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Increasing sequential tropical cyclone 
hazards along the US East and Gulf coasts

Dazhi Xi    , Ning Lin       & Avantika Gori

Two tropical cyclones (TCs) that make landfall close together can induce 
sequential hazards to coastal areas. Here we investigate the change in 
sequential TC hazards in the historical and future projected climates.  
We find that the chance of sequential TC hazards has been increasing over 
the past several decades at many US locations. Under the high (moderate) 
emission scenario, the chance of hazards from two TCs impacting the same 
location within 15 days may substantially increase, with the return period 
decreasing over the century from 10–92 years to ~1–2 (1–3) years along 
the US East and Gulf coasts, due to sea-level rise and storm climatology 
change. Climate change can also cause unprecedented compounding of 
extreme hazards at the regional level. A Katrina-like TC and a Harvey-like 
TC impacting the United States within 15 days of each other, which is 
non-existent in the control simulation for over 1,000 years, is projected to 
have an annual occurrence probability of more than 1% by the end of the 
century under the high emission scenario.

Compound extreme weather events are hazardous and can produce 
higher impacts than individual or single-hazard events. Compound 
events may be classified into multivariate events, spatially compound-
ing events and temporally compounding events1. Multivariate events 
result from multiple hazards occurring at the same time, while spa-
tially compounding events occur when multiple locations in a region 
are impacted by hazards within a limited time window1. Temporally 
compounding events involve multiple hazardous events happening 
consecutively, and the later hazards can produce more damage due to 
the lowered resistance of infrastructure and communities. For example, 
tropical cyclones (TCs) and heatwaves can be temporally compounded. 
A TC may destroy the power system, leaving residents without air con-
ditioning when a subsequent heatwave arrives2,3.

TCs themselves can generate multiple hazards: strong winds, 
heavy rainfall and storm surges, which can weaken coastal infrastruc-
ture4. These hazards can happen jointly (for example, rainfall and surge 
causing compound flooding5,6) and produce more damage. Previous 
studies have focused on the joint hazards from pairs of TC hazards5–8. A 
study of triple TC hazards (that is, wind, surge and rainfall) is needed to 
gain comprehensive understanding of coastal risk. Furthermore, pre-
vious studies have not addressed sequential hazards from TCs, which 
have recently impacted the United States. For example, Hurricane 

Ida (2021) and Hurricane Nicholas (2021) arrived in Louisiana within  
15 days of each other (Supplementary Fig. 1), and the influence of Ida 
(for example, saturated soil conditions) led to a more severe impact 
from Nicholas9,10. The recent occurrence of such events is consist-
ent with previous findings that the chance of TCs making sequential 
landfall is increasing11 and that TCs are becoming more hazardous6,12,13. 
However, it is still unclear whether the occurrence rate of sequential 
TC hazards in the historical period shows any trend, whether we can 
make robust projections of such events considering the uncertainties 
in TC frequency projection14 and what physical mechanisms cause the 
change of sequential TC hazards.

To address these questions, we investigated the change in sequen-
tial TC hazards using both historical observations and climate simula-
tions. We chose the yearly minimal impact interval (MII; unit: days) 
between hazard-producing TCs as a metric to describe sequential 
TC hazards. We used the 95th percentiles of TC daily maximum water 
level, daily total rainfall and daily maximum wind as thresholds for the 
three hazards, respectively, and we defined storms with at least one 
hazard component exceeding its threshold to be hazard-producing. 
The MII is the yearly minimum of the intervals between the hazards 
of two sequential TCs (the results are not sensitive to the selected 
hazard thresholds). We focused on the sequential impact from storm 
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15 days is a 40-year event in the control climate for Texas, but under the 
SSP5 8.5 (SSP2 4.5) scenario, if we don’t consider SLR (or in practice if 
we adapt to SLR), such an event will become a 4-year (6-year) event; if 
we consider SLR, it will become a 2-year (3-year) event. Across the US 
East and Gulf coasts, under the SSP5 8.5 (SSP2 4.5) scenario, the return 
period of 15-day MII will decrease from 10–92 years to ~2–5 (2–11) years 
not considering SLR and to ~1–2 (1–3) years considering SLR.

The estimated change in MII between TC hazards was compared 
with the change in MII between TC landfalls (as in ref. 11). For example, 
for the 15-day MII return level under the SSP5 8.5 (SSP2 4.5) scenario, 
the decrease of return period defined by landfall ranges from 50.6% 
(48.6%) to 78.7% (74.0%), while the decrease defined by hazard ranges 
from 88.7% (86.6%) to 98.1% (97.1%) considering SLR and 84.7% (81.7%) 
to 94.4% (90.2%) not considering SLR (Supplementary Tables 1 and 2). 
The decrease in the return period of MII defined by landfall is caused by 
the projected increase in landfall frequency11, while the decrease in the 
return period of MII defined by hazard is due to both increased landfall 
frequency and increased storm hazard-producing ability.

The projected increase of landfall frequency is a major driver of 
the shortened MII, but it has large uncertainties14. However, a sensi-
tivity test using future storms with the control frequency shows that 
the return period of MII will still decrease significantly. For example, 
in Texas under the SSP5 8.5 (SSP2 4.5) scenario, an MII of less than 
15 days would change from a 40-year event to a 22-year (28-year) 
event not considering SLR and a 9-year (11-year) event considering 
SLR. Across the US East and Gulf coasts, under the SSP5 8.5 (SSP2 
4.5) scenario, the return period of the 15-day MII will decrease from 
10–92 years to ~8–46 (7–70) years not considering SLR and to ~3–10 
(4–12) years considering SLR. This sensitivity test implies that the 
enhanced hazard severity12,13, caused mainly by increased TC inten-
sity24–26 and SLR, significantly increases the frequency of sequential 
TC hazards, which is not contingent on there being an increase in 
the overall frequency of TCs. The projected change in the MII return 
period solely due to increased hazard severity is comparable to the 
change caused by increased landfall frequency in our projection 
(Supplementary Table 1).

Mechanisms for the increase of sequential  
TC hazards
Sequential TC hazards were shown to significantly increase in the future 
due to the increased severity of TC hazards (Fig. 2). Individual and joint 
TC hazards may become more severe and last longer. From the con-
trol (1984–2005) to the future climate (2070–2100), the return period 
of joint hazards will substantially decrease for all US coastal regions 
(Supplementary Fig. 9). Meanwhile, the proportion of landfalling TCs 
that can produce joint hazards (Fig. 3) will increase from 3.6–12.9% 
to 7.92–26.5% (13.6–30.6% with SLR) under the SSP5 8.5 scenario and 
to 6.0–24.4% (10.0–28.3% with SLR) under the SSP2 4.5 scenario. The 
return period of TCs that can produce at least one type of hazard will 
also substantially decrease across the United States (Supplementary 
Fig. 10). The proportion of landfalling storms producing at least one 
hazard will increase from 25.4–43.7% to 35.9–54.0% (80.1–85.3% with 
SLR) under the SSP5 8.5 scenario and to 27.9–53.6% (75.8–82.9% with 
SLR) under the SSP2 4.5 scenario (Fig. 3).

To understand which hazard component of TCs drives the change 
in sequential events, the ratio between single-hazard-producing TC 
frequency and landfall TC frequency was examined (Fig. 3). In the con-
trol simulation, surge has the highest hazard-to-landfall ratio (ranging 
from 16.9% to 37.6%). In the future, if SLR is not considered, the leading 
hazard component switches to rainfall (except in Mississippi–Alabama 
under the SSP2 4.5 scenario). For example, in Louisiana, the ratios for 
surge, rain and wind hazard are 35.0%, 29.2% and 24.2% in the control 
climate and 41.7% (40.5%), 48.9% (43.2%) and 36.8% (34.8%) in the SSP5 
8.5 (SSP2 4.5) climate, respectively. The relative increase of the ratio of 
rainfall-hazard-producing TCs ranges from 67.5% to 125.4% (45.9% to  

hazards at the same location (temporally compounding events). We 
also present a brief analysis of the sequential impact from severe TCs 
on the US mainland (spatially compounding extremes). As an addi-
tional reference, we analysed marginal and joint TC wind, surge and 
rainfall hazards (multivariate events) to help us understand the cause 
of changes in sequential TC hazards.

Detecting the historical trend of sequential TC hazards directly 
from observations is challenging due to data limitations11. To circum-
vent the challenge, we expanded a probabilistic model that describes 
sequential TC landfalls11 and fit the model using historical observations 
of TC hazard events (Methods). We then used the model to perform 
Monte Carlo simulations for each year from 1949 to 2018 to generate a 
large sample of sequential TC hazard events at nine selected locations 
along the US East and Gulf coasts and estimated the historical trend of 
sequential TC hazards by calculating their annual occurrence prob-
ability from the simulations (Methods).

For the future projection (2070–2100), we applied a physics-based 
TC hazard analysis method to investigate sequential TC hazards impact-
ing the US Gulf and East coasts under both the high (Shared Socio-
economic Pathway 5 8.5 (SSP5 8.5)) and moderate (SSP2 4.5) emission 
scenarios. For each scenario, we used synthetic TCs generated from 
a statistical–deterministic TC model6,15 forced by six Coupled Model 
Intercomparison Project Phase 6 (CMIP6) climate models. For each 
storm, we simulated storm tides (storm surge plus astronomical tide) 
with the advanced circulation (ADCIRC) hydrodynamic model16, rain-
fall with the physics-based TC rainfall (TCR) model17,18 and ten-minute 
sustained wind using the complete wind profile model19. To evaluate 
the impact of sea-level rise (SLR) on sequential TC hazard events, we 
incorporated the probabilistic SLR projection for each emission sce-
nario from the Intergovernmental Panel on Climate Change (IPCC) six 
assessment20. The abovementioned probabilistic model was then fitted 
using the simulated TC hazards to investigate the change of the return 
period (that is, the reciprocal of the annual exceedance probability) of 
various MII levels (Methods).

Increased hazard-producing storms  
from 1949 to 2018
The scarcity of sequential TC hazard events in the observations pre-
vents the direct detection of any trend. However, several parameters 
that influence sequential TC hazards can be analysed on the basis of 
observations, including TC hazard frequency and duration. We analysed 
the trends in hazard frequency and duration for the nine coastal loca-
tions (Supplementary Fig. 2). Except for Charleston, South Carolina, 
and Pensacola, Florida, the hazard frequency has increased since 1949 
(Supplementary Fig. 3), due to the increase in the hazard-producing 
capability of TCs (Supplementary Fig. 4) rather than their landfall fre-
quency (Supplementary Fig. 5). The increased hazard-producing ability 
is probably a result of increased TC intensity21. Except for Charleston, 
South Carolina, the hazard duration has increased since 1949 (Sup-
plementary Fig. 6), which may be a result of decreased TC translation 
speed22,23.

We estimated the yearly probability of experiencing sequential 
TC hazards using the probabilistic model with the hazard frequency 
and duration parameters fitted for each year (ten-year moving aver-
age; Fig. 1). The highest annual probability of experiencing sequential 
TC hazards with MII < 30 days is less than 10%, implying the rareness 
of such events. However, except for Charleston, South Carolina, and 
Pensacola, Florida, there is a clear increasing trend in the yearly prob-
ability of sequential TC hazards. For example, the probability doubled 
over the past seven decades at Sandy Hook, New Jersey.

Projected increase of sequential TC hazards
The climate projection shows that the return period of the MII of 
sequential TC hazards will substantially decrease along the US East 
and Gulf coasts by 2100 (Fig. 2). For example, the MII being smaller than 
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59.2%) across the coastal regions under the SSP5 8.5 (SSP2 4.5) scenario 
(Supplementary Tables 3 and 4). The increase of rainfall hazard is a 
result of the combination of TC climatology change (for example, an 
increase in intensity and a decrease in translational speed) and the 
increase of atmospheric water vapour content27,28.

If SLR is considered, the coastal extreme water level will be the 
leading hazard, and the ratio between surge-hazard-producing storms 
and landfalling storms will reach 79.3–84.7% (74.5–82.5%) under the 
SSP5 8.5 (SSP2 4.5) scenario (Fig. 3). The relative increase in the rate 
of surge-hazard-producing TCs ranges from 126.1% to 379.1% (113.6–
352.9%), and the relative increase in the rate of hazard-producing TCs 
ranges from 93.6% to 223.0% (83.9% to 215.9%) across the coastal regions 
(Supplementary Table 2). These different increases imply that weak TCs 
will be capable of producing high peak water levels under SLR, though 
these TCs may not be intense enough to produce extreme rainfall and 
wind. In addition to the increased rates of hazard-producing TCs in the 
future climate, the individual hazard levels will shift to higher values 
(Supplementary Fig. 11).

The differences between the SSP2 4.5 and SSP5 8.5 scenarios 
in the change in hazard-producing storm ratios are relatively small  
(Fig. 3 and Supplementary Tables 3 and 4), especially for the Gulf Coast 
and for surge-producing storm ratios (not considering SLR). In Texas 
and West Florida, the surge-producing storm ratio is even larger under 
the SSP2 4.5 scenario (median 24.5% and 17.7%) than under the SSP5 8.5 
scenario (18.6% and 14.3%). A possible reason is that TCs with higher 
intensity (which are more frequent under SSP5 8.5) are associated with 
a smaller radius of maximum wind (given the climate-invariant outer 
size as assumed in this study) and therefore may impact smaller areas. 
The hazard-producing storm ratio considering SLR is around 80% 
along the Gulf and East coasts in both scenarios, with SSP5 8.5 being 
slightly higher (Fig. 3).

Besides making weak TCs hazard-producing, SLR also increases 
hazard duration (Fig. 4). Compared with the projection without con-
sidering SLR, the projection considering SLR shows a drastic increase 
in the average hazard duration. The increase in hazard duration caused 
by SLR indicates that, due to SLR, TCs can be hazardous even when they 
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Fig. 1 | Estimated yearly probability of experiencing sequential TC hazards. a–i, The results are shown for three thresholds of MII (10 days, 15 days and 30 days) for 
the nine selected US coastal locations. The dashed lines are fitted linear trends of the probabilities. An asterisk in the key indicates that the trend is significant.
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are relatively weak or distant, especially under the SSP5 8.5 scenario. 
Longer hazard duration under the SSP5 8.5 scenario is another reason 
that the occurrence rate of sequential TC hazards is higher in the SSP5 
8.5 scenario.

Previous research29,30 argued that the increase in peak storm 
surge caused by storm climatology change may be comparable to 
or dominant over the effect of SLR at some coastal locations, which 
seems contradictory to the findings of this study. However, previous 
research focused on extreme events, such as 100-year events. Here, we 
define lower hazard thresholds that are not extreme but can still cause 
flooding and impacts. The differences between the findings of this 

study and those of previous research imply that SLR is more capable 
of changing weak TCs from non-surge-producing to surge-producing 
than of increasing the chances of the most extreme surge events.

Grey swan sequential hazard-producing storms
In previous sections, we examined the probability of two hazard events 
sequentially impacting the same location. Here, we consider the pos-
sibility of two extreme “grey swan” events31 sequentially impacting the 
United States, in which case dispatching limited rescue resources to the 
affected areas may be difficult (e.g., Hurricanes Harvey, Irma and Maria 
in 2017). As an example, we investigated the chance of a Katrina-like 
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scenario considering SLR but not considering storm landfall frequency change. 
The curves are averaged from six climate models (CanESM5, CNRM-CM6-1, 
UKESM1-0-LL, EC-Earth3, IPSL-CM6A-LR and MIROC6). The results were obtained 
under the 95th-percentile definition of hazard-producing; the results under the 
90th-percentile and 99th-percentile definitions are shown in Supplementary 
Figs. 7 and 8, respectively. The return period for west Florida not considering SLR 
or storm frequency change (blue curves) is slightly lower in SSP2 4.5 than in SSP5 
8.5, mainly due to higher surge-producing ability of the storms in SSP2 4.5.
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storm (causing a water level > 8 m in at least one coastal location) and 
a Harvey-like storm (causing total rainfall > 1,000 mm in at least one 
coastal location) impacting the US mainland sequentially (for example, 
with an impact interval < 15 days). Such sequential events cannot be 
found in the 1,375-year control simulation. However, such events may 
occur in the future. The return period of ‘Katrina’ and ‘Harvey’ impact-
ing the US coastline within 15 days is around 250 (1,300) years without 
considering SLR in the future climate and 85 (650) years considering 
SLR under SSP5 8.5 (SSP2 4.5) (Fig. 5). The chance of occurrence of 
extreme sequential events is much higher in the SSP5 8.5 scenario than 
in the SSP2 4.5 scenario, though the difference is relatively small for 
general sequential events (Fig. 2).

Discussion
This study demonstrates that the chances of sequential TC hazards 
along the US East and Gulf coasts have increased and may continue 
to increase. The projected increase is largely driven by the increased 
hazard-producing ability of TCs, especially for rainfall and surge hazard 
(also considering SLR). Previous studies have projected average TC rain 
rates to increase by 10–32%6,27,28,32,33 by 2100. The increase of TC rain 
rates can drive both coastal rainfall extremes6,12,34 and the proportion 
of storms that become hazard-producing to increase, which increases 

the chance of sequential TC hazards. Although TC climatology change 
dominates the change in extreme surge and compound flood hazard6, 
SLR has a stronger impact on the change in moderate events. SLR is the 
leading factor that causes the increase of hazard-producing TCs to be 
around 80% of landfalling TCs (under both the SSP5 8.5 and SSP2 4.5 
scenarios). As SLR projections have uncertainties35,36, their role in caus-
ing weak TCs to become hazard-producing may be further investigated.

This study compared the increase of sequential TC hazards under 
high and moderate climate change scenarios. Previous research on TC 
hazards mainly focused on the high emission scenario5,11,13,29–31,34, but 
given current policies, this scenario is considered unlikely to happen, 
whereas the moderate emission scenario is considered likely37. Our 
analysis shows that although there are some differences in terms of 
single or joint hazards (Supplementary Figs. 9–11), the return period of 
sequential TC hazards is similar under the two scenarios (for example, 
an 89–98% versus 87–97% decrease from the control climate for MII < 15 
days). These similarities are not very sensitive to the uncertainties in 
SLR projection and storm frequency projection, as the change in storm 
hazard-producing ability is substantial under SSP2 4.5 (although it is 
more severe under SSP5 8.5). However, SSP5 8.5 will see more sequential 
extreme events, as demonstrated by the grey swan sequential hazard 
analysis. Overall, the results indicate that the main benefit of adopting 
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shows the SSP2 4.5 scenario (e–h,m–p). Each box plot shows the uncertainty among 
the six climate models. The azure boxes indicate the control scenario, the orange 
boxes indicate the future scenario without considering SLR and the red boxes 

indicate the future scenario with consideration of SLR. In each plot, the box extends 
from the first quartile to the third quartile of the data, with a line at the median. The 
whiskers extend from the box by 1.5× the interquartile range. Because SLR does not 
influence rainfall and wind in the simulation, their ratios in future scenarios with 
SLR are omitted. The results were obtained under the 95th-percentile definition 
of hazard-producing; the results under the 90th-percentile and 99th-percentile 
definitions are shown in Supplementary Figs. 12 and 13, respectively.
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Fig. 4 | Exceedance probability of TC hazard duration. a–h, The hazard 
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cumulative probability function. The mean of the hazard duration is presented in 
the key. An asterisk in the key indicates that the change in the mean is significant 
compared with the control simulation. The solid black curve represents the 

control simulation, the solid (dashed) blue curve represents the SSP5 8.5  
(SSP2 4.5) simulation and the solid (dashed) red curve represents the SSP5 
8.5 + SLR (SSP2 4.5 + SLR) simulation. The results were obtained under the  
95th-percentile definition of hazard-producing; the results under the 90th-
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Figs. 14 and 15, respectively.
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the SSP2 4.5 pathway over the SSP5 8.5 pathway is to reduce the likeli-
hood of extreme events.

The findings in this study are inevitably subject to the uncertain-
ties of the observational data and climate downscaling methods. The 
data quality of TC hazard observations in earlier decades is always a 
concern38. However, a clear trend of increased probability of sequential 
hazard-producing TCs from 1979 (the satellite era) could be found for 
most locations (Fig. 1), indicating that the possible missing TC obser-
vations in early decades38 would not substantially alter the conclu-
sions of this study. Also, the general increase of TC intensity21 and the 
decrease of TC translation speed22,23 in the past few decades supports 
the conclusion of increased hazard-producing capability of landfall-
ing TCs. For the climate projection, the major concern was that large 
uncertainties exist in TC frequency projection. Our synthetic TC model 
projects increased TC frequency25, which contradicts several previous 
studies projecting the opposite14. However, the influence of increased 
TC hazard-producing capability is dominant over (when considering 
SLR) or comparable to (when not considering SLR) the influence of the 
projected increase in landfall frequency on the increase of sequential 
TC hazards.

This research provides the following takeaway messages. First, 
this research urges the consideration of back-to-back TC impacts in 
the development of resilience strategies. Second, TC rainfall and SLR 
have substantial influence on sequential TC hazard events; thus, the 
resilience of coastal infrastructure should be upgraded, targeting 
future extreme rainfall, prolonged surge and flooding. Finally, com-
pounding between grey swan extreme events (even when they impact 
different locations) will stretch the emergency response systems in 
unprecedented ways, so preparation is needed.
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Methods
Historical observations
TCs that made landfall in the United States from 1949 to 2018 were 
used to analyse the historical trend of the annual occurrence prob-
ability of sequential hazard events (the probability of at least one pair 
of sequential events happening in a given year). The information on 
historical TCs was obtained from the International Best Track Archive 
for Climate Stewardship39, which provides six-hourly TC locations 
and intensities. To quantify and examine the change in impacts from 
historical landfalling TCs, we obtained observations of hourly water 
levels, daily rainfall and daily maximum wind at nine locations across 
the US coastal areas (the locations are shown in Supplementary  
Fig. 1) from the Center for Operational Oceanographic Products and 
Services and the National Centers for Environmental Information. 
If the tidal gauge sites had no information for rainfall and wind, we 
found the closest weather stations (within 100 km) to the tidal gauge 
location and used the rainfall and wind observations from these  
stations to represent the wind and rainfall hazards at the tidal  
gauge station.

We found that there were more missing data for wind observations 
from 1949–1979 than in later decades, while the missing data for surge 
and rainfall observations had no substantial decadal variations. To 
eliminate the possibility that the trends were caused by the more fre-
quent missing wind observations in the earlier decades, we conducted 
a similar analysis for only surge and rainfall hazards, and we reached the 
same conclusion. The fact that using only surge and rainfall hazards can 
obtain a similar conclusion as using the triple hazards does not imply 
that the wind hazard is not important; rather, it implies that the three 
hazards are physically correlated.

Synthetic TCs
Synthetic TCs generated with a statistical–deterministic TC model15,25 
were used to study the change in sequential hazard-producing TCs in 
the United States. The storms were generated under the environment 
of six CMIP6 climate models (CanESM5, CNRM-CM6-1, UKESM1-
0-LL, EC-Earth3, IP-SL-CM6A-LR and MIROC6) for the control (1984–
2005), SSP5 8.5 (2070–2100) and SSP2 4.5 scenarios (2070–2100); 
4,400, 6,200 and 6,200 US landfalling storms were generated for  
each model under each scenario, respectively. The synthetic storms 
for the control and SSP5 8.5 scenarios were the same as in ref. 6.  
Neither the difference in the simulation period nor the difference 
in the number of synthetic storms in the datasets influences our  
analysis, as the storm frequency for each of the climate states  
(1984–2005 and two scenarios for 2070–2100) is separately deter-
mined in the TC model and used in the analysis. In total, 8,250 
years of simulation were performed for the 1984–2005 period, and  
5,821 (5,388) years of simulation were performed for the 2070–2100 
period under the SSP2 4.5 (SSP5 8.5) scenario. The thousand-year 
simulations enable us to obtain confident estimation of extremes, 
and the larger dataset of the control climate provides an even more 
reliable baseline.

The synthetic storm model assumes that the storms in the same 
year are conditionally independent (given the same environmental 
forcing), as the feedback of storms to the environment is not captured 
in the one-way coupled TC modelling system. Previous studies11 have 
examined the independence assumption of TC genesis and landfall and 
find that the assumption is valid for hazard analysis.

Wind modelling
The complete wind profile model that merges the TC wind profiles 
of the inner core and outer radii (C15; ref. 19) was used to simulate the 
wind hazard associated with the synthetic TCs. To obtain the surface 
wind affected by environmental winds, we added a correction to the 
simulated wind profile following ref. 40. The C15 model was also used 
to prepare the required wind input for the TCR simulation.

Hydrodynamical modelling
The ADCIRC model was used to simulate the storm tides produced 
by the synthetic TCs. The unstructured computational mesh devel-
oped in ref. 41, which has a spatial coverage of the entire North Atlantic 
basin, was used in this study. Eight tidal constituents42 were applied 
as boundary conditions at the ocean boundary of the mesh. The wind 
and pressure fields associated with the synthetic TCs were needed for 
the storm tide simulations and were obtained using physics-based 
parametric models43. This wind model was used in ref. 6 to drive surge 
simulation, as it is simpler and has similar performance to the C15 
wind model. Further details regarding the ADCIRC model and simula-
tion setups can be found in ref. 41. In the main text, we call the extreme 
water level (storm tide + possible SLR) related to TCs ‘surge hazard’, 
though the word ‘surge’ itself means the increase in water level due to 
atmospheric forcing.

Rainfall modelling
The physics-based TCR model12 was used to simulate rainfall associ-
ated with the synthetic TCs. Detailed formulation on the TCR can be 
found in ref. 18. The simulation setup of the model followed ref. 44, and 
the environmental field needed for the TCR simulation was obtained 
following ref. 12. The C15 model was used to drive the TCR simulation 
following ref. 6.

SLR projection
Localized probabilistic SLR projections in ref. 20 under the SSP5 8.5 and 
SSP2 4.5 emission scenarios were incorporated in this analysis. The 
projection of SLR was developed for tidal gauge locations; for each 
point along the coastline, we applied the projected SLR at the nearest 
tide gauge location. We followed ref. 45 to sample SLR time series over 
2070–2100 from the SLR projection, and we sampled TC hazard events 
over 2070–2100 from the generated TC hazard datasets (assuming 
Poisson arrivals of storms) and combined the TC hazard events and 
SLR for each year.

Joint hazard analysis
Statistical analyses of the triple hazard including the modelled max-
imum storm maximum water level (L), maximum daily rainfall (R) 
and maximum wind speed (W) across each coastal segment of Texas, 
Louisiana, Mississippi–Alabama, West Florida, East Florida, Georgia, 
South Carolina and North Carolina11 were performed. The marginal 
distributions of rainfall, surge and wind were fitted by generalized 
Pareto distributions to characterize the long tails that corresponded to 
the extreme events6,29. The generalized Pareto distributions were fitted 
at each coastal segment, and the threshold was set by minimizing the 
mean squared error between empirical quantiles and the theoretical 
quantiles5. There was no parametric probabilistic distribution that 
described the trivariate generalized Pareto distributions, so nested 
Gumbel copulas46 were used to represent the dependent structure of 
the three individual hazards. Gumbel copulas were used here because 
previous studies6,7,47 showed that each pair of hazards (surge–rain-
fall, surge–wind and wind–rainfall) are correlated especially at tails, 
and Gumbel copulas are often used to quantify the tail-dependent 
structure48.

After fitting the marginal and joint distributions of the tri-
ple TC hazard, we calculated the probability of the three hazards  
jointly exceeding their respective thresholds ( joint exceedance  
probability ( JEP)) and the probability of at least one of the three hazards 
exceeding its respective threshold (at least one exceedance probabil-
ity (OEP)). The thresholds LT, RT and WT are the marginal return levels  
of surge, rainfall and wind hazard with a return period of T years  
in the control simulation. The JEP and OEP are thus mathematically 
defined as:

JEP(T) = ℙ (L > LT ∩ R > RT ∩W > WT) (1)
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and:

OEP(T) = 1 − ℙ(L ≤ LT ∩ R ≤ RT ∩W ≤ WT) (2)

To explicitly discuss the effect of SLR, we calculated the JEP and 
OEP with and without the consideration of SLR. To explore the causa-
tion of the change in JEP and OEP, we also investigated the changes 
in the exceedance probabilities of the single hazards (the marginal 
cumulative density function). The return period (TJE) of the three haz-
ards jointly exceeding their respective return level thresholds (under 
return level T) can be calculated as:

TJE(T) =
1

λ × JEP(T) (3)

where λ is the arrival rate of the storms.
Similarly, the return period (TOE) of at least one of the three hazards 

exceeding its respective threshold can be calculated as:

TOE(T) =
1

λ ×OEP(T) (4)

Probabilistic model for sequential hazard-producing TCs
The Poisson–Gaussian model for sequential landfalling TCs developed 
in ref. 11 was extended to capture the storms’ hazard-producing abili-
ties and hazard durations. The arrival of hazard-producing storms was 
modelled as a non-stationary Poisson process, with arrival rate ν:

ν (t, s) = λhazard (t) Shazard (s) (5)

Shazard (s) =
1
√2

e−
1
2
( s−μ )

2

(6)

where λhazard(t) is the annual frequency of hazard-producing TCs in 
year t. Shazard(s), representing the seasonal variation, is the likelihood 
of a hazard starting to occur on day s and μ is the mean and σ is the 
standard deviation of the impact time of storms that make landfall at 
the selected location. The difference between the Poisson–Gaussian 
model in this study and that in ref. 11 is that this study uses the annual 
frequency and seasonality of hazard-producing storms instead of those 
of landfalling storms, and the ratio between the annual frequency of 
hazard-producing storms and that of landfalling storms can be viewed 
as a metric of storm hazard-producing ability. The Poisson–Gaussian 
model was shown to be capable of capturing the relationship between 
TC landfall climatology and the minimal landfall intervals11, and a larger 
frequency (λhazard) and a smaller seasonal span (σ) favour sequential 
hazard-producing events.

We define the MII mathematically as:

MII(t) = min
i>j

(max (Bi (t) − Ej (t) ,0)) (7)

where Bi(t) is the hazard beginning time of the ith TC in year t, and Ej(t) 
is the hazard end time of the jth TC in year t; if the impacts of the two 
TCs overlap, we set the MII equal to 0. The TCs in a single year were 
ordered by the starting times of hazards associated with the TCs. In 
the Monte Carlo simulations, for each individual TC, the beginning 
times of hazards were randomly drawn from the probabilistic model 
of equations (5) and (6), and the beginning and end times of hazards 
were connected as:

Ei (t) = Bi (t) + Di(t) (8)

where Di(t) is the total hazard duration of the ith TC in year t. As the 
impact duration of TC-related hazards may change in the future, a 

probability distribution that describes the duration of TC hazard 
impacts at each selected location is needed. The probability distribu-
tions of duration in different coastal locations under different climate 
scenarios do not share the same parametric probability distribution. 
Thus, in our analysis and simulation, we applied kernel density estima-
tion to fit the non-parametric probability distribution to the duration. 
For the climate simulation analysis, the physical modeling of each 
hazard component was performed before the probabilistic model was 
fitted with the simulated synthetic events.

Definition of hazard-producing TCs and hazard duration
There is no universal definition of ‘hazard-producing’ as different infra-
structure systems and communities may respond differently to sequen-
tial TC events11. A statistically reasonable, physically meaningful and 
engineeringly applicable definition of ‘hazard-producing’ should be 
able to both categorize the landfalling storms into ‘hazard-producing’ 
and ‘non-hazard-producing’ categories and separate the days of impact 
from a single ‘hazard-producing’ TC into ‘hazard days’ and ‘non-hazard 
days’ (such as the days when TCs are too weak or too far away from the 
point of interest to produce hazards).

To do so, we used specific percentiles of daily maximum water level, 
total rainfall and maximum wind speed when a TC is within 250 km of 
the study point as the thresholds to define ‘hazard-producing’ TCs. In 
the historical analysis, for each individual point of interest, the daily 
maximum water level, total rainfall and maximum wind from every TC 
that ever approached 250 km from the location were collected, and the 
percentiles of each hazard component were calculated on the basis of the 
observations of all TCs impacting this location. For the climate simulation 
using CMIP6 models and the synthetic storm model, the same method 
was applied to calculate percentiles for the control simulation (historical 
period) of each climate model (so the percentiles differ between climate 
models). We used the thresholds in the control period instead of using 
the thresholds in the future period to better investigate the changes in 
TC hazard in the future relative to the historical hazard levels.

The specific percentile chosen as the threshold should be both 
high enough to eliminate nuisance TC events and low enough to include 
some non-extreme events that are still hazardous. In this main text of 
this study, the 95th percentile of each hazard was chosen as the thresh-
old, and the days when at least one hazard component exceeded the 
threshold were defined as ‘hazard days’. The threshold was spatially 
varied by using the 95th percentiles specific to each coastal location 
to account for spatial variation in the preparedness for or awareness 
of hazards. The storms that caused at least one hazard day for a point 
of interest were defined as ‘hazard-producing’ storms for this location. 
The selection of the 95th percentile for the threshold fulfils the require-
ments mentioned in the beginning of this paragraph. For example, 
the mean of the 95th percentiles of six climate model simulations of 
daily accumulated TC rainfall (maximum tide level) in the control cli-
mate is 98.8 mm (1.4 m) near New Orleans, which is approximately ¼ 
(1/6) of the total rainfall (maximum tide level) that Hurricane Katrina 
produced in this location in 2005. Admittedly, the selection of the 
95th percentile was ad hoc, so the results of climate simulations of 
sequential TC-related hazards under other thresholds (the 90th and 
99th percentiles) are shown in Supplementary Figs. 7, 8 and 12–15 as a 
sensitivity test of the results of this study.

Data availability
All data generated in this study, including hazard information and 
sequential TC hazard statistics, have been deposited on Zenodo and 
can be freely accessed at https://doi.org/10.5281/zenodo.7407013  
(ref. 49). Source data are provided with this paper.

Code availability
The code for probabilistic historical/future climate sequential TC 
hazard event simulation and for visualization have been deposited 

http://www.nature.com/natureclimatechange
https://doi.org/10.5281/zenodo.7407013
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on Zenodo and can be freely accessed at https://doi.org/10.5281/
zenodo.7407013 (ref. 49).
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