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Contributions of network structure, 
chemoarchitecture and diagnostic 
categories to transitions between  
cognitive topographies
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Keith W. Jamison    2, Danilo Bzdok    1,3, Amy Kuceyeski    4,  
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The mechanisms linking the brain’s network structure to cognitively 
relevant activation patterns remain largely unknown. Here, by leveraging 
principles of network control, we show how the architecture of the human 
connectome shapes transitions between 123 experimentally defined 
cognitive activation maps (cognitive topographies) from the NeuroSynth 
meta-analytic database. Specifically, we systematically integrated 
large-scale multimodal neuroimaging data from functional magnetic 
resonance imaging, diffusion tractography, cortical morphometry and 
positron emission tomography to simulate how anatomically guided 
transitions between cognitive states can be reshaped b y n eu ro tr an sm itter 
engagement or by changes in cortical thickness. O    u r m    o  d   el incorporates 
neurotransmitter-receptor density maps (18 receptors and transporters) 
and maps of cortical thickness pertaining to a wide range of mental health, 
neurodegenerative, psychiatric and neurodevelopmental diagnostic 
categories (17,000 patients and 22,000 controls). The results provide a 
comprehensive look-up table charting how brain network organization and 
chemoarchitecture interact to manifest different cognitive topographies, 
and establish a principled foundation for the systematic identification of 
ways to promote selective transitions between cognitive topographies.

The brain is a complex system of interconnected units that dynamically 
transitions through diverse activation states supporting cognitive 
function1–6. Large-scale, non-invasive techniques such as functional 
magnetic resonance imaging (fMRI) provide a way to map activation 
patterns to cognitive functions7–12. Healthy brain function requires the 
ability to flexibly transition between different patterns of brain acti-
vation, to engage the corresponding cognitive functions in response 
to environmental and task demands. In turn, the neurophysiological 

dynamics of the human brain are both constrained and supported by 
the network organization of the structural connectome: the white mat-
ter fibres that physically connect brain regions13–17. However, the exact 
mechanisms by which the brain’s network architecture shapes its capac-
ity to transition between cognitively relevant activation patterns remain 
largely unknown, and an intense focus of inquiry in neuroscience18–21.

Network control theory is a computational paradigm that explic-
itly operationalizes how the architecture and dynamics of a network 
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cognitive terms, obtained by aggregating over 14,000 fMRI studies 
from the NeuroSynth atlas8. This approach represents a large-scale 
generalization of recent work that defined cognitively relevant brain 
states in terms of task-based fMRI contrast maps27,54.

In addition to generalizing the set of possible start and target 
states under consideration, we also provide two key extensions to the 
scope of the control inputs under investigation. First, we consider 
the potential role of changes in the capacity of brain regions to act as 
sources of endogenous control signals, associated with a variety of 
diagnostic categories.

We operationalize this using cortical thickness changes for 11 
neurological, psychiatric and neurodevelopmental diagnostic catego-
ries from the ENIGMA consortium, summarizing contrasts between 
17,000 patients and 22,000 controls55–58. Second, inspired by recent 
work33,59, we extend our computational framework to approximate the 
effects of engaging different neurotransmitter systems. Since many 
pharmacological agents exert their effects on the brain by engaging 
neurotransmitter receptors and transporters, this approach enables us 
to investigate the potential role of pharmacological perturbations on 
cognitive transitions. Specifically, we define regionally heterogeneous 
inputs as the regional expression of 18 neurotransmitter receptors and 
transporters, quantified from in vivo positron emission tomography 
(PET) scans in >1,200 participants60. Overall, we combine multiple 
databases from different neuroimaging modalities (fMRI, diffusion MRI 
(dMRI) tractography, cortical morphometry and PET) to investigate 
how the brain’s network architecture shapes its capacity to transition 
between a large number of experimentally defined cognitive topogra-
phies, and how this capacity can be reshaped by engaging neurotrans-
mitter systems or by changes in cortical thickness.

Results
Network control allows us to ask how the brain network structure sup-
ports transitions between cognitively relevant brain states23,34 (Fig. 1a). 
We define the network whose activity is to be controlled as the human 
structural connectome (obtained as a consensus of N = 100 Human 
Connectome Project (HCP)61 participants’ connectomes reconstructed 
from dMRI tractography; Methods). We define the cognitive topogra-
phies as meta-analytic brain activation patterns from the NeuroSynth 
atlas (Methods). With definitions of the network and its state in hand, 
we consider the problem of network controllability: how can the sys-
tem be driven to specific target states by internal or external control 
inputs (Fig. 1b)? Beginning with uniform inputs applied to all regions, 

support transitions between activation states20,22–24. Originally devel-
oped in the physics and engineering literature22,25,26, network control 
theory conceptualizes the state of a dynamical system at a given time 
as a linear function of three elements: (i) the previous state, (ii) the 
structural network linking system units and (iii) input injected into 
the system to control it.

In the context of the brain, such input can intuitively take the form 
of task modulation27–29 or other perturbations from the environment, 
but potentially also pharmacological or direct electromagnetic stimu-
lation30–33, or endogenous signals from elsewhere in the brain34. This 
approach is widely applicable across the breadth of neuroscience, from 
Caenorhabditis elegans and Drosophila20,35 to rodents and primates20,23, 
and across human development36–38, health and disease27,28,31,39–43.

In humans, network control can be used to study the transition 
between brain states. Such state-to-state transitions can be formalized 
as a dynamical process that unfolds over the connectome’s network 
architecture, reconstructed from diffusion-weighted imaging (DWI). 
Of particular relevance is the quantification of control energy. Control 
energy refers to the magnitude of input that needs to be provided to 
the system to drive its trajectory from an initial state to a desired target 
state22,23. In the context of transitions between brain states, the cost of 
transitions may correspond to the magnitude of exogenous stimulation 
(for example, transcranial magnetic stimulation, deep brain stimula-
tion, intracranial stimulation30,31,44,45 or the dose of a pharmacologi-
cal intervention)27,33,46, but also to endogenous effort, as reflected by 
cognitive demand34,47.

When seeking to operationalize this framework, conventional 
studies on control energy in the human brain have consistently adopted 
one of two strategies for defining brain states. One strategy is to define 
brain states as co-activations of cognitively relevant brain circuits, 
operationalized as the canonical intrinsic connectivity networks of the 
brain28,29,43,48,49. The downside of this approach is that intrinsic networks 
identified from fMRI are limited in number (usually only 7–8)3,50–53, pro-
viding a correspondingly limited repertoire compared with the space 
of possible functional activation patterns. The second strategy typi-
cally involves defining brain states as random activation patterns20,43, 
whose number is then virtually limitless, but at the expense of being 
cognitively ambiguous.

Here we overcome these challenges by investigating how network 
architecture supports transitions between cognitive topographies. We 
define cognitive topographies (that is, cognitively relevant brain states) 
as meta-analytic patterns of cortical activation pertaining to over 100 
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Fig. 1 | Network control with cognitive topographies. a, Functional brain 
activity (coloured nodes are active; grey nodes are inactive) evolves through time 
over a fixed network structure (shown below the brains). From a given starting 
configuration of activity (green), some alternative configurations are relatively 
easy to reach in the space of possible configurations (valley, in blue), whereas 
others are relatively difficult to achieve (peak, in yellow). To reach a desired target 
configuration of activity, input energy (represented by the lightning bolt icons) 

can be injected locally into the system, and this energy will spread to the rest of 
the system based on its network organization. b, We define states as 123 meta-
analytic activation maps from the NeuroSynth database. We then use network 
control theory to quantify the cost of transitioning between these cognitive 
topographies. c, Systematic quantification of transition cost between each pair 
of cognitive topographies results in a look-up table mapping the energy required 
for each transition.
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Fig. 2 | Quantifying transitions between cognitive topographies. a, Transition 
cost (energy) between each pair of 123 cognitive topographies (‘states’) from 
NeuroSynth. Rows indicate source states; columns indicate target states. b, Same 
as a, but showing only a subset of 25 out of 123 NeuroSynth states for visualization 
purposes. Matrices are sorted by increasing cost across both rows and columns. 
c, Distributions of the cost to transition to each cognitive topography from every 
other cognitive topography. Box plot: centre line, median; box limits, upper and 
lower quartiles; whiskers, 1.5× interquartile range; points, outliers. d, Variability 
(s.d.) of transition energy is greater along the column dimension (target states) 
than along the row dimension (source states). This effect is also observed for 

the subset of 25 terms (Supplementary Fig. 1; ***P < 0.001). Box plot: centre 
line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile 
range; points, outliers. e, Histogram of the difference in transition cost between 
reaching each state (averaging across all possible source states) and leaving each 
state (averaging across all possible target states). Positive values indicate greater 
cost to reach a state than to leave it, whereas negative values indicate the reverse. 
f, Word clouds show the NeuroSynth terms that are more difficult to reach than to 
leave, on average (red), or more difficult to leave than to reach, on average (blue). 
Word size reflects ranking. Source data are provided as a Source Data file.
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we are interested in the relative energetic cost of transitions between 
different cognitive topographies (Fig. 1c).

Transitions between cognitive topographies
We first evaluate the control energy required to transition between each 
pair of cognitive topographies (‘brain states’) from NeuroSynth8. The 
NeuroSynth meta-analytic engine provides meta-analytic functional 
activation maps associated with 123 cognitive and behavioural terms 
from the Cognitive Atlas62, ranging from general terms (‘attention’ and 
‘emotion’) to specific cognitive processes (‘motor control’ and ‘auto-
biographical memory’), behavioural states (‘eating’ and ‘sleep’) and 
emotional states (‘fear’ and ‘anxiety’). Each map is a vector encoding the 
statistical strength of differential activation for fMRI experiments that 
include a cognitive term versus studies that do not include that term, 
at each spatial location, based on the published literature. Although 
NeuroSynth uses activation maps as the inputs for its term-based 
meta-analysis, its outputs are not activation maps per se, but rather 
they reflect statistical association tests.

Applying control inputs uniformly to all brain regions, we compute 
the optimal energy cost for each of the 15,129 possible transitions 
between cognitive topographies. We find that optimal control energy 
can vary by nearly tenfold across different transitions (Fig. 2a–c). As 
a result of these differences, for several combinations of source and 
target cognitive topographies (36%), a direct transition is not the most 
energy-efficient. Rather, the control energy required to transition 
between them can be reduced if an intermediate transition is made to 
some other state (Extended Data Fig. 1). Of note, the cortical topogra-
phies associated with these intermediate states converge on the default 
mode network (DMN), especially its posterior hubs of left posterior cin-
gulate/precuneus and bilateral angular gyrus (Supplementary Fig. 2).

The transition energy between each pair of states correlates with 
the Euclidean distance between their NeuroSynth vector representa-
tions (Spearman’s r = 0.99, P < 0.001): the more distant two patterns are, 
the more energy will be required, and consequently the average energy 
to reach each target state correlates with the mean (Spearman’s r = 0.49, 
P < 0.001) and standard deviation (s.d.) (Spearman’s r = 0.96, P < 0.001) 
of the corresponding NeuroSynth map (Extended Data Fig. 2a–d).

However, mean and variance of the NeuroSynth activation pat-
terns are coarse descriptions of each pattern. This is because they 
disregard all information about the neuroanatomical distribution of 
activations. In addition, Euclidean distance alone cannot fully account 
for the observed results: Euclidean distance is symmetric, whereas we 
observe that transition energy is asymmetric. Specifically, we observe 
that target states (columns of the matrix) exhibit greater variability 
than start states (rows), suggesting that the destination of a transi-
tion—the desired target topography—may play a more prominent role 
than the current state in determining the ease or difficulty of the tran-
sition (Fig. 2a–c). After partialling out the effect of each NeuroSynth 
map’s mean and s.d., we find that its transition cost is related to both 
topological features of the structural connectome (especially whether 
high-valued nodes are easy or difficult to reach using a diffusion pro-
cess), and the map’s spatial alignment with the unimodal–transmodal 
cortical hierarchy (Extended Data Fig. 2e–g).

We confirm the observation of transition asymmetry by show-
ing that the variability (s.d.) of the transition energy matrix is higher 
across target states (mean = 1.17 × 106, s.d. = 8.74 × 104) than across 
start states (mean = 4.35 × 105, s.d. = 1.35 × 105; t(244) = 50.52, P < 0.001, 
Cohen’s d = 6.42) (Fig. 2d). To investigate this asymmetry further, we 
also compute a measure of transition asymmetry between each pair 
of brain states i and j, as the difference in control energy required 
to move from i to j, versus moving from j to i. Averaging across start 
states provides, for each target state, a measure of whether that brain 
state is overall easier to reach than leave (negative values) or harder 
to reach than leave (positive values) from other states. As expected, 
this measure is positively correlated with the overall transition cost 

to reach a given state (Spearman’s r = 0.73, P < 0.001). We find that the 
majority of cognitive topographies are slightly easier to reach than 
to leave, but this is counterbalanced by a small number of cognitive 
topographies that are substantially harder to reach than to leave. In 
particular, hard-to-reach cognitive topographies include those pertain-
ing to language-related cognitive operations (for example, ‘language’, 
‘reading’ and ‘speech production’) and those pertaining to memory 
(for example, ‘memory’, ‘autobiographical memory’ and ‘semantic 
memory’) (Fig. 2e,f). We confirm this observation quantitatively via 
empirical permutation tests (1,000 permutations): we consider the 
six data-driven cognitive domains identified by Beam and colleagues11: 
memory, cognition, inference, emotion, vision and language. Among 
the terms in our list of 123 that have been assigned to one of these six 
domains, we find that terms pertaining to ‘memory’ (P = 0.007) and 
‘language’ (P = 0.045) exhibit a higher median value of asymmetry 
than would be expected by chance (‘emotion’, P = 0.640; ‘inference’, 
P = 0.696; ‘cognition’, P = 0.542; ‘vision’, P = 0.730).

It is possible that the presence of ‘nested’ terms among our 123 
NeuroSynth terms may skew the distribution of transition energies, 
by making it seem as though the average energy required to transition 
to cognitive topographies pertaining to such terms is lower. However, 
we show that when these ‘nested’ terms are removed, leaving only the 
most general one for each family of terms, the global pattern of transi-
tions is still preserved: the ranking of cognitive topographies in terms 
of average transition energy remains unchanged (Spearman’s r = 1.0, 
P < 0.001) when nested terms are included as sources or excluded 
(Supplementary Fig. 3). This indicates that the presence of overlapping 
and nested terms is not changing the distribution of which cognitive 
topographies are more or less difficult to reach.

The NeuroSynth terms included all pertain to some specific cog-
nitive state or operation. However, it is also of interest whether simi-
lar transition costs would be observed when starting from a state of 
baseline. We find that this is indeed the case. We operationalize such 
a baseline using a map of regional cerebral blood flow63 and compute 
the transition energy from this baseline to every cognitive topography 
from NeuroSynth. Our results show that the average transition energy 
is similar, whether one is starting from other cognitive topographies 
or from this ‘baseline’ state (Supplementary Fig. 4). In other words, 
states that are difficult to reach when switching from other cognitive 
states are also difficult to reach when starting from a baseline that 
corresponds to no specific cognitive state. Altogether, we find that 
the energetic ease or difficulty of transitioning between two given 
cognitive topographies appears to be primarily driven by the identity 
of the target state.

Connectome wiring supports efficient cognitive transitions
Having considered how transition energy varies as a function of differ-
ent origin and target cognitive topographies, we now turn our attention 
to the network itself. We assess how much the observed effects are due 
to topology and geometric embedding. To address this question, we 
implement two classes of null models64.

We first consider a null model that preserves weight distribu-
tion and degree sequence65, and a ‘geometry preserving’ rewired null, 
preserving degree sequence and weight distribution, but also the 
approximate wiring cost (length of connections)66. For each specific 
null model, we re-estimate the control energy 500 times and compare 
the resulting distribution of all-to-all mean transition energy against 
the distribution obtained using the empirical structural connectome 
of the human brain.

We find that the human brain outperforms both null models: 
transitions are significantly less energy expensive on the human con-
nectome than on either null (all P < 0.001; Fig. 3), suggesting that the 
unique wiring architecture of the human connectome supports effi-
cient transitions between cognitively relevant topographies. We also 
find a significant difference between the nulls: rewired networks are 
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more energy-efficient when they preserve both the degree sequence 
and the geometric properties of the human connectome, than when 
only the degree sequence is preserved. In other words, the geometric 
embedding of the human connectome accounts for a substantial por-
tion of its energy efficiency—but not all of it. We also show that these 
observations, obtained from a consensus connectome, remain true 
at the single-participant level: participant-level matrices of transition 
energy correlate with the group-level matrix, and individual connec-
tomes outperform corresponding degree-preserving and degree- and 
cost-preserving nulls (Supplementary Fig. 5 and Supplementary Table 1).

Effect of diagnostic categories on transitions
Up to this point, we investigated both the role of the transition sources 
and targets, and the role of the underlying network. We now turn to the 
remaining element of the network control theory as a framework for 
dynamics on neuronal networks: the control inputs. Although uniform 
control represents the simplest case, we can also consider the case 
where intrinsic control input is heterogeneous across regions, accord-
ing to some property of each region33. Here we consider heterogeneity 
in terms of regional cortical thickness, with the rationale that all else 
being equal, a region of thicker grey matter may be expected to send 
more endogenous input signals to the rest of the system through its 
connections. This intuition is based on the simplifying assumption 
that the amount of endogenous input energy that a region is capable of 
contributing to the network should be a function of its total abundance 
of excitatory neurons (since most inter-regional projections are known 
to originate from excitatory neurons)—and that this, in turn, would 
be related to cortical thickness (since most neurons are excitatory). 
This approach is conceptually related to the approach recently used 
by Singleton and colleagues33,59, who applied non-uniform control 
inputs according to the normalized density of the serotonin 2A recep-
tor expressed in each region (as quantified by PET). We show that the 
overall transition cost between our 123 cognitive topographies is similar 
when using uniform control inputs, or heterogeneous control inputs 
provided by the map of regional cortical thickness of the healthy human 
brain (rescaled to have unit mean to be comparable with the uniform 
control model) (Supplementary Fig. 6).

Next, we consider how changes in cortical thickness associated 
with different diagnostic categories may impact the connectome’s abil-
ity to facilitate transitions between cognitive topographies. As above, 
our intuition is that all else being equal, an atrophied region should 
be less capable of engaging with the rest of the brain and providing 
endogenous control signals to it—and vice versa for an enlarged region. 
We consider different patterns of changes in cortical thickness associ-
ated with 11 neurological, neurodevelopmental and neuropsychiatric 
diagnostic categories as quantified by the ENIGMA consortium and 
recent related publications55–58. For each of the 11 diagnostic catego-
ries, we modulate the regional control input according to the regional 
pattern of increases or decreases in cortical thickness associated with 

that condition (Fig. 4). In other words, when a decrease of thickness 
is observed, we model it as a decrease in control input, and vice versa 
when an increase is observed.

The overall difference in the cost of all pairwise transitions, com-
pared with baseline (uniform control), is shown in Supplementary 
Fig. 7. We observe that most diagnostic categories from the ENIGMA 
database incur greater transition costs than baseline (where baseline 
corresponds to uniform control energy). This may be attributed to 
the fact that for most diagnostic categories (except autism, ADHD and 
22q11.2 deletion syndrome), the majority of regions exhibit reduced 
cortical thickness, rather than increases (Fig. 4b). Since in our model 
this corresponds to reduced control input being provided to the sys-
tem, the overall control input is diminished, and thus the transition 
cost is higher.

However, it is important to disentangle the role of overall changes 
in cortical thickness, versus their specific neuroanatomical distribu-
tion. To this end, and to remove the potential confound of the mean 
and variance of each distribution, we compare the transition energy 
associated with each pattern of cortical thickness, against a null distri-
bution of randomly rotated versions of the same pattern, preserving 
the original brain map’s mean, variance and spatial autocorrelation, 
but randomizing the neuroanatomical locations67. We define statisti-
cally significant facilitation as occurring when a transition requires 
less energy with the empirical map of cortical thickness changes than 
with a null population of randomized maps with preserved spatial 
autocorrelation, mean and variance. Conversely, we define statistically 
significant disfacilitation as occurring when a transition requires more 
energy with the empirical map of cortical thickness changes than with 
a null population of randomized maps with preserved spatial autocor-
relation, mean and variance. Therefore, it would be possible for a set of 
cortical thickness changes to increase control energy when compared 
against uniform control, but reduce it when compared against a distri-
bution of mean-, variance- and autocorrelation-preserving null maps. 
Such a result would indicate that the impact of the cortical thickness 
changes is less severe than would be expected based on random occur-
rence of the same changes in the brain.

This approach allows us to determine the relevance of increases 
and decreases in cortical thickness occurring at specific regions for 
reshaping transition costs. Importantly, this approach does not imply 
that changes in cortical thickness are the cause of a given condition. 
Rather, given that cortical thickness changes have occurred (whether 
as cause or consequence), we seek to evaluate what associations they 
have and what role they may play in reshaping the energetic cost of 
transitioning between cognitive topographies. Our results show that 
for some diagnostic categories, such as schizophrenia, bipolar disor-
der or the temporal lobe epilepsies, the neuroanatomical distribution 
of cortical changes is such that transition costs are on average lower 
than would be expected by only considering equivalent but randomly 
distributed changes in cortical thickness. By contrast, other conditions 
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such as autism, ADHD, depression and 22q syndrome incur transition 
costs that exceed what would be expected based on randomly distrib-
uted cortical thickness increases and decreases (Fig. 4). We also show 
that the spatial correlations between ENIGMA maps and cognitive 
topographies do not trivially predict how ENIGMA maps reshape the 
mean transition energy (r = −0.13, P = 0.091; Supplementary Fig. 8).

Effect of engaging neurotransmitter systems
Finally, inspired by recent work that applied regionally heterogeneous 
control inputs according to PET-derived regional expression of seroto-
nin receptors33,59, we extend our computational framework to approxi-
mate the effects of engaging different neurotransmitter systems.

Therefore, we modulate control inputs in proportion to the 
regional expression of different neurotransmitter receptors and trans-
porters, quantified from in vivo PET. We consider a total of 18 recently 
assembled PET maps60. This allows us to evaluate how engaging each 
receptor—based on its regional distribution—favours transitions 
towards different cognitive topographies. As above, we account for 
the overall distribution of values in each receptor map by compar-
ing it with randomly rotated null maps having the same distribution 
of values and spatial autocorrelation, but different association with 
neuroanatomy67. Thus, we define statistically significant transitions 
as those that require less energy using empirically estimated maps of 
neurotransmitter receptors than randomized maps with preserved 
spatial autocorrelation, mean and variance. Our results show that 
some cognitive topographies are more susceptible than others to 
facilitation via receptor-informed stimulation, whereas others exhibit 
little benefit (Fig. 5).

In addition, we find differences between receptors in terms of 
their propensity to facilitate transitions, over and above the mere 

effect of increased input (that is, performing better than randomly 
rotated counterparts). Specifically, the dopamine transporter and 
D1 receptor, the mu-opioid receptor and the histamine H3 receptor 
maps performed best (Fig. 5). Our computational framework identi-
fies these receptors and transporters as those whose neuroanatomical 
distribution is mostly suited to facilitate transitions towards a variety 
of cognitive topographies.

Sensitivity and robustness
We repeated our analyses using different parameter settings for net-
work control theory, adopting different reconstructions of the human 
connectome (with a different parcellation, in a separate DWI dataset, 
using functional instead of structural networks and in a tenfold larger 
sample), and using two different ways of defining cognitive topogra-
phies: based on the expert-curated BrainMap database7,68 and based 
on in-scanner task contrasts for each individual. The Supplementary 
Information shows results with different implementations of the con-
trollability framework48: we consider the time horizon T for control, 
adjacency matrix normalization factor c and the effect of normalizing 
each map to unit Euclidean norm (Extended Data Figs. 3–6 and Supple-
mentary Tables 2 and 3). We also show that our results can be replicated 
using a different reconstruction of the empirical human connectome, 
obtained from diffusion spectrum imaging (DSI) (Lausanne consensus 
dataset)69, and using a functional rather than anatomical parcellation 
of the human cerebral cortex to define network nodes (Schaefer-100)70 
(Extended Data Fig. 7).

Using the Lausanne consensus connectome, we see that the 
group matrices of transition energy obtained using the HCP and Laus-
anne consensus connectomes are positively correlated (Spearman’s 
r = 0.99, P < 0.001). We also confirm that transitions between cognitive 
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Fig. 4 | Simulating the effect of changes in cortical thickness associated with 
diagnostic categories. a, The effect of cortical thickness changes is modelled 
by varying the control input provided by each region, in proportion to the extent 
of its cortical thickness alteration from healthy controls (Cohen’s d): atrophied 
regions exert less input, and regions of increased thickness exert greater input. 
Heatmap shows how each diagnostic category reshapes the transition energy 
required to reach a given cognitive topography, presented as the percentage 
of transitions (out of all possible initial cognitive topographies) that are 
significantly facilitated (blue colour scale) or significantly disfacilitated (red 

colour scale). Significance is assessed against a null distribution of randomly 
rotated cortical thickness alteration maps with preserved mean, variance and 
spatial autocorrelation, such that the only differences with the original map are 
the neuroanatomical locations of increases and decreases. b, The changes in 
cortical thickness associated with each diagnostic category are shown on the 
cortical surface. ADHD, attention deficit hyperactivity disorder; ASD, autistic 
spectrum disorder; OCD, obsessive-compulsive disorder; IGE, idiopathic 
generalized epilepsy; right TLE, right temporal lobe epilepsy; left TLE, left 
temporal lobe epilepsy. Source data are provided as a Source Data file.
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topographies are more energy-efficient on the human connectome 
than on degree-preserving nulls (P = 0.003). Although we do not find 
a significant difference between the empirical human connectome and 
the distribution of null networks preserving both degree and wiring cost 
(P = 0.266), the superior energy efficiency of the human connectome is 
confirmed at the single-participant level (Extended Data Fig. 8a,b and 
Supplementary Table 4). Both group-level and participant-level results 
are also replicated with network nodes defined by the Schaefer-100 
atlas (Extended Data Fig. 8c,d and Supplementary Table 5).

The Lausanne dataset recapitulates the results about simu-
lating pharmacological intervention (Supplementary Fig. 9a). For 
Schaefer-parcellated data, we also observe a prominent role of D1 recep-
tor and dopamine transporters, as before, but also acetylcholine and 
noradrenaline transporters (Supplementary Fig. 9b). Lausanne dataset 
results are also consistent with HCP results in terms of the impact of 
cortical thickness increase and decrease patterns (note that this analy-
sis could not be repeated with the Schaefer-100 atlas, since ENIGMA 
data are available only in a single parcellation) (Supplementary Fig. 10).

The present results are based on structural connectivity networks 
reconstructed using diffusion-weighted MRI; an alternative approach 
would be to use functional connectivity networks reconstructed using 
fMRI. Following the approach outlined by Scheid and colleagues71, we 
repeat our analyses using functional connectivity networks estimated 
using regularized inverse covariance between resting-state fMRI time 
series from the same 100 HCP participants. We find a similar pattern of 
asymmetry as for our main results, with target state being the main deter-
minant of the energetic cost of transitions (Extended Data Fig. 9a–c).  
Just like with the empirical structural connectome, individuals’ 
empirical functional connectomes outperform both geometric and 
degree-preserving rewired network null models, in terms of supporting 
low-cost transitions (Extended Data Fig. 9d).

We further ensure the robustness of our results by showing that 
they also hold in the broader dataset of 989 HCP participants, both with 
a consensus connectome and at the single-participant level (Extended 
Data Fig. 10). Once again, we find the same pattern of asymmetries 
(Extended Data Fig. 10a–c). We also confirm that across individuals, 
transitions between cognitive topographies require less energy on the 
human structural connectome than on degree-preserving or degree- 
and cost-preserving rewired null networks (Extended Data Fig. 10d).

Next, we show that analogous results can be obtained if instead 
of the automated NeuroSynth meta-analytic engine, we derive 66 
cognitive topographies from BrainMap, an expert-curated data-
base of published voxel coordinates from neuroimaging studies 
that are significantly activated or deactivated during tasks7,68. As 
with NeuroSynth, we observe asymmetry of transitions, such that 
targets exhibit significantly greater variability in transition energy 
(mean = 8.54 × 104, s.d. = 6.46 × 103) than sources (mean = 4.27 × 104, 
s.d. = 9.07 × 103; t(130) = 31.21, P < 0.001, Cohen’s d = 5.40) (Supple-
mentary Fig. 11). Likewise, we find that, among the BrainMap terms 
that have been assigned to one of the six cognitive ontology domains 
from ref. 11, memory-related terms exhibit a higher median value of 
asymmetry than would be expected by chance (P = 0.043). We also 
replicate the result that transitions between cognitive topographies 
require significantly less energy on the human connectome than on 
degree-preserving and degree- and cost-preserving null networks, 
with the geometry-preserving nulls being significantly closer to the 
human connectome than degree-preserving ones (all P < 0.001; Sup-
plementary Fig. 11).

We further repeat our analysis using individual-level contrast maps 
from N = 989 HCP individuals performing different tasks in the scan-
ner. Specifically, we use our network control framework to compute 
the transition energy between brain states defined as task-related 
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Fig. 5 | Modelling how neurotransmitter systems can reshape transitions. 
a, The effect of engaging each neurotransmitter receptor and transporter is 
modelled by changing the control input provided by each region in proportion 
to its density of receptor/transporter expression, measured by in vivo PET. For 
each receptor/transporter, the heatmap shows the percentage of transitions to 
each cognitive state (out of the possible start states) that require significantly 

less energy when using the empirical PET map, than when using null maps with 
preserved spatial autocorrelation and distribution of values, but occurring at 
different neuroanatomical locations. b, The empirical spatial distribution of 
each receptor and transporter is shown on the cortical surface. Source data are 
provided as a Source Data file.
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contrasts, following the approach of ref. 27. The results show that 
asymmetry is also present for this different definition of cognitive 
topographies, which is individual specific and based on statistical 
contrasts rather than meta-analytic activation, thereby offering much 
greater specificity (Supplementary Fig. 12a). In line with our main 
results, there is significantly greater variability in transition energy 
across target states than across source states (Supplementary Fig. 12b). 
In addition, we find that language-related contrasts are the most dif-
ficult to reach (Supplementary Fig. 12a)—consistent with our model 
based on meta-analytic maps, which also indicated ‘language’ as one 
of the most difficult cognitive topographies to transition to. Finally, 
consistent with the results of refs. 27 and 72, we show that transitions 
from the subjectively easier 0-back working memory task to the subjec-
tively more demanding 2-back working memory task are significantly 
more difficult than the reverse (Supplementary Fig. 12c). We further 
extend this result by showing that the more demanding 2-back working 
memory task is generally more difficult to reach, across all start states, 
than the 0-back working memory task (Supplementary Fig. 12d). As a 
final demonstration, for the working memory N-back task fMRI, we also 
computed the energy corresponding to each task-related transition in 
a time-resolved way, that is, between rest blocks and the subsequent 
task blocks, for each participant among the 100 unrelated individu-
als. On average, transitions from rest blocks to 0-back blocks require 
significantly less energy than transitions from rest blocks to 2-back 
blocks (Supplementary Fig. 13).

Discussion
We investigated how the brain’s network architecture shapes its capac-
ity to transition between behaviourally defined cognitive topographies. 
We also systematically modelled how transitions between cognitive 
topographies could be reshaped by engaging different neurotransmit-
ter systems or by changes in cortical thickness associated with differ-
ent diagnostic categories. By taking into account network structure, 
functional activation and chemoarchitecture, our results provide a 
first step towards designing interventions that selectively manipulate 
cognitively relevant activation.

Up to this point, a comprehensive ‘look-up table’ charting the tran-
sitions between cognitively relevant brain states has remained elusive. 
The present approach permits exploration of the full range of possible 
transitions between experimentally defined brain states with a cogni-
tive interpretation. In this sense, our work provides a large-scale gener-
alization of recent advances27,54,73 that defined brain states in terms of β 
maps from a task-based fMRI contrast, task-derived k-means clustering 
or electrocorticography signal power associated with memory task per-
formance31. Importantly, we have also expanded the network control 
framework to include naturalistic, empirically defined forms of control 
input, such as of receptor density (as could be exogenously engaged by 
pharmacological interventions) and changes in cortical thickness (as 
could arise endogenously in various diagnostic categories).

We find that transitions between different cognitive topographies 
are not symmetric but rather directional. Namely, some cognitively 
relevant brain states are substantially harder to reach than others, 
regardless of start state. These observations are consistent with the 
notion that state-to-state transition cost can perhaps be framed as 
cognitive demand34: in particular, transitioning to a more cognitively 
demanding 2-back task requires more control energy than transition to 
an easier task27,72, as our own results also indicate. However, ‘cognitive 
demand’ is a multifaceted construct with a variety of distinct possible 
operationalizations74: it remains to be determined which of these dif-
ferent interpretations is best aligned with network control energy. This 
endeavour will be facilitated by the approach introduced here, which 
enables the computational assessment of transition costs between any 
number of experimentally defined tasks from the literature.

Consistent with our work, a recent study using a different opera-
tionalization of controllability reported asymmetries in the transitions 

between the distributions of states (defined by k-means clustering) 
observed during different tasks, including evidence that transition-
ing from an easier task towards a harder one requires more energy 
than the reverse transition73. In addition, a recent report identified a 
transition asymmetry between artificial ‘bottom-up’ and ‘top-down’ 
states, defined as recruiting different portions of the cytoarchitectonic 
sensory-fugal axis38, finding that top-down states (that is, involving a 
greater proportion of higher-order cortices) are more demanding. 
Indeed, we find that association of the target state with the putative 
unimodal–transmodal functional hierarchy is a predictor of transition 
cost. Moreover, the variability in ease-of-transition that we observe 
highlights cognitive topographies related to language and especially 
memory among those with the greatest asymmetry in transition cost. 
Both of these domains emerge gradually over human development75,76, 
and both language and autobiographical memory have long been 
argued (though not without controversy) to be ‘uniquely human’77–80. 
Our results of low-energy states converging on DMN topography are in 
line with several recent reports, which highlight that the DMN may play 
a role of global workspace in the human brain. By analysing dynamic 
connectivity across tasks and rest fMRI, Diez and Sepulcre81 concluded 
that the DMN may play an attractor-like role across cognitive states, 
favouring easily reachable brain configurations. Also combining task 
and rest fMRI data, Deco and colleagues82 identified posterior DMN 
regions (including left precuneus and left posterior cingulate) as a 
global workspace, based on their consistent role as targets of directed 
information transfer. Another approach based on information theory 
also identified the DMN (including prominent involvement of posterior 
cingulate and left angular gyrus) as a global workspace, based on its 
high prevalence of synergistic interactions with the rest of the brain, 
which are disrupted by pharmacological and pathological perturba-
tions of consciousness83. Our present identification of DMN regions as 
a shared topography of cognitive states that are well suited to facilitate 
efficient transitions, therefore, converges with the emerging charac-
terization of the DMN as orchestrating information flow and dynamics 
of the brain.

Although there is variability among cognitive topographies in 
terms of transition cost, the wiring of the human connectome generally 
facilitates more efficient transitions than alternative topologies20,64,84,85. 
Specifically, the human connectome enables transitions at lower cost 
compared with randomly rewired nulls that preserve degree sequence, 
suggesting that this efficiency is imparted by network topology, rather 
than low-level features such as the density and degree. Importantly, this 
efficiency can be partly attributed to the geometry of wiring lengths: 
when this was accounted for in our geometry-preserving null mod-
els, the connectome’s advantage was substantially diminished. Our 
work contributes to a growing appreciation for how network topol-
ogy and geometry shape efficient communication6,66,86,87 and brain 
function13,15,88,89.

We also identified several factors that contribute to transition 
costs. Our results pertaining to Euclidean distance predicting transi-
tion costs are in line with those of Karrer and colleagues48 and Stiso and  
colleagues31, who found a monotonic increase of both minimum 
and optimal control energy with increasing distance between initial  
and target states. In terms of the states themselves, the best architec-
tural predictor of transition cost to a given cognitive topography is its 
network-based variance (Extended Data Fig. 2). A distribution of values 
over a network’s nodes has high network-based variance if nodes with 
high values are relatively difficult to reach using a diffusion process90. 
Network control theory predicts that control energy will diffuse along 
the network’s paths84. Therefore, we can interpret our results as show-
ing that if a state requires great activation at nodes that are difficult to 
reach via diffusion, the corresponding state will be harder to reach. 
Indeed, network-based variance is related to bidirectional commu-
nicability between nodes—a known predictor of transition energy 
between states28,29,38.
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In other words, if a desired pattern of activations has low diver-
gence from the pattern of diffusion-based proximities between nodes 
(low network-based variance), then that pattern will be easier to reach 
through network control. Finally, we systematically quantified alter-
native naturalistic forms of control, via neurotransmitter receptor 
engagement and changes in cortical morphology associated with 
various diagnostic categories.

We found that changes in transition energy associated with spe-
cific patterns of cortical thickness are highly heterogeneous. They are 
both specific to each diagnostic category and specific to each target 
brain state. These results should not be taken as a claim that changes 
in cortical thickness are the cause of a given condition. Each diagnostic 
category is unique and characterized by a complex set of intertwined 
aetiologies that may occur at different points of the lifespan. But once 
cortical thickness changes are in place—whatever their origin—the 
model quantifies the potential for these changes to facilitate cogni-
tive transitions. Of note, we find that depression and ADHD, both of 
which involve widespread attentional deficits91,92, are characterized by 
overall transition costs that exceed what would be expected if the cor-
responding cortical thickness increases and decreases were spatially 
distributed in a random fashion. Other diagnostic categories (schizo-
phrenia, bipolar and epilepsy) exhibited the opposite pattern. This 
suggests that localized perturbations in the connectome can attenu-
ate some types of state transition and promote others (compared 
with equivalent random maps), potentially providing a mechanistic 
link between regional anatomical changes and changes in cognitive 
capacity across diagnostic categories. This observation is consistent 
with results in the healthy population, where increased controllabil-
ity is advantageous for cognitive performance in some regions, but 
disadvantageous in others30.

Our results pertaining to diagnostic categories are complemen-
tary to applications of network control theory that evaluated transi-
tions between random states or intrinsic connectivity networks, based 
on patients’ reorganized connectomes28,39,43—including a recent report 
that temporal lobe epilepsy induces deficits in control energy that 
are predictive of metabolic deficits quantified by FDG-PET43. By con-
trast, here we used the healthy connectome and simulated the effect 
of altered control input informed by changes in cortical thickness  
(a change in control inputs rather than controlled network) and 
assessed the cost of transitioning between cognitive topographies 
that were experimentally defined. Since diagnostic categories typically 
involve both regional and connectomic alterations, in the future, we 
expect that combining the two approaches will provide an even more 
fine-grained characterization of how disease reshapes the brain’s 
capacity to transition between brain states.

We observed a similar principle when control inputs were guided 
by empirically derived receptor and transporter maps. We find that the 
more difficult cognitive topographies to reach also appear to be those 
that could most benefit from engagement of specific neurotransmitter 
systems, such as via pharmacological intervention. Here dopamine 
transporters and D1 receptors, histamine H3 receptors and mu-opioid 
receptors appear well positioned to facilitate transitions. These results 
are consistent with the use of modafinil and methylphenidate as cog-
nitive enhancers and to treat symptoms of ADHD: both drugs engage 
the dopaminergic system by blocking dopamine transporter as one of 
their main mechanisms of action93–106. Likewise, H3-receptor antagonist 
drugs such as pitolisant are being evaluated for potential treatment of 
ADHD symptoms107–110.

Collectively, the predictions generated by our report highlight 
numerous potential clinical and non-clinical applications. Although 
preliminary, these results provide a first step towards designing pro-
tocols that selectively promote transitions to desired cognitive topo-
graphies in specific diagnostic categories. In addition, outcomes of this 
computational screening could be further tested in vivo by engaging 
different neurotransmitter systems through targeted pharmacological 

manipulations27,33 and evaluating the degree to which they facili-
tate switching between specific experimentally defined cognitive 
topographies.

The present work should be interpreted with respect to several 
important methodological considerations. Network control theory 
models neural dynamics as noise-free, and under assumptions of lin-
earity and time invariance20,23,48. Recent work has begun to introduce 
stochasticity in the network control framework for the brain, with 
promising results—though still within the context of linear systems54,73. 
Although the brain is a nonlinear system, it has been shown that non-
linear dynamics can be locally approximated by linear dynamics17,111, 
including through the application of dynamic causal models112,113. In 
fact, evidence suggests that linear models may even outperform nonlin-
ear ones at the macroscopic scale of functional MRI signals114,115. Finally, 
the predictions of linear network control theory have found successful 
translation to nonlinear systems45,116, and even at predicting the effects 
of direct intracranial electrical stimulation in humans31.

In addition, we made several simplifying assumptions about the 
control input provided by each region based on its cortical thickness or 
receptor/transporter expression. We have treated summary statistics 
from NeuroSynth’s term-based meta-analysis as representing rela-
tive activation; we also acknowledge that the mapping of functional 
activation to psychological terms in NeuroSynth does not distinguish 
activations from deactivations8. However, we believe that our replica-
tion with cognitive topographies defined using BrainMap68 provides 
reassurance about the validity of our approach. We also repeated our 
analysis using individual-level contrast maps from in-scanner tasks. 
The resulting cognitive topographies are therefore explicit activations 
(as opposed to meta-analytic estimates) elicited by specific tasks, 
pertaining to each individual (rather than being aggregates from the 
literature). This analysis therefore enabled us to overcome some of 
the limitations inherent to NeuroSynth, providing greater specificity 
and further validating our computational framework and its results. 
This validation includes the observation that the subjectively more 
demanding 2-back working memory task is also energetically more 
difficult to reach than a comparatively easier 0-back task—in line with 
previous reports27,72,73.

Although the ENIGMA consortium provides datasets from large 
cohorts with standardized pipelines, ensuring robust results, the 
patient populations may exhibit co-morbidities and/or be undergo-
ing treatment. In addition, and of particular relevance for the present 
modelling approach, the available maps do not directly reflect changes 
in tissue volume but rather the effect size (magnitude of between-group 
difference) of patient-control statistical comparisons (though note that 
our use of spatial autocorrelation-preserving null models accounts for 
the mean and variance of each map; Methods). Future work should 
combine assessment of cortical thickness in patient populations with 
task-based fMRI across several tasks, to evaluate whether the cortical 
thickness changes are predictive of changes in the energetic cost of 
different transitions. Although here we made the simplifying assump-
tion of modelling cortical atrophy as decreased intrinsic control input, 
and cortical thickening as increased control input, we acknowledge 
that these are complex phenomena, such that enlargement could also 
impair regional engagement. Additional control input is also not neces-
sarily beneficial, if it imposes energetic or other burdens. Moreover, 
many disorders, diseases and conditions exist beyond the diagnostic 
categories considered here. The same limitation applies to the PET 
data: the atlas of neurotransmitter receptors, though extensive, does 
not include all receptors. However, our computational workflow can 
readily be extended to accommodate new cognitive topographies, 
receptors, or disease maps of interest.

Pertaining to our modelling of neurotransmitter engagement, it 
is important to clarify that our computational framework is intended 
to simulate the effect of engaging a given neuromodulatory system by 
agonism of one of its receptors, such as a pharmacological intervention 
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might do. This is distinct from external neuromodulation via transcra-
nial magnetic stimulation, or transcranial direct current stimulation, 
or deep brain stimulation30,31,44,45. Even though such interventions may 
also be suitable for modelling via network control theory, it is not our 
purpose to do so here. In addition, control inputs applied to skewed 
receptor density distributions do not account for the downstream 
effects of engaging a neurotransmitter system. In addition, neurons 
can respond to medications, especially with chronic treatment, via the 
up/downregulation of receptors and transporters117–120. We expect that 
future work will benefit from complementing the tractability of linear 
control theory with the additional neurobiological realism offered by 
nonlinear computational models, such as biophysical models of cou-
pled excitatory and inhibitory populations121,122. Recent work has shown 
that such models can be enriched with PET maps to simulate the effects 
of excitatory or inhibitory stimulation and recapitulate the empirical 
effects of pharmacological agents123–126. Evaluating such models’ ability 
to achieve distinct cognitively relevant activation patterns in response 
to different pharmacological perturbations will further expand our 
ability to characterize cognitive operations in silico and understand 
their computational origins.

Finally, here we did not consider the role of the subcortex, which 
is not present in ENIGMA cortical alteration maps, and needs differ-
ent treatment both in terms of spatial null models and in terms of PET 
imaging. This approach has also been adopted in recent applications of 
network control theory to the human connectome38,41. In keeping with 
the literature on network control theory in human neuroscience, we 
have relied on parcellated brain data. Although we have shown that our 
results are robust to the use of alternative parcellations of the cerebral 
cortex (both functional and anatomical), future studies combining 
high-resolution functional and diffusion data will help describe transi-
tion energies at the voxel level.

Outlook
Overall, our approach based on network control theory provides a com-
putational framework to evaluate the propensity of the connectome to 
support transitions between cognitively relevant brain patterns. This 
framework lends itself to interrogating transitions between specific 
states of interest and modelling the impact of global perturbations 
of the connectome, or regional cortical heterogeneities, or specific 
neurotransmitter systems. We anticipate that future work may combine 
different facets of this approach to evaluate in silico which potential 
pharmacological treatments may best address the specific cognitive 
difficulties associated with a given disorder or brain tissue lesion.

Methods
Human structural connectome from HCP
We used dMRI data from the 100 unrelated participants (54 females 
and 46 males, mean age = 29.1 ± 3.7 years) of the HCP 900 participants’ 
data release61. All HCP scanning protocols were approved by the local 
Institutional Review Board at Washington University in St. Louis. The 
DWI acquisition protocol is covered in detail elsewhere127. The dMRI 
scan was conducted on a Siemens 3T Skyra scanner using a 2D spin-echo 
single-shot multiband echo-planar imaging sequence with a multi-
band factor of 3 and monopolar gradient pulse. The spatial resolution 
was 1.25 mm isotropic (repetition time (TR) = 5,500 ms, time to echo 
(TE) = 89.50 ms). The b-values were 1,000 s mm−2, 2,000 s mm−2 and 
3,000 s mm−2. The total number of diffusion sampling directions was 
90, 90 and 90 for each of the shells in addition to 6 b0 images. We 
used the version of the data made available in DSI Studio-compatible 
format at http://brain.labsolver.org/diffusion-mri-templates/hcp-
842-hcp-1021 (ref. 128).

We adopted previously reported procedures to reconstruct the 
human connectome from DWI data. The minimally preprocessed DWI 
HCP data127 were corrected for eddy current and susceptibility arte-
fact. DWI data were then reconstructed using q-space diffeomorphic 

reconstruction (QSDR)129, as implemented in DSI Studio (https://www.
dsi-studio.labsolver.org). QSDR is a model-free method that calcu-
lates the orientational distribution of the density of diffusing water 
in a standard space to conserve the diffusible spins and preserve the 
continuity of fibre geometry for fibre tracking. QSDR first reconstructs 
diffusion-weighted images in native space and computes the quantita-
tive anisotropy (QA) in each voxel. These QA values are used to warp the 
brain to a template QA volume in Montreal Neurological Institute (MNI) 
space using a nonlinear registration algorithm implemented in the 
statistical parametric mapping (SPM) software. A diffusion sampling 
length ratio of 2.5 was used, and the output resolution was 1 mm. A mod-
ified FACT algorithm130 was then used to perform deterministic fibre 
tracking on the reconstructed data, with the following parameters131: 
angular cut-off of 55°, step size of 1.0 mm, minimum length of 10 mm, 
maximum length of 400 mm, spin density function smoothing of 0.0 
and a QA threshold determined by the DWI signal in the cerebrospinal 
fluid. Each of the streamlines generated was automatically screened for 
its termination location. A white matter mask was created by applying 
DSI Studio’s default anisotropy threshold (0.6 Otsu’s threshold) to the 
spin distribution function’s anisotropy values. The mask was used to 
eliminate streamlines with premature termination in the white matter 
region. Deterministic fibre tracking was performed until 1,000,000 
streamlines were reconstructed for each individual.

For each individual, their structural connectome was recon-
structed by drawing an edge between each pair of regions i and j from 
the Desikan-Killiany cortical atlas132 if there were white matter tracts 
connecting the corresponding brain regions end to end; edge weights 
were quantified as the number of streamlines connecting each pair of 
regions, normalized by region-of-interest distance and size.

A group-consensus matrix A across participants was then obtained 
using the distance-dependent procedure of Betzel and colleagues to 
mitigate concerns about inconsistencies in reconstruction of indi-
vidual participants’ structural connectomes133. This approach seeks 
to preserve both the edge density and the prevalence and length dis-
tribution of inter- and intra-hemispheric edge length distribution of 
individual participants’ connectomes, and it is designed to produce 
a representative connectome15,133. This procedure produces a binary 
consensus network indicating which edges to preserve. The final edge 
density was 27%. The weight of each non-zero edge is then computed 
as the mean of the corresponding non-zero edges across participants.

Structural connectomes from 989 HCP participants
For the replication with N = 989 HCP young adult participants61, a 
multi-shell, multi-tissue constrained spherical deconvolution model 
was computed in MRtrix3 to estimate the orientation distribution func-
tion134. We used a deterministic tractography algorithm135 with dynamic 
white matter seeding to create individual, whole-brain tractograms 
containing five million streamlines for each participant. The structural 
connectivity between any two regions was the number of streamlines 
connecting those regions divided by the sum of the grey matter volume 
of those regions. The result was an ROI-volume normalized pairwise 
structural connectivity matrix for each individual. A consensus con-
nectome was also generated, as described above.

Functional connectivity
We quantified functional connectivity using resting-state fMRI 
data from the same N = 100 unrelated HCP participants. Data were 
acquired using the following parameters. Structural MRI: 3D MPRAGE 
T1-weighted, TR = 2,400 ms, TE = 2.14 ms, TI = 1,000 ms, flip angle = 8°, 
field of view (FOV) = 224 × 224, voxel size = 0.7 mm isotropic. Two 
sessions of 15 min resting-state fMRI: gradient-echo EPI, TR = 720 ms, 
TE = 33.1 ms, flip angle = 52°, FOV = 208 × 180, voxel size = 2 mm iso-
tropic. Here we used functional data from only the first scanning ses-
sion in left-right (LR) direction. HCP-minimally preprocessed data127 
were used for all acquisitions. The minimal preprocessing pipeline 
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includes bias field correction, functional realignment, motion correc-
tion and spatial normalization to MNI (MNI-152) standard space with 
2 mm isotropic resampling resolution127. We also removed the first 
10 volumes to allow magnetization to reach steady state. Additional 
denoising steps were performed using the SPM12-based toolbox CONN 
(http://www.nitrc.org/projects/conn), version 17f (ref. 136). To reduce 
noise owing to cardiac and motion artefacts, we applied the anatomi-
cal CompCor method of denoising the functional data. The anatomi-
cal CompCor method (also implemented within the CONN toolbox) 
involves regressing out of the functional data the following confound-
ing effects: the first five principal components attributable to each 
individual’s white matter signal and the first five components attribut-
able to the individual cerebrospinal fluid signal; six subject-specific 
realignment parameters (three translations and three rotations) as well 
as their first-order temporal derivatives137. Linear detrending was also 
applied, and the subject-specific denoised BOLD signal time series were 
band-pass filtered to eliminate both low-frequency drift effects and 
high-frequency noise, thus retaining frequencies between 0.008 Hz 
and 0.09 Hz. Subsequently, following ref. 71, functional connectivity 
between pairs of regional BOLD time series was estimated for each par-
ticipant as the regularized inverse covariance matrix. Negative values 
were removed, and a consensus functional connectome was obtained 
as the mean across individual participants’ functional connectomes.

Alternative structural connectome from Lausanne dataset
A total of N = 70 healthy participants (25 females, age 28.8 ± 8.9 years  
old) were scanned at the Lausanne University Hospital in a 3 Tesla 
MRI scanner (Trio, Siemens Medical) using a 32-channel head coil138. 
Informed written consent was obtained for all participants in accord-
ance with institutional guidelines, and the protocol was approved 
by the Ethics Committee of Clinical Research of the Faculty of Biol-
ogy and Medicine, University of Lausanne. The protocol included 
(1) a magnetization-prepared rapid acquisition gradient echo 
(MPRAGE) sequence sensitive to white/grey matter contrast (1 mm 
in-plane resolution, 1.2 mm slice thickness) and (2) a DSI sequence 
(128 diffusion-weighted volumes and a single b0 volume, maximum 
b-value 8,000 s mm−2, 2.2 × 2.2 × 3.0 mm voxel size).

Structural connectomes were reconstructed for individual par-
ticipants using deterministic streamline tractography and divided 
according to the Desikan-Killiany grey matter parcellation. White 
matter and grey matter were segmented from the MPRAGE volumes 
using the FreeSurfer version 5.0.0 open-source package, whereas DSI 
data preprocessing was implemented with tools from the Connectome 
Mapper open-source software, initiating 32 streamline propagations 
per diffusion direction for each white matter voxel. Structural connec-
tivity was defined as streamline density between node pairs, that is, the 
number of streamlines between two regions normalized by the mean 
length of the streamlines and the mean surface area of the regions, 
following previous work with these data69,139.

Network control energy
Network control theory models the brain as a linear, time-invariant con-
trol system23. In the general context of linear control theory, the evolu-
tionary dynamics of the state x(t) is formulated as an equation relating 
the first-order derivative of the state x(t), ̇x, to the state variable x itself 
and the control input. For this system, given the initial and target states, 
the control trajectory moving from the initial to target states is deter-
mined by the interaction matrix A, the input matrix B and the control 
input u(t) in the form of

̇x = Ax(t) + Bu(t) (1)

The state interaction matrix A characterizes the relationships 
between system elements, determining how the control system moves 
from the current state to the future state. The structural connectivity 

matrix A serves as a linear operator that maps each state, x, to the rate 
of change of that state. This linear transformation can be described 
in terms of the evolutionary modes of the system consisting of the N 
eigenvectors of A and their associated eigenvalues. The matrix A is then 
normalized to avoid infinite growth of the system over time:

Anorm = A

|λ(A)max| + c
− I (2)

Here I denotes the identity matrix of size N × N, and |λ(A)max| denotes 
the largest eigenvalue of the system. To normalize the system, we must 
specify the parameter c, which determines the rate of stabilization of 
the system. Here we use c = 0 for our main analyses, such that the system 
approaches its largest mode over time. We also report results for 
c = 0.01 × |λ(A)max|, whereby all modes decay, and the system goes to 
zero over time. The control input matrix B denotes the location of 
control nodes on which we place the input energy. If we control all brain 
regions, B corresponds to the N × N identity matrix with ones on the 
diagonal and zeros elsewhere. If we control only a single brain region i, 
B reduces to a single N × N diagonal matrix with a one in the ith element 
of the diagonal and zeros elsewhere. The control input u(t) denotes the 
amount of energy injected into each control node at each time point t. 
Intuitively, u(t) can be summarized over time to represent the total 
energy consumption during transition from an initial state to a final 
state. In the brain control analysis framework, a state refers to a vector 
x(t) of N elements, which encodes the neurophysiological activity map 
across the whole brain. In the current work, x(t) is the meta-analytic 
activation of each region associated with each cognitively relevant 
term, aggregated over studies in the NeuroSynth database.

This computational approach allows us to compute the transition 
energy as the optimal energy required to transition between each pair 
of cognitive topographies in finite time.

To explore the energetic efficiency of the structural brain network 
in facilitating the transition between cognitive topographies, we 
adopted the optimal control framework to estimate the control energy 
required to optimally steer the brain through these state transi-
tions28,29,43. Optimality is defined in terms of jointly minimizing the 
combination of both the length of the transition trajectory from an 
initial source state (x(0) = x0) to the final target state (x(T) = xT) over  
the time horizon T (to avoid spurious, unrealistically long trajectories) 
and the required unique control input u∗(t) summarized over the length 
of this trajectory:

u(t)∗κ = argmin
uκ

J(uκ)

= argmin
uκ

∫
T

0
( (xT − x(t))⊤(xT − x(t))

+ ρuκ(t)⊤uκ(t) )dt

(3)

where (xT − x(t))⊤(xT − x(t))  is the distance between the state at time t  
and the final state xT, T is the finite amount of time given to reach the 
final state, and ρ is the relative weighting between the cost associated 
with the length of the transition trajectory and the input control energy. 
The equation is solved using forward integration. J(u(t)∗κ ) is the cost 
function defined to find the unique optimal control input u(t)∗κ. Here, 
following common practice, we set ρ equal to 1, corresponding to equal 
weighting28,48. We set T = 1 (ref. 28), but we also report results with T = 3 
(ref. 48) (Extended Data Figs. 3–6). Note that transitions between states 
are not necessarily symmetric in terms of energy required. Asymmetric 
transitions are possible when considering network control energy 
because of the system’s dynamics: activity on the network evolves spon-
taneously even in the absence of control inputs as a diffusion process. 
When a transition is in accordance with this spontaneous evolution, it 
will be easier than when it opposes it. This is analogous to how it takes 
less effort to move with the current of a river than against it.
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Cognitive topographies from NeuroSynth
Continuous measures of the association between voxels and cognitive 
categories were obtained from NeuroSynth, an automated term-based 
meta-analytic tool that synthesizes results from more than 14,000 
published fMRI studies by searching for high-frequency keywords 
(such as ‘pain’ and ‘attention’ terms) that are systematically mentioned 
in the papers alongside fMRI voxel coordinates (https://github.com/
neurosynth/neurosynth, using the volumetric association test maps)8. 
This measure of association strength is the tendency that a given term 
is reported in the functional neuroimaging study if there is activation 
observed at a given voxel. Note that NeuroSynth does not distinguish 
between areas that are activated or deactivated in relation to the term 
of interest, nor the degree of activation, only that certain brain areas 
are frequently reported in conjunction with certain words. Unlike 
BrainMap7,68, which is manually curated by experts, NeuroSynth is an 
automated tool and therefore includes a broader set of terms. Although 
more than a thousand terms are catalogued in the NeuroSynth engine, 
we refine our analysis by focusing on cognitive function and therefore 
we limit the terms of interest to cognitive and behavioural terms. To 
avoid introducing a selection bias, we opted for selecting terms in a 
data-driven fashion instead of selecting terms manually. Therefore, 
terms were selected from the Cognitive Atlas, a public ontology of cog-
nitive science62, which includes a comprehensive list of neurocognitive 
terms. This approach totalled to t = 123 terms (Supplementary Table 6), 
ranging from umbrella terms (‘attention’ and ‘emotion’) to specific 
cognitive processes (‘visual attention’ and ‘episodic memory’), behav-
iours (‘eating’ and ‘sleep’) and emotional states (‘fear’ and ‘anxiety’) 
(Supplementary Table 7) (note that the 123 term-based meta-analytic 
maps from NeuroSynth do not explicitly exclude patient studies). 
The Cognitive Atlas subdivision has previously been used in conjunc-
tion with NeuroSynth67,140,141, so we opted for the same approach to 
make our results comparable to previous reports. The probabilistic 
measure reported by NeuroSynth can be interpreted as a quantitative 
representation of how regional fluctuations in activity are related to 
psychological processes.

Alternative cognitive topographies from BrainMap
Whereas NeuroSynth is an automated tool, BrainMap is an expert- 
curated repository: it includes the brain coordinates that are signifi-
cantly activated during thousands of different experiments from pub-
lished neuroimaging studies7,68. As a result, NeuroSynth terms and 
BrainMap behavioural domains differ considerably. Here we used maps 
pertaining to 66 unique behavioural domains (Supplementary Table 8; 
the same as in ref. 141) obtained from 8,703 experiments. Experiments 
conducted on unhealthy participants were excluded, as well as experi-
ments without a defined behavioural domain.

Cognitive topographies from HCP in-scanner tasks
As a further validation, we also adopted the approach of ref. 27 to 
define cognitive topographies based on task-related parametric con-
trast maps. We used the publicly released task-fMRI general linear 
model (GLM) outputs from the 989 HCP young adult dataset to obtain 
individual-level brain maps corresponding to various cognitive states 
and conditions (although note that not every individual had usable 
data for each task, whether owing to issues with acquisition or data 
quality). Data were acquired with the same parameters and instru-
ments as the HCP resting-state fMRI data discussed above. Full details 
of the acquisition can be found in ref. 142. Data were first minimally 
preprocessed using FSL and FreeSurfer tools, which included gradi-
ent unwarping, motion correction, fieldmap-based EPI distortion 
correction, brain-boundary-based registration of EPI to structural 
T1-weighted scan, nonlinear (FNIRT) registration into MNI152 space, 
grand-mean intensity normalization and smoothing (2 mm full-width 
half at maximum kernel). Full processing details are available in ref. 
127. Fixed-effects analyses were conducted using FSL’s fMRI Expert 

Analysis Tool (FEAT)143 to estimate the average effects across runs within 
participants in standard grayordinates space for each task condition. 
For each task, predictors were included in the model for each type of 
stimulus (condition) and linear contrasts of parameter estimates were 
computed to compare each condition to baseline and to each other. 
Full details of the GLM model and task designs are found in ref. 144.

Here we used select conditions from each task to represent 
individual-level states analogous to our meta-analytical approach 
using NeuroSynth in the main text. Namely, we used individual-level 
contrasts of parameter estimates (COPES) for the following task con-
ditions compared to baseline: working memory (that is, N-back task; 
2-back and 0-back contrasts)145, incentive processing (that is, gambling 
task; punish and reward contrasts)146, motor task (average of all move-
ment conditions)147, language processing (math task and story task 
contrasts)148, social cognition (social and random contrasts; in this 
task, participants watch 20 s videos of objects either interacting (social 
condition) or moving randomly (random condition))149, relational pro-
cessing (relational and matching contrasts; in this task, the relational 
processing condition involves identifying what dimension a pair of 
objects differs along (shape or texture) and then deciding whether a 
second pair of objects differs along the same dimension; in the match-
ing (control) condition, participants are presented with a pair of objects 
and a word (shape or texture) and must decide whether a third object 
matches either of the first two on that dimension)150 and emotional 
processing (faces and shapes contrasts; participants are asked either 
which of the two faces at the top of the screen matches the face at the 
bottom of the screen or which of the two shapes matches the shape at 
the bottom of the screen; the faces are either angry or fearful in their 
expression)151. These publicly available outputs were then parcellated 
into 68 cortical ROIs from the Desikan-Killiany atlas132, producing a 
1 × 68 state vector for each of these conditions for each individual. The 
transition energy between each pair of cognitive topographies defined 
in this way was then computed, for each individual, in the same way as 
for the NeuroSynth-derived cognitive topographies. For the analysis 
of time-resolved transitions in the N-back working memory task-fMRI 
HCP data, for each of the 100 unrelated individuals, the brain pattern 
corresponding to each state was defined by contrasting the mean 
activity of the corresponding task block (0-back or 2-back) and the 
mean activity across all ‘rest’ blocks.

Network null models
We used two different network null models to disambiguate the role 
of connectome topology and geometric embedding in shaping con-
trol energy64. The first null model is the well-known Maslov–Sneppen 
degree-preserving rewired network, whereby edges are swapped to 
randomize the topology while preserving the exact binary degree 
of each node (degree sequence), and the overall distribution of edge 
weights65. As a second, more stringent null model, we adopted a null 
model that, in addition to preserving exactly the same degree sequence 
and exactly the same edge weight distribution as the original net-
work, also approximately preserves the original network’s edge length 
distribution (based on Euclidean distance between regions) and the 
weight–length relationship66.

For each null model, we generated a population of 500 null net-
works starting from the empirical connectome and computed the 
control energy between each pair of cognitive brain states from Neuro-
Synth, as done for the empirical connectome. We compared the overall 
control energy between all possible states obtained from the empirical 
connectome and from the distribution of null instances.

Spatial null models
To evaluate the role of regional neuroanatomical features, we imple-
mented a permutation-based null model, termed spin test64,67. For each 
map, parcel coordinates were projected onto the spherical surface 
and then randomly rotated and original parcels were reassigned the 
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value of the closest rotated parcel (10,000 repetitions)69. In addition 
to preserving the distribution of cortical values, this null model also 
preserves the spatial autocorrelation present in the data.

Predictors of transition energy
We characterized each cognitive brain state from NeuroSynth in terms 
of its relationship with several well-known graph-theoretic proper-
ties of the structural connectome. From the consensus connectome, 
we computed the binary and weighted degree (also known as node 
strength) of each region. We also computed the participation coeffi-
cient of each region, based on the modular assignment of each region 
to the well-known intrinsic connectivity networks51. We computed the 
Spearman correlation between each of these vectors and each of the  
123 brain maps from NeuroSynth. In addition, we also computed  
the correlation between each NeuroSynth map and the principal gra-
dient of variation in functional connectivity152, believed to reflect the 
hierarchical organization of cortical information processing.

Network-based variance
For each NeuroSynth map, we also computed as an additional predictor 
a recently developed measure termed ‘network variance’90. The tradi-
tional notion of variance of a distribution (sum of squared differences 
from the mean) assumes that observations are independent. However, 
this assumption is almost invariably violated in the case of distributions 
on a graph, where the graph’s nodes (whose values correspond to the 
distribution’s observations) are connected to each other, generating 
dependencies. The notion of spatial autocorrelation67 can be cast as a 
special case of this situation, whereby the graph connecting nodes is 
the graph of spatial distances between them (for example, Euclidean 
distance). Devriendt and colleagues provided the network variance as 
a generalization of variance to distributions on a graph:

var(p) = 1
2

N

∑
i, j

p(i)p( j)d 2 (4)

In other words, a distribution on a graph has high network variance 
if most of the mass (here activity) is concentrated at nodes that are 
poorly connected with the rest of the network. This relies on defining 
a suitable measure of distance on a graph. Devriendt and colleagues 
noted that the geodesic distance (length of the shortest path between 
two nodes) may be a suitable candidate, but recommended using the 
effective resistance instead90,153. Like geodesic distance, the effective 
resistance is predicated on the length of the paths between a pair of 
nodes. However, unlike the geodesic distance, effective resistance does 
not only consider the shortest path between two nodes, but rather it 
takes into account paths of all lengths along the graph, such that two 
nodes are less distant the more paths exist between them, thereby 
reflecting the full topology of the network. The resistance distance ωij 
between nodes i and j is large when nodes i and j are not well connected 
in the network, such that only few, long paths connect them, resulting 
in a long time for a random walker to reach one node from another, 
whereas a small ωij means that they are well connected through many, 
predominantly short paths i and j (ref. 153). Up to a constant, the effec-
tive resistance can be computed as the ‘commute time’: the mean time 
it takes a random walker to go from node i to node j and back, for all 
pairs of nodes i and j (ref. 154). Concretely, effective resistance on a 
graph is computed as

ωij = (ei − ej)
⊤
Q(ei − ej) (5)

where the unit vectors have entries (ei)k = 1 if k = i and zero otherwise,  
and where Q is the Moore–Penrose pseudoinverse of the graph’s  
Laplacian matrix.

For each NeuroSynth map, we computed its network variance 
using as distance measure the effective resistance on the consensus 

connectome. Since the network variance requires the distribution on 
the graph’s nodes to be positive and sum to 1, each map’s values were 
rescaled so that the minimum was 0, and then divided by their sum. 
We then used these characterizations of the NeuroSynth maps (cor-
relation with connectome graph-theoretic properties, correlation 
with the cortical hierarchy and network variance) as predictors against 
the average energy required to transition to each cognitive brain state. 
We performed multiple partial correlations using each characteriza-
tion in turn as predictor (after partialling out the effects of mean and 
traditional variance of each NeuroSynth map).

Dominance analysis
As an alternative approach, to consider all predictors together and 
evaluate their respective contributions, we performed a dominance 
analysis with all five predictors. Dominance analysis seeks to determine 
the relative contribution (‘dominance’ of each independent variable 
to the overall fit (adjusted R2)) of the multiple linear regression model 
(https://github.com/dominance-analysis/dominance-analysis)155. This 
is done by fitting the same regression model on every combination 
of predictors (2p-1 submodels for a model with p predictors). Total 
dominance is defined as the average of the relative increase in R2 when 
adding a single predictor of interest to a submodel, across all 2p-1 sub-
models. The sum of the dominance of all input variables is equal to 
the total adjusted R2 of the complete model, making the percentage of 
relative importance an intuitive method that partitions the total effect 
size across predictors. Therefore, unlike other methods of assessing 
predictor importance, such as methods based on regression coef-
ficients or univariate correlations, dominance analysis accounts for 
predictor–predictor interactions and is interpretable.

Cortical thickness and cerebral blood flow maps
We used the neuromaps toolbox (https://netneurolab.github.io/ 
neuromaps/)156 to fetch the map of cerebral blood flow from ref. 63 and 
the map of cortical thickness from ref. 157.

Patterns of cortical thickness change from the ENIGMA 
database
Spatial maps of case versus control cortical thickness were obtained 
by including all the neurological, neurodevelopmental and psychiatric 
diagnostic categories available from the ENIGMA (Enhancing Neuroim-
aging Genetics through Meta-Analysis) consortium56,57 and the ENIGMA 
Toolbox (https://github.com/MICA-MNI/ENIGMA)55 and recent related 
publications (https://github.com/netneurolab/hansen_crossdisor-
der_vulnerability)58, except for obesity and schizotypy. This resulted 
in a total of 11 maps, pertaining to 22q11.2 deletion syndrome158, atten-
tion deficit hyperactivity disorder159, autism spectrum disorder160, 
idiopathic generalized epilepsy161, right temporal lobe epilepsy161, 
left temporal lobe epilepsy161, depression162, obsessive-compulsive 
disorder163, schizophrenia164, bipolar disorder165 and Parkinson’s dis-
ease166. The ENIGMA consortium is a data-sharing initiative that relies 
on standardized image acquisition and processing pipelines, such 
that cortical thickness maps are comparable57. Altogether, over 17,000 
patients were scanned across the 11 diagnostic categories against 
almost 22,000 controls. The values for each map are z-scored effect 
sizes (Cohen’s d) of cortical thickness in patient populations versus 
healthy controls. Imaging and processing protocols can be found at 
http://enigma.ini.usc.edu/protocols/.

For every brain region, we constructed an 11-element vector of 
cortical thickness changes, where each element represents a diagnostic 
category’s change in cortical thickness at the region. These values were 
then added to the B matrix of uniform control inputs to provide regional 
heterogeneity. This approach is motivated by the expectation that 
regions with decreased thickness should have lower capacity to exert 
control inputs, and vice versa. Recent work adopted a similar approach 
to model the regional control input provided at each region, in terms of 
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the regional density of receptor expression, such that regions express-
ing the receptor to a greater extent are understood to exert greater 
control input33. The largest increase in cortical thickness across all 
diagnostic categories is 0.87 (expressed in terms of Cohen’s d), whereas 
the largest decrease is 0.59. Thus, across all diagnostic categories, the 
entries in the input matrix B were always positive, bound between 0.41 
and 1.87. Since the distributions of cortical thickness increases and 
decreases associated with the various ENIGMA diagnostic categories 
are different, changing the distribution of control inputs also changes 
the overall amount of control energy that is being injected into the sys-
tem (in some cases leading to an overall increase or an overall decrease) 
and consequently the control energy that is required to transition 
between brain states. Therefore, an appropriate null model to evaluate 
the effects of patterns of grey matter change associated with diagnostic 
categories on brain state transitions should preserve the overall spatial 
distribution of control inputs associated with each map while changing 
the spatial location. Rather than simply randomizing the distribution 
of cortical thickness increases and decreases, we opted to adopt the 
spin-based null model, which also preserves the spatial autocorrelation 
present in the data64,67. We then obtained the control energy required 
to transition between each pair of states (here considering only the 
reduced set of 25 states, to reduce computational burden) for the 
empirical ENIGMA map against the distribution of spin-null maps. This 
distribution was used to assess whether the transition cost associated 
with the empirical pattern of cortical thickness changes associated 
with each diagnostic category is more energetically demanding than 
would be expected if the same changes were occurring at random on 
the cortex (but with equivalent spatial autocorrelation).

Receptor maps from PET
Receptor densities were estimated using PET tracer studies for a total 
of 18 receptors and transporters, across 9 neurotransmitter systems, 
recently made available by Hansen and colleagues at https://github.
com/netneurolab/hansen_receptors (ref. 60). These include dopa-
mine (D1 (ref. 167), D2 (refs. 168–171), DAT (ref. 172)), noradrenaline 
(NAT; refs. 173–176), serotonin (5-HT1A (ref. 177), 5-HT1B (refs. 177–182), 
5-HT2A (ref. 183), 5-HT4 (ref. 183), 5-HT6 (refs. 184,185), 5-HTT (ref. 183)), 
acetylcholine (α4β2 (refs. 186,187), M1 (ref. 188), VAChT (refs. 189,190)), 
glutamate (mGluR5 (refs. 191,192), NMDA (refs. 193,194)), GABA (GABAA; 
ref. 195), histamine (H3; ref. 196), cannabinoid (CB1; refs. 197–200) and 
opioid (MOR; ref. 201). Volumetric PET images were registered to the 
MNI-ICBM 152 nonlinear 2009 (version c, asymmetric) template, aver-
aged across participants within each study, and then parcellated and 
receptors/transporters with more than one mean image of the same 
tracer (5-HT1B, D2, VAChT) were combined using a weighted average60.

For the control energy analysis, each PET map was scaled between 
0 and 1, and its regional values were added to the B matrix, following 
recent work33. Since the PET distributions are different, changing the 
distribution of control inputs also changes the overall amount of con-
trol energy that is being injected into the system and consequently 
the control energy that is required to transition between brain states. 
Therefore, an appropriate null model to evaluate which receptors are 
especially well poised to facilitate brain state transitions, in terms of 
their spatial location, should preserve the overall distribution of con-
trol inputs associated with each receptor while changing the spatial 
location. Rather than simply randomizing the distribution of receptor 
densities, we opted to adopt the more stringent spin test null64,67. In 
addition to preserving the distribution of regional receptor densities, 
this null model also preserves the spatial autocorrelation present in 
the data. We then evaluated how often (as a percentage out of all start 
states) a transition between two given brain states was found to require 
significantly less control energy when using an empirical receptor map 
to determine the control inputs than when using spin-randomized ver-
sions of the same map. Owing to the computationally intensive nature 
of this procedure (10,000 repetitions for each of the 18 PET maps), we 

only considered transitions between the reduced set of 25 brain states 
instead of the whole 123.

Statistical analyses
Network null models and spatial autocorrelation-preserving null models 
were implemented as described in the preceding sections. The statistical 
significance of differences between transition energies was determined 
with non-parametric permutation t-tests, with 10,000 permutations. 
The use of non-parametric tests alleviated the need to assume normal-
ity of data distributions (which was not formally tested). All tests were 
two-sided, with an α value of 0.05. The effect sizes were estimated using 
Cohen’s measure of the standardized mean difference, d. To ensure 
robustness to possible outliers, correlations were quantified using 
Spearman’s rank-based non-parametric correlation coefficient.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
NeuroSynth meta-analytic maps are freely available from the Neuro-
Synth database at https://github.com/neurosynth/neurosynth. Human 
Connectome Project Young Adult resting-state, task-based and diffu-
sion MRI data are available from https://www.humanconnectome.org/
study/hcp-young-adult. Diffusion MRI data for the Human Connectome 
Project in DSI Studio-compatible format are available at http://brain.
labsolver.org/diffusion-mri-templates/hcp-842-hcp-1021. The Laus-
anne structural connectivity dataset is available at https://doi.org/ 
10.5281/zenodo.2872623. The ENIGMA cortical thickness data are 
provided as part of the ENIGMA Toolbox (v1.1.3), available at https://
github.com/MICA-MNI/ENIGMA. PET receptor and transporter maps 
are available at https://github.com/netneurolab/hansen_receptors. 
Healthy cortical thickness and cerebral blood flow maps are available 
from the neuromaps toolbox at https://netneurolab.github.io/neuro-
maps (ref. 156). Source data are provided with this paper.

Code availability
Code for control energy computation in MATLAB (version 2019a was 
used) is available at https://github.com/gushiapi/Dynamic-Trajectory. 
The Brain Connectivity Toolbox used for graph-theoretic properties 
and to generate degree-preserving null models is freely available at 
https://sites.google.com/site/bctnet. MATLAB code used to generate 
geometry-preserving null networks is freely available at https://www.
brainnetworkslab.com/coderesources. The code for spin-based per-
mutation testing of cortical correlations is freely available at https://
github.com/frantisekvasa/rotate_parcellation. Third-party Python 
software (version 3.8 was used) for dominance analysis is freely avail-
able at https://github.com/dominance-analysis/dominance-analysis. 
Third-party Python software for computing the network variance is 
available at https://github.com/rlambiot/variance. DSI Studio code 
for tractography is freely available at https://dsi-studio.labsolver.
org/. MRtrix3 software for tractography is freely available at https://
www.mrtrix.org/download/. The CONN toolbox (v17f ) for fMRI 
preprocessing is freely available at http://www.nitrc.org/projects/
conn. The ENIGMA Toolbox (v1.1.3) for fetching disorder-related 
maps is freely available at https://github.com/MICA-MNI/ENIGMA. 
The Neuromaps toolbox for fetching brain maps (version 0.0.1) is 
freely available at https://netneurolab.github.io/neuromaps/. We 
have made code available online at https://github.com/netneurolab/
luppi-neurosynth-control.git.
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Extended Data Fig. 1 | Efficient and inefficient paths between cognitive 
topographies. (a) Representation of the control energy matrix as a weighted 
network, showing the transitions (edges) between cognitive topographies 
(nodes) that require the least energy (for display purposes, only 10% of 
connections are shown). Nodes are colored according to their membership 
of the two communities into which cognitive topographies cluster. Cognitive 
topographies that act as intermediaries for the most efficient transition between 
two other cognitive topographies correspond to nodes that have non-zero 
betweenness centrality. Node size reflects the betweenness centrality of each 
node (taking into account all paths). (b) The NeuroSynth terms corresponding 
to cognitive topographies with non-zero betweenness centrality in the 
network representation in (a); size reflects the betweenness centrality of the 
corresponding nodes. To identify the term that most summarises all others, 

we represent each term as a highdimensional vector in semantic space using 
word2vec [201], and we measure their similarity using cosine similarity between 
these vector representations. We find that ‘effort’ has the highest mean cosine 
similarity with the vector representations of all other high-betweenness terms. 
(c) Matrix of the transition cost between each pair of cognitive topographies in 
the reduced set, showing the difference in control energy between the direct 
and least-expensive paths; the value of each non-empty cell indicates the energy 
premium incurred by taking the direct path between two cognitive topographies 
(log-transformed to better show the distribution). (d) The most costly direct 
paths between cognitive topographies (only 10% shown, for display purposes). 
Node size, colour, and position are the same as in (a). Source data are provided as 
a Source Data file.
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Extended Data Fig. 2 | Predictors of transition energy. (a) Euclidean distance 
between the vectors corresponding to each NeuroSynth map. (b) Transition 
energy to a given cognitive topography (averaged over all starting states) 
correlates with the mean Euclidean distance between its corresponding 
NeuroSynth map and all others (p < 0.001 from Spearman correlation, two-
sided). (c) Transition energy to a given cognitive topography (averaged over all 
starting states) correlates with the standard deviation of its NeuroSynth map 
(p < 0.001 from Spearman correlation, two-sided). (d) Transition energy to a 
given cognitive topography (averaged over all starting states) correlates with the 
mean of its NeuroSynth map (p < 0.001 from Spearman correlation, two-sided). 
(e) Mean and variance of a NeuroSynth map are coarse descriptions that do 
not account for neuroanatomy. As neuroanatomically-grounded predictors of 
transition energy, we consider the following features of each NeuroSynth map: 
(i) the map’s spatial alignment with the regional distribution of participation 
coefficients, treating the structural connectome as a network; (ii) the map’s 
spatial alignment with the regional distribution of weighted node degree, 
treating the structural connectome as a network; (iii) the map’s spatial alignment 
with the regional distribution of binary node degree, treating the structural 
connectome as a network; (iv) a recently developed measure of variance for 
distributions over a network [90, 153]: unlike the usual measure of variance, 

which assumes independent data-points and is agnostic to their spatial location, 
this measure takes into account the relationships between observations. 
Specifically, variance of a distribution over a network is low, if high values occur 
at nodes that are easy to reach using a diffusion process along network paths 
of all length. Conversely, if the majority of high values occurs at nodes that are 
difficult to reach using diffusion, then the distribution will have high network-
based variance. This is especially relevant because network control theory 
operationalises control inputs as spreading by diffusing over the network. (v) The 
map’s spatial alignment with the principal gradient of functional connectivity 
(unimodal-transmodal hierarchy) [152]. (f) Bar plot shows the relative dominance 
of each predictor as obtained from dominance analysis [155]. Dominance analysis 
distributes the fit of the model across predictors such that the contribution of 
each predictor can be assessed and compared to other predictors, reflecting 
the proportion of the variance jointly explained by all predictors, that can be 
attributed to each predictor. (g) Bar plot shows the partial correlation between 
each predictor and the average cost to transition to a given brain state, after 
controlling for the effects of brain state mean and variance. *, p < 0.05 from 
partial correlation (two-sided; see Source Data for full statistical reporting). 
Source data are provided as a Source Data file.

http://www.nature.com/natbiomedeng
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Extended Data Fig. 3 | Transition energies for alternative operationalisations 
of network control theory. (a, b) Transition energy between each pair of 
123 cognitive topographies from NeuroSynth (a) and the reduced set of 25 
NeuroSynth terms (b), for network control with time horizon T = 3 and network 
normalisation factor c = 0.01 × |λ(A)max|. Rows indicate source states, columns 

indicate target states. (c, d) Transition energy between each pair of 123 cognitive 
topographies from NeuroSynth (c) and the reduced set of 25 NeuroSynth terms 
(d), for network control with all NeuroSynth maps normalised to unit Euclidean 
norm. Source data are provided as a Source Data file.

http://www.nature.com/natbiomedeng
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Extended Data Fig. 4 | Role of network topology in supporting transitions, 
for alternative operationalisations of network control theory.  
(a, b) participant-wise (a) and group-level (b) average transition energy for the 
empirical human connectome (red) and for degree-preserving (grey) and degree- 
and cost-preserving null models (blue), for network control with time horizon 
T = 3 and network normalisation factor c=0.01 × |λ(A)max|. n = 100 participants 
and corresponding null networks. Box-plots: center line, median; box limits, 

upper and lower quartiles; whiskers, 1.5× interquartile range; ***, p < 0.001 from 
paired-samples t-tests (two-sided). (c, d) participant-wise (c) and group-level 
(d) average transition energy for the empirical human connectome (red) and for 
degree-preserving (grey) and degree- and cost-preserving null models (blue), for 
network control with all NeuroSynth maps normalised to unit Euclidean norm. 
Source data are provided as a Source Data file.

http://www.nature.com/natbiomedeng
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Extended Data Fig. 5 | Effects of cortical thickness changes associated with 
each diagnostic category, for alternative operationalisations of network 
control theory. Heatmap shows how each diagnostic category reshapes the 
transition energy required to reach a given cognitive topography, presented as 
the percentage of transitions (out of all possible initial cognitive topographies) 
that are significantly facilitated (blue colour scale) or significantly dis-facilitated 
(red colour scale). Significance is assessed against a null distribution of randomly 
rotated cortical thickness alteration maps with preserved mean, variance, and 

spatial autocorrelation, such that the only differences with the original map 
are the neuroanatomical locations of increases and decreases. (a) For network 
control with time horizon T = 3 and network normalisation factor c = 0.01 × |λ(A)
max | ; (b) for network control with all NeuroSynth maps normalised to unit 
Euclidean norm. adhd = attention deficit/hyperactivity disorder; asd = autistic 
spectrum disorder; ocd = obsessive-compulsive disorder; ige = idiopathic 
generalised epilepsy; right tle = right temporal lobe epilepsy; left tle = left 
temporal lobe epilepsy. Source data are provided as a Source Data file.

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-024-01242-2

Extended Data Fig. 6 | How neurotransmitter systems can reshape the 
energy landscape of the human brain, for alternative operationalisations 
of network control theory. Heatmaps show how each receptor/transporter 
reshapes the average cost of reaching a given cognitive brain state from all other 
states, as a percentage of transitions to each state that are facilitated, when 
compared against a null distribution of randomly rotated maps with preserved 

spatial autocorrelation and the same receptor/transporter density levels, but 
occurring at different neuroanatomical locations. (a) For network control with 
time horizon time horizon T = 3 and network normalisation factor c = 0.01 × 
|λ(A)max|; (b) for network control with all NeuroSynth maps normalised to unit 
Euclidean norm. Source data are provided as a Source Data file.

http://www.nature.com/natbiomedeng
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Extended Data Fig. 7 | Transition energies for alternative connectome 
dataset and alternative cortical parcellation. (a, b) Transition energy between 
each pair of 123 cognitive topographies from NeuroSynth (a) and the reduced set 
of 25 NeuroSynth terms (b), for the Lausanne DSI dataset. Rows indicate source 

states, columns indicate target states. (c, d) Transition energy between each pair 
of 123 cognitive topographies from NeuroSynth (c) and the reduced set of 25 
NeuroSynth terms (d), for Human Connectome Project data parcellated using the 
Schaefer-100 cortical atlas. Source data are provided as a Source Data file.

http://www.nature.com/natbiomedeng
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Extended Data Fig. 8 | Role of network topology in supporting transitions, 
for alternative connectome dataset and alternative cortical parcellation. 
(a, b) participant-wise (a) and group-level (b) average transition energy for 
the empirical human connectome (red) and for degree-preserving (grey) and 
degree- and cost-preserving null models (blue), for the Lausanne DSI dataset 
(n = 70 participants). Box-plots: center line, median; box limits, upper and lower 

quartiles; whiskers, 1.5× interquartile range; ***, p < 0.001 from paired-samples 
t-tests (two-sided). (c, d) participant-wise (c) and group-level (d) average 
transition energy for the empirical human connectome (red) and for degree-
preserving (grey) and degree- and cost-preserving null models (blue), for Human 
Connectome Project data parcellated using the Schaefer-100 cortical atlas. 
Source data are provided as a Source Data file.

http://www.nature.com/natbiomedeng
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Extended Data Fig. 9 | Replication with functional networks (inverse 
covariance) from functional MRI. (a) Transition cost (energy) between each 
pair of 123 cognitive topographies (‘states’) from NeuroSynth, using functional 
connectomes obtained as inverse covariance between fMRI BOLD timeseries 
from n = 100 HCP participants. Rows indicate source states, columns indicate 
target states. (b) Transition cost between each pair of a subset of 25 out of 123 
NeuroSynth states, shown for visualisation purposes. Matrices are sorted 
by increasing cost across both rows and columns. (c) Variability (standard 
deviation) of transition energy is greater along the column dimension (target 
states) than along the row dimension (source states), for each combination 
of n = 123 pairs of cognitive topographies. t(244) = 37.06, p < 0.001, Cohen’s 

d = 4.73. Box-plots: center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5× interquartile range; ***, p < 0.001 from independent-samples 
t-tests (two-sided). (d) Overall transition energy (averaged across all transitions 
between possible pairs of 123 cognitive topographies) for each of n = 100 HCP 
participants, based on the individual inverse covariance network, and the 
corresponding degree- and cost-preserving network null models. Empirical 
vs geometry-preserving: t(99) = 53.15, p < 0.001, Cohen’s d = 6.55. Empirical vs 
degree-preserving: t(99) = 89.01, p < 0.001, Cohen’s d = 12.83. Box-plots: center 
line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile 
range; ***, p < 0.001 from paired-samples t-tests (two-sided). Source data are 
provided as a Source Data file.
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Extended Data Fig. 10 | Replication in 989 HCP individuals. (a) Transition 
cost (energy) between each pair of 123 cognitive topographies (‘states’) from 
NeuroSynth, using the consensus connectome from n = 989 HCP individuals. 
Rows indicate source states, columns indicate target states. (b) Transition cost 
between each pair of a subset of 25 out of 123 NeuroSynth states, shown for 
visualisation purposes. Matrices are sorted by increasing cost across both rows 
and columns. (c) Variability (standard deviation) of transition energy is greater 
along the column dimension (target states) than along the row dimension 
(source states), for each combination of n = 123 cognitive topographies; 
t(244) = 46.39, p < 0.001, Cohen’s d = 5.89. Box-plots: center line, median; box 

limits, upper and lower quartiles; whiskers, 1.5× interquartile range; ***, p < 0.001 
from independent-samples t-tests (two-sided). (d) Overall transition energy 
(averaged across all transitions between 123 cognitive topographies) for each 
individual (n = 989), based on the individual SC network, and the corresponding 
degree- and cost-preserving network null models. Empirical vs geometry-
preserving: t(988) = 112.12, p < 0.001, Cohen’s d = 2.47. Empirical vs degree-
preserving: t(988) = 306.60, p < 0.001, Cohen’s d = 13.80. Box-plots: center line, 
median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; 
***, p < 0.001 from paired-samples t-tests (two-sided). Source data are provided 
as a Source Data file.

http://www.nature.com/natbiomedeng
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Data collection No new data were collected for this study, so no software was used for data collection.

Data analysis Code for control energy computation in MATLAB (version 2019a was used)  is available at https://github.com/gushiapi/Dynamic-Trajectory. 
DSI Studio is available at https://dsi-studio.labsolver.org. The Brain Connectivity Toolbox used for graph-theoretical properties and to generate 
degree-preserving null models is freely available at https://sites.google.com/site/betnet/. MATLAB code used to generate geometry-
preserving null networks is freely available at https://www.brainnetworkslab.com/coderesources. The code for spin-based permutation 
testing of cortical correlations is freely available at https://github.com/frantisekvasa/rotate_parcellation. MRtrix3 is freely available at https://
www.mrtrix.org/download/. The CONN toolbox (version 17f) is freely available at http://www.nitrc.org/projects/conn. Third-party Python 
software (version 3.8 was used) for Dominance Analysis is freely available at https://github.com/dominance-analysis/dominance-analysis. 
Third-party Python software for computing the network variance is available at https://github.com/rlambiot/variance. The ENIGMA toolbox 
(v1.1.3) is freely available at https://github.com/MICA-MNI/ENIGMA; Neuromaps (version 0.0.1) is freely available at https://
netneurolab.github.io/neuromaps. We have made code available online at https://github.com/netneurolab/luppi-neurosynth-control.git.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

NeuroSynth meta-analytic maps are freely available from the NeuroSynth database at https://github.com/neurosynth/neurosynth. Human Connectome Project 
Young Adult resting-state, task-based and diffusion MRI data are available from https://www.humanconnectome.org/study/hcp-young-adult. Diffusion MRI data for 
the Human Connectome Project in DSI Studio-compatible format are available at http://brain.labsolver.org/diffusion-mri-templates/hcp-842-hcp-1021. The 
Lausanne structural connectivity dataset is available at https://doi.org/10.5281/zenodo.2872623. The ENIGMA cortical thickness data are provided as part of the 
ENIGMA Toolbox (v1.1.3), available at https://github.com/MICA-MNI/ENIGMA. PET receptor and transporter maps are available at https://github.com/netneurolab/
hansen_receptors. Healthy cortical thickness and cerebral blood flow maps are available from Neuromaps at https://netneurolab.github.io/neuromaps. Source data 
for the figures are provided with this paper.
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related differences were not among the research hypotheses.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

No groupings by race, ethnicity or socieconomic status were performed. For the HCP dataset, recruiting efforts were used by 
the HCP consortium to ensure that participants broadly reflect the ethnic and racial composition of the United States 
population as represented in the 2,000 decennial census.

Population characteristics HCP data: 100 healthy participants (54 females and 46 males), mean age = 29.1 + 3.7 years. Lausanne data: 70 healthy 
participants (25 females, 45 males), age 28.8 + 8.9 years old.

Recruitment No new data were collected for this study. See Van Essen et al., 2012, for recruitment of HCP participants.

Ethics oversight The WU-Minn HCP Consortium (consortium of US and European intitutions led by Washington University and the University 
of Minnesota) approved the study protocol. 
Lausanne dataset: Informed consent was obtained from all participants and the protocol was approved by the 
EthicsCommittee of Clinical Research of the Faculty of Biology and Medicine, University of Lausanne.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size Sample sizes of individual datasets were not chosen as only open-source data were used. ENIGMA datasets were chosen as the maximum 
number of disorders with open data (as far as the authors were aware at the time of the analyses).

Data exclusions No exclusions among the HCP 100 unrelated participants. Also no participants from the Lausanne dataset were excluded. Only Neurosynth 
terms in the intersection with the Cognitive Atlas were retained, since Neurosynth terms include a very wide variety of terms including regions 
("dorsolateral") and clinical terms {"ADHD"), many of which are not relevant to the research question of defining cognitive topographies.

Replication The analyses were repeated using a different structural connectivity dataset {Lausanne}, for which the replication was successful. The results 
were also successfully replicated using the BrainMap dataset, for a second probability matrix of terms (used to replace Neurosynth). 
Replication was also carried out with the broader set of N = 989 HCP participants.

Randomization No randomization was performed, as the study did not include experimental groups.

Blinding No blinding was performed, as the study did not include experimental groups.
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n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Diffusion-weighted MRI, resting-state fMRI, and task-based fMRI.

Design specifications HCP dataset: The diffusion MRI scan was conducted on a Siemens 3T Skyra scanner using a 2D spin-echo single-
shotmultiband EPI sequence with a multi-band factor of 3 and monopolar gradient pulse. The spatial resolution was1.25 
mm isotropic. TR=5500 ms, TE=89.50ms. The b-values were 1000, 2000, and 3000 s/mm2. The totalnumber of diffusion 
sampling directions was 90, 90, and S0 for each of the shells in addition to 6 bO images. 
Functional data: gradient-echo EPI, TR= 720 ms, TE= 33.1 ms, flip angle = 52°, FOV= 208 × 180, voxel size = 2 mm 
isotropic. Resting-state data were collected, as well as task-based data pertaining to 7 tasks. Details can be found in Van 
Essen et al (2013). 
 
Lausanne dataset: The protocol included (1) a magnetization-prepared rapid acquisition gradient echo 
{MPRAGE)sequence sensitive to white/gray matter contrast {1 mm in-plane resolution, 1.2 mm slice thickness), and (2) 
a diffusionspectrum imaging {DSI} sequence (128 diffusion-weighted volumes and a single b0 volume, maximum b-value 
8 000 s/mm2, 2.2 x 2.2 x 3.0 mm voxel size).

Behavioral performance measures HCP dataset: behavioural measures were collected by the HCP consortium, but not used in this study. For the in-scanner 
task data, we did not look at task performance. 
 
Lausanne dataset:no behavioural measures were recorded during scanning.

Acquisition
Imaging type(s) Diffusion and functional (resting-state, task-based)

Field strength 3T

Sequence & imaging parameters HCP dataset: The diffusion MRI scan was conducted on a Siemens 3T Skyra scanner using a 2D spin-echo single-
shotmultiband EPI sequence with a multi-band factor of 3 and monopolar gradient pulse. The spatial resolution was1.25 
mm isotropic. TR=5500 ms, TE=89.50ms. The b-values were 1000, 2000, and 3000 s/mm2. The totalnumber of diffusion 
sampling directions was 90, 90, and 90 for each of the shells in addition to 6 b0 images. 
 
Functional data: gradient-echo EPI, TR= 720 ms, TE= 33.1 ms, flip angle = 52°, FOV= 208 × 180, voxel size = 2 mm 
isotropic. 
 
Lausanne dataset: The protocol included (1) a magnetization-prepared rapid acquisition gradient echo {MPRAGE) 
sequence sensitive to white/gray matter contrast {1 mm in-plane resolution, 1.2 mm slice thickness), and (2) a 
diffusionspectrum imaging {DSI} sequence {128 diffusion-weighted volumes and a single b0 volume, maximum b-value 
8,000 s/mm2, 2.2 x 2.2 x 3.0 mm voxel size).

Area of acquisition Whole brain (both datasets).

Diffusion MRI Used Not used

Parameters HCP: The b-values were 1,000, 2,000, and 3,000 s/mm2. The total number of diffusion sampling directions was 90, 90 and 90 for each 
of the shells in addition to 6 bO images. 1.25 mm isotropic resolution.Lausanne: 128 diffusion-weighted volumes and a single bO 
volume, maximum b-value 8,000 s/mm2, 2.2 x 2.2 x 3.0 mm voxel size.
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Preprocessing

Preprocessing software HCP diffusion data for the 100 unrelated participants were pre-processed using DSI Studio. HCP diffusion data for the 989-
participants dataset were pre-processed using MRtrx3. HCP resting-state functional data were pre-processed with the CONN 
toolbox. Lausanne data were provided already preprocessed {as connectivity matrices) using Connectome Mapper and 
Freesurfer. See https://doi.org/10.5281/zenodo.2872623 for further details about data processing. HCP task-based functional 
data were minimally pre-processed as per [123] and fixed-effects analyses were conducted using FSL’s fMRI Expert Analysis 
Tool (FEAT).

Normalization Normalization to MNI-152 template using the nonlinear registration algorithm implemented in the statistical parametric 
mapping (SPM). See Glasser et al., 2013 (NeuroImage) for details on HCP minimal preprocessing pipelines. 

Normalization template Desikan-Killiany anatomical atlas. Replication was performed with the Schaefer-100 atlas.

Noise and artifact removal The minimally pre-processed DWI HCP data [48] were corrected for eddy-current and susceptibility artifacts. For the task-
based data, we used the minimally pre-processed HCP data. See original publication for details (Glasser et al., 2013). The 
anatomica CompCor (aCompCor) method was used for denoising rs-fMRI fMRI data. 
 
The aCompCor method involves regressing out of the functional data the following confounding effects: the first five  
principal components  attributable to each  individual's  white-matter signal, and the first five  components attributable  to  
individual cerebrospinal  fluid  (CSF) six  subject-specific realignment parameters (three translations and three rotations) as  
well as their first-order temporal derivatives. Linear de-trending was also applied, and the subject-specific de-noised BOLD-
signal time series were  band-pass-filtered to eliminate both low-frequency drift effects and high-frequency noise,  thus  
retaining frequencies between 0.008 and 0.09 Hz.

Volume censoring No volume censoring was used in this study.

Statistical modeling & inference

Model type and settings We used two types of network null models: degree-preserving, and degree-preserving and cost-preserving. For each null 
model, we generated a population of 500 null networks starting from the empirical connectome, and computed the control 
energy between each pair of cognitive brain states from NeuroSynth, as done for the empirical connectome. We compared 
the overall control energy between all possible states obtained from the empirical connectome and from the distribution of 
null instances. We used permutation-based non-parametric t-tests to compare the transition energy to versus from each 
cognitive topography, and to perform subject-level comparisons of total transition energy against null networks.

Effect(s) tested Difference between transition energy to and from each cognitive topography. Difference between total transition energy 
obtained from empirical versus null networks. Structural and anatomical predictors of transition energy to a given map. 
Difference between transition energy to different task-defined cognitive topographies.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

No voxel-level or cluster-level analyses were performed.

Correction No voxel-level or cluster-level analyses were performed, so no such correction was requried.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Functional connectivity was obtained as the regularized inverse covariance between regional time series.

Graph analysis Both participant-level and group-level analysis were performed. Weighted structural connectivity graphs 
were used. Participation coefficient, binary degree, weighted degree and network-based variance were 
computed.

Multivariate modeling and predictive analysis We used these characterizations of the NeuroSynth maps (correlation with connectome graph-theoretic 
properties; correlation with the cortical hierarchy; and network variance) as predictors against the average 
energy required to transition to each cognitive brain state. We performed multiple partial correlations, using 
each characterization in turn as predictor (after partialling out the effects of mean and traditional variance of 
each NeuroSynth map). As an alternative approach, to consider all predictors together and evaluate their 
respective contributions, we performed a dominance analysis with all five predictors. Dominance analysis 
seeks to determine the relative contribution 'dominance' of each independent variable to the overall fit 
(adjusted R2)) of the multiple linear regression model [4]. This is done by fitting the same regression model 
on every combination of predictors {2*p-1 submodels for a model with p predictors). Total dominance is 
defined as the average of the relative increase in R2 when adding a single predictor of interest to a 
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submodel, across all 2*p — 1 submodels. The sum of the dominance of all input variables is equal to the 
total adjusted R2 of the complete model, making the percentage of relative importance an intuitive method 
that partitions the total effect size across predictors.
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