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Scaling and intermittency in turbulent flows 
of elastoviscoplastic fluids

Mohamed S. Abdelgawad    1,2, Ianto Cannon    1,2 & Marco E. Rosti    1 

Non-Newtonian fluids have a viscosity that varies with applied stress. 
Elastoviscoplastic fluids, the elastic, viscous and plastic properties of 
which are interconnected in a non-trivial way, belong to this category. 
We have performed numerical simulations to investigate turbulence in 
elastoviscoplastic fluids at very high Reynolds-number values, as found in 
landslides and lava flows, focusing on the effect of plasticity. We find that 
the range of active scales in the energy spectrum reduces when increasing 
the fluid plasticity; when plastic effects dominate, a new scaling range 
emerges between the inertial range and the dissipative scales. An extended 
self-similarity analysis of the structure functions reveals that intermittency 
is present and grows with the fluid plasticity. The enhanced intermittency 
is caused by the non-Newtonian dissipation rate, which also exhibits an 
intermittent behaviour. These findings have relevance to catastrophic 
events in natural flows, such as landslides and lava flows, where the 
enhanced intermittency results in stronger extreme events, which are thus 
more destructive and difficult to predict.

Many fluids in nature and industry exhibit a nonlinear relation-
ship between shear stress and shear rate, which is referred to as 
non-Newtonian behaviour. Several non-Newtonian features can exist, 
and they are often present simultaneously. In this Article we focus 
on the so-called elastoviscoplastic (EVP) fluids, which are fluids with 
elastic, viscous and plastic properties. EVP materials combine solid-like 
behaviour and fluid-like response depending on the value of the applied 
stress: they behave like a solid when the applied stress is below a critical 
value known as the ‘yield stress’, and flow like a liquid otherwise1. The 
elastic nature of these materials is present in their solid as well as liquid 
states2. Such fluids are common in everyday life (examples include 
toothpaste, jam, cosmetics and mud), and turbulent flows of EVP fluids 
are found in many industrial processes, including sewage treatment, 
crude oil transportation, concrete pumping and mud drilling3–5, as well 
as in nature as landslides and lava flows6,7.

A great deal of work has been done in the past to properly charac-
terize the viscoelastic behaviour of a fluid in both laminar and turbu-
lent flows8–13, while the effect of plasticity has been studied mainly in 
low-Reynolds-number laminar conditions1,14,15. Little is known about 
the plastic behaviour of an EVP fluid in turbulence. Rosti et al.16 studied 

a turbulent channel flow of an EVP fluid, finding that the shape of the 
mean velocity profile controls the regions where the fluid is unyielded, 
forming plugs around the channel centreline that grow in size as the 
yield stress increases, similar to what is observed in a laminar condi-
tion. However, the presence of the plug region has an opposite effect 
on drag for laminar and turbulent flow configurations, resulting in drag 
reduction in the turbulent case and drag increase in the laminar one; 
the turbulent drag behaviour is due to the tendency of the turbulent 
flow to relaminarize, overall leading to a strongly nonlinear relation 
between yield stress and drag coefficient. Simulation results were 
then employed by Le Clainche et al.17, using high-order dynamic mode 
decomposition, to study the near-wall dynamics, comparing them 
to those in Newtonian and viscoelastic fluids. Their work revealed 
that both elasticity and plasticity have similar effects on the near-wall 
coherent structures, where the flow is characterized by long streaks 
disturbed for short periods by localized perturbations. A recent experi-
mental study by Mitishita et al.18 on a turbulent duct flow of Carbopol 
solution de facto verified the numerical results obtained by Rosti 
et al.16 on the effect of plasticity on the mean flow profile and Reynolds 
stresses. Additionally, they observed an increase in the energy content 
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ReΛ ≡ ρu′Λ/μt, WiΛ ≡ λμt/ρΛ2
0, α = μn/μt a n d  BiΛ ≡ τyΛ0/μtu′0 ,  

where ρ is the fluid density, μt ≡ μf + μn is the total dynamic viscosity 
with μf being the fluid viscosity and μn the non-Newtonian one, λ is the 
relaxation time, τy is the yield stress, and subscript 0 denotes quantities 
from the BiΛ = 0 case. The Reynolds number describes the ratio of iner-
tial to viscous forces, and we limit our analysis to high-Reynolds-number 
flows, achieving a Taylor microscale Reynolds number ReΛ ≈ 435 for the 
Newtonian flow, at which statistics of the flow have been found to be 
universal and exhibiting a proper scale separation, with an extensive 
inertial range of scales extended to almost two decades of wavenumbers. 
The Reynolds number explored here is the highest in DNS of HIT of 
non-Newtonian fluids. The Weissenberg number describes the ratio of 
elastic to viscous forces, and here we limit the analysis to WiΛ ≪ 1 (that 
is, WiΛ ≈ 10−3), to ensure that elastic effects are subdominant and all the 
observed changes are due to plasticity. We also fix a value of α = 0.1 to 
represent a dilute concentration of polymers, in accordance with previ-
ous works on the subject16,20. Thus, the key control parameter we vary 
is BiΛ, which describes the ratio of the yield stress to the viscous stress, 
and thus correlates with the prevalence of unyielded regions.

Figure 2 depicts the turbulent kinetic energy spectra of the cases 
analysed. The BiΛ = 0 case is similar to the Newtonian case shown in 
Supplementary Fig. 1, confirming that the effect of elasticity is sub-
dominant and can be ignored. A clear E ~ κ−5/3 range is visible for more 
than one decade, showing that ReΛ is high enough to achieve scale sepa-
ration, with the spectra exhibiting an inertial range of scales followed by 
a dissipative range. As BiΛ increases, the inertial range is limited to the 
large scales (small wavenumbers κ), with the energy increasing at large 
scales and decreasing at small scales. A clear deviation from Kolmogo-
rov scaling becomes noticeable for BiΛ > 1, resulting in the emergence of 
a new apparent scaling of E ~ κ−2.3 that is shown more clearly by plotting 
compensated energy spectra (as shown in Supplementary Fig. 3). The 
difference in scaling between the experimental work (−7/2)18 and the 
current study (−2.3) is mainly due to the higher values of Reynolds and 
Bingham numbers considered here. The abrupt change in the spectra 
with BiΛ is consistent with the bulk flow properties (ReΛ and the volume 
fraction of the unyielded regions Φ) shown in the inset of Fig. 2: for the 
cases where BiΛ < 1, ReΛ remains relatively unaltered, with Φ always close 
to zero, whereas when BiΛ further increases, the microscale Reynolds 
number ReΛ and the volume Φ of the unyielded regions rapidly increase 
with a similar trend.

at large scales and a decrease at small scales, when compared with a 
Newtonian fluid. Mitishita et al. reported a −7/2 scaling in the energy 
spectra at high wavenumbers during Carbopol flows compared to 
−5/3 scaling in the case of water flows. The newly observed scaling was 
attributed either to the decrease in the inertial effect in the presence of 
Carbopol solutions, which shrinks the inertial range of scales because 
the Reynolds numbers are much lower than in water flows, or to the 
elastic effects that become important at large wavenumbers where 
the fluid experiences high frequencies. Moreover, the shear-thinning 
effects that Carbopol solutions exhibit affected the anisotropy and 
the overall flow behaviour. The elastic and shear-thinning effects are 
rheological features of Carbopol solutions and cannot be eliminated 
experimentally.

Homogeneous and isotropic turbulent flows have long been a 
focus of turbulence research for their simple theoretical analysis and 
the generality of their results. To this end, as has been extensively done 
in the past for viscoelastic flows, here we study tri-periodic homoge-
neous flow, where the celebrated K41 theory by Kolmogorov19 can be 
directly applied to a classical Newtonian fluid. In this Article we study 
a homogeneous isotropic turbulent (HIT) flow of an EVP fluid at high 
Reynolds number, as shown in Fig. 1. We aim to answer the follow-
ing fundamental question: how does the Kolmogorov theory change 
when the fluid is EVP? We will mainly focus on its plastic behaviour and 
investigate how the yield stress affects the multiscale energy distribu-
tion and balance, and how the turbulent energy cascade is altered 
by the fluid’s plasticity. Our results show profound modifications of 
the classical picture predicted by the K41 theory for Newtonian flu-
ids, with the emergence of a new scaling range, the dominance of the 
non-Newtonian flux and dissipation at small and intermediate scales, 
and enhanced intermittency of the flow.

Results
To investigate the problem at hand, we performed massive 
three-dimensional direct numerical simulations (DNS) of HIT where 
we solve the flow equations fully coupled with the constitutive equation 
of the EVP fluid, within a tri-periodic domain of size L, using 1,024  
grid points per side, as described in more detail in the Methods. The 
flow is controlled by four main parameters: the Reynolds number  
ReΛ, the Weissenberg number WiΛ, the viscosity ratio α and the  
Bingham number BiΛ, all based on the root-mean-square velocity fluc-
tuations u′ and Taylor’s microscale Λ. We use the definitions 

BiΛ = 0.025 BiΛ = 0.25

BiΛ = 2.5 BiΛ = 25

Fig. 1 | Instantaneous colourmaps of the turbulent fluid dissipation ϵf in 
homogeneous isotropic turbulence of an EVP fluid at different Bingham 
numbers. Yielded regions are shown with a black–red–yellow colourscale, and 
unyielded regions with black–grey–white.
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Fig. 2 | Turbulent kinetic energy spectra of EVP flows with various Bingham 
numbers. Different BIngham numbers are plotted in colours from dark to light; 
BiΛ = 0, 0.0025, 0.025, 0.25, 2.5, 12.5 and 25 are plotted in black, purple, dark 
blue, light blue, dark green, light green and orange, respectively. The expected 
Kolmogorov scaling for a Newtonian fluid is shown by a grey dashed line, and the 
grey dash-dotted line represents an apparent new non-Newtonian scaling E ~ κ−2.3 
that emerges at large BiΛ. Inset: variation of the mean values of the microscale 
Reynolds number ReΛ (right axis, plotted as squares) and the volume fraction of 
the unyielded regions Φ (left axis, plotted as diamonds) as a function of BiΛ. Error 
bars report the s.d. of ReΛ in time, measured using 103 samples. Plastic effects 
start to appear for BiΛ ≳ 1, suggesting that Λ is the relevant length scale of  
the problem.
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To fully characterize the change in the energy spectra, we study 
the turbulent kinetic energy balance, which in wavenumber space can 
be expressed as

ℱinj(κ) +Π(κ) + 𝒟𝒟𝒟κ) + 𝒩𝒩𝒩κ) = ⟨ϵf⟩ + ⟨ϵn⟩ = ⟨ϵt⟩, (1)

where ℱinj is the turbulence production introduced by the external 
forcing (injected at the largest scale, κL ≡ 2π/L), and Π , 𝒟𝒟 and 𝒩𝒩  are 
the nonlinear energy flux, the fluid dissipation and the non-Newtonian 
contribution, respectively. In addition to the classical bulk fluid dis-
sipation rate ϵf, here we have a non-Newtonian dissipation ϵn, which is 
the rate of removal of turbulent kinetic energy from the flow due to 
the non-Newtonian extra stress tensor (Supplementary Sections I and 
II provide a derivation of this equation). Figure 3 shows the turbulent 
kinetic energy balance for a few representative values of BiΛ. When 
comparing with Supplementary Fig. 1b, the BiΛ = 0 case closely follows 
the classical Newtonian turbulent flow, where energy is carried by Π 
from the large to small scales before being dissipated by the fluid vis-
cosity 𝒟𝒟. The contribution of the nonlinear convective term Π, which 
appears as an almost horizontal plateau at relatively large scales, pro-
gressively decreases with BiΛ and shrinks towards larger scales, consist-
ent with the reduction of the extension of the inertial range observed 
in Fig. 2. The reduced energy flux with BiΛ is also accompanied by a 
decrease of the fluid dissipation 𝒟𝒟, which is instead compensated by 
the increase of non-Newtonian contribution 𝒩𝒩. At small scales (large 
κ), the relative importance of the non-Newtonian contribution increases 
with BiΛ, becoming comparable to the fluid dissipation for BiΛ ≈ 2.5 and 
eventually becoming the dominant term for BiΛ ≳ 12.5, corresponding 
to the emergence of the new scaling in the energy spectrum shown in 
Fig. 2; indeed, the non-Newtonian contribution can be interpreted as 
a combination of a pure energy flux (giving rise to the new scaling 
region) and a pure dissipative term, as recently suggested by Rosti and 
others21. Regarding the direction of energy flux, Supplementary Fig. 4 
shows that we have a direct cascade of energy from large to small scales 
for all BiΛ (refs. 22,23).

We extend the analysis done in the spectral domain by computing 
the longitudinal structure functions defined as Sp(r) = 〈(Δu(r))p〉, where 
p is the order of the structure function and Δu(r) = u(x + r) − u(x) is the 
difference in the fluid velocity across a length scale r, projected in  
the direction of r. According to K41, Sp(r) ∼ (⟨ϵt⟩r)

p/3; however, when 
the structure functions are displayed as a function of r, as shown in  
Fig. 4a, they deviate from the K41 prediction as p increases. This phe-
nomenon is thought to be due to the intermittency of the flow, that is, 
extreme events that are localized in space and time, and thereby break 
Kolmogorov’s hypothesis of self-similarity in the inertial range24. 

Intermittency results in the scaling exponent of r being a nonlinear 
concave function of p (instead of p/3)25. For the EVP fluid, two scaling 
regions appear at large BiΛ, with scaling consistent with those from the 
energy spectra, and with intermittency present in both scaling regions. 
The role of intermittency in the scaling exponents can be better appre-
ciated when the structure functions are displayed in their extended 
self-similarity form, obtained by plotting one structure function 
against another26. In Fig. 4b, S4 and S6 are plotted against S2 for all Bing-
ham numbers considered. We note a clear power-law scaling, which 
deviates from Kolmogorov’s prediction, even for the BiΛ = 0 case (shown 
in black). The departure from Kolmogorov’s prediction progressively 
grows as the plasticity of the fluid increases, suggesting that the flow 
becomes more intermittent due to its plasticity. This becomes more 
obvious when we plot Sn compensated by the intermittency correction 
at BiΛ = 0 against S2 (Supplementary Fig. 5). Also, intermittency appears 
to act equally in the two scaling regions present at large BiΛ.

Intermittency originates from the multifractal nature of the turbu-
lent dissipation rate24. For Newtonian fluids, this can be quantified by 
the multifractal spectrum of the energy dissipation rate, ϵf (refs. 24,27), 
which we report in the inset of Fig. 4b. This graph demonstrates that 
F(α) is nearly identical for all BiΛ cases except for minor variations at 
small and large values of α. This implies that the fluid dissipation rate is 
not the cause of the enhanced intermittency observed in the extended 
self-similarity analysis.

In the present flow, the turbulent kinetic energy is dissipated 
by two different terms, ϵf and ϵn, as seen in Fig. 1. We thus investigate 
their respective behaviour by looking at their probability distribution 
functions (PDFs; Fig. 5). We name the non-Newtonian contribution ϵn a 
‘dissipation’ because, on average, it removes energy from the flow, giv-
ing rise to the positive-skewed distributions in Fig. 5b; however, unlike 
the fluid dissipation, it can take positive or negative values at particular 
locations in space and time. Figure 5a shows that the distribution of 
ϵf narrows as BiΛ increases28; on the other hand, from Fig. 5b, we see 
that that the distribution of ϵn substantially broadens as BiΛ increases. 
Because the non-Newtonian dissipation becomes dominant for the 
largest BiΛ (as shown in Fig. 3), we can thus infer that the extreme values 
of ϵn are indeed the source of the enhanced intermittency observed 
from the structure function analysis in Fig. 4.

Discussion
By means of unprecedented high-Reynolds-number DNS of an EVP 
fluid, we have shown that plastic effects substantially alter the classi-
cal turbulence predicted by Kolmogorov theory for Newtonian fluids.

We have proved that the non-Newtonian contribution to the 
energy balance becomes dominant at intermediate and small scales 
for large Bingham numbers, inducing the emergence of a new inter-
mediate scaling range in the energy spectra between the Kolmogorov 
inertial and dissipative ranges, where the energy spectrum decays with 
a −2.3 exponent. Interestingly, this exponent has been recently found 
for the turbulence of viscoelastic fluids at large Reynolds and Weissen-
berg numbers21,29, suggesting a possible similarity among plastic and 
elastic effects on the turbulent cascade. This similarity in the scaling 
behaviour of the two cases could be attributed to a similar interaction 
mechanism in the Navier–Stokes equation between the convective 
and extra stress terms. It is also worth noting that in the context of  
viscoelastic flows at high Weissenberg number, an exponent less than or 
equal to −3 has been widely reported in the past8; however, this is only 
found at relatively lower Reynolds number than investigated here or 
explored in recent experimental and numerical work21,29. The present 
work reports the −2.3 scaling in turbulent flows of highly plastic EVP 
fluids, and further studies on the size and distribution of the unyielded 
regions could shed more light on the origin of the newly found scaling.

We have also shown that the flow in the presence of plastic effects 
is more intermittent than in a Newtonian fluid, due to the combina-
tion of the classical intermittency originating from the multifractal 
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Fig. 3 | Scale-by-scale energy balance for different BiΛ. Plotted are the energy 
flux of the nonlinear convective term Π (dashed lines), solvent dissipation 𝒟𝒟 
(dotted lines) and the non-Newtonian contribution 𝒩𝒩 (solid lines) for BiΛ = 0 
(black), BiΛ = 2.5 (dark green), BiΛ = 12.5 (light green) and BiΛ = 25 (orange). Each 
term is normalized by the total dissipation rate 〈ϵt〉. 𝒩𝒩 grows at intermediate and 
small scales when BiΛ is increased, eventually becoming the dominant 
contribution.
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nature of the turbulent dissipation rate, which remains substantially 
unaltered, and a new plastic contribution that instead grows with the  
Bingham number. A direct consequence of this result is that intermittency  
corrections for an EVP fluid are non-universal and dependent on the 
flow configuration, differently from viscoelastic flows. These results 
are relevant for several catastrophic natural flows with high plasticity, 
such as lava flows and landslides30. Our findings explain why such flows 
are usually found to be intermittent and frequently aggressive, result-
ing in more damage. The non-universality of the flow intermittency in 
EVP fluids reflects also in an increased difficulty in their modelling.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Governing equations
The flow under investigation is governed by a system of a scalar, a vec-
tor and a tensorial equation—the incompressibility constraint, the 
conservation of momentum, and the constitutive equation for the 
non-Newtonian extra stress tensor, respectively. The incompressibility 
constraint and the momentum conservation equations can be written as

∇ ⋅ u = 0, (2)

ρ (∂u∂t
+ u ⋅ ∇u) = ∇p + μf∇2u + finj + fevp, (3)

where u is the fluid velocity, p is the pressure, ρ is the density and μf is the 
fluid dynamic viscosity. The term finj represents the external force used 
to sustain turbulence; here we consider the Arnold–Beltrami–Childress 
(ABC) flow with forcing

finj = iμf(A sin z/L + C cos y/L) + jμf(B sin y/L + A cos z/L)

+kμf(C sin y/L + B cos x/L),
(4)

where i, j and k are the Cartesian unit vectors, A, B and C are real param-
eters, and the flow has periodicity L in x, y and z. In our simulations, we 
choose A = B = C and use an appropriate value of μf to give a microscale 
Reynolds number ReΛ ≈ 435 for the Newtonian flow. The last term in 
equation (3) is defined as fevp ≡ ∇ ⋅ τ, where τ is the non-Newtonian extra 
stress tensor of the EVP fluid. We adopt the constitutive model pro-
posed by Saramito31 to express the evolution of the extra stress tensor, 
which can be written as

λ
∇
τ+max (0,

τd − τy
τd

) τ = μn (∇u + (∇u)T) (5)

where (∇⋅) denotes the upper convected derivative, that is, 
∇
τ = ∂τ

∂t
+ u ⋅ ∇τ − τ ⋅ ∇u − (∇u)T ⋅ τ . μn is the non-Newtonian dynamic 

viscosity, τd is the magnitude of the deviatoric part of the stress tensor 
τd ≡ τ − tr(τ)I/3 , and I is the identity tensor, that is, τd = √

1
2
(τd ∶ τd) . 

Before yielding, that is, τd ≤ τy, the model predicts only recoverable 
Kelvin–Voigt viscoelastic deformation; after yielding, that is, τd > τy, it 
predicts Oldroyd-B viscoelastic behaviour. This transition occurs in a 
continuous manner. There are other EVP models that take into account 
shear-thinning32 or thixotropic behaviour33; however, we chose the one 
described above for its simplicity and the least number of involved 
parameters. Also, this model proved able to capture the main flow 
characteristics in a turbulent channel flow16,18.

Numerical method
We use the in-house flow solver Fujin (https://groups.oist.jp/cffu/code) 
to solve the governing equations numerically on a staggered uniform 
Cartesian grid. Velocities are located on the cell faces, and pressure, 
stresses and the other material properties are located at the cell centres. 
The second-order central finite-difference scheme is used for spatial 
discretization except for the advection term that comes from the upper 
convective derivative in equation (5), where the fifth-order WENO 
(weighted essentially non-oscillatory) scheme is adopted34. The 
second-order Adams–Bashforth scheme coupled with a fractional step 
method35 is used for the time advancement of all terms except for the 
non-Newtonian extra stress tensor, which is advanced with the  
Crank–Nicolson scheme. To enforce a divergence-free velocity field, 
a fast Poisson solver based on the fast Fourier transform is used for the 
pressure. The domain decomposition library 2decomp (http://
www.2decomp.org) and the MPI protocol are used to parallelize the 
solver. The evolution equation of the extra EVP stress is formulated 
and solved using the log-conformation method36 to ensure the 
positive-definiteness of the conformation tensor. The fluid domain is 
a periodic cubic box of length L discretized using 1,024 grid points per 
side, resulting in a large grid resolution sufficient to represent the fluid 

properties at all the scales of interest with η/Δx = 𝒪𝒪(1), where η is the 
Kolmogorov length-scale, and Δx is the grid spacing.

Data availability
All data needed to evaluate the conclusions are presented in the paper 
and/or the Supplementary Information. Data that support the findings 
of this study are openly available in OIST at https://groups.oist.jp/cffu/
abdelgawad2023natphys.

Code availability
The code used for the present research is a standard direct numerical 
simulation solver for the Navier–Stokes equations. Full details of the 
code used for the numerical simulations are provided in the Methods 
and references therein.
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