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By the end of 2020, COVID-19 had affected more than 219 
countries and caused more than 1.7 million deaths world-
wide1. Facing this unprecedented crisis, different countries 

adopted various measures to mitigate its impacts, ranging from 
instances where governments imposed intense measures to curb the 
spread of the pandemic immediately after the outbreak, to instances 
where governments were reluctant to adopt measures to prevent 
the spread of the disease and explicitly resorted to herd immunity. 
Effective policies depend not only on the social preferences of people 
and the capacity of government but also on an accurate understand-
ing of the costs and benefits of different COVID-19 countermea-
sures. However, relatively little is known about the broader impacts 
of these policies.

A key component of the evaluation of the welfare implications 
of anti-contagion policies is to examine their overall public health 
consequences in both the short and long term. Multiple studies have 
shown that strict social distancing and human mobility restrictions 
can effectively control the spread of COVID-19 and thus prevent 
deaths from the virus2–6. However, it remains unknown to research-
ers and policymakers how such interventions affect disease pat-
terns and deaths from other causes. There are several competing 
arguments. For example, it has been suggested that measures such 
as lockdowns could harm overall population health in the short 
term because human mobility restrictions would reduce access to 
healthcare services, and business restrictions might lead to sharp 
economic disruption and massive layoffs7–13. In contrast, those who 
support strict anti-contagion policies (SAPs) argue that, without 
effective interventions, the pandemic would cause greater health 

damage in the long run because adverse economic damage could be 
more substantial and a larger number of COVID-19 patients might 
jeopardize healthcare provision. There is also speculation that virus 
containment policies might bring about unintended health benefits 
because they encourage health-protecting behaviours (for example, 
wearing face masks and practising better personal hygiene), dimin-
ish risks associated with business activities (for example, improv-
ing air quality and reducing work and traffic accidents) and reduce 
the transmission of other infectious diseases (for example, seasonal 
influenza)14–17. Thus, whether SAPs bring about additional health 
gains or losses is ultimately an empirical question.

Using death registries based on 300 million Chinese people, 
we examine how SAPs affect non-COVID-19-related mortality in 
both the short and medium term. We focus on China because this 
country was the first to mandate strict social distancing and SAPs to 
control the virus. Within a few weeks of COVID-19’s being identi-
fied in Wuhan, a large number of cities enforced strict quarantines, 
implemented contact tracing, prohibited public gatherings, man-
dated social distancing and limited human mobility. These policies 
were often referred to as ‘lockdowns’ by the mass media but here 
we refer to them as SAPs. Many cities implemented these measures 
even though they had fewer than 100 confirmed cases (Extended 
Data Fig. 1). Our results will help researchers and policymakers 
worldwide understand the benefits and costs of SAPs during a pan-
demic, which will be valuable for current and future policy design.

The core of our empirical analysis uses the comprehensive and 
representative death records from China’s Disease Surveillance 
Points (DSP) system, covering more than 324 million people in 605 
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DSP districts/counties in 321 cities, accounting for 24.3% of the 
country’s population18,19. Additionally, we collect information from 
various news media and government announcements on whether a 
city implemented SAPs (‘lockdowns’) (Fig. 1). Matching these data-
sets, we construct a daily DSP site-level panel dataset from 1 January 
to 31 July 2020. Our dataset includes 1,105,938 death records in the 
DSP system reported until 28 September 2020 (Supplementary 
Table 1). Note that we exclude three DSPs in Wuhan from the base-
line analysis because this city was the epicentre of the outbreak in 
China, and its death reporting process was disrupted due to insuf-
ficient medical resources during the COVID-19 outbreak15,20.

To quantify the impacts of SAPs on non-COVID-related mor-
tality, we employ a difference-in-differences (DiD) approach, an 
econometric approach widely used to infer the causal effects of dif-
ferent interventions using observational data21. A key advantage of 
this approach is that it compares the policy effects relative to plau-
sible counterfactuals. Specifically, the DiD model compares the 
changes in mortality between the DSPs with SAPs (treatment group) 
and the DSPs without such policies (control group) before and after 
the policies were enforced. In other words, the DSPs without SAPs 
(control group) serve as the counterfactual, mimicking what would 
have happened in the treated DSPs in the absence of SAPs.

Exploiting the staggered introduction of SAPs at the city and 
community level, we proceed in three steps. First, we estimate the 
short-term impacts of SAPs on the number of deaths from vari-
ous causes, including cardiovascular diseases (CVDs), injury, acute 
lower respiratory infections (ALRIs), chronic lower respiratory 
infections (CLRIs), neoplasms and other causes during the SAP 
period. We can precisely identify the exact dates when SAPs were 
introduced for all the Chinese cities, but the dates of loosening SAPs 
are less clear. We thus use 8 April 2020 to define the post-policy 
period, when the ‘lockdown’ was lifted in Wuhan (the last city to 
‘reopen’ in China). To ascertain that the estimates are not driven by 
confounding factors, we exploit several different model specifica-
tions: we use an event-study approach to assess whether the parallel 
trend assumption of the DiD model is reasonable, include various 
control variables, employ different matching estimators and regres-
sion weighting methods and focus on different subsamples to deal 
with different threats to accurate identification of cause and effect.

Second, we investigate whether the SAPs have long-lasting 
impacts on public health. We treat data from 8 April to 31 July 
2020 as the post-SAP period and compare the mortality difference 
between the cities that had SAPs in place at some point and the  
cities that never implemented such policies, using the DiD design. 
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Implemented SAPs

Did not implement SAPs
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Fig. 1 | Implementations of SAPs in the DSPs from January to February 2020. a–d, Maps showing the number of DSPs with SAPs implemented in different 
periods: 26 during 22–28 January (a), 160 during 29 January to 4 February (b), 460 during 5–11 February (c) and 486 during 12–18 February (d).
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We expect that the effects may have continued because most Chinese 
people continued to take preventative measures (for example, wear-
ing masks and practising good hygiene) and business activities were 
not yet fully recovered even after COVID was under control.

Finally, we explore the heterogeneous impacts of SAPs across dif-
ferent cities. We hypothesize that results might differ along several 
dimensions: income levels, industrial structure, initial health status 
and initial pollution level. For example, it is plausible that, for cities 
with higher income and more abundant medical resources, the pos-
sible adverse effects of SAPs (such as reduced nutrition due to loss 
of income or loss of mobility to seek routine medical care) could 
be mitigated. In cities with worse population health (for example, 
higher mortality rate) and worse air quality, the potential health 
gains from SAPs (for example, less traffic and industrial activity, 
resulting in cleaner air) might be larger. The heterogeneity analy-
ses provide insights into the channels through which the impacts of 
SAPs are manifested.

Results
Short-term impacts of SAPs. Figure 2 summarizes the baseline 
regression results obtained by fitting the DiD model of Equation 
(1) (see Table 1 for full results). Figure 2a reports the short-term 
effects on the number of non-COVID-related deaths, while Fig. 2b 
reports the percentage change. Row 1 shows that overall the SAPs 
have a negative impact on non-COVID-19-related mortality. After 
human mobility was restricted, the DSP-level daily number of 
deaths decreased by 0.441 (P < 0.001, 99% CI −0.722 to −0.160), or 
4.58%, compared with the control group.

In rows (2) to (7), we separately examine the effects on different 
causes of death. We find that the number of deaths from CVDs was 
reduced by 5.85% (coefficient −0.278, P < 0.001, 99% CI −0.453 to 
−0.103), deaths from injuries dropped by 6.28% (coefficient −0.035, 
P = 0.015, 95% CI −0.062 to −0.008) and deaths from ALRIs fell 
by 16.4% (coefficient −0.022, P = 0.012, 95% CI −0.040 to −0.004) 
when SAPs were implemented. In contrast, the number of deaths 
from CLRIs, neoplasms and other diseases did not drop statistically 
significantly, although their coefficients are also negative.

We observe the largest drop in mortality caused by ALRIs. This 
is probably because the restrictions on mobility and rising aware-
ness of personal hygiene reduced the likelihood of infection by 
other types of bacteria and viruses. We also observe a significant 
reduction in the number of deaths caused by CVDs, which could 
be caused by the improvement in air quality. Existing literature on 
the acute effects of air pollution suggests that elevated air pollution 
levels can substantially increase deaths from stroke, myocardial 
infarction and other types of CVD22–28. Consistent with previous 
studies, we find that SAPs indeed led to a sizeable improvement in 
air quality (Extended Data Fig. 2a), and deaths from all CVD sub-
categories were reduced (Extended Data Fig. 3a). Finally, because 
SAPs restricted production and social activities, work and traffic 
accidents also dropped significantly (subcategories in Extended 
Data Fig. 3b).

We complement these baseline results with the following addi-
tional analyses. A key assumption of the DiD model is that the 
treatment and the control group should follow parallel trends in 
the number of deaths in the absence of SAPs. We test this assump-
tion using an event-study approach (Equation (3)) and find that the 
number of deaths in the treatment group does indeed parallel the 
number of deaths in the control group during the pre-treatment 
period (Fig. 3 and Supplementary Table 2). Note that the number 
of deaths from injuries (Fig. 3c) and ALRIs (Fig. 3d) started to 
decline 1 week prior to SAP implementation, implying that people 
were already taking precautionary actions 1 week before formal 
SAPs were implemented (Supplementary Note 1). Moreover, we 
find that our results are robust to additional controls, different 
regression weights, alternative definitions of SAPs and different 

sampling strategies, ensuring that the strong relationship between 
SAPs and non-COVID-19-related deaths is not driven by a specific 
model choice (see Extended Data Fig. 4, Supplementary Note 2 and 
Supplementary Table 3 for details).

Medium-term impacts of SAPs. The effects of policy interven-
tions can persist even after they are discontinued. In our setting, 
when SAPs were loosened in China, people were still encouraged 
to practise social distancing, keep good hygiene and reduce mobil-
ity (even though none of these was strictly mandated). Meanwhile, 
because economic activities had not yet fully recovered, the health 
risks imposed by air pollution and injuries remained low. Hence, 
we expect that the short-term health benefits of SAPs could be sus-
tained, at least in the first few months after SAPs were lifted.

Figure 3 reports our findings (Equation (2) and Supplementary 
Table 4). The health benefits of SAPs persisted beyond the short 
term into the post-policy period (April 8 to July 31). In fact, if we 
compare the estimates, the reduction in overall mortality became 
even greater when virus containment measures were loosened. For 
example, the total number of non-COVID-19-related deaths was 
reduced by 12.5% (coefficient −1,081, P < 0.001, 99% CI −1.650 to 
−0.512; Fig. 4a) during the post-policy period, which is greater than 
the impact during the SAP period. Similar patterns can be observed 
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Fig. 2 | Short-term impacts of SAPs on non-COVID-19-related deaths. 
a,b, Impact of SAPs on number of non-COVID-19-related deaths (a) and 
percentage changes in deaths due to different causes (b). Dots and lines 
show point estimates and their 95% confidence interval, respectively. Each 
row in the figure represents a separate DiD regression using Equation (1). 
The number of observations for each regression is 58,996, covering 602 
DSPs (excluding 3 DSPs in Wuhan). The outcome variable is the daily 
number of non-COVID-19-related deaths. We use mortality data from 1 
January to 7 April 2020. The explanatory variable is a dummy indicating 
whether SAPs were implemented in a DSP’s city on a particular date. We 
compute the percentage change by combining the estimates from a and 
the mean values for each cause of death. For example, −4.58% in the first 
row of b is computed as −0.441/9.62 × 100%. DSP and date fixed effects 
are included in each regression, and the standard errors are clustered at 
DSP level. Full results are presented in Table 1.
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across different causes of deaths, including CVDs by 15.2%  
(coefficient −0.628, P < 0.001, 99% CI −0.968 to −0.288; Fig. 4b), 
injury by 8.4% (coefficient −0.047, P = 0.013, 95% CI −0.084 to 
−0.010; Fig. 4c), ALRIs by 39.6% (coefficient −0.044, P < 0.001, 99% 
CI −0.070 to −0.018; Fig. 4d), CLRIs by 17.7% (coefficient −0.107, 
P = 0.008, 99% CI −0.210 to −0.004; Fig. 4e) and neoplasms by 6.0% 
(coefficient −0.125, P = 0.014, 95% CI −0.225 to −0.026; Fig. 4f). 
We describe the event-study results in Extended Data Fig. 5. These 
findings seem to suggest that the health benefits from better per-
sonal hygiene and improved air quality can accumulate rather than 
diminish, leading to greater health benefits29,30.

Heterogeneity of short-term impacts. In Fig. 5, we examine the 
heterogeneous impacts of SAPs on mortality (Equation (4) and 
Supplementary Table 5). We explore how cities’ baseline characteris-
tics, including income (measured by gross domestic product (GDP) 
per capita), healthcare resources (measured by number of hospital 
beds), air pollution levels (measured by air quality index), industrial 
structure (measured by employment share in manufacturing indus-
tries) and initial health status (measured by cause-specific mortality 
rate), are associated with the short-term health effects of SAPs. Note 
that the heterogeneity analyses only demonstrate factors that are corre-
lated with a decline in mortality and do not have causal interpretations.

Table 1 | Impacts of SAPs on deaths from different causes

(1) (2) (3) (4) (5) (6) (7)

Total no. of deaths CVDs Injury ALRIs CLRIs Neoplasms Other causes

Mean 9.620 Mean 4.754 Mean 0.557 Mean 0.134 Mean 0.738 Mean 2.172 Mean 1.195

SAPs −0.441*** −0.278*** −0.035** −0.022** −0.044* −0.035 −0.026

[0.109] [0.068] [0.014] [0.009] [0.024] [0.030] [0.023]

DSP fixed effect Yes Yes Yes Yes Yes Yes Yes

Date fixed effect Yes Yes Yes Yes Yes Yes Yes

Obs. 58,996 58,996 58,996 58,996 58,996 58,996 58,996

Adjusted R2 0.763 0.653 0.322 0.202 0.433 0.544 0.389

No. of DSP counties 602 602 602 602 602 602 602

Notes: Each cell in the table represents a separate DiD regression. All DSP districts/counties are included in the analysis except three from Wuhan. The outcome variable is the daily number of non-COVID-
19-related deaths from the DSP districts/counties. We use mortality data from 1 January to 7 April 2020 for this analysis. The explanatory variable is a dummy indicating whether a city associated with a 
DSP had a SAP policy implemented on a particular date. Standard errors clustered at DSP level are reported below the estimates. *P < 0.1, **P < 0.05, ***P < 0.01. Two-tailed t tests are performed here and 
throughout the paper.
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Fig. 3 | Event-study results on short-term effects of SAPs on non-COVID-19-related deaths. a–f, Separate regressions using the event-study approach 
(Equation (3)) for non-COVID-19-related deaths (a), and deaths due to CVDs (b), injury (c), ALRIs (d), CLRIs (e) and neoplasms (f). We include leads 
and lags of the start of SAPs in the regressions. The dummy variable indicating three weeks prior to implementation of SAPs (k = −3) is omitted from the 
regressions. The estimated coefficients and their 95% confidence intervals are plotted. Vertical lines indicate the week when SAPs were implemented.  
The number of observations for each regression is 58,996, covering 602 DSPs (excluding 3 in Wuhan). We use mortality data from 1 January to  
7 April 2020. DSP and date fixed effect are included in each regression, and standard errors are clustered at DSP level. Full results are presented in 
Supplementary Table 2.
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We observe two outstanding heterogeneous associations. First, 
the impacts of SAPs on non-COVID-19-related deaths (Fig. 5a), 
particularly from CVDs (Fig. 5c), ALRIs (Fig. 5d) and CLRIs  
(Fig. 5e), are greater when the DSP was initially more polluted. This 
is consistent with our finding that more polluted cities experienced 
greater air quality improvement during the pandemic (Extended 
Data Fig. 6), suggesting that air pollution can be an important fac-
tor driving the reduction in mortality during the pandemic. Second, 
cities with worse initial health status also demonstrated larger posi-
tive health impacts of SAPs (Fig. 5a–e). Our interpretation is that 
these cities were exposed to higher levels of health risks before the 
COVID-19 pandemic and the SAPs significantly mitigated such 
health risks.

GDP per capita and the availability of healthcare resources do 
not seem to play an important role. While some might conjecture 
that cities with lower income and scarce healthcare resources could 
experience more adverse effects of SAPs, we do not find strong evi-
dence of this.

Finally, we investigate which age group(s) have the largest health 
gains from the SAPs. Extended Data Fig. 7 shows that the reduction 
in overall mortality is driven mostly by those aged above 65 years. 
For younger people, we observe fewer deaths caused by injuries. 
These results are consistent with our understanding that mortality 
risks are generally larger among the elderly, although young adults 
face higher risks of work and traffic accidents.

Estimation of averted non-COVID-19-related deaths. In Fig. 6, 
using the estimates in our analyses, we calculate the number of averted 
non-COVID-19 -related deaths in China due to the SAPs from  
1 January to 7 April. During this period, 486 DSPs (80.7%) eventually  
implemented SAPs, with an average duration of 50.4 days. Figure 6a  
plots the predicted number of non-COVID-19-related deaths 
(without SAPs) and the actual number of non-COVID-19-related 
deaths (with SAPs). Applying our estimates to all the Chinese cities 

that adopted SAPs during the study period, we calculate that the 
SAPs may have saved as many as 54,029 lives (Fig. 6b) during the 
policy implementation period. Looking at cause-specific effects, 
this reduction is mainly driven by fewer people dying from CVDs 
(33,569). The SAPs also reduced the total number of people dying 
from injuries by 4,201, from ALRIs by 2,431, from CLRIs by 4,434 
and from neoplasms by 6,613.

During the post-policy period (115 days from 8 April to 31 July), 
the health benefits are greater. The estimated number of total averted 
deaths is 293,018 (173,731 from CVDs, 14,719 from injuries, 12,357 
from ALRIs, 28,360 from CLRIs and 34,527 from neoplasms). In 
sum, during the entire study period (1 January to 31 July), SAPs may 
have averted 347,227 premature deaths in total in China.

Discussion
We investigated the consequences of community and city lock-
downs in China in early 2020 on non-COVID-19-related mortality. 
We show that SAPs (‘lockdowns’) brought about unintended short- 
and medium-term health benefits. We observed fewer deaths from 
CVDs, traffic accidents, and ALRIs and CLRIs during the period 
of SAPs. These health benefits persisted into the post-lockdown 
period. Here, we discuss several implications of our findings.

Firstly, our findings demonstrate that China’s SAPs unintendedly 
brought about sizeable health benefits. Given the increasingly heated 
debates regarding different counter-COVID-19 policy choices 
around the world, our results provide a benchmark to understand 
the broader health consequences of SAPs.

Second, our research also sheds light on directions for improv-
ing population health after the pandemic. For example, we observe 
a large decline in the number of deaths from infectious diseases 
(ALRIs): 16.4% in the short term and 39.6% in the medium term. 
This change is most likely driven by behavioural changes to avoid 
COVID-19 infections, which include wearing face masks, frequent 
hand sanitizing and washing and reducing physical interactions.  
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Fig. 4 | Short- and medium-term impacts of SAPs on deaths from different causes. a–f, Separate DiD regressions (Equation (2)) where the outcome 
variable is daily number of non-COVID-19 deaths (a) and deaths from CVDs (b), injury (c), ALRIs (d), CLRIs (e) and neoplasms (f). Dots and plots 
represent the point estimates and their 95% confidence intervals for the short-term effects (blue, 1 January to 7 April) and medium-term effects (red,  
8 April to 31 July). The number of observations for each regression is 58,996, covering 602 DSPs (excluding 3 in Wuhan). DSP and date fixed effects are 
included in each regression, and standard errors are clustered at DSP level. Full results are presented in Supplementary Table 4.

Nature Human Behaviour | VOL 6 | January 2022 | 55–63 | www.nature.com/nathumbehav 59

http://www.nature.com/nathumbehav


Articles NaTurE Human BEhaVIOur

We also observe a significant reduction in the number of deaths due 
to CVDs and speculate that this reduction is likely driven by a sig-
nificant improvement in air quality. We provide evidence that cities 
with greater improvements in air quality also witnessed larger drops 
in non-COVID-19-related mortality during SAPs. Besides, less 
traffic, reduced occupational stress and changes in diet could also 
explain the public health benefits during the pandemic31–34. Among 
all these changes, we believe that some measures can be sustained at 
low cost (such as practising good personal hygiene) and will affect 
population health in the long term. Public health practitioners and 
governments need to identify effective ways to retain these health 
benefits after the pandemic.

Finally, our results stand in contrast to the suggestion that SAPs 
could increase mortality via increasing economic stress or limiting 
access to non-COVID-19-related medical care31. In fact, our analy-
ses show positive health impacts of SAPs, at least in China and in 
the short and medium term.

We conclude by summarizing a few limitations of the research. 
First, due to the unavailability of data about personal daily activi-
ties and family care at the household level, we are unable to study 
the effect of SAPs on morbidity, especially for those who experi-
enced non-COVID-related illness but avoided hospitals due to 
overcrowding or fear of contagion. Second, when investigating the 
medium-term impacts of SAPs, we only have 4 months (115 days) of 
data for the post-policy period. Although we observe that the health 
benefits of SAPs continued, it is unclear whether they will last lon-
ger. It is possible that, for example, after more people get vaccinated, 
their health behaviours will revert back to the pre-pandemic norm. 
It is also likely that, after economic production fully recovers, envi-
ronmental quality will deteriorate and again threaten people’s lives. 
Follow-up research should be conducted to examine the long-term 
consequences of SAPs when data become available. Third, there 
are concerns regarding the reliability of death records during the 
outbreak period because data reporting was sometimes disrupted 

and COVID-19 deaths may have been misclassified. However, we 
believe that these concerns will not affect our results: if misreport-
ing were severe outside Wuhan, we would have expected to observe 
an unexplainable increase, rather than decrease, in the number 
of deaths from ALRIs or CLRIs, which have symptoms similar to 
COVID-19 (presumably, there were few cases of COVID-19 in the 
control group). Fourth, there may exist some spillover effects, in 
that neighbouring cities may also benefit from SAPs (through, for 
example, cleaner air in control cities). However, if this were true, we 
would under- rather than overestimate the health benefits of SAPs. 
Lastly, our study was limited to one country, China. Future research 
is warranted to explore the mortality changes in other countries 
during the pandemic.

Methods
Ethical approval. Data were analysed at an aggregate level, and no participants 
were contacted.

Data. Mortality data. We collected data on 1,105,938 deaths from 605 DSP 
districts/counties from 1 January to 31 July 2020 that were reported to the DSP 
system by 28 September 2020. In our baseline analysis, we exclude three DSPs 
in Wuhan due to concerns that the data might not be reliable; a recent study 
showed that about 6,000 excess deaths (4,600 from pneumonia) were reported 
in the early stage of the pandemic in the city, while the number of COVID-19 
deaths reported is 3,869 (refs. 15,20). The causes of death are coded in accordance 
with the International Classification of Diseases-10th revision (ICD-10). We 
classified the main underlying causes of deaths into six categories: I00-I99 for 
CVDs, V01-Y89 for injuries, J09-J18 and J20-J22 for ALRIs, J40-J47 for CLRIs, 
C00-C97 for neoplasms, and remaining ICD-10 codes for all other causes. ALRIs 
include influenza, pneumonia and other ALRIs diseases caused by mycoplasmal, 
viral, bacterial and other infectious organisms. CLRIs include chronic bronchitis, 
emphysema, chronic obstructive pulmonary disease and asthma, which are not 
caused by infectious organisms. We further disaggregate deaths caused by CVDs 
and injuries into more specific diseases/causes. CVDs include stroke (I60-I62, I67 
and I69), myocardial infarction (I20-I25) and other CVDs. Injuries include traffic 
accidents (V01-V04, V06, V09, V87, V89 and V99), suicide (X60-X84 and Y87) 
and other injuries. We also divide the daily number of deaths into three age groups 
(0–14, 15–64 and ≥65 years).
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Fig. 5 | The heterogeneous impacts of SAPs on deaths. a–f, Separate DiD regressions where the outcome variable is daily number of non-COVID-
19-related deaths (a) and deaths due to CVDs (b), injury (c), ALRIs (d), CLRIs (e) and neoplasms (f). Dots and bars represent the point estimates and 
their 95% confidence intervals of the interaction terms between the SAP dummy and the heterogeneous dimensions (Equation (4)). We use GDP per 
capita, number of hospital beds per 1,000,share of employment in manufacturing, initial air quality index and initial mortality rate as heterogeneous 
dimensions. The details of these data are described in Methods. These variables are standardized to have a mean 0 and standard deviation of 1 so that the 
coefficients of interaction terms are comparable across variables. The number of observations for each regression is 58,996, covering 602 DSPs (excluding 
3 in Wuhan). We use data from 1 January to 7 April 2020. DSP and date fixed effects are included in each regression, and standard errors are clustered at 
DSP level. Full results are presented in Supplementary Table 5.
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SAP data. We collected local governments’ anti-contagion policies (‘lockdowns’ 
used by the Chinese government) city by city from news media and government 
announcements. Details are reported in Supplementary materials and methods. 
The evolution of different DSPs’ SAPs is plotted in Fig. 1 and Extended Data Fig. 1. 
In Supplementary Table 6, we further provide a complete list of cities that adopted 
different SAPs on different dates. SAPs were gradually extended to different 
surveillance districts/counties between 23 January and 20 February. By the end of 
February, 486 out of 602 surveillance points had implemented SAPs. These SAPs 
were lifted in most cities between the end of March and the beginning of April, 
although exact dates of reopening were not publicly available. Wuhan, the last city 
to reopen in China, terminated its SAP policy on 8 April, so we treat 7 April as the 
last day of the SAP period.

Weather data. Weather variables include daily temperature, atmospheric pressure, 
relative humidity and wind speed. The data were obtained from the China 
Meteorology Administration. We aggregate station-level data to city-level data 
using the inverse squared distance (to city centres) as weights. Stations closer to the 
population centre are given higher weights so that city-level weather data can be 
representative of people dwelling in the city.

Air pollution data. We obtain air pollution data from the Ministry of Ecology and 
Environment. The original dataset included hourly air quality readings from over 
1,600 monitoring stations covering 338 prefectural cities in China. We follow 
the same procedure to aggregate station-level air pollution data to the city level. 
As an omnibus measure of overall air quality, we use an air quality index and 
concentrations of PM2.5 (particles less than 2.5 μm in diameter) and PM10 (particles 
less than 10 μm in diameter) in our regressions.

Socio-economic conditions. We assemble the socio-economic data at the city or 
county level from the 2018 China City Statistical Yearbook and 2018 China County 
Statistical Yearbook, including GDP, population and number of hospital beds per 
1,000 people. We also obtain data on the employment share of manufacturing 
and service industries using the 10% sample of the 2015 1% Population Sampling 
Survey in China.

Summary statistics. We report the summary statistics of the key variables for 602 
DSPs in Supplementary Table 1. In panel A, we report the summary statistics of 
the DSP data. The average daily total number of deaths at the county level is 9.62 
during our entire study period, with a standard deviation of 7.48. The leading cause 
of death during this period is CVDs, accounting for 49.4% of all deaths. The second 
leading cause of death is neoplasms (22.6%), followed by CLRIs (7.7%) and injuries 
(5.8%). In panel B, we report the summary statistics of several other variables. 
The average air quality index during our study period is 69.98, and the PM2.5 
concentration is 46.91 µg m−3, five times higher than the World Health Organization 
standard (10 µg m−3 for annual mean, 25 µg m−3 for a daily mean). The average share 
of employment in the manufacturing industries was 24.2% as of 2015.

Generalized DiD model. We use a generalized DiD model to estimate the impact 
of counter-COVID-19 measures on mortality. First, in our baseline regression, 
we estimate the relative change in the number of deaths between the treated and 
control DSPs using the following model:

Dijt = α + β × SAPjt + λi + πt + Eijt , (1)

where Dijt denotes the daily number of deaths in DSP i in city j on date t, and SAPjt 
is a dummy variable indicating whether DSP i’s city j implemented SAPs on date 
t. The SAP dummy equals 1 if either mobility restrictions across cities (city SAPs) 
or mobility restrictions within a city (community SAPs) were implemented, and 
0 otherwise. Thus, the coefficient β measures the average effect of three types of 
SAPs: city SAPs, community SAPs and both restrictions (city SAPs + community 
SAPs). Because most cities eventually implemented community SAPs, we also 
estimate the effects of community SAPs alone (Extended Data Fig. 4). λi are DSP 
fixed effects, and πt indicate date fixed effects. Eijt is the error term.

The county fixed effects, λi, which are a set of DSP-specific dummy variables, 
can control for time-invariant confounders specific to each DSP (for example, 
geographical conditions, industrial and economic structure, income and natural 
endowment). The date fixed effects, πt, are a set of dummy variables that account 
for shocks that are common to all DSPs on a given day, such as national holidays, 
macroeconomic conditions and the national trend in mortality. As both location 
and date fixed effects are included in the regression, the coefficient β estimates 
the difference in the number of deaths between the treated (locked down) and the 
control cities before and after the implementation of SAPs. We also add a set of 
control variables to the regressions to check the robustness of the results (Extended 
Data Fig. 4).

The effects of SAPs may persist even after they were lifted. To investigate such 
medium-term effects of SAPs, we pool the data from 1 January to 31 July 2020, and 
fit the following equation:

Dijt = α + βs × SAPjt + βm × post SAPjt + λi + πt + Eijt , (2)

where post SAPjt is the interaction term between whether a city ever implemented 
SAPs (‘lockdowns’) and the post-policy period (8 April to 31 July). While βs denotes 
the short-term impact of SAPs (during the policy implementation), βm represents 
the medium-term impacts (post-policy implementation). Other variables are 
defined in the same way as in Equation (1). For the statistical test, standard errors 
are clustered at DSP level, and two-tailed t tests are performed throughout the 
paper.

Event study. The underlying assumption for the DiD estimator is that treatment 
and control cities would have parallel trends in the number of deaths in the 
absence of SAPs. Even if the results show that mortality declined in the treatment 
counties after the implementation of SAPs, the results may not be driven by SAPs 
but by systematic differences in treatment and control cities. This assumption is 
untestable because we cannot observe the counterfactual: what would happen 
to the mortality levels in the locked-down counties if such policies were not 
enforced. Nevertheless, we can still examine the trends in mortality for both groups 
before the implementation of SAPs and investigate whether the two groups are 
comparable. To do so, we conduct an event study and fit the following equation:

Dijt = α +

M∑

m=k,m̸=−3
βk

× D_SAPjt,k + λi + πt + Eijt (3)

where D_SAPjt,k are a set of dummy variables indicating the treatment status at 
different periods. Here, we put 7 days (1 week) into one bin (binm ∈ M), so that 
the trend test is not affected by the high volatility of the daily number of deaths.

The dummy for m = −3 is omitted in Equation (3) so that the SAP effects are 
relative to the period 3 weeks before the launch of the policy. We use m = −3 as 
a reference because the effects of SAPs could appear before their implementation 
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as some people might have started to drive less and adopt social distancing 
before the SAPs were announced by the government. The parameter of interest 
βk estimates the effect of SAPs m weeks after their implementation. We include 
leads of the treatment dummy in the equation, testing whether the treatment 
affects the number of deaths before the launch of the policy. Intuitively, the 
coefficient βk measures the difference in the number of deaths between cities 
with SAPs and otherwise in period k relative to the difference 2 weeks before SAP 
implementation. If the SAPs reduce mortality, βk would be negative when k ≥ −1. If 
the pre-treatment trends are parallel, βk would be close to zero when k ≤ −2.

Heterogeneity analysis. The impact of SAPs may not be evenly distributed across 
different regions. For instance, the effects could depend on cities’ socio-economic 
status (for example, income, industrial structure and institutional capacities) and 
baseline health risks (for example, initial mortality rate and air pollution level). To 
estimate the heterogeneity, we fit the following equation:

Dijt = α + β × SAPjt +
∑

h∈H
γh × SAPjt × hvarh + λi + πt + Eijt , (4)

where SAPjt·hvarh is an interaction term between SAP status and variable h 
(hvarh) indicating the characteristics of city j. hvarh includes income (measured 
by GDP per capita in 2018), healthcare resources (measured by hospital beds per 
1,000 people in 2018), industrial structure (measured by share of employment in 
manufacturing industries in 2015), air pollution levels (measured by average air 
quality index in 2019) and base health status (measured by each cause-specific 
mortality rate in 2019). We standardize hvarh to have a mean of 0 and a standard 
deviation of 1, so that we can compare the γh across interaction terms. Note that γh, 
which is the parameter of interest, does not lend itself to a causal interpretation.

Back-of-the-envelope calculation. We can use the estimates from our DiD results 
to calculate the number of deaths averted in the entire country because our data are 
representative and cover around one-quarter of the Chinese population. To do so, we 
predict the number of deaths in two scenarios, that is, with and without SAPs. Taking 
the difference between these two predicted numbers of deaths, we can calculate the 
number of lives saved by the SAPs. We first predict the number of deaths with the 
SAPs in each DSP county/district each day by fitting the following model:

D̂ijt = α̂ + β̂ × SAPjt + λ̂i + π̂t (5)

where D̂ijt denotes the deaths predicted with SAPs in each DSP county/district i in 
city j. α̂, β̂, λ̂i,and π̂t are the fitted values from Equation (1). In this function, the 
predicted deaths in each DSP, denoted by D̂ijt, can be affected by the SAP status 
(represented by SAPjt).

We then predict the counterfactual, that is, the number of deaths that would 
have occurred without the SAPs in any DSP, by fitting the following equation:

D̂ijt (0) = α̂ + β̂ × SAPjt (0) + λ̂i + π̂t (6)

where D̂ijt (0) denotes the predicted averted deaths without any SAPs. SAPjt(0) 
always takes a value of 0, so that this function is not affected by the policies. Taking 
the differences between D̂ijt and D̂ijt (0), we can calculate how many non-COVID-
19-related deaths were prevented as a result of the SAPs in each DSP each day.

Because the SAPs were implemented for 50.4 days on average, we estimate 
the following model to obtain the averted deaths in the whole country during our 
study period:

D̂all =
ChpopLD
DSPpopLD ×

∑

iϵI
D̂ijt − D̂ijt (0) (7)

where D̂all denotes the averted deaths in the entire county during our study period, 
ChpopLD denotes the total Chinese population in locked-down cities (around 
1,161 million) and DSPpopLD represents the total population in locked-down DSPs 
counties/districts in our dataset (around 291 million in 486 DSPs). The difference 
between the scenarios with and without SAPs, denoted by D̂ijt − D̂ijt (0) , is 
totalled from 1 January to 7 April, which is our study period (i ϵ I). In our main 
text, we repeat these steps to estimate the averted deaths from each cause or disease 
to understand how many averted deaths can be attributed to different diseases/
causes. We can also estimate the number of averted deaths during the 115 days of 
the post-policy period (8 April to 31 July) by repeating the above process.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data used in this paper are available at https://github.com/yhecon/
Mortality_Covid_China.

Code availability
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Extended Data Fig. 1 | COVID-19 and the SAPs outside of Wuhan in China. Panel A shows the evolution of the COVID-19, including the number of total 
confirmed cases, recovered cases, active cases, and deaths outside Wuhan in China. Panel B represents the confirmed COVID-19 cases in each city. The 
blue line denotes cities in Hubei province. Panel C shows the timing of the start of the city/community SAPs. The red line represents the community SAPs 
that restrict human mobility within a city, and the blue line represents the city SAPs that restrict mobility across cities. Panel D describes the distribution 
of the number of confirmed cases a day before the implementation of SAPs. Because the confirmed COVID-19 cases are only available at the city level, the 
graph is based on city-level information.
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Extended Data Fig. 2 | The event-study results on the short- and medium-term effects of SAPs on air quality. Each figure represents a separate regression 
using the event-study approach (Equation 3). Panel A shows the short-term effects (January 1 to April 7) of SAPs on air quality, proxied by Air Quality Index 
(column 1), PM2.5 (2), and PM10 (3), while Panel B shows both the short- (January 1 to April 7) and medium-term effects (April 8 to July 31). We include 
leads and lags of the start of SAPs dummy in the regressions. The dummy variable indicating three weeks prior to the SAPs (k = -3) is omitted from the 
regressions. The estimated coefficients and their 95% confidence intervals are plotted. The vertical lines refer to the week when SAPs are issued. The number 
of observations is 56,992 (A1), 56,986 (A2), 56,950 (A3), 123,864 (B1), 123,856 (B2),123,966 (B3) from 602 DSPs except for 3 DSPs in Wuhan. DSP fixed 
effect and date fixed effect are included in each regression, and the standard errors are clustered at the DSP level.
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Extended Data Fig. 3 | The short-term impacts of SAPs on deaths from subcategories of CVD and injury. Each plot and bar in the figures represent a 
separate DiD regression (Equation 1) with red dots and the lines representing the point estimates and their 95% confidence intervals. Results report the 
effects of SAPs’ impacts on the number of deaths (except for deaths from COVID-19) from subcategories of CVD (A), and injury (B). The number of 
observations for each regression is 58,996, covering 602 DSPs (3 DSPs in Wuhan are not included). We use mortality data from January 1 to April 7, 2020. 
The explanatory variable is a dummy indicating whether the DSP has implemented the SAPs on a particular date. DSP fixed effect and date fixed effect are 
included in each regression, and the standard errors are clustered at the DSP level.
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Extended Data Fig. 4 | Robustness check. Each plot and bar in the figures represent a separate DiD regression with plots and bars representing the point 
estimates and 95% confidence interval. Results report the effects of SAPs on the number of deaths (except for deaths from COVID-19) from all-causes 
(A), CVD (B), injury (C), ALRI (D), CLRI (E), and neoplasms (F) using various model specifications. Row (1) describes the baseline estimates. Row 
(2) includes the time-varying weather variables and socio-economic status controls: interactions between time-invariant variables and a third-order 
polynomial function of time. Row (3) shows the results using propensity score matching + DiD, where we use the COVID-19 incidence (whether a city 
confirms at least one case and the first day of arrival), base mortality rate measured in 2019 (total, and each category), and socio-economic status (per 
capita GDP, number of hospital bed, share of secondary industry in GDP, base air quality index). Row (4) weights regressions using population as a 
weight. Row (5) includes 3 DSPs in Wuhan, while Row (6) drops 22 DSPs (3 DSPs in Wuhan and 19 DSPs in other cities) in Hubei province. Row (7) uses 
a different SAP indicator, in which SAP=1 when the mobility within a city is restricted. Row (8) uses log deaths as outcome variables, and regression is 
weighted using population. Here, we use estimate impacts’ change in levels using a mean value of each variable. The number of observations is 56,056 
(row 3), 59,290 (5), 57,134 (6), and 58,996 (others). The data covers the period from January 1 to April 7, and the standard errors are clustered at the DSP 
level. We describe the detail in Supplementary Note 2.
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Extended Data Fig. 5 | The event-study results on the short- and medium-term effects of SAPs on non-COVID-19 deaths. Each figure represents a 
separate regression using the event-study approach (Equation 3). Results use deaths (except for deaths from COVID-19) from all-causes (Panel A), CVD 
(B), injury (C), ALRI (D), CLRI (E), and neoplasms (F). We include leads and lags of the start of SAPs in the regressions. The dummy variable indicating the 
week three weeks prior to the SAPs (k = -3) is omitted from the regressions. The estimated coefficients and their 95% confidence intervals are plotted. The 
vertical lines refer to the week when SAPs are issued. The number of observations for each regression is 128,226, covering 602 DSPs (3 DSPs in Wuhan are 
not included). We use mortality data from January 1 to July 31, 2020. DSP fixed effect and date fixed effect are included in each regression, and the standard 
errors are clustered at the DSP level.
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Extended Data Fig. 6 | The heterogeneous impacts of SAPs on air quality. Each column represents a separate DiD regression with plots and bars 
representing the point estimates and 95% confidence intervals of interaction terms between the SAP status and the heterogeneous dimensions (Equation 
4). The outcome variables are Air Quality Index (Panel A), PM2.5 (B), and PM10 (C). We use per capita employment, the number of hospital beds per 
1,000, the share of secondary industry in GDP, initial Air Quality Index, and initial mortality rate as heterogeneous dimensions. The details of these data 
are described in Methods. These variables are standardized to have a mean 0 and standard deviation of 1 so that the coefficients of interaction terms are 
comparable across variables. The number of observations for each regression is 58,996 (A), 56,888 (B), and 56,852 (C), covering 602 DSPs (3 DSPs in 
Wuhan are not included). We use air quality data from January 1 to April 7, 2020. DSP fixed effect and date fixed effect are included in each regression, and 
the standard errors are clustered at the DSP level.
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Extended Data Fig. 7 | The impacts of SAPs on deaths by age group. Each plot and bar in the figures represents a separate DiD regression (Equation 1) 
with dots and the lines representing the point estimates and their 95% confidence intervals. Results report the effects of SAPs on the number of deaths 
(except for deaths from COVID-19) from all-causes (Panel A), CVD (B), injury (C), ALRI (D), CLRI (E), and neoplasms (F) for those aged below 15 
(orange), aged 15-64 (blue), and aged over 65 (red). DSP fixed effect and date fixed effect are included in all the regressions. The number of observations 
for each regression is 58,996, covering 602 DSPs (3 DSPs in Wuhan are not included). We use death data from January 1 to April 7, 2020. DSP fixed effect 
and date fixed effect are included in each regression, and the standard errors are clustered at the DSP level.
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