photovoltaic devices. 
npj Flex. Electron. 5, 31 (2021).

NATure RevIeWS | MATERIALS	  volume 7 | November 2022 | 905

W e a r a b l e  E l e c t r o n i c s  

https://git.scc.kit.edu/em0787/data-driven-engineering
https://git.scc.kit.edu/em0787/data-driven-engineering


0123456789();: 

191.	Zhang, N. et al. Photo-rechargeable fabrics as 
sustainable and robust power sources for wearable 
bioelectronics. Matter 2, 1260–1269 (2020).

192.	Jeong, E. G., Jeon, Y., Cho, S. H. & Choi, K. C. 
Textile-based washable polymer solar cells for 
optoelectronic modules: toward self-powered smart 
clothing. Energy Environ. Sci. 12, 1878–1889 
(2019).

193.	Zhao, R., Gu, Z., Li, P., Zhang, Y. & Song, Y. Flexible 
and wearable optoelectronic devices based on 
perovskites. Adv. Mater. Technol. 7, 2101124 (2021).

194.	Olenik, S., Lee, H. S. & Güder, F. The future of 
near-field communication-based wireless sensing. 
Nat. Rev. Mater. 6, 286–288 (2021).

195.	Tucker, S. et al. Biosymbiotic, personalized, and 
digitally manufactured wireless devices for indefinite 
collection of high-fidelity biosignals. Sci. Adv. 7, 
eabj3269 (2021).

196.	Gharbi, M. E., Fernández-García, R., Ahyoud, S. & 
Gil, I. A review of flexible wearable antenna sensors: 
design, fabrication methods, and applications. 
Materials 13, 3781 (2020).

197.	Ali, S. M. et al. Recent advances of wearable antennas 
in materials, fabrication methods, designs, and their 
applications: state-of-the-art. Micromachines 11, 888 
(2020).

198.	Song, M. et al. Wireless power transfer based on 
novel physical concepts. Nat. Electron. 4, 707–716 
(2021).

199.	Li, J., Dong, Y., Park, J. H. & Yoo, J. Body-coupled 
power transmission and energy harvesting. 
Nat. Electron. 4, 530–538 (2021).

200.	Atanasova, G. & Atanasov, N. Small antennas  
for wearable sensor networks: impact of the 
electromagnetic properties of the textiles on antenna 
performance. Sensors 20, 5157 (2020).

201.	Nie, H. K., Xuan, X. W. & Ren, G. J. Wearable antenna 
pressure sensor with electromagnetic bandgap for 
elderly fall monitoring. AEU Int. J. Electron. Commun. 
138, 153861 (2021).

202.	Nie, H. K. et al. Wearable antenna sensor based 
on EBG structure for cervical curvature monitoring. 
IEEE Sens. J. 22, 315–323 (2022).

203.	Alam, M. M. & ben Hamida, E. Strategies for optimal 
MAC parameters tuning in IEEE 802.15.6 wearable 
wireless sensor networks. J. Med. Syst. 39, 106 
(2015).

204.	Bandodkar, A. J. Review — wearable biofuel cells: 
past, present and future. J. Electrochem. Soc. 164, 
H3007 (2016).

205.	Song, Y., Mukasa, D., Zhang, H. & Gao, W. Self-powered 
wearable biosensors. Acc. Mater. Res. 2, 184–197 
(2021).

206.	Manjakkal, L., Yin, L., Nathan, A., Wang, J. & 
Dahiya, R. Energy autonomous sweat based wearable 
systems. Adv. Mater. 33, 2100899 (2021).

207.	Gu, C., Kong, X., Yan, S., Gai, P. & Li, F. Glucose 
dehydrogenase-like nanozyme based on black 
phosphorus nanosheets for high-performance biofuel 
cells. ACS Sustain. Chem. Eng. 8, 16549–16554 
(2020).

208.	Lv, J. et al. Wearable biosupercapacitor: harvesting 
and storing energy from sweat. Adv. Funct. Mater. 31, 
2102915 (2021).

209.	Yang, Q. et al. Categorizing wearable batteries: 
unidirectional and omnidirectional deformable 
batteries. Matter 4, 3146–3160 (2021).

210.	Zhou, Y., Wang, C.-H., Lu, W. & Dai, L. Recent 
advances in fiber-shaped supercapacitors and 
lithium-ion batteries. Adv. Mater. 32, 1902779 
(2020).

211.	 Zhao, J., Zha, J., Zeng, Z. & Tan, C. Recent advances 
in wearable self-powered energy systems based on 
flexible energy storage devices integrated with flexible 
solar cells. J. Mater. Chem. A 9, 18887–18905 
(2021).

212.	Choi, C. et al. Stretchable, weavable coiled carbon 
nanotube/MnO2/polymer fiber solid-state 
supercapacitors. Sci. Rep. 5, 9387 (2015).

213.	Wu, T. et al. Anisotropic boron–carbon hetero- 
nanosheets for ultrahigh energy density supercapacitors. 
Angew. Chem. Int. Ed. 59, 23800–23809 (2020).

214.	Song, J. et al. Superflexible wood. ACS Appl. Mater. 
Interfaces 9, 23520–23527 (2017).

215.	Wu, Q., Jungstedt, E., Šoltésová, M., Mushi, N. E. 
& Berglund, L. A. High strength nanostructured 
films based on well-preserved β-chitin nanofibrils. 
Nanoscale 11, 11001–11011 (2019).

216.	Li, X., Tabil, L. G. & Panigrahi, S. Chemical treatments 
of natural fiber for use in natural fiber-reinforced 
composites: a review. J. Polym. Environ. 15, 25–33 
(2007).

217.	Promphet, N. et al. Cotton thread-based wearable 
sensor for non-invasive simultaneous diagnosis of 
diabetes and kidney failure. Sens. Actuators B Chem. 
321, 128549 (2020).

218.	Matzeu, G. et al. Large-scale patterning of reactive 
surfaces for wearable and environmentally deployable 
sensors. Adv. Mater. 32, 2001258 (2020).

219.	Chu, T. et al. 3D printed smart silk wearable sensors. 
Analyst 146, 1552–1558 (2021).

220.	Wen, D.-L. et al. Recent progress in silk fibroin-based 
flexible electronics. Microsyst. Nanoeng. 7, 35 
(2021).

221.	Li, P. et al. A wearable and sensitive graphene-cotton 
based pressure sensor for human physiological signals 
monitoring. Sci. Rep. 9, 14457 (2019).

222.	Zhang, Y. et al. Cotton fabrics decorated with 
conductive graphene nanosheet inks for flexible 
wearable heaters and strain sensors. ACS Appl. 
Nano Mater. 4, 9709–9720 (2021).

223.	Feng, L., Li, S. & Feng, S. Preparation and 
characterization of silicone rubber with high modulus 
via tension spring-type crosslinking. RSC Adv. 7, 
13130–13137 (2017).

224.	Laoui, T. Mechanical and thermal properties of styrene 
butadiene rubber — functionalized carbon nanotubes 
nanocomposites. Fuller. Nanotub. Carbon Nanostruct. 
21, 89–101 (2013).

225.	Wang, Z., Volinsky, A. A. & Gallant, N. D. Crosslinking 
effect on polydimethylsiloxane elastic modulus 
measured by custom-built compression instrument. 
J. Appl. Polym. Sci. 131, 41050 (2014).

226.	Jain, N., Singh, V. K. & Chauhan, S. A review on 
mechanical and water absorption properties of 
polyvinyl alcohol based composites/films. J. Mech. 
Behav. Mater. 26, 213–222 (2017).

227.	Hyunjae, L. et al. Wearable/disposable sweat-based 
glucose monitoring device with multistage transdermal 
drug delivery module. Sci. Adv. 3, e1601314 (2022).

228.	Brown, M. S. et al. Electronic-ECM: a permeable 
microporous elastomer for an advanced bio-integrated 
continuous sensing platform. Adv. Mater. Technol. 5, 
2000242 (2020).

229.	Choi, S. et al. Multi-directionally wrinkle-able textile 
OLEDs for clothing-type displays. npj Flex. Electron. 
4, 33 (2020).

230.	Musgrave, C. & Fang, F. Contact lens materials: a 
materials science perspective. Materials 12, 261 
(2019).

231.	Shaoting, L. et al. Anti-fatigue-fracture hydrogels. 
Sci. Adv. 5, eaau8528 (2022).

232.	Bachmann, B. et al. Stiffness matters: fine-tuned 
hydrogel elasticity alters chondrogenic redifferentiation. 
Front. Bioeng. Biotechnol. 8, 373 (2020).

233.	Lee, K. H. et al. Muscle fatigue sensor based on 
Ti3C2Tx MXene hydrogel. Small Methods 5, 2100819 
(2021).

234.	Ze, X. et al. A wireless and battery-free wound 
infection sensor based on DNA hydrogel. Sci. Adv. 7, 
eabj1617 (2022).

235.	Ying, B. & Liu, X. Skin-like hydrogel devices for 
wearable sensing, soft robotics and beyond. iScience 
24, 103174 (2021).

236.	Nyein, H. Y. Y. et al. A wearable patch for continuous 
analysis of thermoregulatory sweat at rest. 
Nat. Commun. 12, 1823 (2021).

237.	Zhu, Y. et al. Size effects on elasticity, yielding, and 
fracture of silver nanowires: in situ experiments. 
Phys. Rev. B 85, 45443 (2012).

238.	Peng, B., Zhao, F., Ping, J. & Ying, Y. Recent advances 
in nanomaterial-enabled wearable sensors: material 
synthesis, sensor design, and personal health 
monitoring. Small 16, 2002681 (2020).

239.	Poletti, F. et al. Continuous capillary-flow sensing of 
glucose and lactate in sweat with an electrochemical 
sensor based on functionalized graphene oxide. 
Sens. Actuators B Chem. 344, 130253 (2021).

240.	Liu, Y., Huang, J., Ding, G. & Yang, Z. High-performance 
and wearable strain sensors based on graphene 
microfluidics and serpentine microchannels for human 
motion detection. Microelectron. Eng. 231, 111402 
(2020).

241.	Shi, C. et al. Heterogeneous integration of rigid, 
soft, and liquid materials for self-healable, recyclable, 
and reconfigurable wearable electronics. Sci. Adv. 6, 
eabd0202 (2020).

242.	Heikenfeld, J. et al. Accessing analytes in biofluids for 
peripheral biochemical monitoring. Nat. Biotechnol. 
37, 407–419 (2019).

243.	Pu, Z. et al. A thermal activated and differential 
self-calibrated flexible epidermal biomicrofluidic 
device for wearable accurate blood glucose 
monitoring. Sci. Adv. 7, eabd0199 (2021).

244.	Rawson, T. M. et al. Microneedle biosensors for 
real-time, minimally invasive drug monitoring of 
phenoxymethylpenicillin: a first-in-human evaluation 
in healthy volunteers. Lancet Digit. Health 1, 
e335–e343 (2019).

245.	Samant, P. P. et al. Sampling interstitial fluid from 
human skin using a microneedle patch. Sci. Transl. Med. 
12, eaaw0285 (2020).

246.	Ibrahim, W. et al. Breathomics for the clinician: the use 
of volatile organic compounds in respiratory diseases. 
Thorax 76, 514–521 (2021).

247.	Ates, H. C. et al. Biosensor-enabled multiplexed 
on-site therapeutic drug monitoring of antibiotics. 
Adv. Mater. 34, 2104555 (2022).

248.	Kim, K. et al. All-printed stretchable corneal sensor on 
soft contact lenses for noninvasive and painless ocular 
electrodiagnosis. Nat. Commun. 12, 1544 (2021).

249.	Moreddu, R., Vigolo, D. & Yetisen, A. K. Contact lens 
technology: from fundamentals to applications. 
Adv. Healthc. Mater. 8, 1900368 (2019).

250.	Yuan, M. et al. Electronic contact lens: a platform 
for wireless health monitoring applications. 
Adv. Intell. Syst. 2, 1900190 (2020).

251.	de Puig, H. et al. Minimally instrumented SHERLOCK 
(miSHERLOCK) for CRISPR-based point-of-care 
diagnosis of SARS-CoV-2 and emerging variants. 
Sci. Adv. 7, eabh2944 (2021).

252.	Butler-Laporte, G. et al. Comparison of saliva and 
nasopharyngeal swab nucleic acid amplification 
testing for detection of SARS-CoV-2: a systematic 
review and meta-analysis. JAMA Intern. Med. 181, 
353–360 (2021).

253.	Bahbah, E. I., Noehammer, C., Pulverer, W., Jung, M. & 
Weinhaeusel, A. Salivary biomarkers in cardiovascular 
disease: an insight into the current evidence. FEBS J. 
288, 6392–6405 (2020).

254.	Belstrøm, D. The salivary microbiota in health and 
disease. J. Oral Microbiol. 12, 1723975 (2020).

255.	Francavilla, V. C. et al. Use of saliva in alternative to 
serum sampling to monitor biomarkers modifications 
in professional soccer players. Front. Physiol. 9, 1828 
(2018).

256.	García-Carmona, L. et al. Pacifier biosensor: toward 
noninvasive saliva biomarker monitoring. Anal. Chem. 
91, 13883–13891 (2019).

257.	Noiphung, J. et al. Development of paper-based 
analytical devices for minimizing the viscosity effect in 
human saliva. Theranostics 8, 3797–3807 (2018).

258.	Cho, J. H. et al. A smart diaper system using bluetooth 
and smartphones to automatically detect urination 
and volume of voiding: prospective observational pilot 
study in an acute care hospital. J. Med. Internet Res. 
23, e29979 (2021).

259.	Lin, S. Y., Linehan, J. A., Wilson, T. G. & Hoon, D. S. B. 
Emerging utility of urinary cell-free nucleic acid 
biomarkers for prostate, bladder, and renal cancers. 
Eur. Urol. Focus 3, 265–272 (2017).

260.	Seo, W., Yu, W., Tan, T., Ziaie, B. & Jung, B. 
Diaper-embedded urinary tract infection monitoring 
sensor module powered by urine-activated batteries. 
IEEE Trans. Biomed. Circuits Syst. 11, 681–691 (2017).

261.	Shitanda, I. et al. Self-powered diaper sensor with 
wireless transmitter powered by paper-based 
biofuel cell with urine glucose as fuel. ACS Sens. 6, 
3409–3415 (2021).

262.	Sung, W.-H. et al. Urinalysis using a diaper-based 
testing device. Biosensors 10, 94 (2020).

263.	Zhang, J. et al. A wearable self-powered biosensor 
system integrated with diaper for detecting the urine 
glucose of diabetic patients. Sens. Actuators B Chem. 
341, 130046 (2021).

264.	Sha, F., Salzman, G., Gupta, A. & Koide, S. Monobodies 
and other synthetic binding proteins for expanding 
protein science. Protein Sci. 26, 910–924 (2017).

265.	le Basle, Y., Chennell, P., Tokhadze, N., Astier, A. & 
Sautou, V. Physicochemical stability of monoclonal 
antibodies: a review. J. Pharm. Sci. 109, 169–190 
(2020).

266.	Groß, A., Hashimoto, C., Sticht, H. & Eichler, J. 
Synthetic peptides as protein mimics. Front. Bioeng. 
Biotechnol. 3, 211 (2016).

267.	Jaroszewicz, W., Morcinek-Orłowska, J., Pierzynowska, 
K., Gaffke, L. & Węgrzyn, G. Phage display and other 
peptide display technologies. FEMS Microbiol. Rev. 
46, fuab052 (2022).

268.	Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Analysis 
of aptamer discovery and technology. Nat. Rev. Chem. 
1, 0076 (2017).

269.	Halvorsen, A. R. et al. Profiling of microRNAs in tumor 
interstitial fluid of breast tumors — a novel resource to 
identify biomarkers for prognostic classification and 
detection of cancer. Mol. Oncol. 11, 220–234 (2017).

www.nature.com/natrevmats906 | November 2022 | volume 7	

RE  V IE  W S



0123456789();: 

270.	Gootenberg, J. S. et al. Nucleic acid detection with 
CRISPR-Cas13a/C2c2. Science 356, 438–442 
(2017).

271.	Bent, B. et al. Engineering digital biomarkers of 
interstitial glucose from noninvasive smartwatches. 
npj Digit. Med. 4, 89 (2021).

272.	Cichosz, S. L., Jensen, M. H. & Hejlesen, O. Short-term 
prediction of future continuous glucose monitoring 
readings in type 1 diabetes: development and 
validation of a neural network regression model. 
Int. J. Med. Inform. 151, 104472 (2021).

273.	Rodríguez-Rodríguez, I. et al. Utility of big data in 
predicting short-term blood glucose levels in type 1 
diabetes mellitus through machine learning 
techniques. Sensors 19, 4482 (2019).

274.	Nasseri, M. et al. Non-invasive wearable seizure 
detection using long-short-term memory networks 
with transfer learning. J. Neural Eng. 18, 056017 
(2021).

275.	Rostaminia, S., Lamson, A., Maji, S., Rahman, T. 
& Ganesan, D. W!NCE: eyewear solution for upper 
face action units monitoring. In Proc. 11th ACM 
Symposium on Eye Tracking Research & Applications 
Vol. 63, 1–3 (Association for Computing Machinery, 
2019).

276.	Rostaminia, S., Mayberry, A., Ganesan, D., Marlin, B. 
& Gummeson, J. iLiD: eyewear solution for low-power 
fatigue and drowsiness monitoring. In Proc. 11th ACM 
Symposium on Eye Tracking Research & Applications 
Vol. 62, 1–3 (Association for Computing Machinery, 
2019).

277.	Moon, S. et al. Classification of Parkinson’s disease 
and essential tremor based on balance and gait 
characteristics from wearable motion sensors via 
machine learning techniques: a data-driven approach. 
J. Neuroeng. Rehabilit. 17, 125 (2020).

278.	Hssayeni, M. D., Jimenez-Shahed, J., Burack, M. A.  
& Ghoraani, B. Ensemble deep model for continuous 
estimation of unified Parkinson’s disease rating scale III. 
Biomed. Eng. Online 20, 32 (2021).

279.	Bai, R. et al. Tracking and monitoring mood stability of 
patients with major depressive disorder by machine 
learning models using passive digital data: prospective 
naturalistic multicenter study. JMIR Mhealth Uhealth 
9, e24365 (2021).

280.	Chen, A. et al. Machine-learning enabled wireless 
wearable sensors to study individuality of respiratory 
behaviors. Biosens. Bioelectron. 173, 112799 (2021).

281.	Bogu, G. K. & Snyder, M. P. Deep learning-based 
detection of COVID-19 using wearables data. Preprint 
at medRxiv https://doi.org/10.1101/2021.01.08. 
21249474 (2021).

282.	Un, K. C. et al. Observational study on wearable 
biosensors and machine learning-based remote 
monitoring of COVID-19 patients. Sci. Rep. 11, 
4388 (2021).

283.	de Rossi, D., della Santa, A. & Mazzoldi, A. Dressware: 
wearable hardware. Mater. Sci. Eng. C 7, 31–35 (1999).

284.	Kim, D. H. et al. Epidermal electronics. Science 333, 
838–843 (2011).

285.	Mannoor, M. S. et al. Graphene-based wireless 
bacteria detection on tooth enamel. Nat. Commun. 
3, 763 (2012).

286.	Kim, J. et al. Wearable salivary uric acid mouthguard 
biosensor with integrated wireless electronics. 
Biosens. Bioelectron. 74, 1061–1068 (2015).

287.	Mishra, R. K. et al. Wearable flexible and 
stretchable glove biosensor for on-site detection of 
organophosphorus chemical threats. ACS Sens. 2, 
553–561 (2017).

288.	Yin, L. et al. A passive perspiration biofuel cell: high 
energy return on investment. Joule 5, 1888–1904 
(2021).

Acknowledgements
H.C.A. and C.D. thank the Deutsche Forschungsgemeinschaft 
(DFG, German Research Foundation) for funding this work 
(grant numbers 404478562 and 446617142). F.G. and 
L.G.-M. thank the Bill and Melinda Gates Foundation (Grand 
Challenges Explorations scheme under grant number 

OPP1212574) and the US Army (US Army Foreign 
Technology (and Science) Assessment Support (FTAS) pro-
gramme under grant number W911QY-20-R-0022) for their 
generous support. E.M.-N. acknowledges financial support 
from CONACYT (Mexico, grant numbers 312271 and 
376135) and IDEA-GTO (grant number MA-CFINN0997). 
P.Q.N. and J.J.C. were supported by the Wyss Institute.

Author contributions
All authors contributed to the discussion of content and 
edited the article before submission. H.C.A., P.Q.N., L.G.-M., 
E.M.-N., F.G. and C.D. also researched data for the article and 
contributed to the writing.

Competing interests
J.J.C. is a cofounder and director of Sherlock Biosciences. F.G. 
is a cofounder and sharefolder of Spyras. The other authors 
declare no competing interests.

Peer review information
Nature Reviews Materials thanks Jerald Yoo and the other, 
anonymous, reviewer(s) for their contribution to the peer 
review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

Supplementary information
The online version contains supplementary material available 
at https://doi.org/10.1038/s41578-022-00460-x.

Related links
FreeStyle Libre glucose monitoring system: https://www.
freestylelibre.co.uk/libre/
Gx Sweat Patch: https://www.gatorade.com/gear/tech/
gx-sweat-patch/2-pack

 
© Springer Nature Limited 2022

NATure RevIeWS | MATERIALS	  volume 7 | November 2022 | 907

W e a r a b l e  E l e c t r o n i c s  

https://doi.org/10.1101/2021.01.08.21249474
https://doi.org/10.1101/2021.01.08.21249474
https://doi.org/10.1038/s41578-022-00460-x
https://www.freestylelibre.co.uk/libre/
https://www.freestylelibre.co.uk/libre/
https://www.gatorade.com/gear/tech/gx-sweat-patch/2-pack
https://www.gatorade.com/gear/tech/gx-sweat-patch/2-pack

	End-to-end design of wearable sensors

	Assembling wearable devices

	Substrate materials

	Sensing unit

	Biofluids and sampling
	Signal transduction and amplification
	Biorecognition elements
	Selecting a biorecognition element


	Decision-making unit

	Power unit


	Outlook

	Acknowledgements

	Fig. 1 Timeline of major milestones in the development of wearable sensors and a summary of their building blocks.
	Fig. 2 The decision-making unit and its working principles.
	Fig. 3 Energy harvesting methods.
	Table 1 Substrate materials.
	Table 2 Comparison and characteristics of biofluids.
	Table 3 Biorecognition elements.
	Table 4 Examples of combining data-driven methods with wearables for health-care applications.




