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The increasing availability of technologies allowing for the 
routine creation of high-resolution whole-slide images 
(WSIs) has triggered tremendous excitement for the field of 

digital pathology. Whereas the rich morphologic content analysed 
by pathologists was once locked in glass slides, whole-slide imag-
ing systems now allow pathologists and researchers to access that 
data digitally without a microscope at hand. Studies demonstrat-
ing non-inferiority of WSIs1–3 and Food and Drug Administration 
(FDA) approvals for primary diagnosis to be performed on WSIs 
mean that pathologists can now adopt these systems for clinical 
use. However, as institutions scan and store an increasing number 
of images, they often turn to WSI storage and retrieval paradigms 
identical to that used for their glass slides—large repositories of data 
searchable through patient identifiers, case number, date of proce-
dure, pathology report and so on, without leveraging the digital 
morphologic content of the images themselves.

Meanwhile, the revolution of artificial intelligence4,5 (for exam-
ple, deep learning) in recent years has shown potential in various 
tasks in pathology that range from disease diagnosis, prognosis and 
integrative multi-omic analysis6–17. However, a majority of compu-
tational pathology methods are based on supervised deep learning 
using slide or case level labels to tackle classification or ranking 
problems. By comparison, an image search tool that harnesses the 
rich, spatially resolved information in pathology images is much 
more powerful for a variety of different applications. For example, 
finding cases with similar morphologic features can assist in diag-
nosing rare diseases and unusual conditions that may not have 
enough cases available for accurate supervised classification models 
to be developed. Other examples include finding cases with simi-
lar morphologies to predict outcome for clinical trials with limited 
samples, identifying similar cases for teaching and parsing large  

historical repositories in the absence of electronic pathology 
reports. A critical challenge that hinders large scale, efficient adop-
tion of histology whole-slide image search and retrieval systems is 
scalability. This is a unique challenge for WSI retrieval systems18 as 
compared with other image databases since they need to efficiently 
search a growing number of slides that can each consist of billions 
of pixels and be several gigabytes in size.

Due to the computationally prohibitive size of WSIs, most 
approaches split them into smaller image patches and either focus 
on patch or region of interest (ROI) retrieval that is tailored to spe-
cific applications19–33. These implementations often need expert 
pathologists to exhaustively delineate the ROIs, making the system 
difficult to scale. Recent work has demonstrated promising patch 
retrieval results without using manual labels by comparing patches 
in a continuous embedding space using an encoder pretrained by 
deep metric learning on a large cohort of natural images34. However, 
this approach is limited to small image patches, required consid-
erable computing resources and had a search speed that scaled 
with the size of the database. Recent work has also shown that 
representative image patches, embedded into binarized features 
using encoders pre-trained on real world images, can be used for 
WSI level retrieval35,36. However, the disadvantage of this method 
is slow search speed on larger datasets due to O(n log(n)) compu-
tational complexity, where n is the number of WSIs in the data-
base. Additionally, the reported performance degrades when the 
distribution of the numbers of slides is skewed towards a subset of 
anatomical sites, which is commonly seen in real-world histology 
datasets. Other recent studies propose improved feature represen-
tation for WSIs by creating permutation invariant embeddings37 
or fine-tuning pretrained networks on data with morphological 
information38. Scalibility to large histological datasets that capture 
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real-world imbalances in disease types is crucial for a practical and 
broadly applicable search engine for histology.

Here we propose self-supervised image search for histology 
(SISH) as a search pipeline that addresses the issues summarized 
above. SISH theoretically achieves constant time query speed by 
representing a WSI as a set of integers and binary codes, and does 
not require any pixel or ROI level annotations. We evaluate SISH on 
several tasks: first, performance on disease subtype retrieval from 
a fixed anatomic site is assessed on three cohorts of data, specifi-
cally, the primary diagnostic slides in The Cancer Genome Atlas 
(TCGA)39, the Clinical Proteomic Tumour Analysis Consortium 
(CPTAC)40 and slides digitized in-house at the Brigham and 
Women’s Hospital (BWH). Second, performance on retrieving slides 
from the same anatomic site as the query, which we evaluate using 
the TCGA dataset. In total, we used 22,385 diagnostic whole-slide 
images across 13 anatomic sites and 56 disease subtypes. Third, we 
demonstrate the utility of SISH for diagnosis of rare cancer types 
using in-house and TCGA data. Fourth, we show that SISH can be 
used for patch-level similar morphologic feature search on a variety 
of different disease models.

SISH theoretically achieves O(1) constant speed complexity for 
search, insertion and deletion operations (that is, the speed of the 
operations does not depend on the size of the database) and sup-
ports both slide and patch-level retrieval. SISH leverages a set-based 
representation of WSI which has better transparency and does not 
need further supervised training as compared to a continuous vec-
tor representation37. Specifically, we sample a subset of representa-
tive patches (termed a ‘mosaic’) for each WSI by clustering at low 
resolution to address the gigapixel size of WSIs. SISH uses a Vector 
Quantized-Variational AutoEncoder (VQ-VAE)41 trained on a 
large dataset in a self-supervised manner and leverages the learned, 
discrete latent codes to create integer indices for patches in a WSI 
mosaic. VQ-VAE is a self-supervised approach that learns to gener-
ate a small number of descriptive latent codes for each input object. 
With the integer representation of a slide, we can benefit from the 
O(loglog(M)) search, insertion and deletion speed for integers 
whose values are within the range [0, M], provided by the Van Emde 
Boas tree (vEB tree)42, where M is a fixed constant in our pipeline 
(see Methods for additional details). Our approach does not require 
comparing the regions of the query WSI against regions of every 
other WSI in the database: we use the vEB tree to first identify a 
constant number of potential candidates for each patch in the query 
mosaic and then use a ranking module to identify the most promis-
ing patches that are useful for retrieval (see Supplementary Table 
17). These patches often contain meaningful ROIs, and they can 
be visualized by the human user to provide model interpretability, 
which is desirable in medical applications to enable more transpar-
ent and informed decision-making. Finally, we make the source  
code of SISH open access (https://github.com/mahmoodlab/SISH) 
for future studies. An overview of the SISH pipeline is shown in Fig. 1,  
and the detailed search process is illustrated in Fig. 2.

SISH begins by distilling a mosaic representation of a given 
slide36 (Fig. 1a). To select the patches used for representing the slide, 
we use two-stage K-means clustering. Specifically, we first apply 
K-means clustering on the red, green and blue (RGB) histogram 
features extracted from patches at ×5 magnification, followed by 
K-means clustering on the coordinates of patches at ×20 magnifi-
cation within each initial cluster. We extract image patches corre-
sponding the coordinates of the set of final cluster centres and use 
them as a mosaic representation of the given slide. To convert the 
patches into a set of integers and binary codes (Fig. 1b), we train a 
VQ-VAE, which is a variant of the Variational Autoencoder43 that 
gives the input a discrete latent code from a codebook learned on 
the TCGA slides at ×20 scanner magnification (×200 effective mag-
nification). The codebook generated from the VQ-VAE is held con-
stant throughout all experiments in our study and is not retrained 

on any of the independent datasets. We use the encoder of the pre-
trained VQ-VAE along with the learned codebook to encode the 
patches at ×20 magnification and extract patch features by using a 
Densenet44 model and a binarization algorithm. The last step is to 
convert the discrete latent codes into integers to store the mosaics in 
the vEB tree. We feed the latent codes of the mosaics into a pipeline 
composed of a series of average pooling (AvgPools), summation and 
shift operations. The intuition behind this pipeline is to summarize 
the information in each scale via summation, then store it into a dif-
ferent range of digits in an integer.

During search (Figs. 1c and 2), we extract the features of the pre-
processed mosaic of the query whole-slide image and then apply 
the proposed guided search algorithm (GSA) to find the most simi-
lar results of each query mosaic. The design principle of GSA is to 
find a fixed number of nearest neighbours using the vEB and only 
select the neighbours whose Hamming distances from the patches 
in the query mosaic are below a certain threshold θh. The search 
result of each patch in the mosaic is a list of patches. Each patch 
contains metadata that document the name of the slide where 
the patch is located, the diagnosis of the slide and the Hamming 
distance between the patch in the database and that in the query 
mosaic. Once each patch in the query mosaic gets its search results, 
our ranking algorithm ranks the candidate patches used to retrieve 
the final top-K similar slides. We collect all slides that appear in the 
search results from the candidate patches and sort them on the basis 
of Hamming distance in ascending order to return the top-K similar 
slides. See Methods for additional details.

In the proceeding sections, we demonstrate the performance of 
SISH for: (1) disease subtype retrieval using public cohorts (TCGA 
and CPTAC), (2) disease subtype retrieval in an independent cohort 
(BWH in-house data) to test generalizability, (3) anatomic site 
retrieval and (4) patch-level retrieval using five different datasets: 
colon tissue (Kather100k45), lung tissue (WSSS4LUAD46), a gen-
eral morphologic atlas of digital pathology (ADP47), breast tissue 
(BCSS48) and prostate tissue (BWH in-house data).

results
Disease subtype retrieval. We first evaluate the performance of 
SISH on disease subtype retrieval using the TCGA, and we report 
the majority top-k accuracy (mMV@k, k = 1,3,5), which assesses 
how often the majority slide diagnosis in the top-k results matches 
the ground truth from the query. We use mMV@k as the primary 
metric for comparison because it is stricter than the commonly used 
top-k accuracy (see Methods for more details). We built the SISH 
pipeline on slides from each anatomic site and tested whether SISH 
can retrieve slides with the correct diagnosis. Overall, SISH out-
performed Yottixel by achieving 45.51%, 25.62% and 5.33% higher 
macro-averaged mMV@1, 3 and 5, respectively, as shown in Fig. 
3a–c (see detailed numerical results and individual slide retrieval 
results in Supplementary Tables 1 and 7). We used macro-averaging 
because rare cases in an unbalanced real-world histology database 
are as crucial as the more common ones. The improvement in per-
formance could be partly attributed to the fact that the VQ-VAE is 
trained on the TCGA albeit in a self-supervised manner without 
using any external supervisory labels. However, the primary role of 
the VQ-VAE is to improve the query speed, and we investigated the 
role of the VQ-VAE in improving the performance (Supplementary 
Fig. 3). Subsequent sections demonstrate results on several datas-
ets that were not used to train the VQ-VAE. To further investigate 
the results, we created the confusion matrix and Hamming distance 
matrix in Supplementary Fig. 1 for each site.

In addition, the speed advantage of SISH becomes pronounced 
especially after the number of slides in the database exceeds 1,000 
(Fig. 3f). The median query speed of SISH remains near-constant 
despite the growing number of slides, as expected from our theoret-
ical results analysis. We perform more experiments to demonstrate 
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that SISH is scalable to thousands of slides (see Speed and interpret-
ability). Since the ranking algorithm plays a crucial role in the suc-
cess of SISH, we conduct an ablation study to validate all steps in the 
ranking module and show that SISH achieved the best performance 
by including all steps (red line in Fig. 3e). 

We also combined kidney renal clear cell carcinoma (KIRC), 
uterine corpus endometrial carcinoma (UCEC), cutaneous mela-
noma (SKCM), lung adenocarcinoma (LUAD) and lung squamous 
cell carcinoma (LUSC) data from CPTAC and TCGA to test perfor-
mance on a mixed public cohort with the results reported in Fig. 3d. 
After combining the two datasets, the distribution of the dataset over 

all sites became more skewed, but the performance of SISH did not 
vary substantially in most cases. This result further shows that SISH 
can address, to a degree, dataset imbalance commonly presented in 
the real world. The only exception was pulmonary-mesothelioma, 
for which the site where the disease is located was highly unbalanced. 
Individual retrieval results are available in Supplementary Table 8.

Disease subtype retrieval in independent cohort. WSIs can have 
large scale domain shift across institutions and medical centers 
due to variability in tissue preparation, staining and scanning pro-
tocols. Therefore, it is essential to validate that the self-supervised 
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Fig. 1 | overview of the SiSH pipeline. a, After tissue segmentation, we tile the foreground regions and perform two-stage K-means clustering to select 
representative patches to include in the WSI mosaic. We first cluster all patches based on their rGB histogram features. In each cluster generated from 
the first stage (for example, the yellow cluster shown in the figure), we perform K-means clustering again using the spatial coordinates of each patch 
as features (spatial clustering), extract the patches that correspond to the coordinates of each resulting cluster centre (black dots) and add them to the 
mosaic of the slide. b, We pretrain a VQ-VAE on tissue patches from slides in the TCGA and save its encoder and codebook for feature extraction. For each 
patch in the mosaic, the VQ-VAE encoder is used to compute its discrete latent representation and a Densenet121 encoder is used to obtain a binarized 
texture feature vector. Finally, we feed the discrete latent representation into another pipeline composed of a series of average pooling (AvgPool), shift 
and summation operations to get an integer index for the patch, then use the vEB tree to construct the index structure for search. c, For a given query slide 
preprocessed as a mosaic representation, we feed the mosaic into the feature extractor to compute the integer indices and binarized texture features of 
each patch in the mosaic, then apply our search and ranking algorithm to filter the candidate patches. See Fig. 2 for more details.
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VQ-VAE trained on TCGA is robust and adaptable to a different 
out of domain dataset. From the WSI database at Brigham and 
Women’s Hospital, we collected 8,035 diagnostic slides that span 9 
anatomic sites with 37 primary cancer subtypes. For each anatomic 
site, we built our pipeline separately and reported the mMV@1,3 
and 5 scores along with mean average precision at 5 (mAP@5) as a 
ranking-aware metric (see Evaluation in Methods). SISH performed 
better than Yottixel by achieving 7.87%, 5.33% and 5.33% higher 
macro-averaged mMV@1,3 and 5 scores, respectively, as reported 
in Fig. 4a–c (see numerical results and retrieval results of each slide 
in Supplementary Tables 2 and 9). Furthermore, SISH outperformed 
Yottixel in mAP@5 in 34 out of 37 subtypes, leading to a 9.5% higher 
macro-average mAP@5 (Fig. 4d). We also report the confusion and 
Hamming distance matrix for each anatomic site (Supplementary 
Fig. 2). Note that we did not use fine-tune or any other form of 

domain adaptation to refine our self-supervised encoder in this 
cohort, showing the generalizability of our encoder trained only on 
TCGA. While this adaptability mimics a common scenario where 
the self-supervised encoder is generically trained and the database 
is built for individual cohorts, we also investigated cross encoder 
and cross database retrieval by keeping both the self-supervised 
encoder and database developed on the TCGA constant and que-
rying using cases from CPTAC and BWH data for the same set of 
diagnosis (see Supplementary Fig. 7). We found that while there is a 
drop in performance, our approach was generally adaptable. 

Rare disease subtype retrieval. The number of archival slides for 
rare diseases is usually fewer than that of common ones, making 
it challenging to train an efficient supervised classifier using mod-
ern machine learning methods. To further investigate the clinical  
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Fig. 2 | Detailed illustration of search. a, Starting from the mosaic of a WSI where a patch could contain normal tissue or morphology of a cancer subtype, 
SISH encodes each patch into both an integer and binary string representation, using a VQ-VAE encoder and a DenseNet121 encoder pretrained on 
ImageNet respectively. The pooling operation consists of a series of average pool, summation and multiplication explained in Methods. The binarization 
process converts a continuous vector to a binary string by starting from ∞, then walking through all elements in the vector to compare the value of the 
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each patch in the mosaic, SISH expands its index into a set of candidate indices. C and T are hyperparameters used during expansion (see Guided search 
algorithm section of Methods). b, For each patch, SISH applies the search function to each index in the set of candidate indices. The search function returns 
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Each patch in the database is associated with an index p and metadata μ defined in Methods. c, For each result r, SISH calculates its entropy (by considering 
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the Ol percentile. At the same time, the function also removes patches within each r whose Hamming distance is greater than the average of the top-k in r. 
Lastly, SISH takes a majority vote of the top-5 slide labels within each r to remove patches whose slide labels disagree with the majority vote and extract the 
slides from the r with the lowest entropy (see the corresponding sections in Methods for details of entropy calculation, clean and filter-by-prediction).
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Fig. 3 | Disease subtype retrieval in public cohorts. a–c, Macro-average mMV@1,3 and 5 of SISH and Yottixel on the TCGA anatomic sites. SISH has 
better performance in all metrics, especially mMV@1 and mMV@3. d, Comparison between SISH on TCGA and TCGA+CPTAC cohorts. The performance 
does not vary before and after mixing with CPTAC cohorts for most cases. e, Ablation study result for the ranking module of SISH. We observed that SISH 
achieves best performance in the setting where all functions are applied (+filter) (details of each setting are described in Methods (Ablation study).  
f, Top: query speed comparison between SISH and Yottixel for each site. The box extends from the first quartile (Q1) to the third quartile (Q3) of the data 
and the whiskers extend from the box by 1.5× the interquartile range (IQr). Bottom: the mean confidence (±1 s.d.) of query speed between SISH and 
Yottixel. It is crucial to note that SISH is 2× more effective when the number of slides is over 1,000 (details on the study of speed is reported in Speed and 
interpretability. Numbers in parentheses denote the number of WSIs for all panels except d, where numbers in parentheses denote the number of WSIs in 
TCGA and TCGA+CPTAC, respectively.

NATure BioMeDiCAL eNgiNeeriNg | VOL 6 | DECEMBEr 2022 | 1420–1434 | www.nature.com/natbiomedeng1424

http://www.nature.com/natbiomedeng


ArticlesNaTurE BIomEDICal ENgINEErINg

value of SISH in assisting with the diagnosis of rare diseases, we 
conducted an experiment specifically on rare cancer types by com-
bining our BWH cohort and TCGA, resulting in 1,785 slides for 
23 rare-type cancers from 7 anatomic sites. The performance of 
SISH was on par with that of Yottixel for the mMV@5 metric, but 
achieved slightly better macro-averaged mMV@1 and 3 scores that 
were 4.56% and 2.42% higher, respectively, as shown in Fig. 5a–c (see 
numeric results and retrieval results of each slide in Supplementary 
Tables 3 and 10). Although the performance gap of mMV@1, 3 and 
5 scores between SISH and Yottixel was small, SISH achieved better 
mAP@5 in 22 out of 23 subtypes, which resulted in an overall 9.82% 
performance improvement (Fig. 5d). We additionally investigate the 
performance of SISH against a supervised classifier trained using 
limited WSI data for a subset of rare diseases and found that super-
vised classifiers can have a high variance across cross-validation 
folds. SISH also performed better than the average across all folds 
(Supplementary Table 6).

Anatomic site retrieval. Although the anatomic site from which 
tissue is resected is always known, historical archival repositories 
that may not have corresponding digitised pathology reports and 
electronic medical records will significantly benefit from automated 
anatomic site identification. We used the diagnostic slides from 
TCGA and followed ref. 36 to group slides into 13 categories, result-
ing in 11,561 WSIs. We built our SISH pipeline on this database with 
the goal to retrieve slides with the same anatomic site as the query. 
SISH achieved 68.52% mMV@10 on average, which is comparable 
to Yottixel’s performance (67.42%) (Fig. 6a). We used mMV@10 for 

comparison in this experiment as this was the best performance 
reported in the previous study36. However, we note that SISH is over 
15× faster than Yottixel as shown in Fig. 6b, although the classifica-
tion performance gap between the two methods is small. A detailed 
comparison of speed between SISH and Yottixel can be found in 
Speed and interpretability, and individual retrieval results are avail-
able in Supplementary Table 11.

Analysis of speed and interpretability. We show how SISH 
allows the user to interpret the results of a query slide in Extended 
Data Fig. 1. For a query slide, SISH returns the regions in the 
slide that are useful for defining the similarity of the slides. This 
property allows us to examine these regions and ensure that the 
search system returns results based on reasonable morphologic 
evidence as agreed by pathologists instead of meaningless regions 
such as debris. More examples are shown in Extended Data Figs. 
2–4. We conducted three interpretation studies using KIRC, 
ovarian serous cystadenocarcinoma (OV) and stomach adenocar-
cinoma (STAD) in TCGA to understand SISH’s interpretability 
across different levels of performance (in terms of differences in 
mMV@5 scores). For each study, we randomly selected 30 que-
ries that contained at least 1 correct retrieval and then extracted 
the ROIs found in the query slide. We asked a board certified 
pathologist to rate whether the ROIs agree with their judgements 
by ‘agree’, ‘partially agree’ (that is, if the pathologist agrees with at 
least one of the ROIs) and ‘disagree’. The key finding was that the 
ratio of ‘agree’ plus ‘partially agree’ exceeded 70% in all studies 
(Supplementary Fig. 6).
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Fig. 4 | Adapting to the BWH independent test cohort. a–c, Average mMV@1, 3 and 5 scores of SISH and Yottixel for each subtype in BWH general 
cohorts. SISH achieved higher scores than Yottixel by 7.87%, 5.33% and 5.33% for mMV@1, 3 and 5, respectively. d, mAP@5 score of SISH and Yottixel. 
SISH outperformed Yottixel in 34 out of 37 subtypes, resulting in 9.5% higher mAP@5 score. Numbers in parentheses denote the number of WSIs.
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We used the TCGA dataset from the anatomic site retrieval 
experiment to evaluate query speed. We applied weighted sampling 
to select slides from each site to create databases of size 500, 1,000, 
2,000, 3,000, 4,000, 5,000, 7,000 and 9,000, and the overall dataset 
with 11,561 slides. We implemented both methods in Python and 
evaluated them on the same machine for fair comparison. The aver-
age query speeds of both methods are reported in Fig. 6b. Since we 
observed that Yottixel was inefficient beyond 3,000 slides, we used 
the same 100 queries sampled from the databases to calculate the 
average query speed of SISH and Yottixel instead of using all data 
when the size of the database exceeded 3,000. By comparison, the 
average query speed of SISH remained almost constant, with low 
variances across the range of database sizes, consistent with our 
theoretical results. This result demonstrates that SISH can scale 
with the growing number of slides while maintaining a relatively 
constant query speed.

Patch-level retrieval. For patch-level retrieval, we viewed each 
patch query as a single mosaic fed into the SISH search pipeline. 
Since there is only one patch in the mosaic, there is no need for 
the ranking module. We obtained the top-K results by directly sort-
ing the predictions by their Hamming distances. We collected patch 
data across 4 anatomic sites (lung, breast, colon and prostate) from 
6 cohorts: TCGA, BWH, Guangdong Provincial People’s Hospital 
(GDPH), Atlas, National Center for Tumor Diseases (NCT) bio-
bank, and University Medical Center Mannheim (UMM). We 
evaluated SISH on 10 tissue types and built database sizes from 
4,000 to 13.4 million from the collected patch data. More details can  
be found in the Methods. We only compared SISH to Yottixel as 
neither was specifically designed for patch retrieval, unlike other 
published methods.

We report the mMV@5 patch retrieval performance of 
Kather100k45, WSSS4LUAD46, BWH prostate, Atlas47 and BCSS48 in 
Fig. 7a–e. The performance of SISH is on par with that of Yottixel in 
all experiments, SISH’s mean query speed was faster than Yottixel’s 
by three times when the size of the database reached 100,000, as 
shown in Fig. 7f (0.18 ± 0.06 s versus 0.53 ± 0.04 s). To further test 
the query speed on larger databases, we created two large data-
bases by mixing Kather100k with colon adenocarcinoma and 
rectal adenocarcinoma in TCGA (TCGA-Kather) and BCSS with 
Breast in TCGA (TCGA-BCSS). Both TCGA cohorts were patched 
at 256 × 256. The size of the merged databases reached 5.5 mil-
lion and 13.4 million images, respectively. The mean query speed 
of SISH reached 120 times faster than Yottixel on TCGA-Kather 
and 230 times faster on TCGA-BCSS (0.27 ± 0.036 s versus 
32.44 ± 1.02 s and 0.32 ± 0.016 s versus 74.55 ± 2.00 s), as shown in 
Fig. 7f. On databases of size over 10 million, we observed a per-
formance improvement in speed over previous approaches34. We 
report more comparisons with different metrics and show exam-
ples in Extended Data Figs. 5–10 (see individual retrieval results in 
Supplementary Tables 12–16).

Discussion
In summary, we show that SISH addresses several of the key chal-
lenges in whole-slide image search: speed, accuracy and scalability. 
Our experiments demonstrate that SISH is an interpretable histol-
ogy image search pipeline that achieves constant search speed after 
training with only slide-level labels. We also demonstrate that SISH 
has strong performance on large and diverse datasets, can generalize 
to independent cohorts as well as rare diseases and, finally, that it 
can be used as a search engine not just for WSIs, but also for image 
patch retrieval.
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Fig. 5 | Adapting to rare cancer types. a–c, Macro-average mMV@1, 3 and 5 scores of SISH and Yottixel in each rare cancer subtype. SISH achieved higher 
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Search functions have transformed and enabled our modern dig-
ital lives, and digitization of pathology reports (as well as medical 
records themselves) represent a similar transformation for pathol-
ogy practices. Searching databases of digitized pathology report 
texts has proved to be extremely useful in clinical practice, from 
seeing how colleagues have signed out similar cases to identifying 
cases for research or quality control initiatives. However, pathology 
reports capture only a tiny portion of the information contained 
in the associated slides, and that information can be quite limited. 
Depending on the pathology practice, there may be little descrip-
tion of the tissue on a set of slides beyond only what was necessary 
to make a particular diagnosis or was required for structured/syn-
optic reporting. Additionally, what descriptions are present using 
the language of pathology (for example, ‘myxoid’, ‘salt-and-pepper 
chromatin’ or ‘micropapillary’) are not localized to a particular slide 
or region of interest.

By comparison, a search function that harnesses the rich, spa-
tially resolved information in pathology images is much more pow-
erful for certain applications. Use-cases of such a system include: 
(1) pathology trainees finding cases with similar morphologies to 
learn how their mentors would diagnose the case of interest; (2) 

disease subtyping to provide more evidence to a pathologist for a 
particular diagnosis; (3) researchers identifying tumours that share 
certain features for clinical or genomic correlations; (4) assistance in 
diagnosis of rare morphological findings; (5) quality control func-
tions to identify potential sample swaps, patient misidentification, 
or outlier detection; and (6) primary site suggestions for metastases 
(7) disentangling large historical repositories in the absence of elec-
tronic medical and pathology reports.

Additionally, the importance of performant image search sys-
tems will probably increase in the near future, as the penetrance 
of slide scanning solutions in pathology practices grows. As insti-
tutions’ WSI repositories grow to hundreds of thousands or mil-
lions of slides, only systems with constant or near-constant search 
speed and the ability to operate without pixel-level annotations will 
reasonably be able to scale and will be deployed for use in clinical 
practice. Interpretability of such a system will allow quality control 
of the search itself to be baked in, giving users the ability to trouble-
shoot searches on the fly. A caveat, however, to the interpretability 
of SISH is that it only returns relevant ROIs and as with many deep 
learning systems the feature representation itself largely remains 
abstract49.
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Fig. 7 | Patch-level retrieval. a–e, mMV@5 results for SISH and Yottixel for patch level retrieval on multiple patch level datasets: Kather100k, 
WSSS4LUAD, BWH prostate, Atlas and BCSS datasets. SISH performed similarly to Yottixel on all datasets. f, Query speeds of SISH and Yottixel. SISH 
achieved faster mean query speed by a factor of 3 to 230 as the size of the database grew from 100,000 to 13.4 million images. The results were averaged 
across query times of all data in the database, except for the TCGA-Kather and TCGA-BCSS databases because of their large size. For these latter two 
databases, the results were averaged across the query time of all data in Kather100k and BCSS for SISH and 100 random samples from Kather100k and 
BCSS for Yottixel due to slow performance. In summary, SISH has similar performance to Yottixel but faster search speed when the size of the database 
grows. Inset: a closer look at the first five patch dataset. The box extends from Q1 to Q3 of the data and the whiskers extend from the box by 1.5 × IQr.
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Our approach has several other limitations that future studies 
may address. The discrete index used to look up similar candidate 
patches may have limited expressive power, especially if a query 
mosaic is large, as this may require visiting many neighbors in the 
vEB tree to cover all promising candidates. This can limit the effi-
ciency of the search engine despite a theoretical constant search 
time. Additionally, by using a fixed set of patches to represent each 
WSI in the form of a mosaic, we could potentially miss other infor-
mative regions in the slide that are valuable for search but do not 
make it into the final mosaic of the WSI. Also, during retrieval, 
candidates for each patch in the query mosaic are mutually exclu-
sive of one another; since all patches are extracted at a single fixed 
resolution, morphological patterns that span larger regions of 
interest may not be adequately represented during search. Other 
limitations include the large space (memory) complexity of the 
vEB tree; however, we found the memory utility to be reasonable 
and tractable on a consumer grade workstation for all experi-
ments conducted in this study. Given the scale of the study, several 
hyper-parameters were not tuned and conventional values were 
used from prior literature; further tuning these hyper-parameters 
may lead to better results.

Finally, the current system has been developed only to search for 
images using a query image. In clinical practice, pathologists rely 
on other data such as the patient’s medical record, other imaging 
modalities and molecular test results to guide diagnoses and clinical 
decision making. Therefore, we believe one important future direc-
tion is to develop a multimodal version of SISH by pairing each WSI 
with other data from the same patient so that our search system 
can present a holistic view for pathologists, given a query WSI. In a 
similar vein, extending SISH to accept multimodal queries, such as 
text or genomic data, would be a promising direction, provided an 
efficient way to compare and find semantic similarities between dis-
parate and orthogonal data types can be developed. Other advances 
could include the development of similar fast and scalable search 
engines for multiplex immunofluorescence and spatial transcrip-
tomics data. Overall, SISH represents an initial proof-of-concept for 
the utility of self-supervised learning for retrieval in massively large 
medical datasets and paves the way for future studies to explore the 
utility of larger datasets at scale, and additional modalities to even-
tually build a universal search engine for biomedicine.

Methods
SISH. SISH is a histology-image search pipeline that addresses the scalability 
issues of speed, storage and pixel-wise label scarcity. While image-level class 
labels or annotation for whether a pair or triplet of images are similar/dissimilar 
has often been leveraged to explicitly learn an embedding space that captures 
semantic similarity between images, or to identify key points before retrieval50,51, 
it is difficult to directly apply such techniques to WSI image search due to the 
high dimensionality of large WSIs and the lack of patch-level annotation. Instead, 
SISH builds upon a set of preprocessed mosaics from WSIs without pixel-wise 
or ROI-level labels to reduce storage and labelling costs, by relying on indices 
learned via self-supervised learning and pretrained embeddings. SISH scales with 
a constant search speed, regardless of the size of the database, by taking advantage 
of the benefits of discrete latent codes from a VQ-VAE, and using guided search 
and ranking algorithms. We present these essential components of SISH in this 
section and provide a pictorial illustration for the methods described in Fig. 
2. For clarity, we have summarized all symbols used in the following text in 
Supplementary Table 18.

Discrete latent code of VQ-VAE. VQ-VAE41 is a variant of a Variational 
AutoEncoder (VAE) that introduces a training objective that allows for discrete 
latent codes. Let e ∈ R

K×D be the latent space (that is, codebook) where K is the 
number of discrete codewords and D is the dimension of the codewords. We set 
K = 128 and D = 256 in our experiments. To decide the codeword of the given 
input, an encoder q encodes input x as ze(x). The final codeword zq(x) of x and the 
training objective function are given by

zq(x) = ek,where k = argminj
∥

∥ze(x) − ej
∥

∥ , (1)

log p(x|zq(x)) + ∥sg[ze(x)] − e∥ + α ∥ze(x) − sg[e]∥ , (2)

where α is a hyperparameter and sg denotes the stop gradient operation. A stop 
gradient operation acts as the identity function during the forward pass while having 
zero gradient during the backward pass. The first term in the objective function 
optimizes the reconstruction of the encoder and decoder, the second term is used 
to update the codebook, and the third term is used to prevent the encoder’s output 
from diverging too far from the latent space. The architecture of our VQ-VAE 
model is shown in detail in Supplementary Fig. 4. We re-ordered the codebook on 
the basis of the value of the first principal component and changed the latent code 
accordingly as we found that the re-ordered codebook can provide a more semantic 
representation of the original input image (see Supplementary Fig. 5).

Feature extraction, index generation and index encoding. We show how each patch 
i in the mosaic of a WSI can be represented by a tuple (pi, hi) composed of a patch 
index pi and a patch texture feature hi. To get pi, we encode and re-map the latent 
code zi from the encoder and re-ordered codebook from the VQ-VAE. The index pi 
is determined by the following equations:

zi,1 = AVGPOOL(2, 2)(zi) (3)

zi,2 = AVGPOOL(2, 2)(zi,1) (4)

zi,3 = AVGPOOL(2, 2)(zi,2) (5)

pi = SUM(zi,1) + SUM(zi,2) × 106 + SUM(zi,3) × 1011 (6)

SUM(zi,1) ∈ [0, 130048], SUM(zi,2) ∈ [0, 32512], SUM(zi,3) ∈ [0, 8128] (7)

To convert the information in the latent code from higher to lower resolution, we 
apply a series of 2 × 2 average pooling. We then take the summation to aggregate 
the latent code in each resolution, as the summation operator has better expressive 
power than the mean or maximum52. We get the final integer index by taking the 
summation of the information aggregated in each resolution and multiplying it 
by 100, 106 and 1011, respectively. The intuition behind choosing the power is to 
keep the information of the latent code in each resolution (that is, zi,1, zi,2 and zi,3) 
separate. For example, multiplying Sum(zi,2) by 106 separates the feature in the 
second layer from Sum(zi,1) since the maximum of the latter is 130,048. Likewise, 
multiplying Sum(zi,3) by 1011 separates the feature in the last layer from the previous 
two. We insert each pi into the vEB tree for fast search. We apply this process to 
WSIs in the datasets to build our databases. Note that the time complexity of all 
operations in the vEB tree is O(log log(M)). On the basis of the properties of the 
vEB tree, M can be determined by

M = 2x > max(pi) , (8)

where x is the minimum integer that satisfies the inequality. Since our codebook 
size ranges from 0 to 127, we can determine the maximum summation Sum(z) in 
each level. Solving the inequality, we find that the minimum M that satisfies the 
inequality is M = 1,125,899,906,842,624. Because M is a constant that only depends 
on the index generation pipeline, our search performance is O(1). One limitation of 
using vEB is that it has a large space complexity O(M) where M depends on the size 
of the codebook and the dynamic range of the index used for search. M remains 
fixed and does not scale with the number of data points (WSIs or patches) in the 
database. To get hi, we use DenseNet121 to extract features from the 1,024 × 1,024 
patch at ×20, then follow the algorithm proposed in ref. 36 to binarize it (that is, 
starting from ∞; if the next value is smaller than the current one, the current value 
0 is assigned, and 1 is assigned otherwise).

In addition to creating the tuple to represent the patch, we also make a hash 
table H with pi as key and the metadata μ of the patch as value. The metadata 
include the texture feature hi, the name of the slide associated with the patch, the 
coordinates on the slide from which the patch is cropped, the file format of the 
slide and the diagnosis of the slide. Note that different patches could share the 
same key. In this case, the value is a list that stores the metadata for each patch. If 
the size of the search database is significantly large, which is expected to be the case 
for most practical real-world databases, the search speed would be greater than 
pre- and post-processing steps. When running a fixed number of iterations, the 
K-means clustering algorithm (Lloyd’s algorithm) has time complexity O(BKIC) 
where B is the number of patches in a WSI, K is the number of cluster centroids, 
I is the number of iterations and C is the dimension of each input data point. For 
fixed I, K and C, the initial clustering steps of mosaic construction is O(B). To 
obtain the final mosaic, a fixed percentage (e.g. 5%) of patches are sampled from 
each cluster, and hence the resulting mosaic varies from slide to slide with size 
B′ = 0.05 × B. During retrieval, the number of total candidates proposed (before 
ranking) is T · (ksucc + kpred) · B′ (see the next section for the definition of T, ksucc and 
kpred). For ranking, the complexity is O(B′). Therefore, given fixed ksucc, kpred and T, 
the time complexity of retrieval is O(B′). Note that since the size of a WSI is capped 
by the physical size of the glass slide and the tissue specimen, for a fixed patch 
size, we can always pick a reasonable constant Bmax to upper bound the maximum 
B in the database and in incoming query slides. Therefore, the entire workflow 
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has a theoretical constant time complexity of O(1). In real-world scenarios where 
we expect the size of the database to scale to hundreds of thousands or millions 
of slides, the time complexity of retrieval will dominate over other steps such as 
mosaic generation and ranking if we do not use an O(1) search algorithm and it 
instead scales with O(n) or O(nlogn), where n is the size of the database. However, 
we note that while in most practical scenarios with increasingly large databases, the 
size of the WSI database (n) would be larger than the size of the number of patches 
in the query slide (B); in rare cases where the size of the database is very small, 
such that average B is not negligible compared to n, while the search operation 
will continue to have a constant O(1) complexity, the speed of the overall pipeline 
may be limited by the mosaic generation O(Bmax). Mosaic generation can also be 
completed before case review, further improving search speeds.

Guided search algorithm. For clarity, we use mi to denote the patch index in the 
mosaic of the query slide to distinguish those in the database. Given a query 
slide I represented as I = {(m1, h1), (m2, h2), …, (mk, hk)} with k patches, where each 
tuple is composed of the index of the patch mi and its texture features hi, we apply 
guided-search to each tuple and return the corresponding results ri. The output 
takes the form of RI = {r1, r2, …, rk}. Each ri = {(pi1, μi1), (pi2, μi2), …, (pin, μin)}, a set of 
tuples consisting of the indices of similar patches (pi1, pi2, …, pin) and their associated 
metadata (μi1, μi2, …, μin). μij includes all metadata associated with the j-th patch plus 
the Hamming distance between hi and hj. A visual illustration is shown in Fig. 2.

The drawback to using only mi for the query is that the current patch index is 
sensitive to minor changes in zi,3. For example, a patch that differs from another 
by 1 incurs a 1011 difference in index, putting the two patches far from each other 
in the vEB tree. To address this issue, we create a set of candidate indices mi,c+ and 
mi,c− along with the original mi by adding and subtracting an integer C for T times 
from Sum(zi,3). We call helper functions forward-search and backward-search 
to search the neighbour indices in mi,c+ and mi,c−, respectively. Both functions 
include only those neighbouring indices whose Hamming distance from the query 
hi is smaller than a threshold, θh. The details of these algorithms are presented in 
Algorithms 1 through 3.

Algorithm 1 Guided Search Algorithm
 H ← hash table     ⊳  Hash table with patch index as key and metadata 

as value
 C, T ← 50 × 1011, 10      ⊳  Integer and number of times for addition 

and subtraction
 θh ← 128    ⊳  Threshold of the Hamming distance between query patch 

index and the neighbor
 ksucc, kpred ← 375     ⊳  Number of time to call vEB.Successor()  

and vEB.Predecessor()
 Function GUIDED-SEARCH(mi, hi, C, T, θh, kpred, ksucc, H, vEB)
 mi,c+, mi,c−, results ← {}, {}, {}
 V ← {}
 mi,c+. insert(mi)
 for t ← 1, 2, . . . , T do
  mtmp+, mtmp- ← mi + t × C, mi − t × C
  mi,c+. insert(mtmp+)
  mi,c−. insert(mtmp-)
 results+, V ← FORWARD-SEARCH(mi,c+, ksucc, θh, V, H, vEB)
 results− ← BACKWARD-SEARCH(mi,c−, kpred, θh, V, H, vEB)
 results. insert(results+)
 results. insert(results−)
 results ← SORT-ASCENDING(results, key = results. hammingdistance)
 return results

Results ranking algorithm. Our ranking function Ranking (Algorithm 4) takes the 
results RI = {r1, r2, …, rk} from Guided-Search as input. The output is the top-k 
similar slides given the query slide I. We set k equal to 5 for all experiments, except 
for anatomic site retrieval where k is equal to 10. The intuition behind Ranking 
is to find the most promising patches in RI on the basis of the uncertainty. It relies 
on three helper functions—Weighted-Uncertainty-Cal (Algorithm 5), Clean 
(Algorithm 6) and Filtered-By-Prediction (Algorithm 7).

Weighted-Uncertainty-Cal (Algorithm 5) takes RI as input and calculates 
the uncertainty for each ri by computing their entropy (that is, frequency of 
occurrence of slide labels). The lower the entropy, the less uncertain the patch 
and vice versa. The output is the entropy of ri, along with records that summarize 
the diagnosis occurrences and Hamming distance of each element in ri. The 
disadvantage of counting the occurrences naively in the entropy calculation is 
that the most frequent diagnosis in the anatomic site dominates the result and 
therefore downplays the importance of others. We introduce a weighted occurrence 
approach to address this issue. The approach counts the diagnosis occurrences by 
considering the percentage of the diagnosis in the given site and the diagnosis’s 
position in the retrieval results. It calculates the weight of each diagnosis in the 
anatomic sites by the reciprocal of the number of diagnosis. We normalize the 
weights such that their summation is equal to a constant N. A diagnosis’s final 
value in ri is the normalized weight of the diagnosis multiplied by the inverse of 
position where the diagnosis appears in ri. Therefore, the same diagnosis can have 

different weighted occurrences because of its position in ri. As such, less frequent 
diagnoses and those with lower Hamming distance (that is, close to the beginning 
of the retrieval results) gain more importance in the ranking process. As illustrated 
in Fig. 2, we summarize RI with three metadata values, Slb, Sm and Sl, to facilitate the 
subsequent processes. Specifically, Sm is a list that stores tuples of form (index of ri, 
entropy, Hamming distance info in μij, length of ri), Sl is an array that only stores 
the length of ri and Slb is a nested dictionary that stores the disease occurrences in ri.

Algorithm 2 Forward Search Algorithm
 function Forward-Search(mi,c+, ksucc, θh, V, H, vEB)
 res+ ← {}
 for i+ in mi,c+ do
  succ_cnt, succprev ← 0, i+
  while succ_cnt < ksuccdo
   succ ← vEB. Successor(succprev)
   if succ ∈ V or succ is empty then
    break
   else if H[succ]. len() = = 0 then
    // The case when the patient is identical to query slide I
    succprev ← succ
    continue
   else
    // Find the patch with smallest Hamming distance in the same key
    distj, j ← Argminj(Hamming-Distance(hi, H[succ]))
   if distj < θh then
    V. insert(succ)
    meta ← H[succ][j]
    res+. insert((distj, meta))
   succ_cnt, succprev ← succ_cnt + 1, succ
 return res+, V

Algorithm 3 Backward Search Algorithm
 function Backward-Search(mi,c−, kpred, θh, V, H, vEB)
 res− ← {}
 for i− in mi,c−do
  pred_cnt, predprev ← 0, i−
  while pred_cnt < kpred do
   pred ← vEB. Predecessor(predprev)
   if pred ∈ V or pred is empty then
    break
   else if H[pred]. len() = = 0 then
    // The case when the patient is identical to query slide I
    predprev ← pred
    continue
   else
    // Find the mosaic with smallest Hamming distance in the same key
    distj, j ← Argminj(Hamming-Distance(hi, H[pred]))
   if distj < θh then
    V. insert(pred)
    meta ← H[pred][j]
    res−. insert((distj, meta))
   pred_cnt, predprev ← pred_cnt + 1, pred
 return res−

Algorithm 4 Results Ranking Algorithm
 function RANKING(Rs, D_inv, N, K)
 if Rs is empty then return
 D_inv ← NORMALIZE(D_inv, N) ⊳ Normalize the reciprocal of diagnosis 

count so that the sum is equal to N. N = 10 for the fixed site and N = 30 for the 
anatomic site experiments, respectively.

 Slb, Sm ← {}, {}
 Sl ← {}
 for each patch’s results ri in RS do
  if ri is not empty then
   Ent, label_cnt, dist ← WEIGHTED-UNCERTAINTY-CAL(ri, D_inv)
   Slb. insert(i, label_cnt)
   Sm. insert((i, Ent, dist, ri. len()))
   Sl. insert(ri. len())
  else
   continue
 Sm ← CLEAN(Sm, Sl)
 f ← FILTERED-BY-PREDICTION(Sm, Slb)
 Rret, V ← {}, {}
 for e in Sm do
  uncertainty, i ← e. Ent, e. i
  if i in f then
  continue
  else
   ri = RS[i]
   for p, μ in ri do
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    if uncertainty == 0 and μ. slide_name not in V then
     Rret. insert(μ)
     V. insert(μ. slide_name)
    else if uncertainty > 0 and μ.Hamming_dist ≤ θh′ and μ. slide_name 

not in V then
     Rret. insert(μ)
     V. insert(μ. slide_name)
 Rret ← SORTING(Rret)
 return Rret[0: K]

Clean (Algorithm 6) aims to remove outliers and the patches that are less 
similar to the query in RI. It takes summaries of patch Sm and Sl from the previous 
stage as input, removing r whose result length ∣r∣ is less than the Ol or greater than 
the Oh quantiles. Additionally, we take the average of the mean Hamming distances 
in the top kθ′h

 patches for each r ∈ RI as a threshold denoted by θh′, using this to 
filter out r whose mean Hamming distance in top kθ′h

 retrieval is greater than θh′. 
After cleaning the results, we sort them on the basis of the uncertainty calculated 
from Weighted-Uncertainty-Cal in ascending order.

Algorithm 5 Uncertainty Calculation
 function Weighted-Uncertainty-Cal(ri, D_inv)
 label_cnt, dist ← {}, {}
 for pos_index, μ in ri do

  
label_cnt[μ.diagnosis] ← label_cnt[μ.diagnosis] + D_inv[μ.diagnosis] ×
1

pos_index
  dist. insert(μ.hamming_dist)
 for lb, cnt in label_cnt do
  if cnt < 1 then
   label_cnt[lb] ← 1
 Ent = Entropy(label_cnt)
 return Ent, label_cnt, dist

Algorithm 6 Results Cleaning
 function Clean(Sm, Sl)
 //Sm:An array that stores tuples composed of the index i, the entropy, the 

Hamming distance of all patches, and the total number of patches for each ri in RI.
 //Sl:An array that stores the total number of patches for each ri in RI.
 tmp ← {}
 kθ′h

← 5
 Ol ← 5%
 Oh ← 95%
 l ← 3
 // When the unique results length is less than 3, we keep the original Sm.
 if Unique(Sl)≥l then
  for res in Sm do
   if res. r. len()≤Quantile(Sl, Ol) or res. r. len()≥Quantile(Sl, Oh) then
    del res
   else
    tmp. insert(Mean (res.dist[0 : kθ′h

]))
 else
  for res in Sm do
   tmp. insert(Mean (res.dist[0 : kθ′h

]))
 θh′ ← Mean(tmp)
 for res in Sm do
  if Mean (res.dist[0 : m]) > θ′

h then
   del res
 Sm ← Sort-Ascending(Sm, key = Ent)
 return (Sm)

We can now return the slide from ri at the beginning of the sorted Sm on the 
basis of the uncertainty. However, a drawback of this approach is that the low 
uncertainty of the first several r ∈ Sm could be caused by the domination of the 
most frequent diagnoses in the given anatomic site. For example, the most frequent 
occurrences of the top 5 entries in Sm could be KIRC, BLCA, KIRP, KIRP and KIRP 
for the urinary site. In this case, the query slide would be diagnosed as KIRP on 
the basis of the majority vote. Therefore, the first and second entries that dominate 
the urinary site cases should not be considered during retrieval. We leverage the 
Filtered-By-Prediction (Algorithm 7) to mitigate this issue. This function 
takes the summation of the diagnosis occurrences from the top kf certain elements 
in Sm. It first uses the diagnosis with the maximum score as a pseudo-ground 
truth diagnosis from the top kf most certain elements. Afterwards, it removes all 
elements whose maximum occurrence diagnosis disagrees with the pseudo-ground 
truth. To return final results Rret,I of slide query I, we take the slide name and its 
diagnosis in ri pointed to by Sm one by one. If the uncertainty of ri is zero, we take 
all (pi, μi). Otherwise, we use θh′ again to ignore (pi, μi) whose Hamming distance 
is greater than the threshold. We sort Rret,I first by uncertainty in ascending order 
then by Hamming distance in descending order if the uncertainty is a tie.

Training details of VQ-VAE. We randomly sampled 20 1,024 × 1,024 patches at ×20 
magnification from 9,286 diagnostic slides across 29 TCGA projects. All patches 

were converted from RGB to Pytorch tensors, then normalized such that all 
values lie within [−1, 1]. The model was trained using the Adam optimizer with a 
learning rate of 10−3 without weight decay and without AMSgrad. We used default 
settings for other hyperparameters in Adam (β1=0.9 and β1=0.999, and ϵ = 10−8). 
We trained our model with a batch size of 4 for 10 epochs. We applied gradient 
clipping techniques by setting the gradient threshold to 1.0. The hyperparameter 
α in VQ-VAE was also set to 1 (equation 2). In the patch speed experiments, we 
followed the same training receipts above, except that we trained on a patch of  
size 256 × 256.

Ablation study. We conducted two ablation studies: one to show that using a 
pretrained VQ-VAE does not confer an advantage when compared with the 
Yottixel pipeline and a second to test the benefit of each function in our ranking 
module. For the first study, we conducted a top-5 nearest neighbour search on 
Kather100k by using the VQ-VAE integer index and the Yottixel index. For the 
ranking module, we compared the performance of the following four settings: (1) 
Naive: removing Clean and Filtered-By-Prediction and treating each diagnosis 
occurrence in the mosaic retrieval result equally (that is, replacing the assignment 
in line 4 in Algorithm 5 with 1). (2) +Weighed count: applying Uncertainty-Cal 
to the ranking module only. (3) +Clean: applying Uncertainty-Cal and Clean 
to the ranking module. (4) +Filter: applying all functions to the ranking module.

Algorithm 7 Results Filtering by Prediction
 function Filtered_By_Prediction(Sm, Slb)
 //Sm: An array that stores tuples composed of the index i, the entropy, the 

Hamming distance of all patches, and the total number of patches for each ri in RI.
 //Slb: A nested hash table that stores the index of r in RI as the key and its 

weighted diagnosis occurrences table as value.
 cnt ← {}
 kf ← 5
 for sm in Sm[0:kf] do
  // Calculate the score of each diagnosis
  for d in Slb[sm. i] do
   cnt[d] ← cnt[d] + Slb[sm. i][d]
 plb_list ← Sort-Descending(cnt)
 p ← 0
 // A while loop is used here to avoid the case that the plb remove all sm.
 while do
  plb ← plb_list[p]
  removed ← {}
  for sm in Sm[0: kf] do
   pred ← Max(Slb[sm. i])
   if pred ≠ plb then
    removed. insert(sm. i)
  if removed. len() ≠ kf then
   break
  else
   p ← p + 1
 return removed

Visualization. We build confusion matrices for each site using each slide diagnosis 
as ground truth along the y axis and Mv(ret[: k]) as predicted diagnosis along the x 
axis. For the Hamming distance matrix, we inspect the Hamming distance between 
the query slide and each result in ret[: k] one by one, adding the Hamming distance 
to the associated diagnosis label and infinity to others. The infinity here is defined 
as Hamming distance threshold θh plus 1, as θh is the maximum distance we can 
have in our pipeline. The final Hamming distance matrix is obtained by dividing 
the total number of slides in the given anatomic site.

Evaluation metrics. For all experiments, we remove the slide with the same patient 
identification as the query slide in the database (that is, leave-one-patient-out 
evaluation). Since the ability to diagnose each subtype of cancer is the paramount 
task in search-based disease classification53 and a false-negative case does harm 
to the patient’s health, we evaluate the accuracy of each subtype by dividing the 
number of correct prediction by the total number of subtype in the site. The 
prediction of a query is determined by the majority vote of slide label in the top-k 
retrieval (that is, MV@k). Therefore, the overall mean accuracy mMV@k for a 
given subtype L is defined as:

mMV@k =
1
Q

Q
∑

i=1
[L = Mv(reti[: k])] , (9)

where Q is the number of slides for the given cancer subtype and MV(reti[: k]) is 
the predicted diagnosis of Si taken from the majority vote of the top-k retrieval 
reti. We use k = 5 for disease subtyping and k = 10 for anatomic site prediction 
for comparative analysis with ref. 35. Similar to the related works that focused 
on top retrieval38,54 (that is, k ≤ 5), we also report k = 1 and k = 3 to evaluate the 
performance of the top hit. In addition, we use the definition of mAP@k below to 
provide another perspective.

NATure BioMeDiCAL eNgiNeeriNg | VOL 6 | DECEMBEr 2022 | 1420–1434 | www.nature.com/natbiomedeng 1431

http://www.nature.com/natbiomedeng


Articles NaTurE BIomEDICal ENgINEErINg

AvP@k =

∑k
i=1 Preci · Reli

k
, (10)

mAP@k =
AvP@k
|Q|

(11)

where AvP@k, Preci and Reli respectively denote average precision up to k, 
precision at i and relevant indicator at i (that is, 1 if the item at the position i is 
relevant and 0 otherwise). For AvP@k, we adapted the original definition55 by 
changing the denominator to the maximum number of slides whose labels match 
the query’s. We did this adaption to ensure that the mAP@k in each subtype has the 
same scale. We used k = 5 for the disease subtyping task.

Computational hardware and software. We stored all WSIs, patches, 
segmentation masks and mosaics across multiple disks with total size around 27TB. 
Segmentation, patching, mosaic extraction and search of WSIs were performed 
on a CPU (AMD Ryzen Threadripper 3970X 32-Core Processor). The VQ-VAE 
pretraining and feature extraction were performed on 4 NVIDIA 2080Ti GPU. 
The whole SISH pipeline was written in Python (version 3.7.0), with the following 
external package: h5py (2.10.0), matplotlib(3.3.0), numpy (1.19.1), opencv-python 
(4.3.0.38), pillow (7.2.0), pandas (1.1.0), scikit-learn (0.23.1), seaborn (0.10), 
scikit-image (0.17.2), torchvision (0.6.0), tensorboard (2.3.0) and tqdm (4.48.0). 
We used Pytorch (1.5.0) for deep learning. All plots were created by matplotlib 
(version 3.2.2) and seaborn (version 0.10.1). The pie charts were created using 
Adobe Illustrator.

WSI datasets. There are three datasets in our slide-level retrieval experiment: 
diagnostic slides in The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) and BWH in-house data.

TCGA and CPTAC diagnostic slides. We downloaded all diagnostic slides from 
the TCGA genomic data commons and the CPTAC websites. To fairly compare 
with Yottixel, we used slides from the same 13 anatomic sites for anatomic site 
retrieval and the same 29 diagnoses for disease subtype retrieval in the TCGA. 
There are 503 CPTAC-Clear Cell Renal Cell Carcinoma slides from 216 patients, 
544 CPTAC-UCEC slides from 240 patients, 679 CPTAC-LUSC slides from 210 
patients, 669 CPTAC-LUAD slides from 224 patients and 283 CPTAC-SKCM 
slides from 93 patients. All slides were processed at ×20. Detailed slide and patient 
numbers are reported in Supplementary Table 4.

In-house diagnostic slides. From the WSI database at Brigham and Women’s 
Hospital, we collected 8,035 diagnostic WSIs that span 9 anatomic sites with 
37 primary cancer subtypes. Further details of the dataset are available in 
Supplementary Table 5. All slides were processed at ×20.

Patch datasets. There are five datasets in the patch retrieval experiments:  
colon tissues (Kather100k), BWH prostate, lung tissues (WSSS4LUAD), atlas of 
digital pathology (Atlas) and breast tissues (BCSS). We provide details for each 
dataset below.

Kather100k45. The data contain 100,000 224 × 224 tissue patches from colon  
at ×20 without colour normalization, from the National Center for Tumor  
Diseases (NCT) biobank and the University Medical Center Mannheim (UMM). 
The tissue patches are adipose (ADI), background (BACK), debris (DEB), 
lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon 
mucosa (NORM), cancer-associated stroma (STR) and colorectal adenocarcinoma 
epithelium (TUM).

BWH in-house prostate. In this cohort, each whole-slide image is from a different 
patient. For the prostate data used in patch-level retrieval, we collected 23 slides at 
×20, scanned the slides using Hamamatsu S210 and annotated regions in each slide 
by gleason score 3, 4, 5 or normal, where the number of patches for each category 
is 2,355, 2,289, 171 and 2,000, respectively. Detailed slide and patient numbers are 
reported in Supplementary Table 5.

WSSSS4LUAD46. We used the training part of the data that contains 10,091 
annotated patches from 49 WSIs from the Guangdong Provincial People’s Hospital 
(GDPH) and 14 WSIs from lung adenocarinoma in TCGA. Each patch ranges from 
150 to 300 × 150 to 300 pixels and has one annotation from [’stroma’, ’stroma + 
tumour’, ’tumour’, ’normal’]. We only considered the patch with annotation stroma, 
tumour and normal, which resulted in 4,698 patches. The slides were scanned 
using Leica and Aperio-AT2 at ×10.

Atlas47. This dataset contains 17,668 272 × 272 patches from 100 glass slides 
scanned by Huron TissueScope LE1.2 in a private cohort mentioned in ref. 47 with 
38 histology tissue types annotation organized in 3 hierarchies. The patches were 
cropped from 100 slides at ×40 from various organs. We only considered the label 
in the first hierarchy which are: epithelial (E), connective proper (C), blood (H), 

skeletal (S), adipose (A), muscular (M), nervous (N), glandular (G) and transport 
vessel (T). Multiple labels for a patch is common in this dataset.

BCSS48. This dataset contains the pixel-level annotation from 151 TCGA-breast 
WSI at ×40 and are grouped into five categories: tumour, stroma, inflammatory, 
necrosis and other. Specifically, the tumour class includes the predominant 
tumour, ductal carcinoma in situ (DCIS) and angioinvasion, and the inflammatory 
infiltrates include plasma cell, lymphocytes and other infiltrates. We only 
considered the first four classes since they are more clinically relevant. We cropped 
each patch into 256 × 256 and assigned the patch with all labels appearing in the 
region. The number of total patches is 7,691. Having multiple labels for a patch is 
possible in this dataset. We considered the search correct if most of the categories 
in the search result match one of the categories in the query patch.

WSI processing. Segmentation. We used the automatic segmentation tool in 
clustering-constrained attention multiple instance learning9 (CLAM) to generate 
the segmentation mask for each slide. The tool first applies a binary threshold 
to a downsampled whole-slide image on the hue, saturation and value colour 
space to generate a binary mask and then refines the mask by median blurring 
and morphological closing to remove the artefacts. After getting the approximate 
contours of the tissue, the tool filters out the tissue contours and cavities on the 
basis of a certain area threshold.

Patching. After segmentation, we cropped the contours into 1,024 × 1,024 patches 
without overlapping at ×20. For ×40 whole slides, we first cropped them into 
2,048 × 2,048 patches and then downsampled them to 1,024 × 1,024 to get the 
equivalent patches at ×20.

Mosaic generation. We followed the mosaic generation process proposed in the 
Yottixel paper36. The algorithm first applies K-mean clustering to the RGB features 
extracted from each patch, with number of cluster K = 9. Within each cluster, 
we run K-means clustering again on the coordinate of each patch by setting the 
number of clusters to 5% of the cluster size. If the number of clusters is <1 in the 
second stage, we took all coordinates within that cluster. Except for the number 
of clusters, we used all default settings in Scikit-learn for K-means clustering. 
To get better quality of mosaics, we collected 101 patches for both debris/pen 
smudges and tissue to train a logistic regression on the basis of local binary pattern 
histogram feature to remove the unmeaningful regions. We used the default setting 
from the Scikit-learn package in logistic regression and used the rotate invariant 
binary pattern from Scikit-image package with P = 8 and R = 1. The bin number of 
the histogram was set to 128.

Artefacts removal. Rarely, we found that the generated mosaic might contain 
patches with nearly completely white background. We removed such patches from 
the mosaic if the white regions accounted for over 90% of pixels in each patch. We 
applied the binary threshold method in OpenCV with a threshold value of 235 to 
determine the area (in number of pixels) of white regions.

Ethics oversight. The retrospective analysis of archival pathology slides was 
approved by the Mass General Brigham (MGB) IRB office under protocol 
2020P000233.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The TCGA diagnostic whole-slide data and corresponding labels are available  
from the National Institutes of Health (NIH) genomic data commons  
(https://portal.gdc.cancer.gov). The CPTAC whole-slide data and the 
corresponding labels are available from the NIH cancer imaging archive  
(https://cancerimagingarchive.net/datascope/cptac). Supplementary Table 19 
provides access links to publicly available patch-level datasets. Source data for the 
figures are provided with this paper. All reasonable requests for academic use of 
in-house raw and analysed in-house data can be addressed to the corresponding 
author. All requests will be promptly reviewed to determine whether the request is 
subject to any intellectual property or patient-confidentiality obligations, will be 
processed in concordance with institutional and departmental guidelines, and will 
require a material transfer agreement.

Code availability
All scripts, checkpoints, preprocessed mosaics and pre-built database to 
reproduce the findings are available at https://github.com/mahmoodlab/SISH. We 
implemented all our methods in Python and used Pytorch as the primary package 
for training VQ-VAE. The code base is made available for non-commercial and 
academic purposes.
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Extended Data Fig. 1 | examples of fixed-site disease subtype retrieval in TCgA cohort. Examples of retrieval slides and corresponding rOI identified by 
SISH in TCGA-KIrC, TCGA-KIrP, and TCGA-GBM. The green border of rOIs denotes the selected regions match the histological features annotated by the 
pathologist. The number in parentheses is the Hamming distance between the query slide and each result, determined by the identified rOI in each WSI. 
Each row shares the same scale bar unless specified otherwise.
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Extended Data Fig. 2 | examples of fixed-site disease subtype retrieval in independent cohort. Examples of retrieval slides and corresponding rOI 
identified by SISH in Breast Invasive Ductial Carcinoma (Breast IDC), Uterine Endometriod Carcinoma (Uterine EC), and Kidney Chromophobe. The green 
border of rOIs denotes the selected regions match the histological features annotated by the pathologist. The number in parentheses is the Hamming 
distance between the query slide and each result, determined by the identified rOI in each WSI. Each row shares the same scale bar unless specified 
otherwise. We found that SISH is sometimes confused with Ovary EC and Uterine EC, which is reasonable as both diseases have similar morphology.
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Extended Data Fig. 3 | examples of fixed-site retrieval on rare cancer subtype. Examples of retrieval slides and corresponding rOI identified by SISH in 
Medullary Thyroid Carcinoma (MTC), Lung Carcinoid and Cholangiocarcinoma (CHOL). The green border of rOIs denotes the selected regions match 
the histological features annotated by the pathologist. The number in parentheses is the Hamming distance between the query slide and each result, 
determined by the identified rOI in each WSI. Each row shares the same scale bar unless specified otherwise. We found that SISH is sometimes confused 
with Cholangiocarcinoma and Pancreatic Adenocarcinoma (PAAD), which is reasonable as both diseases have similar morphology.
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Extended Data Fig. 4 | examples of anatomic site retrieval in TCgA cohort. Examples of retrieval slides and corresponding rOI identified by SISH in Brain, 
Pulmonary and Kidney. The visualization showed that SISH can also identified regions that contain typical histological features for a site. The green border 
denotes the regions that contain typical features while the red borders denote the failure cases. The number in parentheses is the Hamming distance 
between the query slide and each result, determined by the identified rOI in each WSI. Each row shares the same scale bar unless specified otherwise.
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Extended Data Fig. 5 | mMV@1, mMV@3 and mAP@5 results on patch data. A-C: Kather100k, D-F Atlas, G-I Breast, J-L BWH prostate and M-O 
WSSS4LUAD. On all datasets and metrics, the performance of SISH was on par with Yottixel.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | examples of patch retrieval on Kather100k colon data. The patches of cancer associated stroma (STr), colorectal 
adenocarcinoma epithelium (TUM), lymphocytes (LYM), adipose (ADI), debris (DEB), mucus (MUC), muscle (MUS), normal tissue (NOrM), and 
background (BACK) are presented in the figure. The number in parentheses is the Hamming distance between the query patch and each result.  
All patches share the same scale bar.
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Extended Data Fig. 7 | examples of patch retrieval on WSSS4LuAD lung data. We considered three types of tissues in WSSS4LUAD data (i.e., Stroma 
(STr), Tumor (TUM) and Normal (non-neoplastic)). The number in parentheses is the Hamming distance between the query patch and each result. All 
patches share the same scale bar.
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Extended Data Fig. 8 | examples of patch retrieval on in-house BWH prostate data. The patches of Gleason pattern (GP) 3, 4 and 5 are presented in the 
figure. The number in parentheses is the Hamming distance between the query patch and each result. All patches share the same scale bar.
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Extended Data Fig. 9 | examples of patch retrieval on Atlas data. The patches of Epithelial (E), Connective Proper (C), Blood (H), Adipose (A), Muscular 
(M), Nervous (N), Glandular (G) and Skeletal (S) are presented in the figure. The tissue patches are collected from various unknown organs47. The number 
in parentheses is the Hamming distance between the query patch and each result. All patches share the same scale bar.
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Extended Data Fig. 10 | examples of patch retrieval on BCSS breast data. The patches of Stroma (STr), Tumor (TUM), Inflammatory, and Necrosis are 
presented in the figure. The number in parentheses is the Hamming distance between the query patch and each result. All patches share the same scale bar.
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All in-house slides were scanned by Aperio and Hamamatsu S210, and were accessed through openslide (3.4,1). Code for data and image 
processing was implemented in Python (3.7.0), and is available at https://github.com/mahmoodlab/SISH.

Data analysis The implementation of the pipeline for model development and evaluation are available from https://github.com/mahmoodlab/SISH. All 
codes were written in Python (3.7.0) and use Pytorch (1.5.0) for deep learning. These additional Python libraries were used: h5py (2.10.0), 
matplotlib(3.3.0), numpy (1.19.1), opencv-python (4.3.0.38), pillow (7.2.0), pandas (1.1.0), scikit-learn (0.23.1), seaborn (0.10),scikit-image 
(0.17.2), torchvision (0.6.0)  tensorboard (2.3.0) and tqdm (4.48.0). We used Adobe Illustrator to create pie charts and to arrange all figures.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The TCGA diagnostic whole-slide data and corresponding labels are available from the National Institutes of Health (NIH) genomic data commons (https://
portal.gdc.cancer.gov). The CPTAC whole-slide data and the corresponding labels are available from the NIH cancer imaging archive (https://
cancerimagingarchive.net/datascope/cptac). Supplementary Table 19 provides access links to publicly available patch-level datasets. All reasonable requests for 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical tests were used to determine the sample size. We used all available data for model development. 
 
Public datasets: After excluding poor-quality slides, we used 11,561 slides from the TCGA and 2,678 slides from the CPTAC.  For the 
kather100k, BCSS and Atlas, we use all data in the released datasets. For WSSS4LUAD, we used the data in the challenge training set with 
stroma, tumour and normal annotation (see Methods for details). 
 
BWH independent test cohort: We used all available whole-slide images from our in-house repository corresponding to rare and common 
diagnoses. Based on the availability of slides and after excluding poor-quality slides, we used a total of 8,169 in house slides.

Data exclusions Pre-established exclusion criteria include slides with significant marking covering the tissue area, damaged slides and missing slides. Slides 
with markings that do not predominantly cover tissue regions were not excluded. 

Replication We provide the data and instructions to reproduce the results at https://github.com/mahmoodlab/SISH. Replication was successful when all 
requirements were met.

Randomization No patient recruitment was performed for this study, and randomization was not necessary. 

Blinding Blinding was not needed for this retrospective image-analysis study. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq
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Human research participants
Policy information about studies involving human research participants

Population characteristics Public Data: TCGA,CPTAC, Kather100k, BCSS, WSSS4LUAD and Atlas contain data from a diverse population representing 
multiple hospitals. 
 
In-house data: All patient cases between 2002–2020 were queried from the pathology database.

Recruitment No patient recruitment was necessary for the use of histology whole-slide images retrospectively.

Ethics oversight The Mass General Brigham IRB committee approved the retrospective image analysis of pathology slides.  

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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