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Abstract

Computer-extracted tumour characteristics have been incorporated 
into medical imaging computer-aided diagnosis (CAD) algorithms for 
decades. With the advent of radiomics, an extension of CAD involving 
high-throughput computer-extracted quantitative characterization 
of healthy or pathological structures and processes as captured by 
medical imaging, interest in such computer-extracted measurements 
has increased substantially. However, despite the thousands of 
radiomic studies, the number of settings in which radiomics has been 
successfully translated into a clinically useful tool or has obtained 
FDA clearance is comparatively small. This relative dearth might be 
attributable to factors such as the varying imaging and radiomic feature 
extraction protocols used from study to study, the numerous potential 
pitfalls in the analysis of radiomic data, and the lack of studies showing 
that acting upon a radiomic-based tool leads to a favourable benefit–
risk balance for the patient. Several guidelines on specific aspects of 
radiomic data acquisition and analysis are already available, although 
a similar roadmap for the overall process of translating radiomics into 
tools that can be used in clinical care is needed. Herein, we provide 16 
criteria for the effective execution of this process in the hopes that they 
will guide the development of more clinically useful radiomic tests in 
the future.
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Despite a dramatic increase in research output over the past two 
decades (Fig. 1), the vast majority of radiomic studies have not yet led 
to clinically useful tests. Across all medical indications, 343 artificial 
intelligence and machine learning-based tests currently have FDA 
clearance, only a small proportion of which are based on radiomics6. 
This lack of clinical translation might be attributable to several factors. 
The vast majority of radiomic studies assess correlations between 
certain radiomic features and a biological or clinical end point of inter-
est; therefore, the added value of the radiomic test (such as improved 
clinical performance or reduced invasiveness) is often neglected as  
is clinical utility, namely that acting upon the information provided  
leads to a favourable benefit–risk balance for the patient. Additionally, as  
established in the statistical and machine learning literature, analyses 
of high-throughput data, such as those obtained using radiomics, are 
fraught with potential issues, including insufficient data for develop-
ment and validation and improper application of statistical methodol-
ogy for the specific purpose of the test. Furthermore, different studies 
have used widely varying protocols for image acquisition and feature 
extraction. Several studies have shown the effects of differences in 
data acquisition, image reconstruction and image post-processing 
on downstream analyses; different software platforms or even differ-
ent versions of the same software can produce widely varying results 
regarding the strength and direction of the associations between 
features and outcomes7.

Existing guidelines on the acquisition and analysis of radiomic 
data include a radiomic quality score to evaluate the completeness 
and appropriateness of such an analysis8, computational procedures 
for commonly used types of features9, and protocols for image acquisi-
tion, feature extraction and statistical analysis10,11. However, radiomics 
would also benefit from a roadmap for the entire process of translat-
ing radiomic data into clinically useful tools for guiding clinical care, 
encompassing not only recommendations for image acquisition and 
processing, feature extraction, and statistical analysis but also aspects 
such as test lockdown and demonstrating clinical utility. Such a road-
map has yet to be published for radiomics, although similar criteria 
and guidelines have been compiled for other omics technologies12.

Herein, we present a 16-point list of criteria for the translation 
of radiomics into clinically useful tests. These criteria (Box 1) were 
developed by radiologists, physicists and statisticians with extensive 
experience with radiomics and other omics technologies, and are based 
on analogous recommendations developed for other omics technolo-
gies12. These criteria are also adapted to accommodate issues that are 
unique to radiomics, such as vendor-driven changes in imaging tech-
nology and software and the dynamic nature of certain models, and are  
intended to help researchers to navigate the translation process and 
catalyse an increase in the number of clinically useful radiomic tests.

Clinical application
Prior to any formal development and validation, the intended clinical 
use of the radiomic test and the target population should be established 
(criterion 1). The use of the test in clinical care should be expected to 
guide disease assessment and management decisions in a way that 
leads to a favourable benefit–risk tradeoff and offers advantages over 
other tests designed to serve the target population in the same role 
(criterion 2). The intended clinical use will have important implications 
for the subsequent stages of development and validation, including 
which features to extract from the imaging data, the optimal imaging 
time points and the design of the clinical trial to directly assess the 
performance of the test in its intended role.

Key points

•• Despite tens of thousands of radiomic studies, the number of  
settings in which radiomics is used to guide clinical decision-making 
is limited, in part owing to a lack of standardization of the radiomic 
measurement extraction processes and the lack of evidence 
demonstrating adequate clinical validity and utility.

•• Processes to acquire and process source images and extract 
radiomic measurements should be established and harmonized.

•• A radiomic model should be tested on external data not used for its 
development or, if no such dataset is available, tested using proper 
internal validation techniques.

•• Model outputs should be shown to guide disease management 
decisions in a way that leads to a favourable risk–benefit balance for 
patients.

•• Clinical performance should be assessed periodically in its intended 
clinical setting (task and population) after model lockdown.

•• A list of 16 criteria for the optimal development of a radiomic test has 
been compiled herein and should hopefully guide the implementation 
of future radiomic analyses.

Introduction
For decades, computer-aided diagnosis (CAD) algorithms have made 
use of computer-extracted tumour characteristics for improved disease 
detection and diagnosis, treatment planning, and follow-up1, with some 
particularly notable developments in breast and lung cancer screen-
ing2,3. More recently, radiomics, involving high-throughput computer-
extracted quantitative characterization of healthy or pathological 
structures and processes as captured by in vivo medical imaging, has 
emerged as an extension of CAD4. Similar to other ‘omics’ technologies, 
the extraction of such large quantities of information from images 
obtained during standard clinical workflows enables extensive tumour 
characterization and facilitates assessments of both within-tumour and  
between-tumour heterogeneity and longitudinal changes1. Interest 
in both CAD and radiomics (two terms that are occasionally used 
interchangeably) has increased substantially within the past two dec-
ades; a PubMed search for “(computer-aided diagnosis) OR CAD OR 
radiomic OR radiomics AND (cancer OR tumours OR tumours)” yields 
over 44,000 publications since 1967, over 85% of which are from 2005 
onwards (Fig. 1).

Similar to CAD, radiomics can assist with clinical decision-making. 
Radiomic features, namely measurements extracted from medical 
images (currently usually CT, MRI or digital radiography), are combined 
with data on clinical characteristics and from other omics analyses  
to detect disease, predict the likelihood of death, disease progres-
sion and/or recurrence by a specific time point, evaluate response to 
therapy or identify an appropriate course of treatment. The ultimate 
goal of radiomic analyses should be the development of a test, defined 
by the FDA–NIH Biomarker Working Group as a system comprising 
materials for measurement, procedures for measurement, and meth-
ods or criteria for interpretation5, that can be used to guide medical 
decision-making as in disease diagnosis and management.
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Criterion 1: intended role and target population
Radiomics is often used for either screening or cancer diagnosis. For 
example, MRI radiomics is useful for the diagnosis of breast abnor-
malities13 and CT radiomics for the detection of lesions in various 
organs, including lungs, brain and prostate14. The use of radiomics in 
prognostication, namely predicting the clinical outcomes of patients 
undergoing standard therapy, is an area of increasing research inter-
est15; for example, CT-based radiomics might be a useful method of 
predicting the outcomes of patients with head and neck squamous cell 
carcinomas or non-small-cell lung cancer receiving standard-of-care 
therapies16. Radiomic tests can also be used for treatment selection, 
namely as assays designed to indicate benefit, or lack thereof, from a 
specific class of therapies; for example, a model of oestrogen recep-
tor expression based on tumour size, shape and entropy features on 
dynamic contrast-enhanced MRI (DCE-MRI) has been developed to 
inform treatment selection for patients with breast cancer17. Radiomic 
tests might also be used to assess response to treatment and monitor 
disease status18–20.

Roles in which radiomic tests could serve have been summarized 
comprehensively elsewhere21. In certain scenarios, the same radiomic 
test can have more than one role; for example, the aforementioned 
model of oestrogen receptor expression might also be useful for prog-
nostication17. However, ‘off label’ use of radiomic tests, namely applica-
tion in a role other than the one for which the test has been shown to be 
clinically useful, is discouraged. The criteria for clinical performance 
depend strongly on the intended role (see criterion 14) as is typical in 
the regulatory clearance and approval processes applied to both new 
drugs and medical devices. Diagnostic radiomic tests should have an 
adequate level of accuracy in detecting disease. Prognostic radiomic 
tests should have an adequate ability to predict death, disease recur-
rence or progression depending on the intended role of the test. Tests 
designed for therapy selection should also be sufficient to predict 
outcomes, such as death or disease progression, in patients receiving 

the therapy of interest. If the goal is to guide the choice between one 
treatment and a designated alternative approach, the outcomes of 
patients receiving each therapy need to be studied. However, if the 
predictive goal is merely to identify those patients who are most likely 
to respond to a particular therapy, then the test should have adequate 
ability to predict either a response or a level of expression of an estab-
lished predictive biomarker sufficient to indicate a response to the 
treatment of interest. The translation process outlined in this Review 
should therefore be applied for each role in which a specific radiomic 
test is likely to be useful.

Aspects of the target population to specify include those per-
taining to disease characteristics (such as primary tumour types and 
grades, disease stage, molecular subtypes, risk groups and receptor 
expression status) and treatment history. A radiomic test might also 
be useful in multiple target populations; the test based on the model 
described by Aerts et al.16, for example, might be useful for predicting 
the outcomes of patients with head and neck cancer or non-small-cell 
lung cancer receiving standard-of-care therapies. However, research-
ers are encouraged not to assume, without appropriate evidence, 
that the utility of a radiomic test extends across target populations 
because the technical performance of the imaging device and feature 
extraction software and the clinical performance of the test might not 
be consistent across different populations.

Criterion 2: patient benefit from use of the test in clinical care
The benefit of using a radiomic test should be clearly specified in the 
context of available treatments for the target population and access 
to other tests serving similar roles. A radiomic test might be used to 
stratify patients to optimize the choice of therapy for each individ-
ual, thus sparing patients from receiving ineffective or unnecessary 
treatments. A predictive test designed to guide treatment selection 
might differentiate between patients who are likely to derive clinical 
benefit (such as a longer median progression-free survival (PFS) or 
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Fig. 1 | Number of publications per year since 1967. A PubMed 
search of “(computer-aided diagnosis) OR CAD OR radiomic OR 
radiomics AND (cancer OR tumours OR tumours)” was performed. 
The number of items published each year is presented as of 
20 September 2022.
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overall survival duration) from a specific therapy or class of therapies 
and those that will not. A prognostic test could identify patients with 
particularly poor outcomes on standard-of-care therapy who might 
consider a more intensive regimen; however, such a test will prob-
ably only be useful if a suitable, alternative treatment is available22. 
Moreover, a radiomic test might help to direct clinical management 
in a way that treatment-related toxicities, including financial toxici-
ties, are reduced; prognostic tests might also identify patients whose 
outcomes on standard well-tolerated regimens are so good that they 
need not consider additional highly aggressive or toxic treatments or 
may consider treatment de-escalation.

The decision to use a radiomic test over other tests addressing the 
same clinical problem should be supported by a compelling reason.  
The radiomic test could have superior clinical performance to a stand-
ard test serving in the same role. The radiomic test might be able to 
identify underlying characteristics that cannot be detected as easily 
using other means; for example, assessing intratumour and inter-
tumour heterogeneity of oestrogen receptor expression might be 
much less difficult when using radiomic tests compared with immuno
histochemistry assays. Alternatively, the radiomic test might have a 
similar level of clinical performance but reduced invasiveness (such 
as biopsy avoidance), a reduced financial burden, greater conveni-
ence, or a reduction of one or more associated risks (potential harms, 
discomforts or exposures inherent to the testing procedure).

Imaging and feature extraction
Standard operating procedures for imaging, including protocols for the  
administration of contrast or imaging agents, specifications for image  
acquisition, procedures for image processing, and the timing of 
the scans should be in place (criterion 3) as should those for feature  
extraction, including a list of quantities to compute from the imaging 
data, segmentation algorithms, and computational algorithms and 
software to compute these quantities (criterion 4). The resulting feature 
measurements should also have been shown to have adequate techni-
cal validity (criterion 5). In most cases, this would entail each feature 
exhibiting strong repeatability and reproducibility or, if feasible, robust 
agreement with a standardized reference measurement of the under-
lying characteristic. A procedure to correct feature measurements 
for technical artefacts (the effects of factors such as imaging centre, 
device, operator or device-calibration settings on the distribution of the 
feature measurements) should also have been developed (criterion 6).

Criterion 3: standard operating procedures for image 
acquisition and processing
Image acquisition parameters should be specified in order to optimize 
image quality (for example, by keeping imaging noise to an accept-
ably low level or ensuring that the spatial, contrast and/or temporal 
resolution is adequate) and should be standardized to maximize repro-
ducibility across imaging centres, devices and operators. Numerous 

Box 1

The 16 criteria for the translation of radiomics into a clinically 
useful tool
Clinical use of the test

•• Criterion 1: the intended role of the radiomic test in clinical 
decision-making and the target population is clearly specified.

•• Criterion 2: use of the test in clinical care is expected to lead to 
patient benefit beyond that resulting from a standard-of-care 
testing procedure.

Imaging and feature extraction
•• Criterion 3: protocols for image acquisition, processing and 
normalization are standardized to optimize image quality and 
minimize variability owing to factors such as device or operator.

•• Criterion 4: list of quantities to extract from the images and 
computational procedures to do so are specified.

•• Criterion 5: the technical validity of feature measurements is 
adequately robust.

•• Criterion 6: procedures to correct for technical artefacts in the 
feature measurements are in place.

Model development and validation
•• Criterion 7: images, outcomes and other relevant data are 
obtained for patients in the target population through prospective 
clinical trials or retrospectively via completed studies, databases 
or image repositories.

•• Criterion 8: the radiomic model is developed with guards against 
overfitting.

•• Criterion 9: the ability of the model to predict an end point of 
interest is shown to be sufficiently robust using proper model 
validation techniques.

•• Criterion 10: imaging, feature extraction, data preprocessing and 
computational procedures are fully specified and locked down to 
the greatest extent possible.

•• Criterion 11: each possible value of the test output is associated 
with an unambiguous interpretation with regard to clinical 
management decisions.

•• Criterion 12: the reproducibility of the test output with regard to 
variables, such as imaging centre or operator, is sufficiently high.

•• Criterion 13: measures are in place to monitor drift, permit 
lockdown relaxation as appropriate and re-evaluate test 
performance as needed.

Justifying the use of the test in clinical care
•• Criterion 14: the test outputs are shown to be clinically valid.
•• Criterion 15: prospective or prospective–retrospective studies are 
conducted to directly evaluate the performance of the radiomic 
test in the context of its intended use.

•• Criterion 16: the patient benefit resulting from acting upon the 
result of the radiomic test is sufficiently substantial to warrant its 
use in clinical care.
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studies have demonstrated the strong dependency of the resulting 
feature measurements on the imaging protocol23,24. Standard operat-
ing procedures for image acquisition could be based on established 
imaging guidelines such as those provided by the American College of 
Radiology25, the Society of Nuclear Medicine and Molecular Imaging26, 
the European Association of Nuclear Medicine27 or the Quantitative 
Imaging Biomarker Alliance28.

Image acquisition protocols will depend on the intended use as 
well as on the imaging modality and features that will be extracted. If 
the radiomic test is intended for diagnosis, spatial resolution will be 
an important consideration29. In theory, tests involving the analysis 
of morphological features will depend more on spatial resolution30, 
whereas kinetic features, such as those derived from fast DCE-MRI, will 
depend more on temporal resolution31. In practice, perfect standardi-
zation is infeasible as is optimization of the protocol with respect to 
all the features to be extracted. The optimal resolution in DCE-MRI for 
breast cancer diagnosis often involves a compromise between spatial  
and temporal parameters to obtain measurements of morphological and  
kinetic features with adequate technical validity32. Furthermore, image 
acquisition protocols, particularly those applied to standard-of-care  
imaging approaches, are often determined in an ad hoc manner.

The time points at which patients undergo imaging should also 
be specific to the intended use. Radiomic tests intended for treat-
ment selection will involve scans obtained prior to intervention. Those 
intended for response assessment will involve scans obtained not 
only prior to the intervention but also at specified time points during 
and after therapy (often termed ‘delta-radiomics’33). The timing of 
response assessment can vary substantially; for example, radiomic 
tests designed to measure early metabolic response could involve 
imaging at baseline and then at a certain number of days to weeks fol-
lowing the initiation of treatment34 whereas assessment of the effects 
of certain classes of therapies, such as anti-vascular agents, might occur 
in a timescale of hours to days31.

Standard operating procedures should include processes 
designed to normalize the intensity values of images obtained from 
different patients and from the same patient. Normalization techniques 
include image resampling with filtering35, normalizing voxel intensity 
values relative to a histogram or global and local intensities on a refer-
ence image36,37, or harmonizing across different scans obtained from 
different populations or acquisition sites38. For certain features (such 
as second-order textural features), discretization through methods 
such as grey-level resampling and histogram binning is also needed11,39. 
Although the grey-level and standardized uptake value discretization 
methods used vary from centre to centre, these values can be normal-
ized relative to a reference set of measurements40,41. Alternatively, 
standardized image preprocessing methods can be applied42. A com-
prehensive summary of imaging harmonization methods is provided 
elsewhere43.

Criterion 4: standard operating procedures for feature 
extraction
Prior to formal test development, a list of quantities that will be 
extracted from the imaging data should be established. Traditionally, 
radiomic features are human-engineered and are extracted through 
delineation of the tumour from surrounding tissues using manual, 
semi-automated or fully automated segmentation44–46 followed by 
application of pre-specified computational procedures to the voxel 
data within the region of interest10. Human-engineered features include 
those quantifying size (tumour dimension), shape (3D geometry), 

morphology (margin characteristics), enhancement texture (the 
extent of heterogeneity within the texture of the tumour and/or con-
trast uptake), quantifications of kinetic curves (shape of the curve and 
quantifications of the physiological process of uptake and washout of 
the contrast agent) and enhancement-variance kinetics (such as the 
time course of spatial variance of enhancement within the tumour)47–50.

Extraction of such features will typically involve conversion and 
harmonization of the imaging data (criterion 6), post-processing (such 
as interpolation to cubic voxels, denoising, and correction of intensity 
and partial volume effects), image segmentation, region-of-interest 
extraction, and feature computation9. Existing guidelines and recom-
mendations can serve as a starting point for the development of a stand-
ard operating procedure for feature extraction but will often require 
adaptation to suit both the target population and the imaging modality51.

Alternatively, features of interest can be computer learned, namely 
extracted by direct application of computer algorithms to voxel data 
without the need for human intervention such as those computed 
using deep learning networks52,53. In this approach, a deep learning 
network can be applied to the voxel-level data and the last layer of the 
underlying convolutional neural network is taken as a set of features, 
similar to those used by Li et al. to predict IDH1 mutation status in 
patients with low-grade gliomas54. An illustration of the differences 
between such features and human-engineered ones is provided in 
Fig. 2. Computer-learned features have been considered in conjunc-
tion with operator-dependent features55 or even as a replacement. 
Such features are often less transparent in their computation and 
less interpretable; nonetheless, they might capture information that 
human-engineered features cannot, often resulting in more reproduc-
ible feature extraction and models with improved performance54. Fully 
automated extraction of such features enables the processing and 
computation of larger volumes of data with reductions in the variability 
of test output values owing to the elimination of human error during 
processes such as manual delineation and segmentation52.

Criterion 5: technical validity of the feature measurements
Adequate technical validity typically entails assessing the repeatabil-
ity and reproducibility of the feature measurements. Repeatability 
describes the precision when a specific imaging and feature extraction 
standard operating procedure are applied multiple times to the same 
patient at the same centre by the same operators within a short period 
of time. Reproducibility describes the precision of repeat measure-
ments when factors such as imaging centre and operator are allowed 
to vary56–58. Study designs and the statistical methodology for studies 
assessing repeatability and reproducibility have been summarized in 
detail elsewhere59. Strong technical validity is important for model 
development and the establishment of the clinical utility of a radiomic 
test given that poor feature reproducibility, as mentioned previously, 
can produce widely varying results regarding the strength and direc-
tion of the association between features and outcomes7 and result in 
models with insufficient levels of performance60.

Ideally, repeatability and reproducibility would be assessed using 
clinical data. In such clinical studies, patients undergo repeat scans with 
the feature extraction standard operating procedure then applied to 
each image. Such studies have been conducted61,62, although they are 
often difficult in practice as patients can be reluctant to participate 
owing to a lack of direct benefit, the inconvenience of undergoing 
multiple scans and, with certain techniques, additional exposure to 
contrast agents or ionizing radiation. An alternative approach involves 
different operators extracting features from the same set of images, 
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possibly at different centres; however, this approach, although also 
feasible as a retrospective method, only enables the assessment of 
variability attributed to the feature extraction process51,56,58.

As an alternative approach, some components of technical 
validation can be conducted using in vitro or in silico phantoms, 
simulated digital reference images or synthetic data such as those 
produced by generative adversarial network systems40,63. However, 
conclusions based on data obtained using phantoms and digital 
reference images will be overly optimistic regarding their technical 
validity given that they cannot fully capture the complexity of actual 
patients. Several authors have provided recommendations on the 
minimum technical validity requirements of phantoms and digital 
reference images59,64.

Technical validity can also be assessed using the level of agreement 
between feature measurements and certain comparator quantities 
(for example, with a measurement of the underlying biological char-
acteristic according to an independent in vitro assay), bias (the mean 
difference between the measurement and the true value of the charac-
teristic being measured), and the linearity of the relationship between 
the feature measurement and the true value59. However, assessing 

agreement is often not possible for computer-learned features owing 
to a lack of an appropriate biological correlate. Assessing bias or the 
relationship between the measurement and the true value of the feature 
being measured is generally only possible with phantoms and digital 
reference images.

Repeatability and reproducibility can be used as screening criteria 
to immediately eliminate features with poor technical validity from 
further consideration for inclusion in the model. Filtering out features 
in this manner has been shown to improve the level of power in settings 
with large numbers of features, of which only a small proportion are 
associated with the outcome of interest65. Such filtering must be done 
solely on the basis of technical validity and must not use outcome 
data that will also be used to assess performance of the model under 
development (criterion 9).

Technical validity criteria are much less well developed for 
computer-learned features such as those described by Li et al.54; their 
methodology produced 16,384 dimensional descriptors arranged in 
128 × 64 × 2 arrays, for which applying the technical validity assessment 
methods described above is clearly not feasible. Regardless of the type 
of feature used, researchers are encouraged to assess the technical 
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Fig. 2 | Types of radiomic analysis. a, Analyses using human-engineered 
features. Different types of features (such as histogram, shape or texture) 
are extracted from the images according to a pre-specified computational 
procedure. Variable selection techniques are used to identify which of  
these features are important in diagnosing a medical condition. The values  

of these selected variables are combined into a model to produce a diagnosis.  
b, Analyses using machine learning and artificial intelligence algorithms.  
The voxel-level data are fed into a convolutional neural network consisting  
of multiple hidden layers whose output is used to produce a diagnosis.
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validity of the output of any radiomic models based on these features 
(criterion 12).

Criterion 6: feature measurement correction for technical 
artefacts
Technical artefacts, namely the effects of factors related to variables 
such as imaging centre, operator and/or device configurations on the 
distributions of the feature measurements, can potentially confound 
the results of subsequent radiomic analyses. For example, a feature 
with no association with survival might seem to predict outcome if 
patients who undergo imaging in one location have substantially bet-
ter outcomes than those undergoing imaging in another centre and if 
the median feature measurement differs between the two sites owing 
to variations in image acquisition and processing. Thus, procedures 
designed to correct the variations in feature measurements created 
by such factors should be established prior to the development and 
validation of a radiomic model.

In addition to the image normalization methods described pre-
viously (criterion 3), the feature measurements themselves can also 
be standardized following extraction. These measurements can be 
normalized relative to a reference set of measurements66 or according 
to a harmonization model67,68, similar to the approaches used in other 
omics settings. Features strongly associated with variation from these 
technical artefacts might then be removed from consideration before 
model construction69,70.

Model development and validation
Patient-level data, including images, outcomes, standard clinical 
variables, measurements of in vitro biomarkers and other relevant 
data, should be obtained from the target population; these data can 
be obtained prospectively or retrospectively from already completed 
studies, imaging repositories or health-care databases (criterion 7).  
A radiomic model should be developed using appropriate statistical 
or machine learning techniques incorporating safeguards designed to 
avoid overfitting (criterion 8). The performance of a model in predict-
ing an end point of interest must be shown to be adequately robust 
using proper model validation techniques (criterion 9). By the end of 
its development, all aspects of the radiomic test, including the fea-
ture preprocessing steps, mechanisms of imputing missing data, the 
underlying computational procedures, any cut points in the feature 
measurements themselves and/or the model outputs, must be fully 
specified (criterion 10). Each possible output value of the test is then 
linked to an unambiguous interpretation with regard to clinical care 
(criterion 11) and the reproducibility of these outputs should be shown 
to be sufficiently strong (criterion 12). Processes designed to address 
drift in the performance of the radiomic test, which refers to changes 
arising from factors such as the evolution of image acquisition and 
processing protocols and feature extraction procedures over time, 
software upgrades and obsolescence, and replacement of devices with 
newer models, should be established, including monitoring processes 
and procedures to perform further technical validation and model 
adjustment as necessary (criterion 13).

Criterion 7: imaging, outcome and other relevant data from 
the target population
Data on the performance of radiomic analyses can be acquired pro-
spectively, most often as part of a clearly stated secondary objective in 
a phase II or phase III trial involving the target population, with stand-
ard operating procedures for image acquisition and processing at the 

desired time points and a feature extraction protocol, guided by the 
points described previously, written into the protocol. Alternatively, 
data can be acquired retrospectively from imaging data repositories, 
health-care databases, or datasets from completed clinical trials, sub-
ject to inclusion and/or exclusion criteria involving image acquisi-
tion and processing protocols, image quality, and the availability of 
images acquired at the relevant time points. For example, The Cancer 
Genome Atlas Breast Imaging Research Group identified patients from 
The Cancer Imaging Archive repository71,72 for whom gene expression 
analysis and pretreatment standard-of-care breast MRIs obtained with 
1.5 Tesla GE Medical Systems devices were available17,18,73. Any clinical 
data to be obtained should be matched with the images via unique 
patient ID numbers.

Sample sizes should be determined according to factors such 
as the number of events (patients with disease versus without, or 
observed number of deaths), the type of model to be fitted to the 
data, the expected strength of the relationship between the features 
and the outcome, the desired standard error of the performance  
metric, the variance of the model outputs and their concordance with 
observed event probabilities74–76. Logistic and Cox regression models 
constructed using data from too few patients often have lower per-
formance relative to models constructed using larger sample sizes60. 
Deep learning classifiers can require data from thousands of patients 
per class owing to their complexity (in preprint77); however, dataset 
sizes can be reduced with the use of transfer learning through feature 
extraction or fine-tuning methods78. Smaller numbers of patients can 
be used for model fitting if the relationship between the features and 
the outcome is particularly strong. Notwithstanding, sample sizes are 
often constrained by the amount of data available from the completed 
studies, image repositories or databases from which they were acquired 
or, if the radiomic study is a secondary objective of a clinical trial assess-
ing a therapeutic intervention, by the number of patients required to 
meet the primary objective, which will often be much smaller than what 
is needed for the radiomic analysis.

Ideally, prospective studies should involve multiple centres and 
retrospectively acquired data should be obtained from multiple studies 
or repositories and then combined. Using multiple imaging centres, 
as opposed to a single one, not only facilitates more rapid accrual of 
data and accumulation of a sufficient number of patients for reliable 
statistical modelling and validation but can also result in the acquisition 
of data from a broader population. However, this approach comes with 
the risk of introducing technical artefacts into the data that will need to 
be corrected prior to model development and validation (criterion 6).

Criterion 8: development of the radiomic model with guards 
against overfitting
The range of model-fitting techniques proposed in the statistical and 
machine learning literature has been described in detail elsewhere79. 
The literature suggests that no single model-fitting technique is uni-
formly superior to any other80 although, regardless of the approach 
used, care should always be taken to avoid overfitting, that is, fitting 
an overly complex model to noise in the data and thus producing a 
model that is only poorly predictive when applied to completely new 
data. Overfitting risk is high when using more complex models, such 
as those based on neural networks81 or non-parametric regression, as 
opposed to simpler ones such as those based on logistic or Cox regres-
sion. These simpler models have also been shown to often perform as 
well, if not better, than their more complex counterparts, especially 
when the number of variables is large and the underlying relationship 
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between the radiomic features and the end point is neither strong nor 
complex45,60,82,83.

Inclusion of too many features in the model, which can be viewed 
as another form of model complexity, is another common cause of 
overfitting. Models based on high-dimensional data, such as those 
typically encountered in radiomic settings, are particularly prone 
to this issue. Eliminating any features with subpar levels of technical 
validity (such as poor reproducibility) or those associated with batch 
processing before any formal model development takes place (crite-
ria 5 and 6) might reduce the likelihood of overfitting as will the use  
of variable selection techniques. Several authors have described common  
variable selection techniques in greater detail elsewhere79,84. Of note, 
many of these techniques require the selection of a tuning parameter 
controlling the stringency of the inclusion criteria for variables in 
the model (such as a P value below which univariate associations 
between individual features and the outcome must lie to be included, 
the number of variables to be included, or regularization parameters in 
LASSO regression techniques85). The optimal tuning parameter value is  
typically identified using the data (see criterion 9).

Criterion 9: model validation
Once a model has been developed, with mitigation against possible 
overfitting, the model should then be shown to be capable of predict-
ing an end point of interest, be it a clinical event or state or a biological 
characteristic, with a sufficient level of accuracy. Robust model per-
formance does not necessarily imply usefulness in guiding medical 
decision-making; for example, as mentioned previously, a radiomic 
test with a high level of diagnostic accuracy or a robust ability to predict 
treatment response or an end point of interest will not be clinically 
useful if the improvement in clinical performance is not substantial 
enough to justify its use over standard-of-care diagnostic workups. 
The broad principles described in this subsection, as well as those 
regarding lockdown, clinical validity and clinical utility in subsequent 
sections, apply to both more traditional human-engineered features 
and computer-learned features.

The area under the receiver operating characteristic curve86 (AUC) 
of the model outputs or their sensitivity and specificity can be used to 
quantify the ability of the model to discriminate between patients with 
a specific health condition from those without. A related metric to the 
AUC is the c-index87, which quantifies the ability of the model to predict 
survival (the probability that among two randomly chosen patients, 
the one with the higher model output has the shorter survival time). 
Additionally, assessments of model performance should include cali-
bration, namely the concordance between the predicted and expected 
probabilities of an event of interest88–90. Calibration curves, namely  
plots of the observed frequencies of the event versus predicted pro
babilities, are also used to examine whether the model predictions are 
consistently either too high or too low91. As emphasized during the 
discussion of criterion 1, the most appropriate performance metric 
will depend on the intended use of the radiomic test.

Ideally, model validation should be accomplished by applying the 
newly developed model, without any alterations to any aspect, to a 
completely external dataset that was not used in any part of the model 
development process. External data should be acquired from patients 
in the target population from whom imaging data were obtained 
under similar imaging, processing and feature extraction protocols 
to the data used in model development. Variations in imaging centre, 
operating personnel, scan acquisition date, and certain methods of 
imaging and feature extraction (such as device and software version) 

between the training and validation datasets might be permitted to 
enable evaluation of the robustness of the model to variability in 
these factors.

However, adequate external validation is not always performed, 
primarily owing to the logistical challenges associated with accessing 
data from an independent cohort. In our experience, the performance 
of the model is often assessed through internal validation, namely the 
use of a single dataset for both model development and evaluation. 
Internal validation involves carefully splitting or subsampling the data 
to avoid overlap with the data used to develop the model (the training 
set) and those used to evaluate the performance of the model (the vali-
dation set). Internal validation can provide reasonable estimates of the 
predictive accuracy of the radiomic model, although results obtained 
in this way might not necessarily be generalizable to completely new 
data. If model development and internal validation were performed 
on data that were obtained using obsolete image acquisition and pro-
cessing protocols or that involved a cohort that was not completely 
representative of the entire target population (such as patients from a 
location at which a disproportionate percentage had a poor prognosis), 
then the results will reflect performance in this setting; performance 
might be diminished in other settings such as those with updated image 
acquisition and processing protocols12.

Internal validation methods include split-sample validation92, 
cross-validation93 or bootstrap validation94; these various techniques 
have been summarized in detail elsewhere79,95. Cross-validation is usually 
preferable to split-sample validation when only small sample sizes are  
available; the latter produces estimates of model performance that 
are often pessimistically biased (that is, estimates of model perfor-
mance that are substantially lower than those obtained from external 
validation) when sample sizes are of about 200 or fewer individuals60,96.

Appropriate internal validation requires the maintenance of strict 
separation of data used to specify any aspect of the model from those 
used to evaluate its performance. Any violation of this strict separa-
tion results in overly optimistic estimates of the performance97,98. In 
this regard, full resubstitution, in which the entire dataset is used for 
both development and validation of the same model, provides the 
most egregious example. Partial cross-validation, in which the entire 
dataset is used to select features based on their significant univariate 
association with outcome followed by cross-validation of the model 
using only this restricted feature set, is another variant of this inap-
propriate approach to validation. In a comprehensive review of internal 
validation approaches, data from simulation studies are presented 
indicating that, even in a scenario in which the variables have no rela-
tionship with an outcome, inappropriate internal validation techniques 
can still produce an AUC estimate of 0.7–0.8 (ref.97).

The selection of tuning parameters during model development 
(criterion 8) is yet another stage at which problems in model validation 
can arise. Often, for each candidate from a list of tuning parameter 
values, the model is fitted using the training set and then applied to 
the validation set to obtain a performance metric estimate. The tun-
ing parameter value associated with the optimal performance metric 
estimate is then identified and this metric estimate is then reported. 
However, in this approach, some aspects of the model development 
(the identification of the tuning parameter) took place on data used  
to estimate the performance metric. Such approaches can lead to biased  
estimates of the performance metric98. Appropriate validation tech-
niques for use when tuning parameter selection is also involved include 
a three-way split of the data into training, validation and test sets (the 
training and validation sets are used to identify the tuning parameter 
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and fully specify the model, which is then applied to the test set to 
obtain a performance metric estimate)92 or nested cross-validation98.

Criterion 10: radiomic test lockdown
Once the model has been developed and shown to have reasonable 
predictive accuracy, all components of the test, as described in the 
Introduction of this Review, should be locked down. In radiomics,  
procedures for measurement will include both standard operat
ing procedures for image acquisition and processing (criterion 3) 
as well as those for feature extraction (criterion 4) and calculation 
of model output. Outputs are then associated with specific clinical 
interpretations (criterion 11).

All computational aspects of the model (for example, the math-
ematical expression, including regression coefficients, weightings, 
cutoffs and any other parameters) should be locked down to the great-
est extent possible. In situations in which concise model descrip-
tions are not feasible, such as for those based on deep learning, the 
underlying computational algorithm and software platform should 
be closed to further changes and any crucial components, such as  
the random number generator seeds used to generate the model  
or the output, should be fixed. Interpretations of the inputs of the 
model (for example, the variables included in a logistic or Cox regres-
sion model involving human-engineered features) are often of interest 
to researchers as they can provide insights into the degree of impor-
tance of each feature in predicting an outcome. For computationally 
derived model inputs, such as features obtained using deep learning 
algorithms, methods to aid interpretability include visualizing the 
latent space discovered through the learning process, post hoc high-
lighting of the regions of the input images that the model labelled as 
important and visualization of features from different filters in the 
convolutional neural network99.

The locked-down model could still be affected by any remaining 
biases inherent to the data on which it was fitted and validated (such 
as technical artefacts and distributions of radiomic feature values and 
outcomes that differ substantially from those of the target population). 
Allowing the model to evolve over time as new data become available 
will alleviate some of these effects (criterion 13).

Criterion 11: interpretation of test outputs
Models based on techniques such as support vector machines will 
produce outputs consisting of discrete categories78, each of which can 
be linked to a specific clinical interpretation and decision. However, 
models constructed via most other techniques will produce a quanti-
tative output such as the predicted probability of a specific event of  
interest. Binning these continuous outputs into a limited number  
of discrete categories might be desired for the purposes of interpreta-
tion and clinical decision-making. For example, a test output value that 
falls below a prescribed cutoff value might indicate a good prognosis 
and that additional treatment will not be needed and/or that the likeli-
hood of a response to a treatment is high. Alternatively, a test output 
value above a prescribed cutoff could indicate a high risk of mortality 
and that the patient might survive longer on an alternative regimen.

Sometimes, these cutoffs are set arbitrarily to specific quantiles, 
such as the median, in order to define high-risk versus low-risk groups; 
however, this approach ignores associations with clinical outcomes. 
Cutoff optimization and comparisons of the outcomes of patients 
in each category defined by the cutoffs should be done on separate 
datasets so as not to violate the principle of separation of data used 
for model development from those used for validation. When cutoff 

optimization and outcome comparisons are done using the same data 
(for example, by applying various cutoffs to a dataset, computing 
the log-rank test P values of the resulting groups and choosing the 
cutoffs associated with the lowest P values), the risk of a type I error 
is increased100. To ensure the test can be applied to one patient at a 
time, cutoff values should be specified as absolute values rather than 
as percentiles that would need to be recalculated on the availability 
of new data.

Analytical approaches that consider the consequences of specific 
treatment decisions based on the test output have also been proposed 
as a method for cutoff selection. These methods aim to balance the risks 
(adverse consequences) of incorrect test results against the benefits 
(positive consequences) of correct test results. The risk–benefit bal-
ance can then be compared to that of the standard-of-care approach 
for the specific clinical indication or any other competing tests or to 
the use of no test at all. Such approaches include the decision curve 
analysis method101. This methodology has been applied to a radiomic 
study involving features obtained from preoperative CT images in con-
junction with images from intraoperative frozen sections and clinical 
data to differentiate invasive lung adenocarcinomas from preinvasive 
lesions or minimally invasive adenocarcinomas102.

Criterion 12: test output reproducibility
The reproducibility of the test outputs should be shown to be suffi-
ciently robust to ensure that the radiomic test will produce similar 
results regardless of where it is performed or by whom. One approach 
involves having patients undergo repeat scans using an established 
standard operating procedure without interventions in between. 
Multiple operators, also possibly at different imaging centres, would 
then apply feature extraction according to standard operating proce-
dures and the radiomic model to the repeat scans independently of one 
another. Finally, the model or algorithm underlying the test is applied 
to the images and feature data. Reproducibility metrics for individual 
features can also be considered at this stage.

This assessment of reproducibility encompasses variability poten-
tially owing to all aspects of image acquisition and processing, feature 
extraction, and application of the model; however, this approach is 
rarely feasible in practice for reasons that include a lack of availability 
of repeat imaging in many scenarios and the unwillingness of many 
patients to undergo multiple scans within a short space of time. Alterna-
tively, both the feature extraction process and the model can be applied 
repeatedly to the same set of images, possibly by different operators 
at different locations. This approach can be applied to retrospectively 
acquired data but can only produce an assessment of reproducibility 
that encompasses variability owing to feature extraction and applica-
tion of the model (and not factors that influence raw data acquisition). If 
estimates of the repeatability and reproducibility of individual features 
are known, error propagation models and simulation approaches can 
be used to estimate the reproducibility of the test output60.

Criterion 13: processes to address data and radiomic test drift
The computational procedures underlying most radiomic tests are 
likely to evolve over time. Imaging hardware and computational soft-
ware are likely to be upgraded. Furthermore, the model itself could 
change after fitting to new data102. Monitoring for such changes in a 
way that enables their effects to be assessed should be in place. Certain 
changes might also require a return to previous steps in model develop-
ment and validation. Changes not related to drift, such as application of 
the test in a different patient population or indication or the addition 
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of new features, should necessitate a return to model development 
and validation and might also require the re-establishment of standard 
operating procedures for feature extraction with re-assessments of the 
technical validity of individual features.

Assessments of technical and clinical validity and clinical util-
ity (criteria 14 and 15) should be performed periodically for tests for 
which the underlying computational procedure is expected to evolve 
over time. Changes to the standard operating procedures for image 
acquisition and processing or upgrades to the feature extraction soft-
ware should be followed by assessments of the level of agreement 
between feature measurements obtained under the previous and 
the new versions. Researchers should proceed with the new versions 
of the standard operating procedures and software platforms based 
on the degree of agreement; however, empirical guidelines on what 
constitutes a sufficiently strong level of agreement are not available 
and are probably dependent on both the feature itself and the context. 
If this agreement in feature measurements is inadequate, the level of 
concordance between the test outputs computed using the two ver-
sions can be assessed (for example, by demonstrating that the mean 
squared difference of the outputs from the two versions is lower than 
some meaningful threshold). High concordance between the test out-
puts indicates that the two versions produce similar results and that 
the new one could therefore safely replace the previous one, although 
poor concordance might also reflect the superior clinical performance 
of the new version. In some scenarios, the model might need to be refit-
ted; such changes can alter the significance and sometimes even the 
direction of the association of the features with an outcome of interest7.

Justifying use in clinical care
Robust performance of the underlying model in predicting an end 
point of interest does not automatically mean that the test will be 
clinically useful (meaning that acting upon the results of the radiomic 
test leads to patient benefit via improved outcomes or quality of life, 
reduction in toxicity, invasiveness, risk of complications, financial  
burden, or the avoidance of ineffective or unnecessary treatments). 
After the radiomic model has been validated and the test has been 
locked down, its clinical validity, namely the ability of the outputs to 
provide information regarding the presence or absence of a condition or  
the risk of an event of interest103 (for example, sensitivity, specificity,  
or positive and negative predictive values in detecting disease or the 
proportion of patients classified as low-risk who remain progression 
free at 5 years), should be assessed in the context of its intended use 
and clinical setting (criterion 14). The clinical utility of the test should 
then be assessed using a prospective study or an appropriately designed 
prospective–retrospective study, in which the performance of the test 
in its intended clinical setting is directly assessed (criterion 15) and the 
risk–benefit balance for the patient when acting upon the results of 
the radiomic test is shown to be sufficiently favourable to justify use 
in clinical care (criterion 16). Note that such scenarios often do not 
reflect the standalone performance of the radiomic model but rather 
how the test influences the end user (for example, the clinician) when 
they make clinical decisions with and without the test results as was 
often used in assessing CAD systems104,105.

Criterion 14: clinical validity of the test
Clinical validation goes beyond model validation (criterion 9) in that 
the former involves the evaluation of model performance with greater 
specificity to the clinical setting and intended use. For example, model 
validation of a prognostic radiomic test might involve showing that 

the level of concordance between overall survival and model outputs 
is above some pre-specified and meaningful threshold. Clinical valida-
tion, meanwhile, might involve demonstrating that patients who have 
been classified in a low-risk category have a very high (>90%) 5-year 
PFS on a well-tolerated standard therapy regimen whereas those in 
other risk categories have substantially worse outcomes. This may 
suggest that patients in the low-risk category may potentially consider 
foregoing additional highly invasive or toxic treatments. Alternatively, 
showing clinical validity of a prognostic radiomic test might entail 
demonstrating that the association between test output and clini-
cal outcome remains statistically significant even after adjusting for 
standard clinical or pathological variables with known prognostic value. 
The robustness of such a finding to the effects of potential confound-
ers, such as variations in the operator of the feature extraction or the 
imaging centre in which the extraction and test were performed, should 
also be established. Different approaches have been summarized in 
detail elsewhere21.

The radiomic test should be fully locked down and the data used 
to determine clinical validity should be independent from any data 
used in model development and validation. Such data could come from 
prospective clinical trials. For example, to estimate the 5-year PFS of 
patients with low-risk disease according to the radiomic test, such a 
cohort could receive standard-of-care therapy and comparisons of the 
outcomes of the different risk groups could be made after 5 years of 
follow-up monitoring. Alternatively, data might also be acquired retro-
spectively from completed clinical trials or imaging data repositories 
such as The Cancer Imaging Archive71 or the sequestered commons 
from Medical Imaging and Data Resource Center106, from which test-
ing data can be drawn based on the clinical question and population of 
interest. Again, this approach assumes that imaging data for a sufficient 
number of patients from the target population were acquired using 
protocols similar to the previously established standard operating 
procedures (criterion 3).

Criterion 15: direct evaluation of performance of the test in its 
clinical use
The optimal design, end points and statistical analyses to assess the 
benefits of using a radiomic test to guide clinical disease management 
differ widely depending on the intended use of the test21. For exam-
ple, for a radiomic test expected to outperform an in vitro prognostic 
assay currently in widespread use, patients whose treatment decisions 
were based on the radiomic test should be shown to have substantially 
improved outcomes compared to those of patients for whom clinical 
care was dictated by the in vitro assay.

Prospective studies have numerous desirable qualities, including 
enabling researchers to have full control over the features to measure, 
image acquisition and processing, the study design, and sample size. 
However, such studies are likely to be time consuming and costly, particu-
larly for disease settings with already favourable outcomes that require a 
large sample size and/or lengthy follow-up duration to observe sufficient 
events (such as death, disease recurrence or progression) for adequate 
statistical power. Prospective–retrospective studies can reduce or even 
eliminate many of the delays and costs associated with image acqui-
sition and follow-up assessments107. For prospective–retrospective 
studies, data from standard-of-care images, clinical outcomes and 
other data, such as standard clinical variables, are acquired from  
patients in completed clinical trials that satisfy the appropriate inclu-
sion and/or exclusion criteria regarding the patient population, treat-
ment approach, image acquisition and processing specifications, and 
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availability of the necessary images. Both the feature extraction and the 
test are applied prospectively. Similar to a prospective study, the radi-
omic test, the statistical analysis plan, sample size, level of power, and 
the inclusion and exclusion criteria should be fully specified in a protocol 
before the initiation of a prospective–retrospective study. Criteria for 
establishing clinical utility through prospective–retrospective studies 
for other omics approaches have already been published12,107. These cri-
teria include the stipulation that two such studies must produce similar 
results, an approach that can also be adapted for radiomic tests. In silico 
clinical trials using patient-specific models to develop a simulated cohort 
might provide an alternative approach108, although these simulated 
patients might not entirely reflect the complexities of real-life patients.

Criterion 16: benefit versus risk balance from use of the 
radiomic test
The benefit–risk balance associated with use of a radiomic test will 
encompass not only the risks and benefits associated with perform-
ing the test but also those associated with the clinical decisions 
directed by the test results. If the intended use of a test is to choose 
a therapy that provides superior clinical outcomes compared with 
other available options, then the improvement in clinical outcome 

should not only be statistically significant but also large enough in 
magnitude to justify use of the radiomic test. Alternatively, a favourable  
benefit–risk balance might emerge when use of the radiomic test leads 
to non-inferior outcomes while being associated with reduced risks, 
including those inherent in the standard testing procedure, or if the 
toxicities of unnecessary or ineffective treatment can be avoided. For 
example, even if the radiomic test leads to treatment decisions that 
are similar to those based on standard diagnostic workups, the former 
might nevertheless have clinical utility if the information it provides 
enables patients to undergo fewer subsequent scans or biopsies while 
still leading to similar outcomes.

Finally, a radiomic test does not have clinical utility if it separates 
patients into groups for which the outcomes are statistically different 
but the recommended clinical management would be the same. Even if 
one patient group has an inferior outcome on standard therapy, another 
treatment might be available that is more effective for that group.

Conclusions
The 16 recommended criteria provided herein aim to guide the trans-
lation of radiomic tests into clinically useful tools and are expected 
to be relevant across a range of imaging modalities and scenarios. 

Glossary

Biomarker
A characteristic indicating non-
pathological or pathological biological 
processes and/or an increased 
likelihood of a response to an exposure 
or intervention5.

Clinical utility
The degree to which acting upon the 
results of the radiomic test leads to  
a favourable benefit–risk balance for 
the patient.

Clinical validity
The adequacy of the clinical 
performance of the radiomic test for  
its intended purpose.

Deep learning
A class of machine learning based  
on neural networks.

Model
A computational algorithm applied to 
extracted image features or voxel-level 
image data themselves.

Model outputs
The result of a computational algorithm 
applied to the extracted image features 
or voxel-level data themselves;  
a quantity to be used in guiding clinical 
management.

Model validation
Establishment of the ability of a model 
to predict an outcome of interest when 
applied to new data.

Neural network
A type of computational algorithm 
based on the operation of biological 
neural systems in animals that feeds 
the input (in this context, feature 
measurements or voxel-level data) 
through a series of nodes that 
perform mathematical operations on 
the outputs of preceding nodes to 
produce an output. In a convolutional 
neural network, these mathematical 
operations involve applying 
convolutional kernels to the outputs  
of preceding nodes.

Normalization
A process for adjusting the voxel 
intensity values of an image for 
differences resulting from variability 
in image acquisition and processing 
parameters.

Omics
The study of related sets of biological 
molecules in a comprehensive 
fashion with examples including 
genomics, transcriptomics, proteomics, 
metabolomics and epigenomics109. 
Radiomics naturally extends this 
definition to include quantification 
of radiological imaging features for 
the purposes of characterization and 
measurement of structure, function 
and interaction between biological 
molecules in a comprehensive and 
high-throughput manner.

Overfitting
The process of fitting an overly complex 
model to noise in the data, thus 
producing a model that is only poorly 
predictive when applied to completely 
new data.

Performance metric
A quantity indicating the ability of a 
model to predict an outcome of interest.

Phantoms
An object that is imaged to measure the 
technical performance of an imaging 
device.

Radiomic features
Quantities computed from voxel-level 
image data.

Radiomic test
A system comprising materials, 
methods and procedures for image 
acquisition, processing and feature 
extraction, and methods or criteria for 
interpretation of the image data for use 
in guiding clinical management.

Technical artefacts
The effects of factors, such as imaging 
centre, device, operator or device-
calibration settings, on the distribution 
of the feature measurements.

Technical validity
The quality of the feature measurements 
in terms of their accuracy in assaying 
an underlying characteristic of interest 
or their variability when the feature 
extraction process is applied repeatedly 
to the same patient.

Test lockdown
Full specification of all image 
acquisition, processing and feature 
extraction procedures, all aspects of the 
underlying model, and interpretations 
of the output.
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Many of these recommendations share common themes with other 
published guidelines for radiomics; adherence to these recommen-
dations addresses many components of the radiomic quality score4, 
for example.

The statistical considerations regarding model development and 
validation and the design of studies for the assessment of clinical utility 
have numerous parallels to those for in vitro test considerations12,109. 
Several components of our recommendations are based on these 
sources. However, some important and consequential differences 
specific to radiomics also merit consideration. Radiomic approaches 
increasingly utilize multiple machine learning and deep learning 
methods, which introduces new issues regarding standard operating 
procedures for feature extraction, test lockdown, machine learning 
interpretability, correlations with biology, regulatory considerations 
and assessments of analytical validity. These criteria are likely to further 
evolve in the future as researchers become aware of additional issues 
and as more radiomic models become locked down, validated and 
evaluated for clinical utility. We emphasize that these recommenda-
tions pertain to the conduct and analysis of radiomic studies and are 
not intended as reporting guidelines for radiomic and CAD studies in 
the vein of REMARK for tumour prognostic studies110 or other report-
ing guidelines catalogued by the EQUATOR project111. However, some 
of these recommendations are expected to serve as the basis of such 
radiomic-specific reporting guidelines.

Radiomics is increasingly likely to involve full machine learning-
based image analysis such as deep learning-based features or the 
application of artificial intelligence and machine learning algorithms 
directly to voxel-level data. Such a transformation, as mentioned 
before, is expected to eliminate much of the variability created by 
human error and improve model performance in many scenarios, 
although it will also benefit from integration with clinical informa-
tion to better personalize the test result to each patient. For exam-
ple, this type of test might be used not only to detect cancer but 
also to do so in the presence of additional comorbidities (for exam-
ple, examining a renal finding in the presence of diabetes mellitus, 
chronic inflammatory processes and/or hypertension). The increased 
availability of different types of data should facilitate these types of  
improvements.
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