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Nonlinear optical encoding enabled by 
recurrent linear scattering
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Optical information processing and computing can potentially offer 
enhanced performance, scalability and energy efficiency. However, 
achieving nonlinearity—a critical component of computation—remains 
challenging in the optical domain. Here we introduce a design that leverages 
a multiple-scattering cavity to passively induce optical nonlinear random 
mapping with a continuous-wave laser at a low power. Each scattering 
event effectively mixes information from different areas of a spatial light 
modulator, resulting in a highly nonlinear mapping between the input 
data and output pattern. We demonstrate that our design retains vital 
information even when the readout dimensionality is reduced, thereby 
enabling optical data compression. This capability allows our optical 
platforms to offer efficient optical information processing solutions across 
applications. We demonstrate our design’s efficacy across tasks, including 
classification, image reconstruction, keypoint detection and object 
detection, all of which are achieved through optical data compression 
combined with a digital decoder. In particular, high performance at 
extreme compression ratios is observed in real-time pedestrian detection. 
Our findings open pathways for novel algorithms and unconventional 
architectural designs for optical computing.

Optical information processing leverages the unique properties of 
light, such as its parallelism, which allows the simultaneous processing 
of multiple data streams, as well as low energy consumption1–5. More-
over, light possesses a vast frequency spectrum, enabling ultrahigh 
bandwidth and data throughput4–7. By exploiting these characteristics, 
optical information processors have the potential to unlock new levels 
of performance, scalability and energy efficiency, which could trans-
form the landscape of information processing in the optical domain4,5. 
It has enabled new applications when coupled with existing optical 
instruments, such as imaging system8 to enhance the performance.

However, the full potential of optical processors can only be 
realized by overcoming certain challenges, one key requirement 
being optical nonlinear mapping6,9. Nonlinear mapping is essential 
to approximate arbitrary function and has been a powerful element in 
neural networks as it allows models to recognize complex patterns and 

approximate any given function10. It plays a vital role in representation 
and feature learning, as it facilitates the discovery of higher-level, more 
informative and discriminative features for a task11,12. The application 
of nonlinear mappings allows the extraction of abstract and nonlinear 
features, thereby enhancing the input data representation13,14. In exist-
ing optical computing platforms, optical nonlinear mapping has been 
primarily achieved using nonlinear optical materials, which provide 
a nonlinear relationship between the input and output fields15–22. 
Optical nonlinearity often requires intense pumping and high peak 
power, which can be energy demanding, necessitates design and 
engineering of nonlinear or active materials and is generally restricted 
to lower-order nonlinear mapping with limited tunability6,9. Alterna-
tively, the conversion of signals from optical to electrical and back to 
optical is used for the nonlinear processing of optical data, but with 
limited speed.
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order m. Experimentally, due to chaotic ray dynamics in our cavity, it 
is difficult to extract the largest eigenvalues for different active areas 
on the DMD. Furthermore, since part of the surface area of the cavity 
can be modified by the DMD using the input (modulation) patterns, 
this also provides a reconfigurable scattering potential inside the cav-
ity. Multiple bounces of light off the modulated area of the DMD results 
in a nonlinear mapping from the input pattern displayed on the DMD 
to the output speckle pattern. As the number of bounces on the DMD 
increases, the order of this nonlinear mapping increases (Fig. 1b,c). It 
is this nonlinear relationship that forms the foundation for the passive 
nonlinear encoding technique that we explore in this work.

Light scattering within the cavity can be solely adjusted by alter-
ing the pattern displayed on the DMD as an input pattern (Fig. 1a). 
Each micromirror on the DMD can be toggled between two angles. 
This action effectively modifies the scattering potential V for light, 
determining mapping from the input pattern on the DMD to the output 
optical field Eout. A larger modulation area boosts the probability of light 
scattering by the modulated part of the scattering potential, thereby 
enhancing the nonlinear mapping. The more times light is scattered by 
the DMD pattern, the more chance it samples the input pattern (Fig. 1b). 
Each scattering event effectively mixes the information from different 
parts of the DMD, resulting in a complex optical encoding of the entire 
pattern. The longer the light remains in the cavity, the more encoding 
and mixing occur, effectively ensuring that light in each output mode 
(speckle grain) carries information about a multitude of input data 
(Fig. 1b). The interaction due to multiple scatterings results in a nonlin-
ear mapping where the intensity of each output mode (speckle grain) 
becomes a highly nonlinear function of the input pattern (Fig. 1c). The 
number of bounces determines the order of nonlinearity. To further 
enhance the nonlinear order, the number of bounces is increased by 
covering the output port by a partial reflector to increase the dwell 
time of light inside the cavity. Such nonlinear mapping induced by 
multiple scatterings is purely passive (no need for high power) and is 
fundamentally distinct from the traditional nonlinear optics that rely 
on an intrinsic material response.

This scheme offers an efficient means of achieving tunable 
high-order nonlinear random mapping at a constant low power with a 
continuous-wave laser in a passive manner (Methods), compared with 
conventional optical nonlinearities that rely on the material response at 
high optical intensity29,30. In our case, the nonlinear order is independ-
ent of the input power, and can be rapidly tuned (~20 kHz) by altering 
the DMD-modulated area. This rapid tuning capability outperforms 
many known nonlinear effects, such as thermo-optical nonlinearity31,32.  
Additionally, our scheme avoids dynamic chaos and instabilities  
commonly associated with conventional nonlinear optical systems 
and lasers29,30,33.

To comprehend and characterize the tunable nonlinear mapping 
introduced by our system, we explore how deep neural networks can 
function as a proxy to understand the nonlinear random mapping in 
our system. As detailed in Supplementary Section 3, we find that the 
higher-order nonlinear mapping, provided by a larger area of modula-
tion on the DMD, can be approximated by a deeper neural network (the 
‘Further explanation of Born series’ section explains the reformation 
of the Born series in terms of its proxy as deep neural networks with 
fixed random weights).

Enhanced image classification
To evaluate whether this nonlinear mapping can indeed provide any 
computational benefits, we begin by testing on a simple but widely 
recognized machine learning benchmark task, namely, the Fashion 
MNIST dataset34. Fashion MNIST is a popular fashion image classifica-
tion challenge that includes 60,000 training samples and 10,000 test 
samples, each image measuring 28 × 28 pixels.

We input the Fashion MNIST data on the DMD and directly read the 
output speckle pattern to obtain both higher- and lower-dimensional 

Here we propose to exploit the passive nonlinear optical mapping 
inside a multiple-scattering cavity23, akin to the steady state of a reser-
voir computer, for rapid optical information processing. High-order 
nonlinearity fosters the generation of low-dimensional latent feature 
space and facilitates strong data compression. Previously, propagation 
through a multiple-scattering material has been exploited to perform 
linear optical random projections24, followed by an intensity detection. 
It can be regarded as a single-random-layer neural network, and has 
been used for multiple machine learning tasks25–28, but remains limited 
in performance by its intrinsic linear mapping behaviour. By introduc-
ing multiple scatterings in a cavity design, we enable multiple bounces 
on the same input pattern, effectively creating an optical nonlinear 
transformation of the input data, without the need of nonlinear opti-
cal materials or optical–electrical–optical conversion typically used 
for nonlinearity in optical information processing. We demonstrate 
high computing performances across tasks from classification, image 
reconstruction, keypoint detection and object detection, with the opti-
cally compressed output fed into a digital decoder. In particular, we 
show that our system exhibits high performance even at a mode com-
pression ratio (defined by the input macropixel numbers on a digital 
micromirror device (DMD) to output the number of speckle grains on 
the camera) of ~3,000:1 for high-level computing tasks, as evidenced 
in real-time pedestrian detection with bounding box generation. Our 
work illuminates the role of varying nonlinear orders in optical data 
compression based on mutual information analysis, and paves the way 
for tunable optical nonlinear mapping and energy-efficient computing.

Results
Nonlinear random mapping with tunable nonlinearity
Introducing nonlinearity has long been a challenge and simultane-
ously a necessity in optical computing platforms. Nonlinearity is a 
key element for enabling complex operations and boosting computa-
tional power4,5. It is particularly important for approximating arbitrary 
functions—a task critical in machine learning. In this study, we present a 
novel approach to address this challenge by utilizing nonlinear mapping 
provided by multiple linear scatterings of light within an optical cavity23.  
We constructed the multiple-scattering cavity using an integrating 
sphere (Fig. 1a), which features a rough inner surface that scatters light. 
A continuous-wave laser operating at low power is injected into the 
cavity via the first port, resulting in an output speckle pattern from 
the second port. The third port integrates a DMD to display the input 
patterns. In general, a Born series can be used to describe the scatter-
ing process in the cavity:

Eout = TEin = [V + V(GoV) + V(GoV)
2 +…] Ein. (1)

Here matrix T represents a linear mapping from the input optical 
field Ein to the cavity to the output field Eout. V is the matrix that denotes 
the scattering potential inside the cavity, and Go is Green’s matrix 
representing light propagation within the cavity in between bounces 
off the boundary. The notation (GoV)n represents the matrix GoV multi-
plied by itself n times. The final intensity image formed on the camera 
is given by Icam = ∣Eout∣2, where ∣∣2 represents an element-wise operation. 
The T expansion begins with a term indicative of single scattering and 
subsequent terms indicate multiple scatterings in the cavity. In the 
cases where a single scattering is the dominant event, the mapping 
from V to Eout is predominantly linear. In our case with multiple scat-
terings, the relation between the scattering potential configuration V 
and output field Eout becomes nonlinear. The Born series can also  
be reformulated as T = V∑∞

m=1 (G0V)
m−1 = V∑∞

m=1 UΛΛΛ
m−1U−1, where 

G0V = UΛU−1, Λ is a diagonal matrix of elements equal to eigenvalues 
of G0V and the corresponding eigenvectors are columns of U. For 
high-order m, the largest eigenvalue λmax dominates over all the other 
eigenvalues, and the polynomial orders in T can be approximated as 
∑∞

m=1 λ
m−1
max. Thus, the nonlinear coefficient decays exponentially with 
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representations. These representations, which we refer to as nonlinear 
features of the input information, can be utilized to execute computing 
tasks. To achieve nonlinear random mapping with tunable nonlinearity, 
given a dataset with fixed input size, we either adjust the modulated 
area of the DMD (Fig. 2a) or partially close the output port to change 
the number of times light is scattered by the DMD. During the training 
phase, we train only the linear digital layer using the nonlinear features 
generated from the training dataset at each given configuration. In the 
inference/test stage, we forward the output images from the cavity 
to the trained linear digital layer to generate predictions (Methods).

In Fig. 2b, we present the classification performance in the Fashion 
MNIST dataset using a linear classifier. To quantitatively compare the 
performance of different nonlinear strengths in the optical encoder, 
we fixed the linear decoder and used test accuracy as a metric for 
comparison. We observe that stronger nonlinearity leads to improved 
classification performance, particularly when the number of opti-
cal modes/speckles is smaller. This indicates that each speckle from 
higher-order nonlinear mapping embeds more information. These 
findings further suggest that our device may possess a unique advan-
tage in optical data compression.

To more comprehensively quantify the information within each 
spatial mode (speckle grain) in our output images, we employ the 
concept of mutual information. Compared with regression, mutual 
information includes both linear and nonlinear dependencies and 
does not make assumptions about the underlying data distribution35. 
It is widely used in compressive sensing36, a technique focused on effi-
ciently acquiring and reconstructing sparse or compressible signals, 
and has found important applications in machine learning for tasks 
such as feature selection37, model interpretation38 and understanding 
variable dependencies39. In our case, we calculate the mutual informa-
tion between the output features and target classes for the dataset 
(Methods and Supplementary Section 4). This quantifies how well 
the nonlinear optical features contain the abstract information that 
is useful for high-level computing tasks (Supplementary Section 4). 
In Fig. 2c,d. the violin plots effectively illustrate the distribution of 

mutual information between the speckle grains and classification tar-
gets. A notable observation from the results is the onset of saturation 
of mutual information required for the Fashion MNIST classification 
with 4–25 modes/speckles (Fig. 2c). This saturation occurs under the 
highest-order nonlinear mapping in our experiments. Further, Fig. 2d 
underscores the benefit of escalating to higher-order nonlinearity. We 
observe that, indeed, higher-order nonlinear mapping creates stronger 
mutual information between the features and targeted classes, given 
the same number of output modes/speckles. This observation implies 
that our system can more effectively capture the underlying relation-
ships between the features and target classes when higher-order non-
linear mapping is introduced.

Demonstration with complex tasks
Image reconstruction. Building on the enhanced information pro-
vided by the nonlinear features from our system, we pose the question: 
can this enhanced information (within a few output modes) yield supe-
rior image reconstruction? To address this, we conduct a comparative 
analysis of the nonlinear features generated in two distinct scenarios: 
one featuring a higher-order nonlinear optical random mapping 
induced in the multiple-scattering cavity (Fig. 3c), and another that 
presents a linear optical random projection (Fig. 3a)24 with nonlinearity 
only at the detection stage (intensity measurement).

To most efficiently extract the embedded information from a 
few speckles, we deviate from the traditional approach of employing 
a digital linear layer for classification and, instead, introduce a cus-
tomized and optimized multilayer perceptron (MLP) as a decoder for 
image reconstruction. The architecture of this decoder is finely tuned 
using neural architecture search to optimize the image reconstruction. 
Subsequently, we train two digital decoders, each featuring optimal 
architectures, on the Fashion MNIST dataset under high compression 
ratios of ~31:1 (only ~25 modes) (Fig. 3).

It is noteworthy that despite the optimally trained decoder in 
each case, the quality of the reconstructed images varies (Fig. 3b,d and 
Supplementary Figs. 4 and 5). We observe that augmented nonlinear 
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Fig. 1 | Concept of using a multiple-scattering cavity as a passive, tunable 
nonlinear optical information processor. a, Experimental setup in which the 
key component for creating the passive nonlinear random mapping is a DMD 
mounted on an integrating sphere. The output of the cavity produces a fully 
developed speckle pattern, with its response being nonlinear in the geometric 
configuration of the DMD. b, Representative figure showing that the cavity 
essentially encodes the input pattern on the DMD by optically mixing different 
areas of input through multiple bounces to create a highly nonlinear feature—a 

speckle recorded by a camera (input pattern is adapted from the MNIST 
dataset62). c, Mathematical representation of a nonlinear mapping process that 
transforms a set of input elements on the DMD into a collection of nonlinear 
features in the output speckle pattern. Multiple scatterings in the cavity generate 
mixed terms of input values at different pixels with various high nonlinear orders, 
which provide rich nonlinear features that can be optimally trained to enhance 
performance in complex computational tasks. f(x) denotes the operation of 
scaling the configuration of a DMD macropixel xi,j.
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random mapping indeed facilitates improved image reconstruction, 
with a mean squared error of ~1.4 in the test set (Fig. 3d and Supple-
mentary Fig. 5) compared with that of ~2.0 in linear optical features 
(Fig. 3b and Supplementary Fig. 4), each under a separately optimized 
decoder architecture. When using the same decoder architecture, the 
nonlinear features still outperform with the mean squared error of ~1.5 
(Supplementary Fig. 6).

Our findings show that the nonlinear optical mapping in our 
system can efficiently compress and retain vital information as well 
as decrease data dimensionality. Motivated by these results, we are 
prompted to explore the potential of nonlinear features in executing 
other high-level computing tasks.

Keypoint detection. A key advantage emerging from our work is that 
optical data compression, facilitated by multiple scatterings in the 
cavity, generates mixtures of highly nonlinear features. These are 
particularly useful for applications that require high-speed analysis 

and responses of high-dimensional data. Our DMD contains 4 million 
pixels and can accommodate large images. However, in our image 
reconstruction demonstration, the input dimensions of the Fashion 
MNIST dataset are limited to 28 × 28 pixels, creating an inherent upper 
limit for the maximum compression ratio that can be demonstrated. A 
major strength of our system is its ability to easily scale up the size of the 
input data as well as the effective neural network’s depth of the optical 
encoder without increasing the input power, thereby allowing for an 
efficient representation of the input information in an energy-efficient 
way. This adaptability and scalability facilitates tackling more complex 
tasks and processing larger datasets without losing crucial information.

Pushing the compression further and exploring other high-level 
computing tasks, we delve into two specific applications where we scale 
up the input images. A notable example (Fig. 3e) demonstrates that we 
can extract 15 keypoints from human face images40 with an order of 
magnitude improvement in the mean squared error, which decreases 
from 0.208 (using 25% modulated area in the DMD) to 0.014 (using 
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Fig. 2 | Classification with nonlinear mapping. a, Training data from the 
Fashion MNIST datasets are used to train a one-layer neural network as a digital 
decoder for classification tasks. Additionally, the percentage of the modulated 
area on the DMD is changed among 6.25%, 25% and 100% to adjust the order 
of nonlinear mapping. With full (100%) modulation of DMD, the nonlinear 
order is further enhanced by covering the output port with a partial reflector 
(silicon wafer). b, Fashion MNIST classification results with a linear classifier 
are presented under different numbers of output modes (speckle grains) and 
varying nonlinear strengths. The optical linear features with quadratic detection 
are simulated by scattering from a single layer with intensity detection to create a 
quadratic nonlinear response. Note that a linear regression for binarized Fashion 
MNIST data cannot exceed 77.6% with the same number of modes. c,d, Violin 
plots representing the distributions of mutual information between the speckle 
grains and classification targets under varying numbers of output modes (c) and 

differing orders of nonlinear mapping by changing the modulated area on the 
DMD or partially closing the cavity (enhanced) (d). For n speckle mode (n on  
the x axis), 4n replicated measurements from the same input were performed  
in c and d. The dashed line plots depict the median values of the mutual 
information. Each violin’s width reflects the distribution of the mutual 
information values of the speckle grains and its probability density. Within 
each violin, the slim black vertical line represents the range of minimum and 
maximum values; the black box represents the first to third percentile; the white 
dot represents the median. c, Mutual information analysis when the number 
of output modes (speckle grains) varies under the highest-order nonlinear 
mapping. d, Mutual information analysis with low-dimensional speckle features 
(four output modes) for Fashion MNIST as a function of the nonlinear orders 
varied by modulated area on the DMD, showing the advantage of going to  
higher-order nonlinear mapping.
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100% modulated area in the DMD enhanced with the partial reflec-
tor), due to the incorporation of stronger nonlinearity with a larger 
modulation area, even when the number of output modes (speckle 
grains) is reduced to 16 (Fig. 3f–g). In both cases, the architectures of 
the decoders are separately optimized and trained for optimal perfor-
mance. Even when we use the same architecture (a five-layer MLP) that 
was optimized for features from a 25% modulated area in the DMD for 
the decoder to train features from the latter case, the mean squared 
error associated with these higher nonlinear features remains low 
(~0.3). This task—crucial for various applications such as facial recog-
nition, emotion detection and other human–computer interaction 

systems—illustrates the robustness of our approach in dealing with 
high-level tasks and maintaining a high compression ratio. An addi-
tional advantage of our methodology lies in its implications for privacy 
protection and adversarial robustness, as our method can securely 
encode facial information in random speckle grains.

Real-time video analytics. The last application we demonstrate is 
real-time video analytics, using the benchmark dataset known as 
Caltech Pedestrian41, including real-time video recordings (Fig. 4a). 
The images from the videos displayed on the DMD have dimensions  
of 240 × 320 pixels (Methods). Using our multiple-scattering cavity,  
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Fig. 3 | Computing performance enhanced by nonlinear optical data 
compression. a, Concept of image reconstruction using linear optical complex 
media for linear encoding and camera detection with quadratic response.  
b, Reconstruction using the speckle features from a. The orange boxes represent 
the wrongly reconstructed pairs. c, Multiple-scattering cavity as a nonlinear 
optical encoder along with camera detection and employing compressed speckle 
features for digital reconstruction of the original image data. d, Reconstruction 
from speckle features generated by the multiple-scattering cavity. In b and d, 
approximately 25 speckle grains are used with a compression ratio of 31:1 and 
are used to train two digital decoders (Methods). It is demonstrated that given 
the same number of compressed output modes (speckle grains), nonlinear 

features generated from the cavity can provide a reduced mean squared error 
by 0.6, resulting in a better reconstruction of the images in d compared with b. 
More results are provided in Supplementary Figs. 4–6. e, Concept of keypoint 
detection in human faces (images with 96 × 96 pixels) with compressed speckle 
features. f, Keypoint detection with a mode compression ratio of 576:1, using 
16 output modes with relatively weaker nonlinearity (25% modulated areas in 
the DMD) and a five-layer MLP decoder. g, Improved keypoint detection with 
a reduced mean error in pixels across 15 keypoints (1.06 pixels compared with 
1.86 pixels errors in f), using 16 output modes (speckle grains) with relatively 
stronger nonlinearity (full modulated areas in the DMD) and a nine-layer MLP 
decoder.
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we can compress the data to achieve a compression ratio of up to 3,072:1 
(that is, using only 25 output modes), as well as maintain high positional 
accuracy (Fig. 4b) within mean squared errors of 1.92 pixels in identify-
ing pedestrian positions at a high speed and 0.0035 s in total response 
time (including compressed optical nonlinear feature generation and 
inference time) with an optimized digital backend (a ten-layer MLP) per 
frame (Fig. 4c and Supplementary Videos 1 and 2).

This application is particularly critical in the field of autonomous 
vehicles and advanced driver-assistance systems, where high-speed 
pedestrian detection is essential to ensure safety and allow fast reac-
tion time. The high compression ratio of our system, combined with 
its rapid processing speed, shows great promise for such applications 
where fast and accurate detections are imperative.

To further estimate the gain we have in terms of optical data com-
pression, we calculated the number of parameters and operations in 
the digital domain with and without an optical encoder. In human face 
keypoint detection, our method with an optical encoder demonstrated 

a mean pixel error of 1.06, slightly surpassing the performance of a 
widely utilized conventional convolutional neural network (CNN) 
architecture (which is still widely used as a benchmark for vision tasks). 
With a CNN model (one convolutional layer + one pooling + one convo-
lutional layer + three fully connected layers), we achieved a mean pixel 
error of approximately 1.23. The digital CNN model comprises over  
74 million parameters and requires around 83 million operations, and 
are two orders of magnitude higher than the digital operations/param-
eters used in our system (approximately 310,000 digital trainable 
parameters/operations). This comparison underlines the enhanced 
accuracy of our approach, as well as pointing to a substantial reduc-
tion in computational complexity and resource utilization inherent 
to our method. For pedestrian tracking, our method exhibited mean 
pixel errors ranging from 1.3 to 3.6, closely matching the performance 
of a conventional CNN model used for comparison, with which we 
obtained mean pixel errors between 1.37 and 3.33. The comparison 
model in this instance incorporates three convolutional layers and two 
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Fig. 4 | Real-time video pedestrian detection in driving with high mode 
compression ratio using only 25 output modes. a, Schematic of real-time 
pedestrian detection using video data from a dash camera during driving. 
The multiple-scattering cavity functions as an optical data compressor, and 
compressed nonlinear optical features are utilized for pedestrian detection 
with a digital decoder. b, Demonstration of pedestrian detection at a rate 
close to a real-time video. The magenta boxes represent the inference results 
from the speckle. The green boxes represent the ground truth. The speed of 
optical processing, that is, nonlinear feature generation, is as fast as light, 

and its readout speed is limited by only the camera. With only 25 modes, our 
camera can currently reach at least 800 Hz. The inference time with the 25 
modes in pedestrian detection is 0.0035 s, leading to a total response time 
(inference + generation of optical features) of less than 0.1000 s, which is faster 
than the typical human response time of ~0.2000–22.0000 s. The error unit is in 
pixels (px). c, Demonstration of pedestrian detection at various locations during 
continuous video streaming; the mean detection error with only 25 modes 
remains within 1.92 pixels (px).
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fully connected layers, involving more than 39 million parameters and 
necessitating approximately 172 million operations. In contrast, our 
decoder, after nonlinear optical projection, used only about 1 million 
parameters and a similar number of operations (1 million) to achieve 
comparable performance. In general, the higher the input dimension 
and the more we compress, the larger the number of digital operations 
we can allocate into the optical domain and therefore better leverage 
the advantage of information processing of light.

Discussion
Exploiting optics for computing, which brings benefits such as high 
speed, large bandwidth and parallelization, has traditionally been 
impeded by the challenge of addressing optical nonlinearity. Conven-
tional all-optical methods typically involve complex experimental con-
ditions, using nonlinear materials, like nonlinear crystals or polymers, 
pumped by high-power short-pulsed lasers, or semiconductor lasers 
operating in continuous or pulsed modes42,43. Although these have 
shown optical computing benefits in a variety of platforms including 
multimode fibre18, integrated photonics20 and free-space optics, limita-
tions regarding their robustness, energy efficiency and stability persist.

In this work, we completely avoid the limitations of conventional 
optical nonlinearity by proposing a unique approach to achieve optical 
nonlinear random mapping by utilizing multiple scatterings within an 
optical cavity. This strategy enables us to institute nonlinear random 
mapping, where the adjustment of nonlinearity is entirely dependent 
on the geometrical configuration and quality factor of the cavity, 
thereby influencing the scattering potential. The intrinsic mixing of 
input information within the dataset at varying nonlinear orders per-
mits us to generate highly nonlinear features compared with traditional 
optical nonlinear mappings, especially those with solely lower-order 
(2–3) nonlinearity that most nonlinear materials practically permit. 
From a machine learning perspective, by expanding to higher-order 
nonlinear mapping, we essentially generate an augmented optical 
feature space, incorporating more mixtures of higher-level input infor-
mation. This expansion increases mutual information between the 
subspace of the feature space and the entire input pattern (evident by 
the image reconstruction task) and output targets (Fig. 2 and other 
high-level tasks), facilitating a higher compression ratio for complex 
tasks. In essence, our system demonstrates the capability to execute 
optical data compression by harnessing multiple scatterings of light 
in a reconfigurable cavity. This approach allows for the efficient pres-
ervation of critical information as well as stringently reducing data 
dimensionality.

We have demonstrated that our multiple-scattering cavity, 
equipped with passive and tunable nonlinear optical random mapping 
capabilities, can act as an optical nonlinear encoder with adjustable 
nonlinearity. Our system can deliver enhanced computing perfor-
mance in a low-dimensional latent feature space for a range of com-
puting tasks, from image classification to higher-level tasks such as 
image reconstruction, keypoint detection and object detection, when 
trained with a lightweight digital backend. This approach might offer 
considerable benefits for high-speed analytics in both scientific and 
real-world applications. Our system permits easy scaling of both input 
data and effective depth of the neural networks approximating the 
optical encoders, providing an efficient optical representation of 
large-scale input patterns using a limited number of output modes.  
This versatility helps to manage more intricate tasks and process  
larger datasets without substantial loss of vital information.

Our nonlinear mapping system functions as a reservoir computer 
in a steady state. This is also the case for other systems that have been 
realized before18,44,45 but comparatively, our design allows for easy 
scaling up and tuning of nonlinearity without varying the input power. 
Furthermore, our system may serve as a trainable physical neural 
network46, if one part of the DMD is utilized for an input pattern and 
another is tuned or trained for direct readout without the need for 

digital processing. The performance of our computing tasks can be 
further improved by, for example, replacing the binary DMD with 
an analogue spatial light modulator for information encoding. The 
detection part of our system can be further improved by replacing 
the camera with a fast photodetector array, given the small number 
of output modes that need to recorded for decoding.

Our current optical computing architecture is beyond one-to-one 
architectural mapping of the digital neural network. It may inspire 
next-generation optical computing to exploit nonlinear mappings 
beyond conventional schemes and promote the development of more 
energy-efficient neuromorphic computing platforms including47 and 
beyond48–51 optics, where nonlinearity can be effectively harnessed 
and utilized. Our findings could also spark new research directions in 
fields such as optical data compression for imaging52–54 and sensing12,55, 
optical communication56 and quantum computing57, where innova-
tive nonlinear mechanisms can substantially enhance performance, 
efficiency and potential opportunity in enhancing data privacy and 
adversarial robustness28,58,59.

During the final stage of this work, we became aware of 2 independ-
ent works of very different optical machine learning implementations 
that are based on the same principle of realizing nonlinear processing 
with linear optics60,61.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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butions and competing interests; and statements of data and code avail-
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Methods
Further explanation of Born series
To better connect the Born series with a neural network, such as an 
MLP, the Born series can also be rewritten as

Eout = SnEin = Su(Su−1(… (S1(V))…))Ein, (2)

where Sn(⋅) represents a scattering operator and S1(V) = V, for n > 1, 
Sn+1(V) = V + Sn(V)G0V. The iterative expression of the Born series  
involving the scattering operator S can be seen to structurally resem-
ble the iterative operation in an MLP, where data are transformed  
across multiple layers in an iterative way. However, V and G0 are  
identical in all the layers.

Setup information
The multiple-scattering cavity is an integrating sphere with a rough 
inner surface and a diameter of 3.75 cm. The cavity has three ports 
on its boundary: one port is attached to a DMD (Texas Instruments 
DLP9000X), which provides a reconfigurable scattering potential, 
whereas the other two ports serve as the input and output ports of 
the cavity. A single-frequency continuous-wave laser (Agilent 81940A; 
wavelength, 1,550 nm) at 21.3 mW is coupled through a single-mode 
fibre into the cavity through the input port. On multiple scatterings 
at the rough inner surface, the output light escapes the cavity via the 
output port. From the spectral correlation width of the output speckle 
pattern, the average path length of light inside the cavity is estimated to 
be approximately 100 m. The average number of bounces off the cavity 
boundary is on the order of 5,000. To capture the output intensity pat-
tern, a mirror is positioned adjacent to the output port, directing the 
output light towards an InGaAs camera (Xenics Xeva FPA-640). A linear 
polarizer is placed in front of the camera to record the speckle intensity 
patterns, which represent a complex nonlinear relationship between 
the configuration of the DMD and the resulting output speckle.

Experimental procedure of computing with the 
multiple-scattering cavity
Experimentally, we couple a continuous-wave single-frequency laser 
through a single-mode fibre into the cavity. An input image is loaded 
onto the DMD, which modifies the scattering potential in a recon-
figurable manner. The entire modulation area of the DMD consists  
of 2,560 × 1,600 micromirrors with a pixel pitch of 7.6 μm. Each micro-
mirror can be tilted by +15° or –15°, representing the binary states +1 
and –1, respectively. The input port of the cavity covers a portion of 
the DMD area (1,260 × 784 micromirrors), which is exposed to light in 
the cavity; thus, we only modulate the micromirrors within this region. 
Instead of controlling individual micromirrors, we group micromirrors 
into macropixels, where all the micromirrors in a single macropixel 
have the same tilt angle (binary state). To make images compatible for 
loading onto the DMD, we employed a binary thresholding method 
using the Floyd–Steinberg dithering algorithm63.

We control the order of nonlinear mapping in our cavity in two 
ways, both involving changing the number of scattering events on 
the modulated area of the DMD. First, we reduce the DMD area where 
micromirros are toggled. Outside the modulated area, the micro-
mirror configuration remains fixed. The number of bounces of light 
from a smaller modulated area is lower. By shrinking the dimension of 
macropixels by a factor of 4 or 16, the total modulated area is reduced by 
the same factor. Alternatively, we can enhance the number of bounces 
with the DMD by increasing the dwell time of light inside the cavity. 
This is realized by covering the output port of the cavity with a partial 
reflector—a silicon wafer (thickness, 0.63 mm), which partially reflects 
light at 1,550 nm. As a result, the order of nonlinear random mapping 
increases.

The temporal coherent length of light exceeds the typical optical 
path length inside the cavity. The output light maintains high spatial 

coherence, resulting in a relatively high intensity contrast (~0.8) of 
the output speckle pattern (after passing through a linear polarizer). 
Compared with the nonlinearity introduced by optical effects such as 
harmonic generation and self-phase modulation, a broadband pulsed 
laser is necessary to achieve the high pulse energy required for these 
nonlinear processes, producing much lower contrast. In addition, our 
system’s nonlinear response is insensitive to optical power, more stable 
and more energy efficient. The output images recorded by our camera 
consistently display stable speckle patterns, with each speckle grain 
representing a distinct spatial mode. The number of output modes 
(speckle grains) in the camera image is determined by dividing the total 
area of the speckle grains used for computation by the average size of 
one speckle grain, which is derived from the full-width at half-maximum 
of the intensity correlation function.

Fashion MNIST classification task
In the Fashion MNIST34 classification task, we study the impact of the 
number of modes and the size of the modulated area on the DMD in 
terms of classification accuracy and mutual information between the 
output modes and ground-truth target classes. To vary the number 
of modes, we crop the output camera image, controlling the number 
of output modes. This is achieved in PyTorch using the nn.transform.
CenterCrop function. We manipulate the modulated area on the DMD 
by adjusting the macropixel size for the input data. For example, for the 
Fashion MNIST dataset, we use a 45 × 28 micropixels for each macropixel 
on the DMD, corresponding to one of the 28 × 28 Fashion MNIST image 
when we utilize the full modulated area. For a 25% modulated area, we 
use 22 × 14 micropixels for one macropixel on the DMD. The entire 
set of 60,000 training data and 10,000 testing data are sequentially 
input on the DMD, and the corresponding camera speckle images 
are collected. We further applied a filter based on system stability  
(Supplementary Section 2) to select images with a speckle stability 
over the threshold of 0.96. The data are then split in a 9:1 ratio to form 
training and testing datasets for classification. For classification, we 
employ ridge regressor from the keras package to train and infer with 
the output modes. Regarding the calculation of mutual information, 
detailed information on the algorithm is provided in Supplementary 
Section 4. We use the mutual_info_regression function, which takes  
vectors of pixel values in output modes and class labels, from the  
feature selection module in scikit-learn.

Programmable optical and digital parameters
The maximum number of programmable optical parameters is given 
by the number of mirrors of the DMD, which is approximately 4 million. 
The count of digitally programmable parameters, however, depends on 
the decoder utilized. Specifically, for the Fashion MNIST classification 
task, the linear classifier requires only 1,000 parameters. In the task 
of Fashion MNIST reconstruction, the parameter count increases to 
approximately 90,000. For human face detection, the requirement is 
around 310,000 parameters, and for pedestrian tracking, the model 
uses around 1 million programmable parameters.

Training of digital decoder
For the tasks beyond classification, we start with low-dimensional vec-
tors derived from the deep optical encoder—the multiple-scattering 
cavity. Using these vectors, we train a digital decoder based on a neural  
network, with the objective of minimizing the mean squared loss 
relative to the ground-truth target values in our training dataset. The 
dimensions for each target differed according to the tasks: 28 × 28 for 
Fashion MNIST image reconstruction, 15 sets of keypoints for human 
face keypoint detection and four bounding box coordinates for pedes-
trian detection. The architecture selected for the decoding neural 
network is an MLP, which incorporates batch normalization before 
each activation function. The ideal depths and widths of the hidden 
layers are determined by conducting a neural architecture search, 
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randomly initialized at least 100 times to select the best architecture 
for the digital decoder. The same activation function, chosen among 
relu, tanh and sigmoid functions, is used during each search. All train-
ing instances are conducted on the NVIDIA A100 Tensor Core GPU via 
Google Colab.

Fashion MNIST image reconstruction task
In the Fashion MNIST34 image reconstruction task, we train an  
MLP as a digital decoder using pairs of 16 output modes (inputs)  
and ground-truth Fashion MNIST images (targets) to reconstruct the 
original images from the speckle patterns. To optimize the decoder’s 
architecture, we employ neural architecture search, varying both 
depth and width to identify the best architecture for the decoder. 
We primarily study and compare two cases. Case 1, speckle features 
generated from a linear random projection through complex media, 
followed by quadratic detection on the optical field (to generate linear 
optical features, we follow the methods described elsewhere24); case 
2, speckle features generated from nonlinear random mapping via a 
multiple-scattering cavity, again followed by quadratic detection on 
the optical field. In both scenarios, we ensure that the number of modes 
remains consistent, making the reconstruction quality comparable 
between the two cases. For the first case, the optimized decoder com-
prises a two-layer MLP. For the second case, the optimized decoder 
utilizes a four-layer MLP, both with the same activation sigmoid func-
tion. We further evaluate the reconstruction using a test dataset.

Human face keypoint detection task
The human face keypoint detection dataset at Kaggle40 consists of facial 
keypoints, each characterized by a real-valued pair (x, y) indicating 
its position in the domain of pixel indices. This dataset identifies 15 
specific keypoints corresponding to facial features, including centres 
of the left and right eyes, inner and outer corners of both eyes, inner 
and outer ends of both eyebrows, the tip of the nose, corners of the 
mouth on both sides, and the top and bottom centres of the lips. It is 
noteworthy to mention that the terms ‘left’ and ‘right’ are based on 
the subject’s point of view. Some data points might not have all the 
keypoints, which are represented as missing entries in the dataset. 
Each image in the dataset contains a list of pixels, with values ranging 
from 0 to 255, formatted for a resolution of 96 × 96 pixels. The train-
ing set includes 7,049 images. Each row in this file provides the (x, y) 
coordinates of the 15 keypoints and image data in a row-ordered list of 
pixels. Conversely, the test set comprises 1,783 images: each row lists an 
ImageId and the corresponding row-ordered list of pixels for the image.

For data preprocessing, entries without keypoint information 
are excluded. In cases where an image had fewer than 15 keypoints, we 
duplicated some keypoints to ensure that all the labels consisted of 
15 target points. This procedure ensures a consistent size of the MLP 
output layer.

Following this, the data are sent into a multiple-scattering cavity, 
with different modulated areas, corresponding to variable nonlinearity 
strengths, reminiscent of deep neural networks encoding (Supplemen-
tary Section 3). Only 16 output modes (using nn.transform.CenterCrop) 
are extracted from this system. Using these modes, a digital decoder is 
developed based on neural architecture search, aiming to train on and 
infer the 15 facial keypoints.

Our analysis mainly compared two scenarios: one with a modu-
lated area of ~6.25% and another termed ‘100% + enhanced’, which is the 
full modulated area bolstered by an extra partial reflector for enhanced 
scattering (Supplementary Section 1). Our findings indicated that even 
with a decoder trained to its optimal capacity, the 100% + enhanced 
setup yielded better results.

Pedestrian detection task
In this task, we use the Caltech Pedestrian dataset41, one of the pioneer-
ing collections in the domain of computer vision, specifically designed 

for pedestrian detection tasks. This dataset has played an instrumental 
role in shaping the research trajectories in pedestrian detection, serving  
as a benchmark for numerous detection algorithms over the years. 
The dataset offers a wide variety of real-world scenarios captured from 
urban settings, including pedestrians in various poses, occlusions 
and varying light conditions. It provides an invaluable resource for 
the development and evaluation of algorithms, with its meticulous 
annotations and diverse challenges it poses.

Within this dataset, bounding boxes are utilized to accurately 
locate individual pedestrians in frames. These boxes are characterized 
by a set of four real-valued positions: (x1, y1) for the top-left corner and 
(x2, y2) for the bottom-right corner. Given the dynamic nature of urban 
environments, a single frame can contain multiple pedestrians, which 
results in multiple bounding boxes within that image.

To preprocess the dataset, we adopt a simplification strategy. 
Regardless of the number of bounding boxes present in the original 
image, we ensure that only one bounding box is retained per image. For 
images that contain multiple bounding boxes, only the first bounding 
box is selected and used as a label. In the cases where an image lacks a 
bounding box, it is removed from the dataset. All the images from the 
Caltech dataset inherently possess a resolution of 640 × 480 pixels. In 
our case, we downsampled the images to 320 × 240 pixels. Our curated 
version of the dataset, divided into training and test segments, encap-
sulates a total of 10,000 images.

Following the preprocessing steps, images are then introduced 
into a multiple-scattering cavity, with the full modulated area being 
enhanced by the partial reflector—the silicon wafer. From this system, a 
total of 25 output modes (using nn.transform.CenterCrop) are derived. 
Harnessing these modes, we engineered a digital decoder rooted in the 
principles of neural architecture search. The overarching objective of 
this decoder is to train and subsequently infer the solitary bounding 
box in the images.

We also generated Supplementary Videos 1 and 2 using the test 
dataset from various video locations. In these movies, the frame rate 
was reduced from the actual 30 fps to 9 fps for visualization purposes. 
The green boxes indicate the ground-truth bounding boxes, whereas 
the magenta boxes represent the inferences. The actual inference time 
is well under 0.1 s.

Data availability
Partial example data pertaining to this study are available via GitHub  
at https://github.com/comediaLKB/learning_with_passive_optical_ 
nonlinear_mapping. Additional data are available from the corres-
ponding authors upon reasonable request. The training datasets used  
are publicly available via Fashion MNIST34, the Human Face Keypoint 
Kaggle dataset40 and the Caltech Pedestrian dataset41.

Code availability
Code is available via GitHub at https://github.com/comediaLKB/
learning_with_passive_optical_nonlinear_mapping.
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