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Reconstruction of hundreds of reference 
ancestral genomes across the eukaryotic 
kingdom
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Joseph Lucas    1, Camille Berthelot    1,3,5  & Hugues Roest Crollius    1,5 

Ancestral sequence reconstruction is a fundamental aspect of molecular 
evolution studies and can trace small-scale sequence modifications 
through the evolution of genomes and species. In contrast, fine-grained 
reconstructions of ancestral genome organizations are still in their 
infancy, limiting our ability to draw comprehensive views of genome and 
karyotype evolution. Here we reconstruct the detailed gene contents and 
organizations of 624 ancestral vertebrate, plant, fungi, metazoan and 
protist genomes, 183 of which are near-complete chromosomal gene order 
reconstructions. Reconstructed ancestral genomes are similar to their 
descendants in terms of gene content as expected and agree precisely 
with reference cytogenetic and in silico reconstructions when available. 
By comparing successive ancestral genomes along the phylogenetic tree, 
we estimate the intra- and interchromosomal rearrangement history of all 
major vertebrate clades at high resolution. This freely available resource 
introduces the possibility to follow evolutionary processes at genomic 
scales in chronological order, across multiple clades and without relying on 
a single extant species as reference.

Biological sequences have long been recognized as a document of evo-
lutionary history1, where accumulated mutations record relationships 
between species and the dynamics underlying their evolution. Given 
sufficient genetic information across species, the temporal accumu-
lation of these mutations can be traced back in time to reconstruct 
sequences and genomes in their long-lost common ancestors. These 
ancestral reconstructions are the backbone of much of today’s meth-
odologies in molecular evolution, including phylogenetic trees2–4 and 
sequence selection tests5,6. The reconstruction of ancestral sequences, 
and especially genes, has been extensively studied since the dawn of 
sequencing: mature methods exist to retrace the history of sequence 

substitutions and leverage changes in substitution dynamics to answer 
specific evolutionary questions. However, DNA mutations are not lim-
ited to sequence substitutions: genomes are also affected by larger scale 
mutational events such as duplications, deletions, sequence inver-
sions or chromosomal rearrangements, all of which can affect genome 
function, species fitness and evolution. In extant species, large-scale 
mutations are a major determinant of disease because they can disrupt 
functional sequences7–9 and reorganize functional structures within the 
genome10–12. From an evolutionary viewpoint, large-scale mutations 
are a well-documented source of innovations: they can produce new 
genetic combinations that contribute phenotypic novelty13,14 but can 
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Results
A resource of ancestral genomes for evolutionary genomics
To facilitate the investigation of chromosomal and local genome 
dynamics across evolution, we developed an extensive resource of 
ancestral genome reconstructions that spans large portions of the 
eukaryotic tree of life. This resource is based on an algorithm named 
AGORA, which computes highly contiguous, near-exhaustive recon-
structions of the ancestral gene order at every bifurcation in the species 
tree, based on gene order information in the extant species of the clade 
(Fig. 1a). While AGORA can be installed as a standalone package for 
tailored research applications, we routinely precompute and release 
the complete set of ancestral vertebrate genomes for every update 
of the Ensembl database and for a broad selection of plant and fungi 
clades as part of the Genomicus synteny database36. At the time of 
submission, Genomicus contains a total of 624 ancestral genomes 
readily available for download across the vertebrates, plants, metazoa, 
protists and fungi databases (Supplementary Data 1). These ancestral 
genomes can be explored and manipulated using the different utilities 
of the Genomicus web server36 to perform karyotype comparisons, 
extraction and evolutionary tracing of conserved synteny blocks  
(Fig. 1b), and local gene–gene synteny visualization across ancestral 
and extant species (Fig. 1c). A partial draft version of AGORA, com-
bined with extensive manual curation, has previously been used to 
reconstruct the Brassicacea37 and Amniota38 ancestors, illustrating 
several of these applications.

AGORA is an algorithm to reconstruct ancestral gene order
AGORA is a parsimony-based algorithm that estimates the content and 
order of genes in the ancestor of a group of extant species for which 
reference genomes are available (Fig. 2 and Supplementary Fig. 1). 
Briefly, the method iteratively extracts commonalities between pairs 
of extant genomes to infer characteristics inherited from their last 
common ancestor and present in every ancestor along the evolutionary 
branches leading to each extant genome. AGORA takes as input a for-
est of gene phylogenetic trees, corresponding to all the gene families 
present in the extant genomes with their orthologous and paralogous 
relationships, and the gene orders in each extant genome. First, AGORA 
uses the phylogenies of extant genes to infer the gene content of every 
ancestor along the species tree (Supplementary Fig. 2). Second, AGORA 
compares the gene orders of every pair of extant species to identify 
orthologous genes adjacent and in the same orientation in both species 
and presumably inherited from their last common ancestor (Fig. 2a). 
For every ancestor in the species tree, the algorithm extracts the subset 
of informative pairwise extant species comparisons (Fig. 2b) and inte-
grates the gene adjacency comparisons into a weighted graph, where 
nodes represent ancestral genes and edge adjacencies are supported 
by pairwise extant species comparisons. The weights correspond to 
the number of comparisons supporting that these genes were adja-
cent in this ancestor (Fig. 2c,d). Ideally, this process would result in a 
linear graph representing the ancestral gene order because genome 
rearrangements are unlikely to produce the same gene adjacencies 
independently in different lineages39–42. However, errors in the resolu-
tion of orthologues and paralogues in the original gene trees can result 
in branching in the graph. AGORA linearizes the graph by iteratively 
removing low-weight edges to obtain a parsimonious reconstruction 
of the oriented gene order in the ancestral genome (Fig. 2e). AGORA 
includes extensions of this algorithm to deal with larger errors in the 
input gene trees by identifying a set of constrained genes that are close 
to being single-copy in most species, and can be reliably used for gene 
order reconstruction. In this mode, AGORA adds the non-constrained 
genes in a second stage. The algorithm is presented in detail in the 
Supplementary Information (Supplementary Figs. 1–9). The in silico 
performance of AGORA has been tested on a previously used bench-
mark of genome evolution simulations33, achieving 98.9% agreement 
with the reference (sensitivity 99.3%, precision 99.6%; Methods), similar 

also have more indirect effects such as locally suppressing recombina-
tion15,16, favouring allele hitchhiking and rapid selection17,18. For example, 
genomic rearrangements have been shown to associate with changes in 
brain gene expression between humans and chimpanzees19, to underlie 
the evolution of intersexual development in moles20 and variations in 
reproductive morphs in ruffs21. Despite their tremendous functional 
and evolutionary importance, large-scale mutational events are less 
extensively studied and not as well understood than sequence sub-
stitutions. In particular, the reconstruction of ancestral genomes and 
karyotypes lags behind that of ancestral sequences, making it difficult 
to study the evolutionary dynamics and impact of rearrangements, 
duplications and deletions over many species and within rigorous 
theoretical frameworks.

With the advent of massive sequencing projects ambitioning 
to obtain high-quality reference genomes for thousands of species 
across all kingdoms of life22, evolutionary genomics faces both fresh 
opportunities and serious challenges to integrate this flow of data into 
usable comparative frameworks. Along with whole-genome align-
ments23, ancestral genome and karyotype reconstructions across large 
clades is one of the most promising outcomes of these projects. The 
goal of these reconstructions is to provide a plausible organization 
of genomic sequences in one or many extinct common ancestors of 
a group of species of interest. Several palaeogenomic strategies have 
been explored to reconstruct the sequence content and ordering 
of ancestral genomes. Methods based on double-cut-and-join algo-
rithms endeavour to reconstruct rearrangement scenarios resulting 
in observed extant genome structures24,25. These methodologies are 
increasingly computationally expensive and in many cases intractable 
for sets of large, complex genomes, which at this time have only been 
overcome by substantially reducing reconstruction resolution26–28. 
Other methods attempt to reconstruct a parsimonious sequence 
ordering in the ancestor based on orthologous sequence adjacen-
cies in extant genomes, under the assumption that genomic rear-
rangements are unlikely to result in the same sequence organization 
several times independently. These methods can be applied to differ-
ent types of markers, typically either alignable sequence blocks or 
individual genes, and are appropriate for small29 and large genomes 
such as vertebrates or plants30,31. However, it is unclear whether cur-
rent methods can provide high-resolution reconstructions and scale 
to the large genomic resources available in comparative genomics 
databases. At this time, only two ancestral genomic reconstruction 
resources are widely available to the community: AncestralGenomes32, 
which provides 111 ancestral gene content reconstructions but not 
their order (‘bags of genes’), and DESCHRAMBLER33, which offers 
chromosome-complete reconstructions for 7 mammal and 14 bird 
ancestors but with limited subchromosomal resolution (100–300 kb 
sequence blocks) and dependent on a reference genome. In this study, 
we introduce a new resource containing 624 ancestral genomes recon-
structed over the vertebrate, plant, fungi, metazoan and protist clades, 
at gene-scale resolution, where a third of the ancestral genomes reaches 
chromosomal-complete assemblies. This drastic change in magnitude 
is powered by an iterative, parsimony-based ancestral genome recon-
struction algorithm, named AGORA (Algorithm for Gene Order Recon-
struction in Ancestors), which we describe in this article. We show that 
AGORA is efficient, flexible and scales to integrate hundreds of large 
genomes, to reconstruct their common ancestors at every node in the 
species phylogeny with relatively modest computational costs. Along 
with the open-source algorithm, all precomputed ancestral genome 
reconstructions are publicly available in the Genomicus34,35 database 
(https://www.genomicus.bio.ens.psl.eu/genomicus) and benefit from 
the full browsing and comparative genomics tool infrastructure of the 
database. The database is regularly updated since 2010 to reflect refer-
ence genome improvements and represents a perennial resource for 
high-quality, high-resolution ancestral genomes for the molecular evo-
lution community across disciplines and model phylogenetic clades.

http://www.nature.com/natecolevol
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to other state-of-the-art ancestral genome reconstruction methods33. 
On a different, more realistic benchmark based on simulations that are 
not restricted to single-copy genes, AGORA achieves 95.4% agreement, 
while DESCHRAMBLER’s performance drops to 68.6% (Supplementary 
Information, ‘benchmarks against simulations’), highlighting AGORA’s 
ability to successfully deal with gene duplications and other complex 
evolutionary scenarios.

In practice, AGORA is highly flexible because it only requires the 
protein-coding gene annotations of the extant species and the set of 
precomputed gene trees in a standard format, which can be down-
loaded from a variety of genome resource initiatives for many species 
groups. For example, while the vertebrate ancestral genome recon-
structions provided on the Genomicus server are all based on extant 
genomes annotated by Ensembl, plant and fungi ancestral genomes are 
based on genome annotations generated by a range of methods and 
laboratories worldwide. AGORA can be used with other markers than 
protein-coding genes, such as conserved non-coding elements; how-
ever, due to unreliability of phylogenetic trees for those sequences, we 
recommend limiting the reconstructions to the order of protein-coding 
genes for best performance. AGORA can also be used iteratively to 
assemble blocks of markers and scaffold them over several rounds 
of reconstruction into larger contiguous ancestral regions (CARs). 
We propose several workflows customized for different clades and 
applications as part of the AGORA package (Supplementary Fig. 1).

In this study, to demonstrate the capabilities of AGORA, we used 
two datasets from distant eukaryotic clades, with different numbers 
of species, genes and variable gene tree reliability: (1) a dataset of 93 
vertebrates and 5 outgroups and their 23,528 gene trees, including 

a total of 1,814,614 extant protein-coding genes, and leading to the 
reconstruction of 81 ancestral genomes; and (2) a dataset of 58 plant 
genomes and 8 outgroups, corresponding to 48 ancestral genomes 
(Methods, Supplementary Data 4 and Supplementary File 1).

Reconstruction of key chromosome-scale ancestral genomes
For every ancestral genome, we provide two valuable results: the gene 
set and an assembly of their ancestral organization. To evaluate the 
completeness and accuracy of the ancestral gene sets, we first com-
pared the total number of genes inferred in an ancestor to those of its 
descendant extant genomes. While very distant genomes can contain 
widely different numbers of genes, AGORA is designed to be used within 
clades where synteny is reasonably conserved, such as vertebrates, 
grasses or Saccharomycetales yeasts, and where genomes typically 
contain similar numbers of genes. We found that our methodology 
accurately estimated ancestral gene contents that were consistent 
with those of the descending clades, up to evolutionary distances of 
over 300 million years ago (Ma) (Fig. 3a). We also find that the vast 
majority of clade-relevant benchmark universal single-copy ortho-
logue (BUSCO)43 reference sets are present as single-copy genes in our 
inferred ancestral gene sets (Fig. 3b). In addition, we also confronted 
our inferred ancestral gene contents for seven key vertebrate ancestors 
to those calculated by Ancestral Genomes, another effort to estimate 
the ancestral gene content, but not gene order, at different evolution-
ary nodes29. Ancestral Genomes relies on the PANTHER database44 and 
therefore uses an independent set of extant genomes and gene trees. 
AGORA and Ancestral Genomes both inferred highly similar gene con-
tents for the same ancestors (Fig. 3c).

Vertebrata

Cyclostomata

Euteleostomi

Sarcopterygii

Tetrapoda

Amniota

Sauria

Cryptodira

Archosauria

Aves

Lepidosauria

Episquamata

Iguania

Mammalia

Theria

Eutheria

Bovidae

Carnivora Myomorpha

Neopterygii

Osteoglossocephalai

Clupeocephala

Euteleosteomorpha

Acanthomorphata

4

5

1a

2a

1b

3a

2b

3b

a b

Amniota

Boreoeutheria

Hominidae

Primates

X Y

Human

Murinae

Rodentia

Mouse

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y

1a

4

5

1b

2a 2b

3a 3b

c

50

0

100

150

200

250

300

350

400

450

500

550

M
ill

io
ns

 o
f y

ea
rs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 1 | Reconstructing vertebrate ancestral genomes. a, Species phylogeny 
of vertebrates encompassing genomes stored in Ensembl v.92 with indications 
of the eight ancestral genomes detailed in b and the evolutionary path that they 
mark out. b,c, High-resolution ideograms of ancestral genome reconstructions 
(b) starting from the Amniota genome (5) and the descendant Boreoeutheria 

genome (4), where a region on the third chromosome is expanded to highlight 
the evolution of gene organization with respect to the Amniota genome (c). In the 
primate lineage (3a, 2a, 1a) only the evolution of the three Amniota chromosomes 
indicated by an arrow are depicted in colour, while in the Rodentia lineage (3b, 2b, 
1b), the evolution of all Amniota chromosomes is shown.
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The other output of AGORA is the reconstruction of the putative 
gene order in each ancestral genome along the species tree. The quality 
of an ancestral genome reconstruction can be evaluated by two criteria, 
that is, contiguity and consistency with evolutionary and biological evi-
dence. Contiguity represents the size of the genomic regions that can 
be assembled into CARs, akin to measures of assembly quality for refer-
ence genome sequences. For 37 vertebrate ancestral genomes and 13 
plant ancestral genomes in our test set, we obtained chromosome-scale 
assemblies with a small number of long CARs containing hundreds of 
ordered and oriented genes, corresponding to a best approximation 
of the ancestral karyotype (Fig. 3a). These chromosome-level assem-
blies include over 70% of the ancestral genes, which is comparable to 
well-assembled extant reference genomes in those clades (Supple-
mentary Fig. 10). Most other ancestral genomes are assembled into 
fewer than 100 subchromosomal gene blocks containing over 70% of 
the ancestral gene content (Supplementary Fig. 11).

As expected, the contiguity of ancestral genome reconstructions 
was high overall in recent ancestors and decreased sharply after 100 Ma, 
decaying to large numbers of short, unassembled gene blocks for very 
ancient ancestors such as the Tetrapoda and Vertebrata ancestors (Fig. 
3a). However, perhaps counterintuitively, AGORA performs better in 
some key older ancestors than in comparatively younger ancestral 
genomes. For example, the genome of Boreoeutheria, the ancestor of 
most placental mammals (approximately 95 Ma), is a near-complete 
assembly consisting of 25 large CARs covering 18,430 genes (80% of the 
total ancestral genome), while the genome of Afrotheria, the ancestor 
of the elephant and hyrax (approximately 90 Ma), is appreciably less 
contiguous with 70% of genes in 83 CARs. This reflects the position of 
these ancestors in the species tree relative to the sampling of sequenced 
extant genomes. As demonstrated previously45, ancestors that precede 
evolutionary radiations are ideally positioned for ancestral genome 
reconstruction because their many outgroup and descendant lineages 
offer a large number of informative pairwise comparisons (Ni). Overall, 
AGORA’s ancestral reconstruction contiguity correlates with the Ni/

age ratio (Supplementary Fig. 12). Because sequencing efforts have 
largely targeted organisms within species-rich phyla, such as placental 
mammals or monocotyledon plants, the key ancestors to these widely 
studied subclades are particularly well reconstructed by our method-
ology, which should be of high value to evolutionary and functional 
studies. Ultimately, however, with the advent of massive sequencing 
undertakings such as the Vertebrate Genome Project, genome docu-
mentation in undersampled clades will increase dramatically and we 
expect that most ancestral genomes in the Genomicus database will 
eventually become chromosome-level assemblies.

Support from cytological evidence and in silico 
palaeogenomes
The accuracy of ancestral genome reconstructions is appreciably more 
difficult to evaluate than completion because the true ancestral genome 
sequences are inaccessible at the evolutionary scales we study. How-
ever, several ancestral genomes have garnered longstanding interest 
from the evolutionary genomics community, resulting in a large body 
of biological evidence regarding their overall organization. In verte-
brates, one of the most studied ancestral genomes is Boreoeutheria, the 
95 million-year-old ancestor to most placental mammals including pri-
mates, rodents, hooved mammals and carnivores, with the exception of 
afrotherians (elephants) and xenarthrans (tree sloths, anteaters, arma-
dillos), along with the Eutheria ancestor (102 million-year-old, ancestral 
to boreoeutherian mammals and afrotherians) and the Simian ancestor 
(45 million-year-old, ancestral to platyrrhine and catarrhine primates). 
Landmark ancestral Eutheria, Boreoeutheria and Simian karyotypes 
have previously been reconstructed by integrating dozens of mamma-
lian homology comparisons using fluorescent DNA probes, a technique 
known as chromosome painting46,47. This analysis suggested that the 
ancestral placental genome consisted of 23 pairs of chromosomes and 
traced the large-scale rearrangements that resulted into the karyo-
typic arrangement of the human genome. The Boreoeutheria ancestral 
genome organization inferred by AGORA contains 25 large CARs and 
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is highly congruent with the cytogenetically based reference karyo-
type (Fig. 4a). AGORA recovers all ancestral chromosomal arrange-
ments supported by cytogenetic evidence without requiring manual 
assembly or curation. The only exception is the ancestral linkage of 
human chromosomes 10 and 12 alleged by cytogenetic data (Fig. 4c–e),  
which is supported neither by AGORA nor by the state-of-the-art 
reconstruction by DESCHRAMBLER or other in silico ancestral genome 
reconstruction methods33. Detailed manual investigation of incon-
sistencies between the ancestral reconstructions by AGORA and the 
cytogenetic references revealed that most differences are the result of 
the lower resolution of the chromosomal painting methodology and 
confirmed our proposed assembly (Supplementary Figs. 14 and 15). At 
the infrachromosomal scale, we found that the genomic organization of 
the Boreoeutheria genome inferred by AGORA is in near-perfect agree-
ment with that of DESCHRAMBLER (Fig. 4c, Supplementary Fig. 16 and 
Methods). However, our reconstructed Boreoeutheria genome is more 

complete and includes the ancestral locations of an additional 2,023 
genes (8% of the ancestral gene set) due to operating at a higher reso-
lution. AGORA also fared better by including more species and more 
recent assemblies than DESCHRAMBLER. Altogether, these results 
support that the gene-based reconstruction algorithm of AGORA is 
highly consistent with current ancestral reconstruction methods, while 
providing a notable increase in resolution for the study of local genomic 
events. We further tested the robustness of AGORA to varying input 
datasets by reconstructing an alternative Boreoeutheria ancestral 
genome using gene families from hierarchical orthology groups built 
with OMA48, a completely different gene orthology inference pipe-
line from Ensembl Compara. Both reconstructions were remarkably 
convergent with over 96% similarity (Supplementary Information,  
‘Comparison between Ensembl Compara and OMA hierarchical orthol-
ogy groups’ and Supplementary Fig. 17), supporting that AGORA per-
forms well regardless of gene orthology data sources.
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Finally, we also examined the genome of Poaceae, the 
50 million-year-old ancestor of grasses, reconstructed by AGORA 
to an earlier reference ancestral karyotype49 obtained by another 
parsimony-based method to reconstruct ancestral adjacencies30. 
Again, the ancestral genome reconstructed by AGORA closely reca-
pitulates the state-of-the-art knowledge regarding the organization 
of the ancestral grass karyotype (Fig. 4b), while providing access to a 
fine-scale reconstruction of the ancestral gene order.

A scalable framework to integrate genomes across 
phylogenies
A major strength of AGORA resides in its ability to compute the gene 
order of every ancestor in a phylogeny using different subsets of the 
same extant genome comparisons. In a context where new species 
genomes are being sequenced with increasing speed and accuracy, 
comparative genomics need methods that can integrate evolutionary 
information along the species tree and across lineages without relying 
on a single extant genome as reference. Using the legacy architecture of 
the Genomicus synteny database34,35, which is updated with every new 
release of the Ensembl database, we tested how our methodology scales 
with the number of extant reference genomes available as well as their 
quality (Supplementary Fig. 13). Ensembl Compara v.101 included the 
reference sequences of 264 vertebrate species and five outgroups, for 
a total of 5,539,325 extant protein-coding genes organized into 62,478 
gene trees. Using this information, AGORA reconstructed a total of 
265 ancestral genomes along the species tree in 6 h and 50 min on a 
Linux machine with four central processing units and approximately 
80 GB of random access memory (Supplementary Data 2). Therefore, 
AGORA is computationally inexpensive and can be run on a desktop 

machine for small-to-medium datasets. However, AGORA can also be 
parallelized and is optimized for usage on a computing cluster for large 
applications and database updates.

Overall, the quality of key ancestral genomes increases as 
new extant genomes are included in the database (Supplementary 
Fig. 13). The introduction of high-quality reference genomes in 
under-represented clades over time has contributed to the recon-
struction of previously inaccessible ancestors, such as Strepsirrhini, 
the ancestor of lemurs, bushbabies and lorises, and more recently 
Chiroptera, the ancestor of bats. Interestingly, we observed that 
even the inclusion of low-contiguity, fragmented genomes markedly 
improves ancestral genome reconstructions. For instance, including 
low-contiguity genomes more than doubles the median value (G50; 
Methods) for the reconstructed Amniota genome (Supplementary 
Information, ‘Impact of low-contiguity assemblies’). This is likely 
because different reference genomes are generally assembled inde-
pendently and assembly errors rarely produce the same erroneous 
gene arrangements from one genome to the next. Because AGORA 
only considers conserved gene adjacencies as potentially ancestral, 
the additional information from correctly assembled scaffolds off-
sets the noise introduced by assembly errors, which are discarded 
as not conserved. Therefore, we argue that the inclusion of low-cost, 
fragmented reference genomes in comparative genomics databases 
serves a purpose beyond gene-based analyses.

Ancestral genomes as backbones for evolutionary studies
In this section, we experimented the paradigm shift. This consisted of 
studying genome evolution from the perspective of multiple recon-
structed ancestral genomes. We first revisited known observations 
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Fig. 4 | AGORA ancestral genome reconstructions compared to extant 
genomes and state-of-the-art ancestral reconstructions. a, The Boreoeutheria 
karyotype inferred by AGORA (the 25 largest CARs), coloured according to gene 
locations on human chromosomes, as indicated to the right of each CAR. b, The 
Poaceae karyotype inferred by AGORA (the 19 largest CARs), coloured according 
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CAR. c, Collinearity of the Boreoeutheria ancestral genome reconstructed by 
AGORA with the genome reconstructed by DESCHRAMBLER33. d, Comparisons 
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fluorescence in situ hybridization (FISH) linkage groups inferred for three key 
mammalian ancestors. Human chromosomes in ancestral linkage are indicated 
with hyphens. The Eutheria bolded linkage group 10–22–12 is documented 

in more detail in e. The underlined linkage groups are documented in 
Supplementary Fig. 14. DESCHRAMBLER reconstructed a linkage group between 
parts of human chromosomes 4, 8, 12 and 3 (asterisk) in disagreement with FISH 
evidence and AGORA when used on Ensembl v.92 data; however, this linkage 
group is also reconstructed by AGORA on Ensembl data v.102, suggesting an 
ambiguous ancestral linkage state (Supplementary Fig. 15). e, Gene adjacencies 
around the USP41 gene in extant species support the linkage of fragments 
of human chromosomes 10, 22 and 12 in the Eutheria ancestor. Orthologous 
genes are shown as arrows in matching colours, pointing in the direction 
of transcription. Opossum and elephant have both retained the ancestral 
organization at this locus, which has been rearranged in the human genome.
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generated by traditional comparative genomics based on extant 
genomes. As a case study, we used ancestral reconstructions to inves-
tigate the patterns of karyotypic rearrangements that occurred during 
the evolution of mammals, birds and ray-finned fish (Fig. 5). These three 
groups represent the main jawed vertebrate (Euteleostomi) lineages, 
whose respective chromosomal dynamics have been documented 
using comparative genetics, cytogenetics and genomics approaches 
across different taxonomic groups. We selected 73 well-reconstructed 
ancestors and their 74 extant descendants (15 birds and reptiles, 41 
mammals, 18 fish; Methods) from the Genomicus Vertebrates database 
v.102, which contains a total of 269 extant and 265 ancestral genomes. 
We then compared consecutive genomes on all 131 branches of the 
phylogenetic tree, representing a combined time of about 5 billion 
years of independent evolution, and traced gene adjacencies that 
were rearranged on each branch (Methods). In total, we identified 
5,749 rearrangement breakpoints that occurred along the 131 branches 
(average rate 1.17 breakpoint per million years), most of which are 

intrachromosomal. We also identified 1,370 interchromosomal rear-
rangements (translocations, fusions or fissions) with an average rate of 
0.28 rearrangement per million year (Fig. 5a and Supplementary Data 
3). These rearrangement rates are lower bound values because rear-
rangements occurring between genes without disrupting gene order 
or orientation cannot be observed (Discussion). Comparing rates per 
million years, and restricting the analysis to the 105 branches longer 
than 5 Ma to avoid small sample distortions, we confirm that birds and 
reptiles have more stable chromosomal structures than mammals, as 
reported previously50,51, with lower rates of interchromosomal rear-
rangements (P = 3.8 × 10−6, Wilcoxon rank-sum test; Fig. 5b). Fish in turn 
display higher intrachromosomal breakpoint rates than mammals, 
birds and reptiles (teleosts versus saurians, P = 0.0181; teleosts versus 
mammals, P = 0.0532, Wilcoxon rank-sum test), which is consistent with 
the rediploidization process following the whole-genome duplication 
(WGD) that occurred in this phylum52, yet they display a uniformly high 
karyotypic stability.
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Interestingly, a few branches in placental mammals stand out as 
having strikingly high rearrangement rates. For instance, the gibbon 
lineage is the outlier of our analysis, having experienced 60 interchro-
mosomal rearrangements in 25 My, confirming previous observations 
that this is a fast-evolving lineage compared, for example, to the human 
lineage53 (Fig. 5c). The dog genome was also subject to high rates of 
rearrangement, especially compared to its sister branch leading to the 
slowly evolving sea lion genome, which only changed through three 
chromosome fusions compared to their Caniformia ancestor54. The 
lineage leading to the Muridae is notable for a high rate of intrachro-
mosomal breakpoints combined with multiple interchromosomal 
rearrangements but associated to a stable chromosome number, which 
is consistent with cytogenetic studies of different murid clades55,56. 
These examples revisit lineages that are known to be subject to fast 
evolutionary rates, underlining how AGORA reconstructions agree 
with current knowledge and represent a sound basis to explore and 
understand genome evolution.

A key feature of AGORA reconstructions is that they are inde-
pendently derived for each ancestor, enabling the investigation of 
evolutionary events in internal branches, between successive ancestral 
genomes (Fig. 5c, Sciurognathi to Muridae). We exploited this feature 
to investigate whether rearrangement breakpoints accumulate in 
specific genomic regions in mammals, where they may present an 
evolutionary advantage by providing new gene combinations. We col-
lected 2,466 rearrangement breakpoints that occurred across all the 
boreoeutherian mammal lineages shown in Fig. 5a. This ‘breakpoint 
map’ recapitulates almost 1.4 cumulated billion years of genome reor-
ganization, projected on the human genome as a reference. In total, 
1,985 human genes are flanked by at least 1 breakpoint (Fig. 6a) and high 
and low breakpoint density regions are evident. To characterize these 
further, we identified the 5 Mb windows in the human genome with 
the highest density of breakpoints (top 5%) and those without break-
points. A Gene Ontology (GO) analysis showed that high breakpoint 
intensity occurs near genes involved in the acquired immune system, 
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while breakpoints are depleted in regions flanking genes involved 
in embryonic development (Fig. 6b), confirming on a broad scale 
previous observations57,58. Genomic regions involved in immunity are 
fast-evolving at the sequence level, typically interpreted as evidence 
of positive selection: in this study, we show that these regions are also 
fast-rearranging; further investigation may reveal whether genomic 
reorganization acts in concert with sequence evolution to produce 
functional novelty in these regions.

Finally, we took advantage of the unique standpoint provided by 
ancestral genomes to investigate which gene-to-gene interval is the 
most conserved in all bony vertebrates. Scanning the Euteleostomi 
ancestral genome, we selected the gene adjacency with the strongest 
support from 8,173 pairwise genome comparisons used to recon-
struct this genome. The adjacency between the ELK3 and CDK17 genes 
is ancestral to bony vertebrates and remains conserved in 187 out 
of 192 descendant genomes available in the Ensembl 106 database  
(Fig. 6c). Interestingly, ELK3 and CDK17 coexpress sense–antisense 
messenger RNA transcripts in mouse neuronal cells59. Additionally, 
ELK3 introns contain enhancer sequences that putatively target the 
CDK17 promoter60. Potential complex regulatory functions may be 
associated with this locus because a sense–antisense transcript pro-
duced in the same cells can lead to double-stranded RNA, and in this 
case, also overlap the ELK3 coding exon. Further investigation should 
reveal whether the same coexpression occurs in all Euteleostomi, 
which would suggest an ancestral function established early in verte-
brate evolution and a possible explanation for the extensive linkage 
conservation at this locus.

Discussion
Biology is a historical science but this historical dimension is often 
ignored because the records required to document ancestral states 
are missing. Without this chronological perspective, the reasons why 
contemporary biological systems are organized as they are will con-
tinue to elude us. In practice, this information gap hinders our ability 
to integrate conclusions across different living models and to draw 
the full benefits of comparative genomics. Ancestral genomes are 
fundamental blocks of the conceptual framework aiming to address 
this problem. They complement fossils as biological time points 
because they are a theoretical representation of the precise divergence 
between two lineages, while fossils represent true extinct species but 
whose exact phylogenetic position is often unclear. Because ancestral 
genomes encapsulate all the genes present in the ancestral organism 
and their structural organization, they will enable detailed investiga-
tions of developmental and metabolic pathways evolution, such as 
the expansion and contraction of specific gene families over time; 
the contribution of genome structure changes to evolutionary tran-
sitions and speciations; and the tracing of evolutionary innovations 
through reorganization of functional gene arrangements. Additionally, 
ancestral genomes can act as unique reference points to compare mul-
tiple descendant genomes, removing the bias of relying on an extant 
genome as central reference. This property makes them powerful tools 
to identify, measure and study lineage-specific genomic events and 
clade-wide trends.

Reconstructions of ancestral genomes by AGORA have a number 
of limitations. First, the method relies on the assumption of parsimony, 
which is widely used for both cytogenetic and marker-based bioinfor-
matics reconstructions. This premise is reasonable because intergenic 
breakpoints are rare (fewer than ten per million years in eukaryotes) and 
conservative scenarios involving the fewest steps are likely to be correct 
in the vast majority of cases. However, breakpoint reuse can occur61 and 
will violate this assumption, which may result in non-reconstructed 
gene adjacencies (false negatives) in the AGORA reconstructions but 
will not create erroneous adjacencies (false positives). Thus, breakpoint 
reuse may cause reconstructions to be more fragmented but should 
not induce incorrect links between markers. It will, however, cause an 

underestimation of breakpoint rates as presented in Fig. 5, although 
there is no evidence that it should distort the relative rates between 
taxonomic groups. Conversely, a false positive adjacency present in 
a given ancestor but absent in the previous one and in the next one 
in a chronology, will give a false signal of breakpoint reuse. Other 
limits are less due to the method but are inherent to the underlying 
data. For example, in this study we used gene trees to define the set 
of ancestral genes to be ordered into chromosomes and to locate the 
set of descendant genes in extant genomes (orthogroups). Although 
we showed that two different sources of orthogroups (Ensembl and 
OMA) generate essentially the same Boreoeutheria genome, this may 
be different for more ancient genomes or poorer-quality gene trees. 
In particular, incorrect placement of duplication events will affect 
the number of ancestral genes and incorrect partitioning of extant 
copies under their ancestral duplicate copy will affect the adjacencies 
that can be deduced. This issue is amplified after WGD events, where 
all genes are duplicated at once, but can be mitigated by tree edition 
steps as implemented in SCORPiOs62. WGD are not obstacles per se 
for genome reconstruction. Several instances occurred in vertebrate, 
plant and fungi genome evolution and AGORA can reconstruct ances-
tral genomes at speciation nodes immediately flanking the event. 
This is the case, for example, between the Protacanthopterygii and 
Salmoninae in fish that flank a single WGD, and between the Malvids 
and Brassicaceae ancestors in plants that flank two successive WGDs. 
In each case, the classical ‘double-conserved synteny’ pattern52,63,64 is 
clearly visible across ancestral chromosome segments hundreds of 
genes long (Supplementary Fig. 18). The density of markers (that is, 
protein-coding genes) also limits the resolution of the reconstructions 
because intermarker space consists of blind spots where inversions 
contained within cannot be observed. As algorithms mature, ances-
tral genomes such as those presented in this study could become 
enriched with many more features, including non-coding sequences 
such as ancestral repeat elements, non-coding RNA genes or regula-
tory elements, and serve as organizational maps for reconstructed65 
or fossil nucleotide sequences. Reaching this goal could alleviate some 
limitations of gene-based ancestral reconstructions by providing a 
much-increased resolution.

Because genome sequencing costs continue to decrease, reference 
genomes are becoming widely available for model and non-model spe-
cies alike. At the time of writing, the NCBI database accounts for a total 
of 8,505 eukaryote, 32,172 bacterial and 1,909 archaeal whole-genome 
sequencing projects and dedicated efforts such as the Vertebrate 
Genome Project66 promise to deliver extensive phylogenetic coverage 
across many clades. Integrating sequence and genome organization 
evolution over such massive phylogenetic samplings remains a chal-
lenge. Many phylogenomics projects still rely on sequence alignments 
as a means to study how genome organization evolves33,51. Aligning 
whole genomes is computationally expensive, and while new method-
ologies are emerging to step up to the challenge23,67, the requirements 
to handle hundreds of genomes remain out of reasonable reach for 
many. Additionally, identifying conserved and rearranged regions 
from whole-genome alignments becomes technically difficult as phy-
logenetic distance increases, especially in large genomes where an 
important fraction of the sequence is non-coding and repetitive. Due 
to these limitations, the evolution of genome organization is typically 
studied at large scale, but low resolution, and/or in a limited sampling 
of species, often those included in publicly available, reference multi-
species alignments. Marker-based ancestral genome reconstructions 
provide an alternative to methods based on whole-genome alignments 
by relying on gene phylogenies instead, which require much more 
modest computational infrastructures and scale up to hundreds of 
genomes with relative ease. In the future, as polymorphism informa-
tion becomes available for more extant species, we may expect to see 
ancestral genomes move on from unique references to compendiums, 
representing structural genomic variation present at any given point in 
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time and opening the door from increasingly sophisticated population 
genomics models of molecular evolution.

Methods
Data collection
Genes and gene trees were downloaded from Ensembl v.92 (ref. 68) and 
Ensembl Plants v.41 (ref. 69). Ensembl v.92 gene trees were edited for 
poorly supported duplication nodes as described previously70, as part 
of the standard build procedure for the Genomicus synteny database. 
Of note, this step only marginally improves ancestral genome recon-
structions and is not a prerequisite to use AGORA. The species trees 
for the extant and ancestral genomes from Ensembl v.92 and Ensembl 
Plants v.41 are described in Supplementary File 1.

Ancestral genome reconstructions
Ancestral gene sets and gene orders were reconstructed for 82 ances-
tors on Ensembl v.92 data using AGORA with 2 passes and a tree param-
eter of 0.35, and for 41 plant ancestors in 2 multi-integration passes 
without tree selection (Supplementary Data 4). The details of the 
AGORA algorithm, validations by evolutionary simulations, suggested 
procedure to select an optimal tree parameter and advances compared 
to earlier publications are detailed in the Supplementary Information 
(‘AGORA method’).

Statistics on ancestral genomes
Ancestral genome contiguity was measured using the L70 and G50 
metrics. L70 is the smallest number of CARs adding up to 70% of the 
total genome length, measured in gene units. G50 is the length of the 
ancestral CAR such that 50% of the total genome length, measured 
in gene units, is contained in larger CARs. Vertebrate chromosomal 
assemblies have an L70 < 100 and G50 > 450 and plant chromosomal 
assemblies have an L70 < 20 and a G50 > 450. These values correspond 
to well-assembled extant genomes (Supplementary Fig. 10) from these 
respective clades. Other assemblies were considered subchromosomal.

Comparisons to reference ancestral gene sets
We downloaded the BUSCO sets v.3 (ref. 43) based on OrthoDB v.9 
(ref. 71). BUSCO gene identifiers were converted to Ensembl gene 
IDs using the conversion tables provided by the OrthoDB. A BUSCO 
orthogroup is a set of near 1-to-1 orthologous genes across sequenced 
genomes of a relevant phylum. An ancestral gene inferred by AGORA 
was identified as a BUSCO if two or more of its extant descendant genes 
were contained in the same orthogroup. When a single ancestral gene 
had descendants in more than one BUSCO orthogroup, we chose the 
orthogroup with the highest overlap. We then computed the number 
of BUSCOs matched to a single ancestral gene, to two or more ancestral 
genes (dubious duplication) and absent from the ancestral genome 
reconstructed by AGORA (missing gene). Independent ancestral gene 
sets were downloaded from Ancestral Genomes32, based on PANTHER 
v.13.1 (ref. 44). Because Ancestral Genomes and AGORA use differ-
ent sets of extant species, we only considered ancestral genes with 
descendants in one of their common species for comparison (human 
for all ancestors except Murinae and Laurasiatheria where mouse and 
dog were used, respectively). Ancestral Genomes ancestral genes 
were converted from UniProt knowledge base IDs to Ensembl gene IDs 
using the correspondence tables provided by Ensembl BioMart and 
compared with the gene sets in the ancestral genomes reconstructed 
by AGORA.

Comparison between AGORA and DESCHRAMBLER eutherian 
ancestor
We compared AGORA’s v.92 eutherian reconstructions to DESCHRAM-
BLER’s33 (300 kb resolution: APCF_hg19_merged.map from http://
bioinfo.konkuk.ac.kr/DESCHRAMBLER/). Because DESCHRAMBLER 
uses segments of the human genome as units of the reconstruction 

and was based on the hg19 genome assembly, we converted those 
regions to their protein-coding gene content and selected the genes still 
found in Ensembl v.92 and descendants of ancestral boreoeutherian 
genes. The Oxford grid plot was generated with the AGORA src/misc.
compareGenomes.py script in ‘matrix’ mode.

Vertebrate evolutionary dynamics
Ancestral genomes reconstructed by AGORA from Ensembl v.102 were 
filtered to retain the most contiguous reconstructions, resulting in 73 
ancestral genomes with G50 > 230 and L70 < 40. Conserved syntenic 
blocks between successive ancestral genomes in internal branches, and 
between ancestral genomes and their extant descendant in terminal 
branches, were computed with PhylDiag72. Ends of blocks correspond-
ing to likely evolutionary breakpoints were identified using ad hoc 
scripts. Orthologous genes between successive genomes were also 
compared in terms of their assignation to scaffolds or chromosomes 
larger than 200 genes using AGORA’s src/misc.compareGenomes.py 
script in ‘printOrthologousChrom’ mode. Groups of at least 20 genes 
relocating to more than 1 chromosome in a descendant genome, and 
inversely groups of at least 20 genes from 2 or more ancestral chro-
mosomes relocating on the same descendant chromosome, were 
considered interchromosomal rearrangements. Breakpoint and rear-
rangement rates per million years were computed using branch length 
estimates from TimeTree73. A full description of the parameters and 
selection thresholds are provided in the Supplementary Information 
(‘Vertebrate genome evolutionary dynamics’).

GO analysis
Human genes from Ensembl 106 contained in 5 Mb windows with the 
5% highest number of breakpoints or with no breakpoints were tested 
for GO term enrichments (biological function) against the rest of the 
human genes, using the PANTHER web server44 (version 17.0). Enrich-
ment was tested with Fisher’s exact test; terms with a false discovery 
rate (FDR) < 0.05 were retained. Control experiments with random 
selections of windows with the same gene densities as found in the 
0-breakpoint windows and 5% richest windows did not show significant 
enrichment.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Ancestral genomes have been precomputed for approximately 200 ver-
tebrate (depending on the release), 41 plant and 222 fungi genomes and 
are available on the Genomicus database FTP server (ftp://ftp.bio.ens.
psl.eu/pub/dyogen/genomicus/). These ancestral genomes can also 
be explored visually within the Genomicus35 synteny browser (http://
www.genomicus.bio.ens.psl.eu/genomicus). Ancestral genomes and 
the data used in this article for analysis are archived on a Zenodo reposi-
tory (https://doi.org/10.5281/zenodo.7479507)74.

Code availability
The source code of AGORA, user instructions and a test dataset are 
available for download from https://github.com/DyogenIBENS/Agora.
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distributions in boxplots. The data is descriptive. A series of Fishers's exact test was perfoemd with adjustments for multiple testing. 

Research sample The analyses were performed on publicly available genome data stored in the Ensembl database covering several hundred eukaryote 
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