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Nonlinear processing with linear optics
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Deep neural networks have achieved remarkable breakthroughs 
by leveraging multiple layers of data processing to extract hidden 
representations, albeit at the cost of large electronic computing power.  
To enhance energy efficiency and speed, the optical implementation of 
neural networks aims to harness the advantages of optical bandwidth 
and the energy efficiency of optical interconnections. In the absence of 
low-power optical nonlinearities, the challenge in the implementation of 
multilayer optical networks lies in realizing multiple optical layers without 
resorting to electronic components. Here we present a novel framework 
that uses multiple scattering, and which is capable of synthesizing 
programmable linear and nonlinear transformations concurrently at 
low optical power by leveraging the nonlinear relationship between 
the scattering potential, represented by data, and the scattered field. 
Theoretical and experimental investigations show that repeating the data 
by multiple scattering enables nonlinear optical computing with low-power 
continuous-wave light. Moreover, we empirically find that scaling of this 
optical framework follows a power law.

Optical computing has re-emerged as an alternative to electronics for 
performing computations and handling information, particularly in the 
context of artificial intelligence applications. Optical neural networks 
(ONNs) hold promise in terms of speed and energy efficiency compared 
with traditional electronic computing1. However, the development of 
fully optical ONNs has proven to be a challenging task due to the need 
for incorporating both linear and nonlinear computations within the 
optical domain2. Although several approaches have demonstrated effi-
cient optical computing hardware for linear calculations3–8, effectively 
integrating these capabilities with nonlinear computations remains a 
substantial obstacle to the complete realization of ONNs. Researchers 
have explored nonlinear light–matter interactions in the context of 
reservoir computing9–11, employing high-intensity pulsed lasers for 
nonlinear data processing12–15. Additionally, the complex dynamics 
observed in multimode laser cavities interacting with external opti-
cal signals are employed for low-power nonlinear transformations in 
reservoir computing16. Platforms like the integrated meshes of Mach–
Zehnder interferometers3, diffractive neural networks6,17,18, micro-ring 
resonators7,19 and free-space linear systems5,8,20,21 have facilitated linear 

calculations. However, nonlinear computations have relied on opto-
electronic nonlinearity or electronic computation, resulting in limita-
tions such as non-programmable optoelectronic nonlinearity and high 
energy consumption. Accordingly, there is a need to find a low-power 
flexible solution to implement programmable nonlinear operations in 
the optical domain to fully harness the low-power computing potential 
inherently offered by linear optics.

It has been shown previously that a purely linear transformation 
can be implemented with a stack of two-dimensional (2D) diffractive 
layers22. The Ozcan group has applied this approach to ONNs employing 
additive manufacturing techniques6,18. These deep learning-enabled 
multilayer diffractive processors enable computation by facilitating 
the propagation of free-space light through a sequence of structured 
passive scattering surfaces. This optical processing technique lever-
ages the 3D connectivity between nodes in consecutive layers, achieved 
via diffraction, thereby providing a path to scalability23. However, 
one limitation of this approach is that the nonlinearity is limited to 
square-law detection at the output, which limits the realization of 
complex ONNs.
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that, when both systems have an equal number of degrees of freedom 
in terms of the displayed pixels in the modulation layers, the data 
repetition approach consistently achieves higher accuracy scores and 
exhibits improved robustness against experimental imperfections 
and simulated noise. Overall, our findings showcase the ability of the 
nPOLO framework to synthesize a learnable both linear and nonlinear 
data transform in a hybrid optical–digital neural network using only 
low-power continuous-wave light.

nPOLO framework
The core of the nPOLO technique involves utilizing multiple data planes 
that are evenly spaced. The physical implementation of nPOLO includes 
a liquid-crystal spatial light modulator (SLM) and a mirror positioned 
opposite it25, allowing the simultaneous display of multiple modulation 
planes on a single SLM device. This configuration forms a multi-bounce 
single-pass cavity, where each plane serves as a reflecting surface that 
modulates the phase of light as it propagates from one plane to the 
next. Figure 1 provides an unfolded representation of the multi-bounce 
nPOLO architecture. We can write the output field as a function of the 
modulation layers as follows:

Eout = HTLn(x)…HTL2(x)HTL1(x)Eil (1)

where Eil is the illumination beam, TLn is the transmittance of the nth 
modulation layer, and the modulation layer number goes up to N. H 
is the diffraction operator, which is the same for all the layers, as they 

Another avenue that can be explored is the relationship between 
the scattering potential and the scattered light. At low intensity levels, 
the propagation of light through a scattering medium exhibits linearity 
in terms of the relation between the input and output light field, but 
the output light can have a nonlinear dependence on the data encoded 
in the scattering potential. This form of nonlinearity is referred to as 
structural nonlinearity, and it has been investigated by Eliezer and 
colleagues using multiple scatterings within an integrating sphere24.

In this Article we present a programmable framework called non-
linear processing with only linear optics (nPOLO) for the all-optical 
realization of neural networks using a low-power continuous-wave 
laser and diffractive layers. The nPOLO framework enables simulta-
neous linear and nonlinear operations within the optical domain. In 
this way, nPOLO unifies multilayer light modulation and structural 
nonlinearity such that the collective impact of data-modulated layers 
on propagating light generates a high-order nonlinear transformation 
of the data. The data are repetitively embedded into the modulation 
layers, combined with trainable parameters that enable the desired 
relationship (linear and nonlinear) between the data and the output 
field. Our results demonstrate that increasing the number of layers 
and data repetitions leads to the generation of higher-order nonlin-
earities, such as polynomial orders, which include cross-terms among 
the different elements of the input data. To illustrate the effectiveness 
of data repetition, we conducted a comparative analysis of the per-
formance obtained between repeating the data in each modulation 
layer and presenting the data only once. Our results demonstrate 
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Fig. 1 | The nPOLO framework. a, Computation scheme, showing multiple 
modulation layers (TLn) within the framework. The data (x) are presented on 
these layers, accompanied by trainable scaling (sLn) and bias (bLn) parameters to 
optimize the transformation. Propagation is represented by H (Toeplitz matrix). 
b, The physical implementation of nPOLO, featuring a single-pass multi-bounce 

cavity configuration. This implementation consists of a SLM and a mirror, 
positioned in a way that enables the realization of consecutive layers on the SLM 
side by side. The propagation distance is determined by the reflection from 
the mirror, allowing the light to propagate between the layers. Output light is 
captured with a camera. CAM, camera.
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are equally spaced. Without loss of generality, let us assume that we 
have an optical system that has an input aperture and output aperture 
that are sampled by a total number of K pixels. The input and output 
electric fields then become K × 1 vectors. We can write the incident 
field as a vector of ones, assuming the incident optical field is a plane 
wave propagating along the optical axis. Assuming the same number 
of pixels in the modulation layer as in the input/output apertures, TLn 
becomes a diagonal matrix with size K × K. H is a K × K Toeplitz matrix 
that represents diffraction for an arbitrary distance23. If one directly 
inserts the data into TLn, there is no trainable parameter to tune the 
transform. Thus, instead of direct use of the data in TLn, we feed a 

linearly transformed version of it in the form of t(n)j = s(n)j x(n)j + b(n)j  
to introduce trainable parameters, where s(n)j  is a scaling parameter, 

x(n)j  is an element of the data vector, and b(n)j  is a bias parameter 

where j refers to indexing of the vectors and n is the layer index. 

When we expand equation (1) for the general case of complex modu-
lation with these parameters, we obtain

oi =
K
∑
j=1

hij (s(N)j xj + b(N)j ) (…
K
∑
j=1

hij (s(2)j xj + b(2)j )

(
K
∑
j=1

hij (s(1)j xj + b(1)j ))…) =
N
∑
m=0

αi,m (s, b)xm

(2)

where hij is the element of the diffraction matrix. As seen in the left-hand 
side of equation (2), multiplication by x at each layer gives rise to poly-
nomial orders. We can then write the overall transform in a generic 
polynomial form up to order N where coefficients (αi, m) are functions 
of s and b, the right-hand side of equation (2).

Now, we look at how the input is transformed by the nonlinear 
activation function applied to the linear transformation of x for a 
perceptron in a digital neural network:

oi = g(
K
∑
j=1

wijxj + bi) = ∑
m

βi,m (w, b)xm (3)

In equation (3), wij and bi are the trainable weight and bias param-
eters of the perceptron, and g is an algorithmic nonlinear function of 
choice (sigmoid, ReLU and so on). The nonlinear activation function can 
be expressed as a polynomial expansion as well, where the coefficients 
(βi, m) depend on w and b. In a multilayer perceptron (MLP), the output is 
a cascade of such polynomials, which is also a polynomial. Therefore, the 
functional form of equation (3) applies to an MLP as well. Equations (2) 
and (3) have a similar polynomial form except with different coefficients. 
Ideally, if the nPOLO and the MLP are both trained perfectly to imple-
ment the same function, then the coefficients of the two polynomial 
expansions should converge. In Supplementary Section 1 we present 
fully developed output vector o in terms of explicit polynomial orders.

Trainable parameters, in the form of scaling and bias, are applied to 
each pixel value of the data presented on the modulation layers. These 
parameters are trained digitally via a computer model (Methods). Once 
the desired nonlinear transformation is achieved on the computer, the 
parameters are applied to the multiple layers (adjacent planes on the 
SLM) in the experimental set-up, resulting in an intensity pattern that 
is recorded by a camera. Subsequently, a compact representation of 
the recorded camera pattern is obtained through average pooling, 
resulting in a 2D matrix of values such as a 4-by-4 or an 8-by-8 grid. This 
compact representation is then fed into a digital linear classifier, which 
processes the data via a single fully connected linear layer, thereby 
producing the final classification results.

Results
By increasing the number of layers—that is, adjacent planes on the 
SLM—one can assess the impact of the polynomial orders resulting 

from structural nonlinearity. However, the increase in the number 
of layers also leads to an increase in the system’s degrees of freedom 
and space–bandwidth product. We thus devised an alternative com-
parison experiment to mitigate these effects. In our experiments, we 
maintained the same number of layers and pixels but modified the 
data allocation. Specifically, we initially incorporated the data only 
in the first layer, and the subsequent layers consisted exclusively of 
trainable bias parameters without any data or scaling parameters. To 
evaluate the performance of the nPOLO framework, we conducted 
experiments using the Imagenette, Fashion MNIST and Digit MNIST 
datasets26–28. The obtained numerical and experimental results are 
provided in Fig. 2.

We used 300 × 300 pixels on the SLM for each modulation 
layer. The original Fashion and Digit MNIST dataset samples con-
tain 28 × 28-pixel images and the Imagenette dataset samples 
320 × 320-pixel images. For the Fashion and Digit MNIST datasets we 
used 4 × 4 superpixels on the SLM, yielding a 75 × 75 grid for assigning 
trainable parameters, yielding 11,250 parameters (scaling and bias) per 
layer. We linearly upsampled the images of those datasets to 75 × 75. 
For the Imagenette dataset we linearly downsampled the images to 
300 × 300 and used all the pixels for assigning trainable parameters, 
yielding 180,000 parameters (scaling and bias) per layer.

For clarity, we provide examples of the displayed masks in Fig. 3 
in ‘with data repeat’ and ‘without data repeat’ configurations using an 
example from the Fashion MNIST and Imagenette datasets with four 
modulation layers. Supplementary Section 2 presents a comparative 
depiction of parameter allocation. The trainable parameters were opti-
mized by computer simulation, where the physical light propagation 
was modelled using the beam propagation method (BPM).

Because BPM consists of differentiable calculation steps, the 
error can be backpropagated to the trainable parameters, and they 
are optimized using stochastic gradient descent. In Fig. 4 we present 
the training scheme used, in which the digital model of the optical 
system and the digital classifier were co-trained for the classifica-
tion tasks. By following this co-training approach, we obtained scal-
ing and bias masks for different layer configurations, ranging from 
layer N = 1 to layer N = 4, both with and without data repetition. It is 
important to note that in the case of a single layer (N = 1), both data 
repetition options are equivalent, as we only had a single layer avail-
able to introduce the data.

Our experimental findings in Fig. 2a–c consistently demonstrate 
that when data are repeated across multiple layers, we achieve higher 
classification accuracy compared with configurations without data 
repetition. Moreover, increasing the number of layers also contributes 
to improved accuracy. We also observed that when the number of lay-
ers is held constant, eliminating data repetition leads to a reduction in 
accuracy. These results highlight the contribution of higher-order opti-
cal nonlinearities generated via data repetition. We observed a similar 
trend in our simulations while calculating the trainable parameters 
(Fig. 2d–f). Both experimental and simulated results validate the contri-
bution of the nPOLO framework. However, the experimental accuracies 
were lower than the simulated ones. Figure 2g–i illustrates the accuracy 
difference between simulations and experiments in all three datasets. 
Interestingly, the decrease in accuracy is less pronounced in cases 
involving data repetition. We attribute this discrepancy to imperfec-
tions between the simulated model and the physical implementation, 
primarily the non-ideal phase response and flickering of the SLM. For 
example, we were able to reduce the discrepancy between the optical 
experiment and the digital simulation to 2% by upgrading the SLM for 
the Imagenette database with the data repeat configuration (Supple-
mentary Section 3). Such engineering aspects of the nPOLO framework 
will be further explored in a follow-up study. We also trained a simple 
convolutional neural network to assess how nPOLO compared with 
a fully digital counterpart for these tasks and obtained comparable 
performance (Supplementary Section 4).
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Scaling study
The performance is influenced by three factors: the number of train-
able parameters, the dataset size and the available compute budget 
for training29. Although the dataset size remains constant in our study, 
the model size is subject to variation within the constraints of a limited 
computational budget. Specifically, we explored the impact of chang-
ing the model size on the performance of nPOLO, determined by the 
width, W2, (the number of SLM pixels in the illuminated 2D patch) of 
its diffractive layers and the depth, N, denoting the number of diffrac-
tive layers. Our empirical investigation involved varying W and N for 
classification tasks of the Imagenette and Fashion MNIST datasets 
(Methods). The findings are summarized in Fig. 5. The parameter count 
of our model is 2NW2. The factor of 2 is included because of the two train-
able parameters per pixel. Initially, we observe a continuous upward 
trend in performance as the parameter count increases, regardless of 
N and W. In other words, configurations with different depths perform 
similarly for the same parameter count, up to a few hundred thousand, 

as shown in Fig. 5a,c. However, further increase in the parameter count 
leads to performance saturation. This phenomenon is also observed 
in conventional digital neural networks. Deeper implementations of 
nPOLO (N > 1) extend the onset of this saturation point. Recent stud-
ies at OpenAI have revealed that the scaling of deep MLP networks 
adheres to a power-law relationship between the test loss and the size 
of the model29,30, extending across numerous layers and billions of 
parameters. The test loss of the simulated nPOLO is plotted in Fig. 5b,d 
against the number of parameter counts. This reveals a power-law 
scaling within the examined network depth, encompassing up to four 
layers and ~8.4 million parameters. Despite the orders of difference 
in parameter counts, the presence of power-law scaling in this range 
is encouraging for the development of future large-scale networks.

Discussion
We introduced trainable scaling and bias parameters for the pixel  
values of the data displayed on the SLM to synthesize a programmable 
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Fig. 2 | Classification accuracy results comparing two different schemes, one 
with data repeat and one without data repeat. a–i, Classification accuracy 
results obtained for the Imagenette (a,d,g), Fashion MNIST (b,e,h) and Digit 
MNIST (c,f,i) datasets, comparing two different schemes: one with data repeat 
and one without data repeat. The layer count (N) varies from 1 to 4 for both 
schemes. Each configuration is trained independently, resulting in layer masks 
that are applied to the SLM as phase masks. a–c, Experimentally obtained test 

accuracies for all datasets, representing the performance with and without 
structural nonlinearity. d–f, Test accuracies of the corresponding simulations, 
plotted for both schemes, as in experiments. The mean and s.d. values are 
obtained by testing the models trained from scratch. g–i, Mean accuracy 
difference between experimental and simulated results, shown as bar plots for 
varying layer number with and without data repeat. In plots a–f, solid lines are the 
mean results, and shaded regions represent ±1 s.d.
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computation. We observed that the contribution of structural nonlin-
earity became more pronounced when dealing with more challeng-
ing classification tasks. The benefit of using repeated data versus not 
using repeated data was more pronounced for Imagenette than for 
Digit MNIST. This disparity arises because Digit MNIST represents an 
easier task, and the structural nonlinearity becomes redundant in the 
presence of the square-law detection nonlinearity.

The scaling study we performed revealed that as the model size 
of nPOLO increases the performance improves, and the optimal per-
formance relies on a balanced scaling of width and depth of the model. 
Remarkably, similar properties are also found in digital deep neural 
networks30,31. Future studies could explore alternative approaches of 
employing trainable parameters or implementing different functional 
forms, such as using convolutional kernels or eigenmodes of the optical 
system as trainable parameters, similar to investigations conducted 
for fibre-based optical-learning machines32. During the final stage of 
this work, we became aware of an independent and different approach 

to perform passive optical nonlinearity, exploiting reflections inside 
a disordered cavity33. More recently, another article appeared inves-
tigating, through digital only simulations, structural nonlinearity for 
the implementation of neural networks34.

An interesting observation is the increased robustness of data rep-
etition across multiple layers against experimental imperfections. We 
initially noticed this phenomenon during experiments conducted on 
different datasets and layer configurations. To further investigate this, 
we introduced phase noise and misalignment in BPM simulations to 
emulate experimental imperfections while keeping the trained masks 
fixed (Supplementary Section 3). Gradually increasing the simulated 
noise level or misalignment degree, we observed that the configura-
tions with data repetition exhibited greater robustness. The configura-
tion without data repetition experienced a more rapid drop in accuracy, 
consistent with the experimental results. This finding strengthens 
the argument for the noise robustness of the data repetition scheme,  
as we have empirical data from both experiments and simulations.  
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One possible explanation for this phenomenon is that by introducing 
the data multiple times, the model learns multiple paths from the input 
data to the output plane during training, resulting in not only higher 
polynomial orders but also cross-terms that couple with different 
optical paths and reach the detector plane. The existence of multiple 
routes for highlighting useful features in the output plane may make 
the data repetition scheme less susceptible to noise.

Our scaling study demonstrates a power-law scaling trend akin to 
the observations in OpenAI’s deep neural network studies29,30. While 
exploring deeper models with more than four layers for improved 
performance, we found that increased depth did not yield substantial 
enhancements. We hit the dataset bottleneck, as we observe overfitting 
for the large number of parameters that deeper models employ. The 
increased deviations towards a high parameter count (Fig. 5) also exist 
for this reason. This aligns with the findings reported in refs. 29,30, 
whereby empirical performance individually exhibits a power-law 
relationship with three factors—model size, dataset and compute 
budget—when not constrained by the other two. In practical terms, 
pursuing deeper models might offer diminishing returns unless accom-
panied by adjustments in dataset size and the employment of greater 
computational resources. We note that the highest parameter count in 
the scaling study yielded ~4.2 million pixels for Imagenette and ~1 mil-
lion for the Fashion and Digit MNIST datasets, which can be employed 
using commercially available devices. Other possibilities to further 
scale the number of parameters include using multiple SLMs or other 
structured media such as computer-generated holograms35 or volume 
holograms36,37, instead of the flat mirror, to accommodate additional 
parameters to boost performance.

Overall, the nPOLO framework presents a novel approach for 
generating optical nonlinearity using low-power optical devices, elimi-
nating the need for electronic components to achieve higher orders of 
nonlinearity. Networks implemented with structural nonlinearities are 
not MLPs, but they can be trained to reach comparable performance 
and they have similar scaling laws. We also discovered that the introduc-
tion of data repetition to generate polynomial nonlinearities enhances 
robustness against noise. Note that this framework is applicable to the 
cascade of any optical linear system, including integrated-waveguide 
Mach–Zehnder interferometers3. These characteristics make nPOLO 
a promising platform for realizing ONNs.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-024-01494-z.
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(c,d) datasets. Results (b,d) are fitted to a power function defined by parameters 
α, β and L0, where x represents parameter count.
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Methods
Digital training
Optimization methods have already been demonstrated to reconstruct 
3D phase objects from experimental recordings of 2D projections38,39. In 
ref. 38, the forward model in the optimization is the BPM. The iterative 
error reduction scheme and multilayer structure of the BPM resembles 
a multilayer neural network. Accordingly, this method is referred to 
as ‘learning tomography’ (LT). We show that, instead of imaging an 
object, we can reconstruct the 3D structure that performs the desired 
task as defined by its input–output functionality35. To establish the 
target functionality, 3D phase modulation (either through a continu-
ous medium or multiple planes) and the scattered field caused by the 
phase modulation must be modelled accurately. Unlike conventional 
reconstruction algorithms that rely on first-order approximations, LT 
incorporates higher-order scattering effects by employing BPM. The 
LT algorithm involves an iterative reconstruction process using the 
forward model, along with the constraints arising from experimental 
considerations such as the pixel pitch of the SLM. In this Article we have 
adapted this approach, presented in ref. 35 (where additional details can 
be found), to generate scaling and bias parameters for the demonstrated 
classification tasks. The output intensity pattern of the forward model 
is average pooled to yield a 4 × 4 matrix for each sample of the Fashion 
MNIST dataset and an 8 × 8 matrix for each sample of the Imagenette 
dataset. These matrices are flattened to act as an input layer of a digital 
classifier that has ten output neurons for each class of the datasets, 
without any hidden layer and nonlinear activation function. The train-
able parameters employed in the BPM model and digital classifier are 
co-trained by a continuous error backpropagation where different learn-
ing rates are assigned to digital weights (10−4) and optical scaling and bias 
parameters (10−3), using categorical cross-entropy as the loss function. 
We used batch learning with a batch size of 20 and a random shuffle in 
every batch. PyTorch libraries were used for the whole training process.

For the scaling study, we followed an approach akin to classical 
neural networks by augmenting the number of trainable parameters 
in nPOLO. The parameter count per plane in nPOLO is W2, where W is 
the plane’s width. We conducted a sweep of W values from 32 to 1,024 
(up to 512 for Fashion MNIST) for bounce numbers of 1, 2 and 4. The 
test accuracies over 50 epochs for the Imagenette and Fashion MNIST 
datasets are presented in Fig. 5. During scale-up studies we encountered 
overfitting, and slight data augmentation (random flip and rotation) 
was introduced to reduce this.

Experimental set-up
A photograph of our optical set-up is presented in Supplementary 
Section 3. In our experiments, we employed a continuous-wave Solstis 
M2 laser operating at a wavelength of λ = 850 nm. The mirror we used 
had a width of 11 mm, providing ample space for the four reflections. 
To deliver the beam to the SLM, we implemented 4f imaging to relay 
the beam reflected from a digital micromirror device (DMD). The use 
of a DMD offered the advantage of flexible beam sizing. Specifically, we 
configured the beam shape as a square with a side length of 2.4 mm, cor-
responding to a 300 × 300-pixel area on the SLM. It is worth noting that 
the SLM utilized in our set-up has a pixel pitch of Λ = 8 μm. To construct 
a multi-bounce cavity, we utilized a Holoeye Pluto SLM and positioned 
the mirror at a distance of d = 15.2 mm from the SLM screen. This dis-
tance was set so that diffraction from one corner pixel of a layer can 
reach the opposite corner of the subsequent layer (d × λ/Λ ≥ 2.4 mm). 
The distance between the SLM and mirror enabled all-to-all pixel con-
nectivity. Zero-order reflection from the SLM was used, which has 69% 
percent reflectivity. This configuration allowed the input beam to 
undergo four reflections from the mirror. Therefore, the total trans-
mission due to the SLM efficiency after four bounces was 23%. After the 
fourth bounce, the beam on the SLM was magnified by a factor of 1.2, 

and the resulting output intensity was detected by a complementary 
metal–oxide–semiconductor (CMOS) camera with a pixel pitch of 
3.45 μm. The corresponding beam in the camera occupied an area of 
834 × 834 pixels. During image acquisition, we applied average pooling 
to resize the obtained images to either 4 × 4 or 8 × 8 dimensions. For 
the Imagenette dataset, we used the entire training and test samples 
as originally prepared. For the Digit and Fashion MNIST datasets, we 
used the entire training set (60,000 samples) for the simulations, but 
we used the first 10,000 samples for the re-training of digital weights 
after the experiments, and we used the first 2,500 samples of the test 
set for blind testing of the experimental results.

Data availability
The datasets containing the raw information for the Imagenette dataset 
are from https://github.com/fastai/imagenette. The Digit and Fashion 
MNIST datasets can be retrieved from https://pytorch.org/vision/ 
stable/datasets.html. Source data are provided with this paper.

Code availability
All relevant code is available from the corresponding authors upon 
reasonable request.
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