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Detecting macroevolutionary 
genotype–phenotype associations using 
error-corrected rates of protein convergence

Kenji Fukushima    1   & David D. Pollock    2,3

On macroevolutionary timescales, extensive mutations and phylogenetic 
uncertainty mask the signals of genotype–phenotype associations 
underlying convergent evolution. To overcome this problem, we 
extended the widely used framework of non-synonymous to synonymous 
substitution rate ratios and developed the novel metric ωC, which measures 
the error-corrected convergence rate of protein evolution. While ωC 
distinguishes natural selection from genetic noise and phylogenetic 
errors in simulation and real examples, its accuracy allows an exploratory 
genome-wide search of adaptive molecular convergence without 
phenotypic hypothesis or candidate genes. Using gene expression data, 
we explored over 20 million branch combinations in vertebrate genes 
and identified the joint convergence of expression patterns and protein 
sequences with amino acid substitutions in functionally important 
sites, providing hypotheses on undiscovered phenotypes. We further 
extended our method with a heuristic algorithm to detect highly repetitive 
convergence among computationally non-trivial higher-order phylogenetic 
combinations. Our approach allows bidirectional searches for genotype–
phenotype associations, even in lineages that diverged for hundreds of 
millions of years.

A central aim of modern biology is to differentiate the huge amount of 
non-functional genetic noise from phenotypically important changes. 
Evolutionary processes at the molecular level are largely neutral and 
stochastic, but natural selection can constrain evolutionary pathways 
available to the organism. If similar environmental conditions recur in 
divergent lineages, the adaptive response may also be similar, leading 
to convergence, the repeated emergence of similar features in dis-
tantly related organisms1. The prevalence of phenotypic convergence 
is demonstrated by various examples throughout the tree of life, such 
as the camera eyes of vertebrates and cephalopods, powered flight of 
birds and bats and trap leaves of distantly related carnivorous plants. 
Because the repeated emergence of such complex traits by neutral 

evolution alone is extremely unlikely, convergence at the phenotypic 
level is considered strong evidence for natural selection.

Phenotypic convergence is necessarily caused by molecular events 
and often coincides with detectably excess levels of convergent molec-
ular changes in gene regulation, gene sequences, gene repertoires 
and other hierarchies of biological organization2,3. A meta-analysis 
reported that 111 out of 1,008 loci had been convergently modified 
to attain common phenotypic innovations, sometimes even between 
different phyla4, illustrating that genotype–phenotype associations 
are frequently observed on macroevolutionary scales. For example, 
several lineages of mammals, reptiles, amphibians and insects acquired 
resistance to toxic cardiac glycosides using largely overlapping sets of 
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are taken into account (Supplementary Text 3 and Methods). Note 
that in neutrally evolving genes, the theoretical expectation of ωC is 
1.0, even if ω in the underlying codon substitution matrix is not 1.0 
(usually lower). Similar to previously proposed convergence met-
rics13,17,18, ωC is calculated from substitutions at multiple codon sites 
across protein-coding sequences. As a result, one ωC value is obtained 
for each gene for each branch pair (or for a combination of more than 
two branches) in the phylogenetic tree. A unique feature of ωC setting 
it apart from other metrics is its error tolerance. For example, if one of 
the branches in a branch combination is in error, ωC is a measure of the 
ratio of false convergence events of both kinds falsely attributed to a 
non-existent branch combination. In this way, the ωC values remain 
close to the neutral expectation of 1.0, even when topology errors 
are involved. Our method is implemented in the Python programme 
CSUBST (https://github.com/kfuku52/csubst), which takes as input a 
rooted phylogenetic tree and a codon sequence alignment (Fig. 1b and 
Supplementary Fig. 2).

The robustness of ωC in simulated molecular evolution
Conventionally, observed levels of convergent amino acid substitutions 
have been contrasted either to the amount of convergence expected 
under a substitution model (e.g., the convergence measure R18) or to 
other combinations of amino acid substitution patterns that are simi-
larly affected by site-specific constraint (that is, double divergence; C/D 
(refs. 13,17)) (Supplementary Table 1 and Supplementary Text 4). Here 
we focus on whether ωC performs better as a measure of convergence 
between branches in comparison to alternative metrics. Accordingly, 
we generated simulated sequences with 500 codons along a balanced 
phylogenetic tree ending with 32 sequences at the tips (or leaves), in 
all cases comparing two deeply separated tip lineages (shown as dots 
in Fig. 1c; Supplementary Table 2). In this analysis, we compared C/D, 
dNC, dSC and ωC under four evolutionary scenarios of relationships 
between the two tips being compared: (1) full neutral evolution along 
all branches (Neutral); (2) neutral evolution for nearly all branches but 
with convergent selection along the two deeply separated tip lineages 
(Convergent); (3) neutral evolution with phylogenetic tree topology 
error in the form of a copy-and-paste transfer from one of the two deeply 
separated lineages to the other, overwriting its genetic information 
(Transfer) or (4) neutral evolution but using a randomly reconstructed 
phylogenetic tree to detect convergence (Random). The metric dNC is 
obtained by dividing the observed value of non-synonymous conver-
gence (OC

N) by the expected value (EC
N) and is essentially equivalent to 

the previously proposed metric called R18, but we use the dNC notation 
here to clarify its relationship to dSC, the ratio of observed to expected 
values of synonymous convergence (OC

S / EC
S).

During neutral evolution, sequences evolved under a constant 
codon substitution model without any adaptive convergence or con-
straint on amino acid substitutions other than those imposed by the 
structure of the genetic code and relative codon frequencies. In the 
Neutral scenario (Fig. 1c), the trees used for simulation and reconstruc-
tion were identical. C/D was much lower than 1.0, as expected, while the 
other three metrics (dNC, dSC and ωC) were close to but lower than the 
theoretical expectation of 1.0 (Fig. 1d). This observation is probably 
due to the fact that the convergent events must be inferred and are 
not actually observed, as investigated previously for the convergence 
measure R18. In the Convergent scenario, adaptive convergence on 
the focal pair of deeply separated branches (red branches in Fig. 1c) 
was mimicked by convergently evolving 5% of codon sites (25 sites) in 
the two branches under substitution models biased towards codons 
encoding the same randomly selected amino acid. This generated an 
average of four excess non-synonymous convergent substitutions on 
these two branch pairs (OC

N in Fig. 1c). In the Convergent scenario, the 
three protein convergence metrics, C/D, dNC and ωC, yielded values 
substantially higher than they did under the Neutral scenario, while 
the synonymous change measure dSC remained comfortably well 

amino acid substitutions in a sodium pump5. Another example illus-
trated how human cancer cells and plants employed common amino 
acid substitutions in topoisomerase I to cope with a common toxic 
cellular environment generated by plant-derived anticancer drugs6.

Genome sequences are becoming more available for diverse lin-
eages from the entire tree of life7, making it possible to explore mac-
roevolutionary genotype–phenotype associations on large scales. 
However, because many molecular changes are nearly neutral (that is, 
almost no effect on fitness) and essentially non-functional in nature8, 
false positive convergence in the form of stochastic, non-adaptive, 
convergent events is particularly problematic when conducting a 
genome-scale search. Furthermore, false positives can arise from 
methodological biases. For molecular convergence, a major source 
of bias occurs because such inference is sensitive to the topology 
of the phylogenetic tree on which substitution events are placed9 
(Fig. 1a), while alternative methods that do not place substitutions on 
phylogenetic trees suffer even more severe rates of false positives10–12 
(Supplementary Text 1). A correctly inferred tree avoids false positives 
due to phylogeny13, but topological misinference due to technical 
errors, insufficient data or biological factors such as introgression, 
horizontal gene transfer (HGT), paralogy, incomplete lineage sorting 
and within-locus recombination can all create substantial amounts of 
false convergence signals even when adaptive convergence did not 
actually occur2,9,14,15. Importantly, false convergence events driven 
by topological errors tend to similarly affect both non-synonymous 
and synonymous substitutions (Supplementary Fig. 1a). By con-
trast, truly adaptive convergence should occur almost exclusively in 
non-synonymous substitutions (amino acid-changing substitutions), 
as positive selection on synonymous substitutions is negligible or at 
least not prevalent16 (Supplementary Fig. 1b). Therefore, synonymous 
convergence can potentially serve as a reliable reference for measuring 
the rate of expected non-synonymous convergence due to phyloge-
netic inference error.

A widely used framework for understanding how functionally 
constrained proteins evolve compared with completely unconstrained 
expectations is to contrast rates of non-synonymous and synonymous 
substitutions. The ratio of these rates within a protein-coding sequence 
accounts for mutation biases and is often denoted as ω, dN/dS or Ka/KS 
(ref. 16). Here we extend this framework to derive the new metric ratio 
ωC and implement it to measure phylogenetic error-corrected rates of 
convergence. Simulation and empirical data analysis show that this new 
metric has high sensitivity while suppressing false positives. We further 
show its capability to detect factors that affect protein convergence 
rates and to identify likely adaptive protein evolution in a genome-scale 
dataset by an exploratory analysis without a pre-existing hypothesis. 
We also develop a heuristic algorithm to explore convergent signals 
with high signal-to-noise ratios in exponentially increasing numbers 
of higher-order phylogenetic combinations.

Results
Extending the substitution rate ratio framework to 
convergence
One of the most commonly accepted measures of the rate of protein 
evolution compared with completely unconstrained expectations is the 
ratio between non-synonymous and synonymous substitution rates, 
denoted as dN and dS, respectively16. In a model-based framework, the 
ratio dN/dS is parameterized as ω.

Inspired by ω, we developed a similar metric, ωC, that applies to 
substitutions that occurred repeatedly on a combination of separate 
phylogenetic branches (combinatorial substitutions; Supplemen-
tary Fig. 1c and Supplementary Text 2). The metric ωC estimates the 
relative rates of convergence obtained by contrasting the rates of 
non-synonymous and synonymous convergence (dNC and dSC, respec-
tively). Using this ratio, important biological fluctuations, such as 
among-site rate heterogeneity and codon equilibrium frequencies, 
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Fig. 1 | Challenges and solutions for the detection of molecular convergence. 
a, False convergence is caused by tree topology errors. b, The overview of CSUBST. 
This programme processes substitution probabilities to derive observed (OC

N and 
OC

S) and expected (EC
N and EC

S) numbers of non-synonymous and synonymous 
convergence and evaluate their rates (dNC and dSC) in branch combinations in a 
phylogenetic tree. c, Generation of simulated datasets for performance evaluation 
in different evolutionary scenarios. The numbers of observed non-synonymous 
and synonymous convergence are indicated above trees (OC

N and OC
S, respectively; 

mean ± standard deviation). d, The estimated rates of protein convergence in 
different scenarios. Each box plot corresponds to the results of 1,000 simulations. 
Dashed lines indicate the theoretical expectation (= 1.0) except for the ratio of 
convergence and divergence events (C/D) (refs. 13,17) for which no theoretical 
expectation is available. Values greater than the 95th percentile in the Neutral 
scenario are defined as true and false positives in Convergent and other scenarios, 
respectively, and are indicated at the top of the plot in pink (true) and blue (false). 
Box plot elements are defined as follows: centre line, median; box limits, upper and 

lower quartiles; whiskers, 1.5 × interquartile range. e, Performance of convergence 
metrics in empirical datasets. Known examples of protein convergences and 
HGTs are analysed with C/D, dNC, dSC and ωC. Median values (bars) are overlaid on 
individual data points that correspond to gene trees. In trees where convergence 
occurred in more than two lineages, the median of all focal branch pairs is reported. 
The branch pairs sister to the focal branches are shown as a control10, except in 
cases where there is no substitution at all or the sister branches are phylogenetically 
not independent. Divergence time is according to timetree.org95. The comparison 
with the background levels for each dataset is shown in Supplementary Fig. 5. 
The characteristics of the datasets are summarized in Supplementary Table 3. 
MYA, million years ago. Image credits for panel e: Cenchrus echinatus, Chutima 
Chaimratana/Shutterstock; Tetraopes tetrophthalmus, Paul Reeves Photography/
Shutterstock; Myotis myotis, Agami Photo Agency/Shutterstock; Colobus guereza, 
Radek Karko/Shutterstock; Alloteropsis semialata Alexey Yakovlev under a Creative 
Commons license CC BY 4.0; Cuscuta europaea, ChWeiss/Shutterstock; alll other 
images except for Nepenthes cf. alata and Cephalotus follicularis from freepik.com.
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below 1.0. Using the distribution of metric values under the Neutral 
scenario as a reference, we see that 70–80% of the detection metric 
values in the Convergent scenario are above the 95th percentile of the 
1,000 simulations in their respective neutral distributions, while only 
3.5% of dSC values are above this threshold, indicating that this level of 
convergence is usually detected by all three of the protein convergence 
metrics (Fig. 1d). In ωC, this level of detection was achievable with only 
two to three non-synonymous convergent substitutions, and the posi-
tive rates exceeded 95% with seven or more convergent substitutions 
(Supplementary Fig. 3). To be thorough, we considered that ωC metrics 
can in general be derived for nine types of combinatorial substitution 
(that is, substitutions occurring at the same protein site in multiple 
independent branches; Supplementary Text 2) based on whether 
the ancestral and descendant states are the same or different, or in 
any state among multiple branches (Supplementary Fig. 1c). In the 
Convergent scenario, only the ωC metrics involved in convergence 
(that is, not divergence) showed a response, confirming its specificity 
(Supplementary Fig. 4a).

We next considered Transfer and Random scenarios that include 
phylogenetic error. In the Transfer scenario, we transferred one of the 
focal tip sequences to the other focal tip sequence in the simulation, 
but the phylogenetic tree used in the analysis remained unchanged, 
as might happen with HGT events (Fig. 1c). In the Random scenario, 
we fully randomized the entire reconstructed tree relative to the 
true tree (Fig. 1c). Excess convergence detected in either of these 
scenarios is considered a false positive. We determined that both 
C/D and dNC (and thus R too) are sensitive to the errors (Fig. 1d). By 
contrast, and as intended, ωC values were close to the neutral expec-
tation because the rise in dNC due to phylogenetic error is matched 
by a similar increase of dSC, and they cancel each other out in the ωC 
metric (Fig. 1d). Further simulations supported the robustness of ωC 
against the rate of protein evolution, model misspecification, tree 
size and protein size (Supplementary Fig. 4b–f). Still, care must be 
taken when using simple codon substitution models, such as MG and 
GY models (Supplementary Text 5). Furthermore, ωC showed low false 
positive rates in sister branches that serve as a control for the focal 
branch pairs10 (Supplementary Fig. 4g). Taken together, our simula-
tion showed that ωC effectively counteracts false positives caused by 
phylogenetic errors without loss of power.

ωC is robust to false convergence in empirical datasets
To test whether ωC performs well with real data, we collected 
protein-coding sequence datasets from known molecular convergence 
events in various pairs of lineages covering insects, tetrapods and flow-
ering plants (Fig. 1e, Supplementary Fig. 5, Supplementary Fig. 6 and 
Supplementary Table 3). Insects that feed on milkweed (Apocynaceae) 
harbour amino acid substitutions in a sodium pump subunit (ATPal-
pha1) that confer cardiac glycoside resistance19–21 (Supplementary  
Fig. 5a). Echolocating bats and whales share amino acid substitutions 
in the hearing-related motor protein prestin to enable high-frequency 
hearing22,23 (Supplementary Fig. 5b). An extensive molecular con-
vergence occurred in the mitochondrial genomes of agamid lizards 
and snakes, presumably due to physiological adaptations for radical 
fluctuations in their aerobic metabolic rates13. Specialized digestive 
physiology of herbivorous mammals24–26 and carnivorous plants27 led 
to the molecular convergence of digestive enzymes (Supplementary 
Fig. 5c–g). Phosphoenolpyruvate carboxylase (PEPC), a key enzyme 
for carbon fixation in C4 photosynthesis, shares multiple amino acid 
convergence28,29 (Supplementary Fig. 5h). In all these examples, ωC 
successfully detected convergent lineages, while it was always lower 
and in many cases close to the neutral expectation in the branch pairs 
sister to the focal lineages, which serve as a negative control10 (Fig. 1e 
and Supplementary Table 4). Moreover, the ωC values of the focal branch 
pairs tended to be high compared with background levels in the phylo-
genetic trees (Supplementary Fig. 5i). Analysis of different categories 

of combinatorial substitutions correctly recovered a trend consistent 
with the action of intramolecular epistasis, which did not appear in 
the simulations (Supplementary Text 6 and Supplementary Fig. 5j,k).

To test robustness against phylogenetic errors, we also employed 
reported cases of HGTs associated with C4 photosynthesis30 and plant 
parasitism31. We reconstructed the phylogenetic trees of the HGT genes 
with a constraint that enforces species tree-like topologies (Supple-
mentary Fig. 7). This operation separates the HGT donor and accep-
tor lineages and creates false convergence (Supplementary Fig. 1a). 
Consistent with the simulation results, ωC values in HGTs were lower 
than the adaptive convergence events (Fig. 1e). By contrast, C/D and dNC 
showed values higher in HGTs than in the adaptive convergence events. 
Together with the simulations, these results show that the considera-
tion of synonymous substitutions is essential for the accurate detection 
of molecular convergence in the presence of phylogenetic error and 
that ωC outperforms current alternative methods.

ωC probes a high-confidence set of convergently evolved genes
Discovering adaptive molecular convergence in genome-scale data-
sets, which may be translated into genotype–phenotype associations, 
has been challenging since it is a rare phenomenon and false positives 
are high10–12. To examine whether the application of ωC can generate 
plausible hypotheses of adaptive molecular convergence, we ana-
lysed the 21 vertebrate genomes covering a range from fish to humans  
(Fig. 2a and Supplementary Fig. 8a) and calculated ωC and other met-
rics for all independent branch pairs in 16,724 orthogroups classified 
by OrthoFinder32. CSUBST completed the analysis even for the larg-
est orthogroup (OG0000000) containing 682 genes encoding zinc 
finger proteins and 901,636 independent branch pairs (alignment 
length including gaps: 31,665 bp). We obtained a total of 20,150,538 
branch pairs from all orthogroups, and subsequent analyses revealed 
that convergence probability decreased over time probably due to 
intramolecular epistasis (Fig. 2b, Supplementary Fig. 5l, Supplemen-
tary Fig. 8b,c and Supplementary Text 7), that gene duplication also 
reduced convergence probability (Fig. 2c and Supplementary Text 
8) and that ωC is robust for potential artifacts by falsely placed gene 
duplications and false gene grouping (Supplementary Fig. 8d,e and 
Supplementary Text 9).

We first extracted the branch pairs with the top 1% of C/D, dNC or 
ωC values with a cut-off for a minimum of three non-synonymous and 
synonymous convergence (OC

N ≥ 3.0 and OC
S ≥ 3.0) (Fig. 3a). The top 

1% threshold allows different convergence metrics to be compared 
without introducing arbitrary thresholds in each metric. The overlap 
between each set of branch pairs was moderate, with 1,348 branch pairs 
satisfying all three criteria out of 5,659 pairs with the top 1% ωC values.

To examine which metrics better enrich for likely adaptive conver-
gence, we compared the topological confidence scores of the selected 
branches. If artifacts due to tree topology errors are included, low con-
fidence branches should be enriched. Analysis of the bootstrap-based 
confidence values33,34 showed that ωC selects branch pairs with higher 
confidence than the other two metrics (Fig. 3a). Furthermore, we exam-
ined the synonymous convergence rate (dSC), which is not expected 
to be greater than the theoretical expectation in the adaptive con-
vergence, and established that only ωC satisfies such an assumption  
(Fig. 3a). These results indicate that ωC has excellent properties for 
finding adaptive protein convergence in genome-scale analyses.

Detecting convergent genes associated with a particular 
phenotype
As convergence metrics have been used to search for genes associated 
with phenotypes of interest, we next examined whether ωC might be 
used to discover candidate genes underlying phenotypic convergence. 
Here we analysed a pair of herbivorous animal lineages as an example of 
a search for genes associated with a complex trait (that is, herbivory): 
ruminants (the stem branch of the clade including cattle (Bos taurus) 
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and red sheep (Ovis aries)) versus rabbits (the terminal branch con-
nected to Oryctolagus cuniculus). Using minimum thresholds for the 
number of convergent amino acid substitutions (OC

N ≥ 3.0) and protein 
convergence rate (ωC ≥ 3.0), we obtained 352 candidate gene branch 
pairs corresponding to the above pair of lineages in a genome-scale 
analysis of the 21 vertebrates (Supplementary Table 5). By mapping the 
positions of substitutions onto known conformations of homologous 
proteins, we identified particularly compelling cases of likely adaptive 
convergence that generated genotypes linked to particular phenotypes 
(Supplementary Fig. 9). Examples included olfactory receptors in which 
convergent substitutions are located in the interior of the receptor 
barrel (Olfactory Receptor Family 7 Subfamily A (OR7A), Olfactory 
Receptor Family 2 Subfamily M Member 2 (OR2M2) and Olfactory 
Receptor Family 1 Subfamily B Member 1 (OR1B1), where substitutions 
may change ligand preference associated with herbivorous behaviour.

Similarly, the barrel-like structure of some solute carriers har-
boured convergent substitutions in their interior sides (Solute Carrier 
Family 5 Member 12 (SLC5A12), SLC51A, SLC22A and SLC44A1), sug-
gesting their involvement in the uptake or transport of plant-derived 
compounds. Among these, SLC51A (also known as organic solute 
transporter α (OSTα)) may be a particularly attractive candidate. This 
protein plays a major role in bile acid absorption and, hence, in dietary 
lipid absorption35. The convergence in SLC51A may be coupled with 
another convergent event detected in CYP7A1, a cytochrome P450 
protein known to serve as a critical regulatory enzyme of bile acid bio-
synthesis36. Cytochrome P450 Family 7 Subfamily A Member 1 (CYP7A1) 
harboured two convergent substitutions in its substrate-binding sites 
(Supplementary Fig. 9). While most herbivores secrete bile acids mainly 
in a glycine-conjugated form, ruminant bile is mostly in the form of 
taurine-conjugated bile acids, which remain soluble in highly acidic 
conditions37. The predominance of taurine-conjugated forms is also 
observed in rabbits, depending on species and developmental stage38. 
Thus, convergence in these proteins may be related to such nutritional 
physiology characteristic in these herbivorous animals.

Other examples of detected convergence included two conver-
gent substitutions in the DNA-binding sites of a member of the zinc 
finger protein family, which functions as a transcriptional regulator39 
(Supplementary Fig. 9). Convergence in the substrate-binding sites of 
pancreatic elastase40 and pancreatic DNase I (ref. 41) may be related to 
their specialized digestion (Supplementary Fig. 9). In DNase I, amino 
acid sites exposed on the surface of protein structures displayed addi-
tional convergent substitutions that change the charge of their target 
amino acid residues (E124K, G172D and H208N), possibly resulting 
in convergent changes in the biochemical properties of the protein, 
such as optimal pH, resistance to proteolysis and post-translational 
modifications. Consistent with this idea, bovine and rabbit DNase I 
proteins are known to be more resistant to degradation by pepsin than 
their homologues in other animals42. Furthermore, E124K was shown 
to be important for the phosphorylation of bovine DNase I (ref. 43). 
Other convergent substitutions will be promising candidates for future 
characterization. Taken together, these results show how our approach 
can detect genetic changes (for example, molecular convergence in 
SLC51A, CYP7A1 and DNase I) associated with phenotypes (for example, 
specialized digestion for herbivory) on the macroevolutionary scale.

Exploratory analysis of molecular convergence
We further exploited the 21 vertebrate genomes to examine whether ωC 
might be used to discover adaptive molecular convergence that may 
generate hypotheses of linked phenotypes. Because convergence at 
multiple levels of biological organization can provide strong evidence 
for adaptive evolution, we searched for simultaneous convergence 
in protein sequences and gene expression in an exploratory manner 
without a predefined hypothesis on convergently evolved genes and 
lineages. Using the same thresholds applied to the analysis of herbi-
vores above (OC

N ≥ 3.0 and ωC ≥ 3.0), we obtained 53,805 candidate 
branch pairs from all orthogroups.

Although this was an exploratory analysis in which all independent 
branch pairs were exhaustively analysed, many studies of convergent 
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Fig. 2 | Biological variation of ωC in a genome-scale dataset. a, Phylogenetic 
relationships of the selected species. Supplementary Fig. 8a provides the 
complete phylogeny. The tree and divergence time estimates were obtained 
from timetree.org95. b, Temporal variation of convergence rates. The numbers 
of branch pairs (N) and Spearman’s correlation coefficient (ρ) are shown. The 
bin range was determined to assign an equal number of branch pairs to each bin. 
To reduce the noise originating from branches where almost no substitutions 
occurred, branch pairs with both OC

N and OC
S greater than 1.0 were analysed (that 

is, at least one convergent substitution each). Box plot elements are defined as 
follows: centre line, median; box limits, upper and lower quartiles; whiskers, 
1.5 × interquartile range. c, Convergence rates depending on gene duplications. 
Branch pairs were categorized into speciation events (SS) and branch pairs after 
two independent gene duplications (DD) according to the presence of preceding 
gene duplications in no or both branches, respectively. Branch pairs with one 
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theoretical expectation (= 1.0). Icon credits for panel a: PhyloPic.com.
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evolution involve only a few groups of focal species. If such a research 
design is applied to this dataset (similar to the analysis of herbivores), 
the number of detected branch pairs will be much smaller. For example, 
because there are 861 branch pairs in the species tree, on average, 62.5 
cases of protein convergence will be obtained in our genome-scale 
dataset for any particular analysis of two groups of species, although 
the numbers of analysable branch pairs and hence of detected con-
vergence depend on several factors (Supplementary Text 10 and Sup-
plementary Fig. 10).

To detect convergent gene expression evolution, we employed the 
amalgamated transcriptomes for six organs in the 21 vertebrate spe-
cies44. Using this previously published dataset, we subjected curated 
gene expression levels (SVA-log-TMM-FPKM, log2-transformed val-
ues of fragments per kilobase of exon per million reads mapped, cor-
rected by trimmed mean of M-values and surrogate variable analysis) 
to multi-optima phylogenetic Ornstein–Uhlenbeck (OU) modelling, 
in which expression evolution is inferred as regime shifts of estimated 
optimal expression levels45 (Fig. 3b). Phylogenetic positions and the 
numbers of expression regime shifts were determined by a LASSO (least 
absolute shrinkage and selection operator)-based algorithm with Akaike 
Information Criterion, which was also used for finding convergent shifts 
towards similar optimal values. In total, we detected 12,017 cases of 
expression convergence in 4,308 orthogroups. Setting the thresholds 
for gene expression specificity at τ ≥ 0.67 (ref. 46) and expression levels 
at μmax ≥ 2.0 (the maximum value of fitted SVA-log-TMM-FPKM)44, we 
obtained a set of 2,917 high-confidence branch pairs for potentially 
adaptive convergence of expression patterns (Fig. 3c).

By taking the intersection of protein convergence and expres-
sion convergence, we discovered 33 cases of potentially adaptive 
joint convergence of expression patterns and protein sequences in 31 
orthogroups (Fig. 3c and Supplementary Table 6). Gene duplication 
was frequently associated with joint convergence, with at least one 
branch experiencing gene duplication in 23 out of the 33 branch pairs 
(P = 3.11 × 10−25, χ2 = 107.7, χ2 test of independence). While gene dupli-
cation generally reduced the convergence rate, as discussed earlier 
(Fig. 2c), some of the independently generated duplicates may tend to 
evolve into the same sequence space when similar expression evolution 
takes place. Convergence of testis-specific genes was most frequently 
observed (19/33 orthogroups) and significantly enriched, with the 
effect size highest among six tissues (Supplementary Table 7). The 
mechanism by which the testis serves as a major place for functional 
evolution of duplicated genes has been explained by several factors, 
including the ease with which expression is acquired in spermatogenic 
cells47,48. This phenomenon is called the out-of-the-testis hypothesis, 
and our results suggest that predictable protein evolution may be 
enriched in this evolutionary pathway. While adaptive evolution may 
explain this evolutionary scenario, it is possible that partially relaxed 
constraints may also be involved in protein convergence, particularly 
at protein sites that were so constrained that almost no amino acid 
substitutions occurred before relaxation.

To infer the functional effect of convergent amino acid substitu-
tions, we mapped the positions of substitutions onto known conforma-
tions of homologous proteins. Strikingly, we observed convergently 
evolved proteins where clusters of substitutions are localized to 
functionally important sites (Fig. 3d–g and Supplementary Text 11). 
For example, an orthogroup of dihydrodiol dehydrogenase (DHDH) 
showed joint convergence of expression and proteins (Fig. 3g). Pos-
sible physiological roles of this enzyme included the detoxification of 
cytotoxic dicarbonyl compounds, such as 3-deoxyglucosone derived 
from glycation49,50. Although the domain structure of proteins was 
well conserved among species (Supplementary Fig. 11a), the gene 
expression patterns of the encoding genes tended to vary. DHDH is 
known to show distinct tissue-specific expression patterns in mam-
mals: kidney in monkeys (Macaca mulatta)51, kidney and liver in dogs 
(Canis lupus)52, liver and lens in rabbits53 and various tissues in pigs (Sus 
scrofa)49. Our amalgamated transcriptomes showed largely consistent 
species-specific expression patterns (Fig. 3g). The OU analysis recov-
ered four lineage-specific regime shifts categorized into two pairs of 
convergent expression evolution. One of them, the convergence of 
gene expression that occurred between frogs (Xenopus) and the blind 
cave fish (Astyanax), which diverged approximately 435 million years 
ago54, is characterized by kidney-specific expression. The Xenopus gene 
ENSXETG00000033613 appeared to have arisen from a more widely 
expressed ancestral gene after a lineage-specific gene duplication. 
By contrast, the Astyanax gene ENSAMXG00000005808 may have 
acquired kidney-specific expression without any detectable duplica-
tion. In this branch pair, we detected a protein convergence rate that 
cannot be explained by neutral evolution alone, with a convergence 
of five amino acid sites (Supplementary Fig. 11a). These convergent 
substitutions localized around the active site, while we did not observe 
such a trend for the double divergence (Fig. 3g). This result suggests 
that the convergent substitutions may have occurred adaptively to 
change ancestral catalytic function.

DHDH has broad substrate specificity for carbonyl compounds. 
This protein oxidizes trans-cyclohexanediol, trans-dihydrodiols of 
aromatic hydrocarbons and monosaccharides including D-xylose, 
while it reduces dicarbonyl compounds, aldehydes and ketones52. Its 
active site is predominantly formed by hydrophobic residues, suggest-
ing their role in catabolizing aromatic hydrocarbons55,56. Notably, the 
convergent substitutions in the substrate-binding pocket tended to 
increase amino acid hydrophobicity (Supplementary Fig. 11b), sug-
gesting that the remodelling of the active site may have led to the 
acquisition of new substrates, and hence a novel detoxification ability, 
in Xenopus and Astyanax.

In summary, ωC was not only robust against phylogenetic errors, 
outperforming other methods in simulation and empirical data, but 
also allowed us to discover plausible adaptive convergence from a 
genome-scale dataset without a pre-existing hypothesis. The geno-
types detected by molecular convergence analysis provide oppor-
tunities for the phenotypic association, mechanistic assessment and 

Fig. 3 | Joint convergence of gene expression patterns and protein sequences. 
a, Comparison of convergent branch pairs obtained by different methods in the 
vertebrate dataset. Branch pairs with OC

N ≥ 3.0 and OC
S ≥ 3.0 were analysed. The 

stochastic equality of the data was tested by a two-sided Brunner–Munzel test 
with W as the test statistic96. Box plot elements are defined as follows: centre 
line, median; box limits, upper and lower quartiles; whiskers, 1.5 × interquartile 
range. b, A schematic illustration of convergent expression evolution modelled 
with a multi-optima Ornstein–Uhlenbeck process. c, Venn diagrams showing 
the extent of overlap between protein and expression convergence. Circles 
represent the sets of branch pairs. d–g, Examples of the likely adaptive joint 
convergence. Aldo-keto reductase family 1 (AKR1, d), Nudix hydrolase 16 like 
1 (NUDT16L1, e), Myeloid associated differentiation marker (MYADM, f) and 
dihydrodiol dehydrogenase (DHDH, g) are shown. The silhouettes represent the 
species (Supplementary Fig. 8a) that carries the gene, and the clades involved 
in the joint convergence are indicated with an enlarged size. The colours of 

branches and animal silhouettes indicate expression regimes. Branches involved 
in joint convergence are highlighted with thick lines, connected by the colour of 
the expression regime and annotated with convergence metrics. Localization 
of convergent and divergent substitutions on the protein structure is shown 
along with a close-up view of functionally important sites. Substrates and their 
analogues are shown as green sticks. Side chains forming the substrate-binding 
site are also shown as sticks. Note that these are the side chains in the protein 
from databases, so amino acid substitutions in the convergent lineages may 
result in distinct structures and arrangements. Site numbers correspond to 
those in the Protein Data Bank (PDB) entry or the AlphaFold structure (from d to 
g: 1Q13, 5W6X, AF-Q6DFR5-F1-model_v2 and 2O48). Icon credits for panels d–g: 
Rattus norvegicus, Rebecca Groom, under a Creative Commons license  
CC BY 3.0; Astyanax mexicanus, Milton Tan/PhyloPic under a Creative Commons 
license CC BY -NC-SA 3.0; all other images are from PhyloPic.com or were  
created by the author.
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experimental validation in vivo. This holds even if internal branches 
are involved in a detected convergence event, because most species 
in the clade will tend to retain the convergent genotypes identified, 

and most species in the clade will tend to retain the phenotypic change 
that drove the molecular convergence. Therefore, molecular conver-
gence revealed by our exploratory analysis will provide a basis for 
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understanding overlooked phenotypes that are in common among 
species in clades descended from branches where the convergent 
events occurred.

Heuristic detection of highly repetitive adaptive convergence
Convergent events observed on even more than two independent line-
ages are exceptionally good signals of adaptive evolution, if they exist, 
because three or more combined convergences should be extremely 
rare in random noise. Conventionally, convergence in more than two 
branches has been analysed as multiple pairwise comparisons for which 
there is a prior hypothesis of convergence. The difficulty in analys-
ing higher-order combinatorial substitutions without specific prior 
hypotheses lies in the need to explore a vast combinatorial space that 
exponentially expands as the number of branches to be combined (K) 
increases. For example, an evenly branching tree with 64 tips has 7,359 

independent branch pairs (that is, at K = 2), but the number of branch 
combinations exponentially increases to 333,375 and 6,976,859 in tri-
ple (K = 3) and quadruple (K = 4) combinations, respectively, making 
it impractical to exhaustively search highly repetitive convergence 
even in a single phylogenetic tree when a hypothesis on focal lineages 
is unavailable.

To overcome this limitation, we developed an efficient 
branch-and-bound algorithm57 that progressively searches for 
higher-order branch combinations (Fig. 4a and Supplementary Fig. 12a).  
For the performance evaluation, we used the PEPC tree (Fig. 4b) 
because it has repeated adaptive convergence for its use in C4 photo-
synthesis (Fig. 1e). While the exhaustive search required 156 minutes 
with K = 3 to analyse 307,432 branch combinations using two central 
processing units (CPUs), our branch-and-bound algorithm required 
only 21 seconds. At K = 4, the exhaustive search completed within a 
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practical time by using 16 CPUs (46 hours for nearly 8 million combi-
nations) but failed to complete at K = 5 (152 million combinations). By 
sharp contrast, the heuristic search took about 5 minutes for the entire 
analysis, of which the higher-order analysis with K ranging from 3 to 6 
took only about 1 minute to analyse as few as 390 combinations with 
two CPUs (Supplementary Table 8).

The analysed tree covered nine independent origins of C4-type 
PEPC, and the corresponding branch pairs of C4 lineages accounted for 
1.1% of all possible pairs (94/8,308). Convergent branch pairs defined 
by a threshold (ωC ≥ 5.0 and OC

N ≥ 2.0) enriched for the C4 lineages at 
K = 2 (29.9%, 26/87; Fig. 4c). The convergence of non-C4 lineages (61/87, 
including pairs of C4 and non-C4 branches) can be interpreted as false 
positives or adaptive convergence associated with other currently 
unknown functions. The subsequent higher-order analysis resulted in 
the discovery of highly repetitive convergence in combinations of as 
many as six branches (that is, K = 3 to K = 6). As the order increased, the 
lineages of C4-type PEPCs rapidly predominated and accounted for all 
the combinations detected at K ≥ 5 (Fig. 4c), even though the heuristic 
algorithm was not given any information about the C4 lineages.

In the higher-order C4 branch combinations, the detected conver-
gence events were almost entirely non-synonymous (OC

N), while syn-
onymous convergence (OC

S) was negligible (Fig. 4d). As a result, the rate 
of synonymous convergence (dSC) quickly approached zero (Fig. 4d).  
Notably, the higher-order convergent substitutions were located at 
functionally important protein sites. In the convergent branch com-
binations with K = 6, we identified three amino acid sites with a joint 
posterior probability of non-synonymous convergence greater than 
0.5: V627I, H665N, and A780S (Supplementary Fig. 12b–d). The H665N 
substitution generates a putative N-glycosylation site that may be 
important for protein folding29. The A780S substitution, for which 
the signature of positive selection had been detected previously28,58,59, 

has been shown to change the enzyme kinetics related to the first 
committed step of C4 carbon fixation60–62 and is therefore considered 
a diagnostic substitution of C4-type PEPC28,29. The third substitution, 
C627I, might be a good focus for future experimentation. Application 
of the heuristic search to the 21 animal genomes revealed that while 
likely adaptive higher-order convergence could be detected, false 
detections arising from inconsistently represented splicing variants 
should be carefully avoided when performing genome-scale analyses 
(Supplementary Text 12, Supplementary Fig. 13 and Supplementary 
Table 9). Nevertheless, these results demonstrate that higher-order 
analysis can substantially increase the signal-to-noise ratio in con-
vergence analysis when there is repeated selective pressure to evolve 
similar biochemical functions.

Discussion
In this study, we introduced a measure of convergent protein evolution, 
ωC, designed to account for false signals due to phylogenetic error. We 
showed, through simulation and analysis of real biological data, that ωC 
mostly eliminates false positives without reduction in power to detect 
true signals. We also developed an approach to estimate the rates of 
highly repetitive convergence (that is, on more than two lineages) fully 
accounting for phylogenetic combinatorics and demonstrated that the 
specificity of ωC increases further in the higher-order analysis. Because 
of its improved accuracy, ωC should further drive macroevolution-
ary analyses where uncorrected measures have been used to iden-
tify responsible genotypes for particular phenotypes in a way similar 
to genome-wide association studies (GWASs). It is noteworthy that 
there are more direct extensions of the GWAS approaches to analyse 
among-species variations. Those methods, including PhyloGWAS63, can 
be applied to closely related species to detect convergent selection on 
ancestral variation or through introgression64. Although those methods 
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are powerful, the applicability to distantly related species is limited. In 
our method, as in alleles identified by GWASs or the above-mentioned 
comparable approaches (or genes in gene-level association tests65), 
genes with excess convergence serve as clues to study macroevolu-
tionary traits for which the molecular basis is unknown (Fig. 5). Fur-
thermore, the accuracy of ωC even allows exploratory analysis (Fig. 5), 
as demonstrated here in vertebrate genomes (Fig. 3). By conducting a 
genome-wide search of convergent branch combinations, we detected 
signatures of likely adaptive convergence, which leads to hypothesis 
generation on responsible phenotypes. This outcome was possible 
because ωC, unlike P-values from GWASs, does not require phenotypic 
traits as input. Convergently evolved genes identified by exploratory 
analysis will, in turn, lead to the discovery of overlooked phenotypes 
through future experimentation.

Although ωC is a powerful means to detect convergence while 
removing the effect of phylogenetic error, there are other sources of 
stochastic error that can mask small signals. We successfully captured 
multiple known convergence events here, even with only two or three 
amino acid substitutions involved in small proteins (Fig. 1e and Sup-
plementary Table 3). However, a convergent amino acid substitution 
at a single site in only two lineages may not reliably be identified as 
resulting from adaptation rather than random homoplasy, by ωC or any 
other measure. Therefore, the number of observed non-synonymous 
convergence (OC

N) should always be considered in addition to the 
phylogenetic error-corrected convergence rate (ωC), especially in a 
genome-scale screening with only two or three focal lineages. If many 
amino acid sites and/or many separate lineages are involved, true 
convergence is, in general, more easily detected. However, it should 
be noted that errors due to splicing variants may not be completely 
eliminated in higher-order branch combinations (Supplementary 
Text 12). In this study, we used different threshold values of ωC and OC

N, 
depending on the application, and our recommended usage is provided 
in Supplementary Text 13.

Although it is well established that phenotypes are associated with 
genotypes, the genetic basis for particular convergently evolved phe-
notypes may arise from distinct, non-convergent genetic changes66,67. 
These specific cases may sometimes occur because of convergent 
mechanisms, such as the use of similar but not identical amino acids, 
and the use of similar changes at adjacent residues in the protein struc-
ture68. The accumulation of knowledge about which mutations are 
repeatedly selected and which are not during convergent evolution 
may provide insight into the evolvability and constraints that govern 
the diversification of organisms.

While some evolutionary innovations may be unique, many traits 
arose convergently69. Fascinating examples not mentioned above 
include endothermy, hibernation, burrowing, diving, venom injection, 
electrogenic organs, eusociality, anhydrobiosis, bioluminescence, 
biomineralization, plant parasitism, mycoheterotrophy and multicel-
lularity. In the past, the observation of similar phenotypes in multiple 
species led to the theory of evolution by natural selection70. The analy-
sis of protein sequences in multiple species gave rise to the formula-
tion of the nearly neutral theory of molecular evolution71,72. Likewise, 
cross-species genotype–phenotype associations illuminated through 
the analysis of molecular convergence, coupled with experimental 
evaluation of mutational effects (Supplementary Text 14), may lead to 
new conceptual frameworks on the constraint and adaptive changes 
at the molecular level that drive phenotypic change among species.

Methods
Simulated codon sequence evolution
With the input phylogenetic tree (Fig. 1c), codon sequences of speci-
fied length (500 codons) were generated with the ‘simulate’ function 
of CSUBST (https://github.com/kfuku52/csubst), which internally 
utilizes the Python package pyvolve for simulated sequence evo-
lution73. An empirical codon substitution model with multiple 

nucleotide substitutions74 was adjusted with observed codon frequen-
cies (ECMK07+F) in the vertebrate genes encoding phosphoglycerol 
kinases (available from the ‘dataset’ function of CSUBST). The con-
ventional ω (dN/dS) was set to 0.2. In the Convergent scenario, 5% of 
codon sites were evolved convergently in focal lineages (the pair of 
terminal branches in Fig. 1c). At convergent codon sites, the frequency 
of non-synonymous substitutions to codons encoding a single ran-
domly selected amino acid was increased so that non-synonymous 
substitutions to the selected codons accounted for approximately 
90% of the total. This operation increases the probability of amino acid 
convergence without changing relative frequencies among synony-
mous codons. The site-specific substitution rate at convergent codon 
sites was also doubled (that is, rl = 2), and a higher non-synonymous/
synonymous substitution rate ratio was applied (that is, ω = 5) to mimic 
adaptive evolution. The simulation parameters for the other scenarios 
are summarized in Supplementary Table 2. For the Random scenario, 
randomized trees were generated in 1,000 simulations with the ‘shuf-
fle’ function of NWKIT v0.10.0 and the --label option (https://github.
com/kfuku52/nwkit).

In-frame codon sequence alignment
Retrieved coding sequences (Supplementary Methods) were format-
ted into in-frame sequences using the ‘pad’ function of CDSKIT v0.9.1 
(https://github.com/kfuku52/cdskit). Stop codons and ambiguous 
codons were replaced with gaps with the ‘mask’ function of CDSKIT. 
Amino acid sequences from translated coding sequences were aligned 
using MAFFT v7.455 with the --auto option75, trimmed with ClipKIT 
v0.1.2 with default parameters and reverse-translated with the ‘back-
trim’ function of CDSKIT. Gappy codon sites were excluded with the 
‘hammer’ function of CDSKIT.

Phylogenetic tree reconstruction
The gene tree was first reconstructed using IQ-TREE v2.0.3 with the 
general time-reversible nucleotide substitution model and four gamma 
categories of among-site rate variation (ASRV). To suppress branch 
attraction in the trees containing HGTs, topological constraints consist-
ent with species classification were generated from the National Center 
for Biotechnology Information (NCBI) Taxonomy76 using the ‘constrain’ 
function of NWKIT and used for tree search. Ultrafast bootstrapping 
with 1,000 replicates was performed to evaluate the credibility of tree 
topology34 with further optimization of each bootstrapping tree (-bnni 
option)33. To improve tree topology, some datasets were subjected to 
phylogeny reconciliation with the species tree using GeneRax v1.2.2 
(ref. 77) (Supplementary Table 3). Branching events in gene trees were 
categorized into speciation or gene duplication by a species-overlap 
method78 (Supplementary Methods). Arabidopsis thaliana orthologues 
in each clade were inferred from the tree topology. Minor differences 
in the methods applied to each dataset, from sequence retrieval to 
phylogenetic analysis, are summarized in Supplementary Table 3.

Detecting convergent expression evolution
Using the dated species tree and rooted gene trees as inputs, the diver-
gence time of individual gene trees was estimated by RADTE (https://
github.com/kfuku52/RADTE) as described previously44. Evolution of 
gene expression levels (SVA-log-TMM-FPKM)44 in brain, heart, kidney, 
liver, ovary and testis samples was modelled on the dated gene tree with 
phylogenetic multi-optima Ornstein–Uhlenbeck models (that is, Hansen 
models79) with the ‘estimate_shift_configuration’ function in the R pack-
age l1ou v1.40 (ref. 45) as described previously44. Convergent regime shifts 
were then detected as multiple regime shifts that lead to similar expres-
sion levels, as judged by the ‘estimate_convergent_regimes’ function45.

Classification of combinatorial substitutions
Combinatorial substitutions were collectively defined as substitutions 
at the same protein site that occur in multiple independent branches in 
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a phylogenetic tree. When this occurs only in two branches, it is called 
a paired substitution. In unambiguous notation, we consider paired 
substitutions along two branches with the same specific state (spe), 
different states (dif) or any state (any) at the ancestral and derived 
nodes. The five combinatorial states that are frequently considered in 
the literature are paired substitutions (any→any), double divergence 
(any→dif), convergence (any→spe), discordant convergence (dif→spe) 
and congruent convergence (spe→spe) (Supplementary Fig. 1c). Con-
vergence is discussed throughout this report because it is of particular 
importance in testing evolutionary genotype–phenotype associations.

Ancestral state reconstruction and parameter estimation
Our method estimates convergent substitution via ancestral recon-
struction. Whereas ancestral amino acid reconstruction has been used 
in previous reports10,11,17,18, here we used codon sequence reconstruc-
tion. Using the input phylogenetic tree and observed codon sequences, 
CSUBST internally uses IQ-TREE to estimate the posterior probabilities 
(PP) of ancestral sequences by the empirical Bayesian method80 with the 
ECMK07+F+R4 model by default. At the same time, the parameters used 
in CSUBST are estimated: equilibrium frequencies of codon state i (πi), 
ASRV for a codon site l (rl), non-synonymous per synonymous substitu-
tion ratio (ω), and transition per transversion substitution ratio (κ).

Multidimensional array structures for substitution history
CSUBST stores the coding sequences and the reconstructed probable 
ancestral states in a three-dimensional array whose size is M × L × 61 for 
a phylogenetic tree with M nodes (excluding the root node) generated 
from an alignment of coding sequences with L codon sites, each of 
which can take a distribution of 61 different codon states (in the univer-
sal genetic code), excluding stop codons. We denote by Pmlj(X|D,θ) the 
PP of codon X for codon state j at site l on node m. The three-dimensional 
array for codon states is then converted to a four-dimensional array that 
stores the probability of substitutions with the size of B × L × 61 × 61, 
where B denotes the number of branches excluding the root branch. 
This array stores the PP of substitution Pblij(S|D,θ) for single substitu-
tion S from ancestral codon state i to derived codon state j for a codon 
site l in branch b. For a site l in branch b connecting ancestral node n 
with codon state i and descendant node m with codon state j, the PP of 
substitution matrix Pij(S|D,θ) is derived as

Pij(S|D,θ) = Pi(X|D,θ) × Pj(X|D,θ)

=

⎛
⎜
⎜
⎜
⎜
⎝

i1
i2
⋮

i61

⎞
⎟
⎟
⎟
⎟
⎠

× ( j1 j2 ⋯ j61 ) =

⎛
⎜
⎜
⎜
⎜
⎝

i1j1 i1j2 ⋯ i1j61
i2j1 i2j2 ⋯ i2j61
⋮ ⋮ ⋱ ⋮

i61j1 i61j2 ⋯ i61j61

⎞
⎟
⎟
⎟
⎟
⎠

.
(1)

As the transition between the same codon state is not considered 
a substitution, the diagonal elements (iji=j) are filled with 0. Although 
equation (1) is an approximation that does not take into account the 
non-independence between nodes of a phylogenetic tree, we confirmed 
that the effect was negligible (Supplementary Text 15 and Supplemen-
tary Fig. 14). For efficient processing of non-synonymous and synony-
mous substitution probabilities with the array operation of NumPy81, 
the four-dimensional array is converted into a pair of five-dimensional 
arrays (AN and AS for non-synonymous and synonymous substitutions, 
respectively) whose individual size is B × L × G × I × J, where codon 
states are grouped into G categories (Supplementary Fig. 2a). Stored 
values range between 0 and 1, denoted by Pblgij(S|D,θ), the probability 
of single substitution S from ancestral codon i to derived codon j (i ≠ j) 
in codon group g at site l of branch b, given the observed sequence 
data D and model parameters θ that include the phylogenetic tree. 
The elements in the array AN dictate Pblgij(SN|D,θ), the probabilities of 
non-synonymous substitutions (SN), whereas those in the array AS cor-
respond to Pblgij(SS|D,θ), the probabilities of synonymous substitutions 

(SS). In AN, where the PPs of synonymous codons are merged, a single 
20 × 20 matrix records all the substitution probabilities, and therefore 
G = 1 and I = J = 20. Synonymous substitutions occur only between 
codons that code for the same amino acid. Because there are 20 differ-
ent amino acids, G equals 20 in AS. In the case of the universal genetic 
code, the maximum number of codons encoding the same amino acid 
is six, for leucine, serine and arginine, so I = J = 6. In the matrix corre-
sponding to these three amino acids, all values are between 0 and 1, 
but for amino acids with a smaller number of codons, the out-of-range 
indices are filled with zero. Missing sites in the sequence alignment are 
also treated as zero. For simplicity, we explain the case where there is 
no missing site in the observed sequences and ancestral states in the 
following sections, but the implementation in CSUBST appropriately 
takes into account the missing sites by subtracting its numbers from L 
at every necessary step in individual branches or branch combinations.

Tree rescaling
During the ancestral state reconstruction, IQ-TREE estimates the 
branch length as the number of nucleotide substitutions per codon 
site. Because our model requires the number of codon substitutions 
rather than the number of nucleotide substitutions, and because 
branch lengths are required separately for both synonymous and 
non-synonymous substitutions, we obtained rescaled branch length 
tb of branch b from the substitution probabilities as follows:

tb =
∑L
l=1∑

G
g=1∑

I
i=1∑

J
j=1Pblgij(S|D,θ)

L . (2)

tb
N and tb

S for non-synonymous and synonymous substitutions were 
obtained with Pblgij(SN|D,θ) and Pblgij(SS|D,θ), respectively. For example, 
the total branch lengths of the vertebrate phosphoglycerol kinase tree 
before and after rescaling are 7.57 nucleotide-substitutions/codon-site 
and 7.21 codon-substitutions/codon-site (1.59 non-synonymous and 
5.62 synonymous codon substitutions per codon site).

Observed number of combinatorial substitutions
The only true observations are the gene sequences of the extant species, 
and the PPs of ancestral sequences and codon substitutions are esti-
mates. However, we refer to the PPs as ‘observations’18 to unambiguously 
distinguish them from the expected values described in the next sec-
tion. Here we denote by Pl(SC|D,θ) the probability of combinatorial sub-
stitution SC at codon site l given observed sequences D and model θ. The 
probabilities of non-synonymous and synonymous combinatorial sub-
stitutions at site l are separately obtained as Pl(SC

N|D,θ) and Pl(SC
S|D,θ),  

respectively, with the following equations:

Plany→any(SC|D,θ) =
G
∑
g=1

K
∏
k=1

I
∑
i=1

J
∑
j=1
Pklgij(S|D,θ) for paired substitutions, (3)

Plany→spe(SC|D,θ) =
G
∑
g=1

j
∑
j=1

jk1 =jk2

K
∏
k=1

I
∑
i=1
Pklgij(S|D,θ) for convergence, (4)

and

Plspe→spe(SC|D,θ) =
G
∑
g=1

I
∑
i=1

ik1 =ik2

J
∑
j=1

jk1 =jk2

K
∏
k=1
Pklgij(S|D,θ) for concordant convergence, (5)

where k represents a branch of interest. We denote by K the degree of 
combinatorial substitutions or the number of branches to be com-
pared. Because two branches are often compared in conventional 
convergence analysis, we explain here the case of K = 2. A part of array 
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operations in equations (3)–(5) are illustrated in Supplementary  
Fig. 2b. The total probabilities of observed substitution pairs across 
sites in the branch pair are calculated as

OC =
L
∑
l=1
Pl(SC|D,θ). (6)

OC is separately obtained for non-synonymous and synonymous combi-
natorial substitutions (OC

N and OC
S, respectively). By definition (Supple-

mentary Fig. 1c), the values of OC for double divergence and discordant 
convergence are derived as follows at K = 2:

OCany→dif = OCany→any −OCany→spe for double divergence (7)

and

OCdif→spe = OCany→spe −OCspe→spe for discordant convergence. (8)

C/D17 corresponds to ONany→spe/ONany→dif in our notation.

Expected number of combinatorial substitutions
To estimate the rate of combinatorial substitutions, the observed num-
ber OC is contrasted with the expected number EC. EC is derived from 
codon substitution models in a way similar to the previous application 
of amino acid substitution models18. The tested codon substitution 
models include the empirical models ECMK07 and ECMrest74 and 
the mechanistic models MG82 and GY83. The same model was con-
sistently used in the ancestral state reconstruction and in deriving 
the model-based expectations of combinatorial substitutions. In the 
method described below, empirical equilibrium codon frequencies, 
the rescaled branch length and ASRV are also taken into account. In 
the empirical models, the codon substitution rate matrix Q is derived 
according to previous literature74,84 as follows:

Q = {qij} =

⎛
⎜
⎜
⎜
⎜
⎝

− s1,2 ⋯ s1,61
s2,1 − ⋯ s2,61
⋮ ⋮ ⋱ ⋮

s61,1 s61,2 ⋯ −

⎞
⎟
⎟
⎟
⎟
⎠

× diag ( π1 π2 ⋯ π61 ) , (9)

where si,j denotes the exchangeabilities of codon pairs i and j (sij = sji) 
and πi represents the equilibrium frequencies of 61 codons estimated 
from the input alignment. In the mechanistic models, mechanistic 
substitution parameters are used instead of the exchangeabilities. 
In the MG model, qij is obtained with πi and non-synonymous per 
synonymous substitution ratio ω, whereas transition per transver-
sion substitution ratio κ is also taken into account in the GY model. Q  
is then rescaled as

61
∑
i=1

61
∑
j=1
j≠i

πiqij = 1. (10)

Finally, the diagonal elements of Q are completed as

qii = −
61
∑
j=1
j≠i

qij. (11)

With substitution rate rl pre-estimated by IQ-TREE, the codon transi-
tion probability matrix Pij(tb,rl) after time tb are obtained using matrix 
exponentiation as

Pij (tb, rl) = eQtbrl , (12)

where CSUBST uses the rescaled branch lengths tb
N or tb

S in place of tb.  
The distribution of expected substitutions at site l in branch b con-
necting ancestral node n with codon state i and a descendant node is 
therefore given by

Pij(Sexpected|D,θ) = Pi(X|D,θ) × Pij(tb, rl). (13)

Using Pklgij(Sexpected|D,θ) in place of Pklgij(S|D,θ), the total probabilities 
of expected substitution pairs across sites in the branch pair denoted 
by EC are obtained by the same procedure used to obtain OC (equa-
tions (3)–(8)). Similar to OC, the expected numbers of combinatorial 
substitutions (EC) are separately calculated for non-synonymous and 
synonymous substitutions (EC

N and EC
S, respectively). By definition 

(Supplementary Fig. 1c), the following relationships hold at K = 2:

Eany→dif
C = Eany→any

C − Eany→spe
C (14)

and

Edif→spe
C = Eany→spe

C − Espe→spe
C . (15)

Non-synonymous and synonymous combinatorial 
substitution rates
With the observed and expected numbers of combinatorial substitu-
tions (OC and EC, respectively), the rates of non-synonymous and syn-
onymous combinatorial substitutions are obtained, respectively, by

dNC = ONC/E
N
C (16)

and

dSC = OSC/E
S
C. (17)

Both dNC and dSC are the observed number divided by the expected 
number. If the theoretically expected number derived from the codon 
substitution model fully explains the observed number, then both dNC 
and dSC values would be 1.0. dNC can be regarded as equivalent to R with 
the per-gene equilibrium amino acid frequencies (their fgene), but note 
that some features are different from the corresponding parts for R. In 
particular, we used the standard procedure to derive codon transition 
probabilities (equations (12) and (13) and equation 1.2 in ref. 16), whereas 
no matrix exponentiation is applied for R. In the 21 vertebrate genome 
dataset, the total expected convergence (ECN,any→spe = 6,051,985) cor-
responds to 87.2% of the total obser ved convergence 
(OCN,any→spe = 6,939,070). This expectation matches the observation 
with better accuracy than the previously published results with the 
Drosophila genomes (582.8/942 = 61.9% with their JTT-fgene model)18.

Accounting for a range of combinatorial substitution rates
Under purifying selection, which is the default evolutionary mode of 
many proteins, the rate of synonymous substitutions is faster than 
that of non-synonymous substitutions. Therefore, saturation of syn-
onymous substitutions becomes a potential problem, especially in a 
counting method that cannot properly account for the effects of multi-
ple substitutions. To account for this issue, we applied a transformation 
of dSC using quantile values (Up) as follows:

dSCcorrected = {
dSCuncorrected, if dSCuncorrected ≥ dNC

UdNC
pdSC

,otherwise
, (18)

where U
dNC
pdSC denotes the quantile value of the empirical dNC distribution 

at pdSC, the quantile rank of the dSC value, among all branch combina-
tions at K. This operation rescales dSC to match its distribution range 
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with that of dNC, and the resulting ωC becomes robust for outlier values 
(Supplementary Fig. 15). Because of the need for quantile values, this 
transformation is only applicable when the branch combinations are 
exhaustively searched. In this work, dSCcorrected is used at K = 2 unless 
otherwise mentioned.

Non-synonymous per synonymous combinatorial 
substitution rate ratio
A non-synonymous per synonymous combinatorial substitution rate 
ratio for K branches is given by

ωC =
dNC
dSC

= OCN/ECN
OCS/ECS

. (19)

ωC can be separately calculated for different categories of combinato-
rial substitutions, for example, ωCany→any for paired substitutions, 
ωCany→spe for double divergence, ωCany→dif for convergence, ωCdif→spe for 
discordant convergence and ωCspe→spe for concordant convergence. For 
simplicity, the derivation of ωC was explained above for the combinato-
rial substitutions illustrated in Supplementary Fig. 1c. However, our 
method can be applied to other categories of combinatorial substitu-
tions as well. For example, phenotypic convergence may be associated 
with the same ancestral amino acid substituted to different amino 
acids85, in which case ωCspe→any may be useful for analysis.

Branch combinations
Combinatorial substitutions are a collection of independently occur-
ring evolutionary events (Supplementary Fig. 1c). Branch combina-
tions containing an ancestor–descendant relationship did not satisfy 
the evolutionary independence and were therefore excluded from 
the analysis. Although convergent substitutions occurring in sister 
branch pairs satisfy the evolutionary independence, they are difficult 
to discriminate and are often treated as a single ancestral substitution. 
For this reason, sister branches were also excluded from the analysis 
(Supplementary Fig. 12a).

Analysis of higher-order branch combinations
OC and EC, and hence ωC, can also be obtained for combinations of 
more than two branches (K > 2). The higher-order analysis is par-
ticularly useful when analysing traits with extensively repetitive 
convergence, such as C4 photosynthesis, which is thought to have 
evolved at least 62 times independently86. To efficiently explore 
the higher-order dimensions of branch combinations, we devised a 
branch-and-bound algorithm that combines the convergence metric 
cut-off, and the generation of K + 1 branch combinations from the 
branch overlaps at K − 1 (Fig. 4a and Supplementary Fig. 12a). The 
higher-order analysis starts with an exhaustive comparison of branch 
pairs (that is, K = 2). Next, convergent branch pairs are extracted with 
an ωC cut-off value (≥5.0 in Fig. 4). At this time, branch pairs with a 
small number of convergent substitutions are excluded by applying 
an OC

N cut-off value (≥2.0 in Fig. 4). The convergent branch pairs 
are then subjected to the all-versus-all comparison. When a shared 
branch is found, their union is generated as a combination of three 
branches to be analysed. Before proceeding to the analysis at K = 3, 
branch combinations containing a sister or ancestor–descendant 
relationship are discarded. In this way, K is sequentially increased by 
one at a time. As such, the algorithm searches only for higher-order 
branch combinations that are guaranteed to have sufficient conver-
gence metrics in lower-order combinations. In each round, conver-
gent branch combinations are first extracted by the cut-offs, and 
then the K + 1 combinations are generated by the K  − 1 overlap, as 
in the analysis at K = 2. For example, two, three and four branches 
should be shared at K = 3, K = 4 and K = 5, respectively. The increase 
in K continues until the algorithm no longer finds a branch combina-
tion that satisfies the criteria of ωC and OC

N.

Implementation of CSUBST
The proposed methods, including the calculation of ωC and the 
branch-and-bound algorithm for higher-order combinations, were 
implemented in the ‘analyze’ function of CSUBST, which was written 
in Python 3 (https://www.python.org/). Phylogenetic tree processing 
was implemented with the Python package ETE 3 (ref. 87). Numpy81, 
SciPy88 and pandas (https://pandas.pydata.org/) were used for array 
and table data processing. Parallel computation was performed by 
multiprocessing with Joblib (https://joblib.readthedocs.io/en/latest/). 
The intensive calculation was optimized with Cython89.

Mapping combinatorial substitutions to protein structures
For the analysis of protein structures, a streamlined pipeline was imple-
mented in the ‘site’ function of CSUBST. Using the ‘--pdb besthit’ option, 
CSUBST requests an online MMseqs2 search90 against the RSCB Protein 
Data Bank (PDB)91 to obtain three-dimensional conformation data of 
closely related proteins. If no hit is obtained, a BLASTP search against 
the UniProt database is run on the QBLAST server to identify the best 
hit protein for which AlphaFold-predicted structure is available92,93. For 
some proteins, structural data were manually selected because more 
appropriate structures were available (for example, with substrate). 
Subsequently, CSUBST internally uses MAFFT to generate protein 
alignments to determine the homologous positions of amino acids and 
to write a PyMOL session file. The protein structures were visualized 
using Open-Source PyMOL v2.4.0 (https://github.com/schrodinger/
pymol-open-source).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw data and results are available at https://doi.org/10.5061/dryad.
tx95x6b0v94.

Code availability
CSUBST is available from GitHub (https://github.com/kfuku52/csubst). 
The results reported in this study can be reproduced with CSUBST 
v0.20.17. The notation in this paper is consistent with CSUBST v1.0.0. 
Scripts used in this study are available at https://doi.org/10.5061/dryad.
tx95x6b0v94.
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