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The surface of virtually every cell in the body displays endog-
enous peptides, derived from intracellular proteins, as com-
plexes with major histocompatibility proteins. This ensures 

that if a cell is infected with a pathogen or undergoes malignant 
genetic transformation, peptides derived from the pathogen or 
from the mutant proteins will be exposed to patrolling T cells. Each  
T cell has an exquisitely sensitive and specific T-cell receptor (TCR) 
that constantly surveys the organism in search of ‘non-self ’ signals, 
triggering a cascading immune response when a foreign peptide is 
identified. T cells are therefore potent and precise killers of foreign 
entities, be these pathogenic invaders or malignant cells.

Tumours are frequently invaded by immune cells as part of the 
body’s response to malignant growth. Among these immune infil-
trates, tumour-infiltrating lymphocytes (TILs) include T cells spe-
cific for mutated proteins that are present in cancer cells. These TILs 
can be isolated from a patient’s tumour tissues, expanded ex vivo to 
high numbers and adoptively transferred back into the patient to 
elicit a durable antitumour response1. However, this procedure car-
ries several limitations: TILs need to be harvested during surgery, 
are not found in sufficient numbers for all cancers, and in many 
cases expand poorly2. A potentially broader therapeutic approach 
involves collecting polyclonal T cells from the blood and, through 
genetic engineering, inserting in them genes encoding a TCR 
that is specific for a known tumour antigen. For instance, T cells 
bearing an engineered TCR targeting the NY-ESO-1 antigen have 
yielded promising results in the treatment of patients with multiple 
myeloma and synovial cell sarcoma3,4.

Using tumour-specific TCRs enables the targeting of both mem-
brane and cytoplasmic proteins; unfortunately, cancers can evade 
this endogenous recognition-and-response program by downregu-
lating major histocompatibility complex (MHC) proteins or other 
factors required for antigen processing and presentation, rendering 
cancer cells invisible to patrolling T cells. To overcome this evasion 
strategy by the tumours, T-cell specificity can be directed to tumour-
associated antigens (TAAs) in a MHC-independent manner. This 
can be achieved by employing chimeric antigen receptors (CARs).

CARs combine the specificity of a high-affinity recognition 
domain, most often derived from a monoclonal antibody (mAb), 
with the cytolytic properties of T cells. T cells modified using CARs 

(CAR-T cells) have shown unprecedented potency against haema-
tologic malignancies, as exemplified by the several clinical trials of 
CD19-CAR-T-cell therapy that have reported complete response 
rates of 50–90% for refractory B-cell malignancies5–13. These results 
led to approval from the US Food and Drug Administration (FDA) 
in the second half of 2017 for the first CAR-T therapies14,15. Such 
early success has ignited a revolution in cancer immunotherapy, and 
intensified the focus on the development of strategies that extend 
the use of CAR-T cells to other haematological malignancies and, 
in particular, to solid tumours, which presents substantial chal-
lenges with regard to efficacy and safety. In this Review Article, we 
survey several next-generation approaches for the engineering of 
CAR-T cells that hold potential for overcoming these challenges.  
In what follows, we discuss the design of CARs for increased tumour 
specificity, and how functional modules and pathways can be imple-
mented to regulate the activity of CARs for enhanced safety, includ-
ing options available for enhancing the delivery of transgenes into  
T cells. We also discuss approaches for overcoming immunosup-
pression mechanisms that protect the tumour from the immune 
system, and describe how modulation of the tumour microenviron-
ment can promote antitumour therapies.

The molecular architecture of CARs
CARs transduce antigen recognition events into a signalling cas-
cade that evokes T-cell effector functions, such as the secretion 
of cytotoxic factors and pro-inflammatory cytokines. The essen-
tial components of these synthetic receptors are an extracellular 
antigen-targeting moiety, such as a single-chain variable fragment 
(scFv), a transmembrane and hinge domain that anchors the recep-
tor on the cell surface and projects the scFv out to the extracellular 
space, and intracellular signalling domains that are triggered on 
antigen engagement (Fig. 1a).

The antigen-binding domain. The antigen specificity of a CAR is 
most often conferred by the scFv module (the smallest functional 
domain of a mAb), which contains only the variable regions of the 
light and heavy chain fused via a flexible linker. The advantages 
of using scFvs as the CAR antigen-binding domain include their 
high specificity, the fact that they can be readily generated against 
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most antigens of interest through well-established methods, and 
how easily they can be grafted into the CAR design16. Conversely, 
a disadvantage of using scFv-binding domains is their tendency 
for oligomerization, which can lead to tonic signalling and T-cell 
exhaustion17. Alternative binding domains have been used in pre-
clinical studies, including receptors18, ligands19, cytokines20,21, 
DARPins (designed ankyrin repeat proteins)22, adnectins23, Fc 
receptor fragments24, nanobodies25, peptides26 and variable lympho-
cyte receptors27. The relative efficacy, safety and immunogenicity of 
these alternative binders have not yet been fully investigated and are 
the focus of substantial ongoing work.

The ability of a CAR to transduce a strong activating signal to the 
T cell is influenced by many factors, including the binding affinity 
to the antigen, the level of expression, antigen density on the target 
cell, and epitope proximity. The relationship between binding affin-
ity and efficacy is more nuanced in the context of CARs as com-
pared with mAbs, for which higher affinity is typically desirable. 
For example, on the basis of observations from preclinical studies, 
whereas a receptor tyrosine kinase-like orphan receptor 1 (ROR1)-
CAR derived from a high-affinity scFv (with a dissociation constant 
of 0.56 nM) resulted in increased therapeutic index when compared 
with a lower-affinity variant28–30, other examples have reported that 
engineering the scFv for lower affinity improves the discrimination 
among cells with varying antigen density31–33, which could be use-
ful for enhancing the therapeutic window for antigens differentially 
expressed on tumour versus normal tissues. However, this approach 
might increase the risk of immune evasion, owing to the emergence 
of low-antigen-expressing tumour cells.

Other factors such as the proximity of the target antigen-binding 
site to the cell surface can also have strong effects on lytic activity and 
cytokine production34,35, which in some cases supersedes the effects 
of affinity. In the context of CD22-CARs, a comparison between 
two scFvs targeting the same epitope but with varying affinities did 
not reveal a significant impact of affinity on CAR function, whereas 
an alternative CD22 binder (m971) with lower affinity proved most 
efficacious, possibly because of better accessibility of the targeted 
epitope34,35. Thus, for a given antigen density on a target cell, there is 
likely to be an optimal range of scFv affinities and CAR expression 
levels required for a specific and effective antitumor response36–38.

Co-stimulatory domains. First-generation CARs, which relied 
solely on the intracellular domain of CD3ζ​ for signalling, had limited  

efficacy in clinical trials owing to the weak expansion potential of 
the CAR-T cells in vivo39 and despite observations of significant 
antitumor responses with CARs of this kind that targeted the GD2 
protein in neuroblastoma40,41. Incorporation of one or more co-stim-
ulatory domains to provide additional activating signals (Fig. 1a) 
has resulted in enhanced clinical responses and persistence5,6,42–44. 
The choice of co-stimulatory domain influences the phenotype and 
metabolic signature of T cells. For example, CD28 co-stimulation 
yields a potent, yet short-lived, effector-like phenotype, with high 
levels of cytolytic capacity, interleukin-2 (IL-2) secretion and gly-
colysis45. By contrast, T cells modified with CARs bearing 4-1BB co-
stimulatory domains tend to expand and persist longer in vivo, have 
increased oxidative metabolism, are less prone to exhaustion, and 
have an increased capacity to generate central memory T cells17,44–48. 
Whereas the vast amount of studies to date are based on CD28 or 
4-1BB CARs, several other co-stimulatory domains are currently 
being evaluated (Table 1)48,49. Preclinical studies have reported that 
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Fig. 1 | CAR and TCR structure. a, CARs comprise an extracellular antigen-targeting moiety, such as an scFv, a transmembrane and hinge domain that 
anchors the receptor to the cell surface and projects the scFv into the extracellular space, and intracellular signalling domains that activate the T cells 
following antigen engagement. First-generation CARs contain only a CD3ζ​ signalling domain. Second-generation and third-generation CARs incorporate 
one or more co-stimulatory domains (costim), respectively. b, The TCR complex is composed of variable α​- and β​-chains associated with CD3 invariant 
chains. Full T-cell activation requires signal 1 and 2 from the TCR complex, as well as co-stimulatory receptors. Signal 3, which is transmitted by cytokine 
receptors, is important for survival, differentiation and memory formation. TIM-3, T-cell immunoglobulin and mucin domain-containing protein-3; TIGIT, 
T-cell immunoreceptor with Ig and ITIM domains.

Table 1 | CAR co-stimulatory domains

Domain Properties Refs

CD28 Potent effector function, rapid initial 
expansion, high IL-2 secretion and 
increased glycolysis

45–48,245

4-1BB Increased persistence and central 
memory formation, increased oxidative 
metabolism and decreased exhaustion

17,44–48

OX-40 Similar persistence and pro-
inflammatory cytokine secretion as 
4-1BB in vitro; decreased secretion of 
IL-10

246–248

ICOS High IFN-γ​ production; increased 
IL-17A, IL-17F and IL-22 production; 
TH17 phenotype

248,249

CD27 Increased persistence and expression 
of Bcl-XL

250,251

MyD88/CD40 Inducible MyD88/CD40 resulted 
in improved cytokine secretion, 
proliferation and survival

49,77

ICOS, inducible co-stimulator; TH17, T-helper 17 cell; Bcl-XL, B-cell lymphoma-extra large protein.
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third-generation CARs — bearing both CD28 and 4-1BB domains —  
have superior efficacy when compared with second-generation 
constructs50,51; however, others reported opposite findings52,53. 
Expression of the 4-1BB ligand in CD28ζ​-based CARs has also been 
shown to extend CAR-T-cell persistence, and is currently being 
tested in clinical trials47 (NCT03085173).

Hinge and transmembrane domains. The flexible hinge domain 
is a short peptide fragment that provides conformational free-
dom to facilitate binding to the target antigen on the tumour cell. 
It may be used alone or in conjunction with a spacer domain that 
projects the scFv away from the T-cell surface28,54. Previous studies 
have suggested that the optimal length of the spacer depends on 
the proximity of the binding epitope to the cell surface, with proxi-
mal epitopes requiring longer spacers and distal epitopes requiring 
shorter ones28,55.

Besides promoting binding of the CAR to the target antigen, 
achieving an optimal distance between the T cell and the cancer 
cell may also help to sterically occlude large inhibitory molecules 
from the immunological synapse56. Long spacers typically include 
the CH2CH3 domain (~220 amino acids) of immunoglobulin G1 
(IgG1) or IgG4 (refs 34,57), whereas the CH3 region can be used on 
its own to construct an intermediate spacer28 (~120 amino acids). 
Shorter spacers are derived from segments (<​60 amino acids) 
of CD28 (refs 30,34,58), CD8α​ (refs 30,34,50,58,59), CD3 (ref. 60) or CD4  
(ref. 61). Several CARs with long spacers comprised of the CH2CH3 
domain were reported to have diminished efficacy and persistence 
in vivo despite potent effector function in vitro, a disparity that was 
shown to result from binding of Fc receptors expressed on macro-
phages, monocytes and natural killer (NK) cells. These off-target 
interactions resulted in increased activation-induced cell death of 
CAR-T cells and cross-activation and lysis of these innate immune 
cells62. Following these observations, deletion and mutation of 
CH2CH3 residues that resulted in abrogated Fc receptor binding 
led to a significant improvement of in vivo persistence and efficacy 
in murine models57,63.

The properties of the transmembrane domain have not been as 
meticulously studied, but they can potentially affect CAR expres-
sion and association with endogenous membrane proteins58,64,65.

Improving safety
Unlike traditional cancer drugs (such as small molecules and anti-
bodies) that rely on passive targeting, T-cell-based therapeutic 
agents can actively home to disease sites, sense the microenviron-
ment and integrate multiple inputs to mount a complex and dynamic 
immune response. These cells are also capable of self-amplification, 
renewal and differentiation into distinct effector subsets. Despite 
all these advantages, such complex behaviour can pose challenges 
with regard to safety. Recent clinical trials have reported CAR-T-
associated toxicities, such as cytokine-release syndrome (CRS), 
neurotoxicity, off-tumour effects and acute respiratory distress syn-
drome, all of which are potentially fatal66–68. These adverse effects 
highlight the need for developing control programs to modulate the 
activity of CARs, and numerous approaches have been explored to 
program these genetically engineered systems with feedback control 
systems and safety modules, by leveraging recent advances in syn-
thetic biology (Figs. 2 and 3).

Control switches. One strategy to control severe CAR-T-cell toxic-
ity is to include a mechanism for rapid ablation of the transplanted 
cells through a suicide switch (Fig. 2). For example, cells express-
ing inducible caspase 9 (iCasp9) can be killed by the addition of 
a small-molecule drug that dimerizes and activates the protein to 
induce programmed cell death69. This system was used to elimi-
nate 90% of T cells expressing iCasp9 within 30 minutes in patients 
receiving a hematopoietic stem cell transplant, and reversed  

graft-versus-host disease (GVHD)70. Alternative suicide genes 
include epitope tags that are recognized by FDA-approved mAb 
therapeutics such as cetuximab71,72 or rituximab73,74, which induce 
T-cell death through endogenous antibody-dependent cell-medi-
ated cytotoxicity and complement-dependent cytotoxicity. These 
epitope tags can also serve as handles for purification of transduced 
T-cell populations11–13. Neither drug-induced nor mAb-mediated 
suicide switches have been tested clinically in the context of CAR-
based therapeutics, and therefore it remains unclear how effective 
they may be in mitigating both on-target and off-target toxicity.

Suicide switches are effective at stopping the toxicity of the engi-
neered cells, but result in the irreversible termination of the thera-
peutic treatment. Alternatively, non-cytotoxic reversible systems 
may be useful for controlling adverse toxicity without deleting the 
therapeutic cells (Fig. 3). For instance, the CAR gene can be placed 
under the control of inducible expression systems that toggle the 
transcription of the CAR between on and off states through small 
molecules such as doxycycline and tetracycline. These safety mech-
anisms may have limitations, such as a relatively slow induction or 
reduced receptor expression, and inherent leakiness of the system 
can lead to residual CAR expression even in the absence of the 
inducer75. Chemical inducers can also be used to control the assem-
bly of the CAR signalling domains at the protein level through drug 
dimerization domains. In this context, a small molecule that brings 
together the ζ​-chain and CAR to modulate CAR activation (Fig. 3a)76  
and another similar model involving a MyD88/CD40 inducible co-
stimulatory molecule49,77 have been reported.

Modular and switchable CAR (sCAR) designs in which the spec-
ificity is determined by a soluble antigen-binding fragment (Fab), 
administered in parallel to the sCAR-engineered cell, add important 
safety and specificity functionalities (Fig. 3b)78,79. Rather than recog-
nizing an antigen, the sCAR binds to a bioorthogonal tag placed on 
a Fab derived from a mAb such as Herceptin. In this design, the Fab 
acts as an adapter that bridges the T cell and the TAA-expressing 
cell. Alternatively, CARs specific for Fc domains can be directed 
at TAAs through co-administration of commercially available or 
proprietary mAbs24,80. These approaches are only now being tested 
in the clinic, but preclinical results suggest that CAR activity and 
specificity can be tuned according to the type and dose of the bridg-
ing antigen-binding molecule administered, which may provide a 
means to both limit the activity of CARs for safety and target mul-
tiple antigens, thus hindering antigen escape by the tumour.

Combinatorial antigen sensing. An ideal tumour antigen is 
exclusively expressed by tumour cells and not by normal tissues, 
as in the case of epitopes derived from tumour-specific mutated 
or glycosylated proteins59,81. Although a great effort is being 
applied to discovering such antigens, the vast majority of candi-
date antigens are also expressed on healthy tissues, albeit at lower 
levels. Consequently, T-cell-based therapies targeting these anti-
gens carry the potential for on-target, off-tumour toxicities82–84. 
One strategy to mitigate these effects and increase specificity 
is to require multiple TAAs to be engaged for full T-cell activa-
tion (AND gate, Fig. 4a). This strategy was used in a system that 
employed a synthetic notch receptor (synNotch) that releases a 
transcription factor on binding antigen ‘A’, which in turn drives 
expression of a CAR specific for antigen ‘B’85. These AND-gated  
T cells were able to clear tumours bearing both antigens in a xeno-
graft murine tumour model while sparing cells expressing only 
one of the antigens. However, once the synNotch induced expres-
sion of the second CAR, that expression was sustained for some 
time; therefore, such cells could travel throughout the body and 
subsequently react against normal tissues expressing antigen B.  
Although this type of toxicity was not observed in mouse models, 
these were short-term experiments that do not fully replicate the 
effects of long-lived T cells in humans.
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CARs can also be made to discriminate between cancer and 
healthy cells through co-expression of an inhibitory CAR (iCAR) 
that dampens the T-cell response when a healthy antigen is present 
(AND–NOT gate, Fig. 4b)86. In iCARs, an antigen-binding domain 
against a ‘healthy tissue’ antigen is fused to inhibitory intracellular 

signalling domains, such as those in programmed cell death protein 
1 (PD-1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). 
Other combinatorial antigen approaches are based on segregation 
of the CD3ζ​ domain and the co-stimulatory domain on two dif-
ferent CARs87,88; in this way, the ‘signal 1’ and ‘signal 2’ necessary 
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for T-cell activation (Fig. 1b) are only combined in response to 
the engagement of both antigens. A potential disadvantage of this 
approach is that it assumes that individual CD3ζ​ or co-stimulatory 
CARs will not function alone; however, activity has been detected 
in CD3ζ​-only CARs30,40, which could mediate deleterious effects if 
co-stimulatory signals from an inflammatory tumour microenvi-
ronment are provided.

The specificities of natural TCRs can provide additional input 
for CAR-T cell sensing. γ​δ​ T cells comprise a small fraction of cir-
culating and tissue-resident lymphocytes that recognize antigens 
in a MHC-independent manner. A subset of these cells express-
ing the Vγ​9Vδ​2 TCR are thought to recognize transformed or 
metabolically dysfunctional cells by binding to specific phos-
phoantigens that act as ‘danger signals’ presented on the cell sur-
face89. This property has been explored by inserting GD2-CARs 
into γ​δ​ T cells so that cytotoxicity towards GD2+ tumour cells 
was restricted only to those expressing these danger signals90. 
Furthermore, by employing a CAR that contained only a DAP10 
co-stimulatory signalling domain, both the γ​δ​ TCR and CAR 
needed to be engaged for lytic activity — an approach that could 
potentially limit off-tumour effects.

Although targeting TAAs also expressed on normal tissues risks 
on-target, off-tumour toxicity, evidence from preclinical mod-
els suggests that CAR-T cells may not react to low-level antigen 
expression in healthy tissues33,36–38. Instances of human epidermal 
growth factor receptor 2 (HER2)-CAR off-tumour toxicity82 have 
been largely overshadowed by safe trials with a distinct HER2-CAR 
that demonstrated clinical efficacy in patients with sarcomas91,92. 
Combinatorial antigen-sensing programs have the potential to pro-
vide increased safety by adding an extra layer of specificity to avoid 
adverse toxicities; however, increasing the stringency of antigens 
required for CAR activation could facilitate cancer cell evasion via 
antigen escape.

Autonomous sensing and activation. CAR safety modules can also 
be designed to exert spatial control over targeting by activating the 

CAR-T cells only at the site of the tumour (Fig. 5). Masked CARs 
achieve this by including an inhibitory peptide, tethered extracellu-
larly via a cleavable linker, that reversibly blocks the scFv and keeps 
the T cells in an off state until they reach the tumour microenviron-
ment93. Once there, proteases specifically secreted locally cleave the 
inhibitory peptide and unmask the CAR, priming it for targeting 
tumour cells. One report showed that a masked CAR had compa-
rable efficacy to non-masked CARs when targeting the epidermal 
growth-factor receptor (EGFR) in a murine xenograft model, but 
further studies are required to demonstrate that the strategy leads to 
decreased on-target, off-tumour effects given that the scFv used was 
derived from cetuximab, which has minimal cross-reactivity with 
mouse EGFR94. Another feature of the tumour microenvironment 
that can be explored for context-dependent activation of CARs is 
the hypoxic milieu generated by inadequate tumour vasculariza-
tion95. This feature has been taken advantage of by the design of a 
CAR with oxygen-sensitive domains that is degraded in normoxic 
conditions but remains stabilized in hypoxic conditions96. Although 
the surface expression of this construct was low and the system had 
a limited dynamic range, it nevertheless demonstrates that the con-
cept of engineering T cells with microenvironmental sensors can 
enable control over their activity.

If CAR therapy is to become widely applicable, it is without doubt 
that further developments of CAR-T technology need to address 
the potential for toxicity. The on-target, off-tumour effect observed 
with the CD19-CAR, which results in killing of healthy B cells, is 
generally well tolerated and can be managed with intravenous 
immunoglobulin therapy. However, these effects may be detrimen-
tal when targeting TAAs in solid tumours, as most of these are also 
expressed on essential tissues. Several cell-engineering strategies 
have provided possible means to improve specificity and control of 
basic CAR-T function in vivo. Future developments may include 
autonomous feedback loops and control mechanisms that enable 
engineered T cells to continuously sense key biochemical cues in 
the local microenvironment and to adjust their response accord-
ingly. For instance, a CAR-T cell could potentially be programmed 
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to secrete proteins that neutralize the effects of cytokines associated 
with CRS when inflammatory cytokines surpass a specific thresh-
old. With many unresolved challenges left in the field, it is probable 
that CARs will continue to drive development and clinical testing of 
novel synthetic biology tools.

Improving efficacy and overcoming immune suppression
Improving the efficacy of CAR-T therapies to extend their appli-
cation beyond blood cancers has met several formidable hurdles. 
After infusion into a patient, the T cells must traffic to the tumour 
site, infiltrate the tumour stroma and engage the specific TAA on 
malignant cells. Then, they must rapidly expand to high numbers 
in response to an antigen and mount the attack on cancer cells 
within a harsh tumour microenvironment that features multiple 
physical barriers97–99, a biochemical and metabolic milieu that is 
unfavourable to T-cell effector function100–102, and immunosup-
pression signals from an arsenal of inhibitory molecules displayed 
or secreted by cancer cells and supporting stromal cells alike103–105 
(Fig. 6). Additionally, T-cell activation must be sustained to enable 
clearing of the tumour before the cells become dysfunctional or 
exhausted106,107. Ideally, the CAR-T cells should then persist after 
tumour elimination and form memory cells to provide long-lasting 
protection. Engineering T cells with additional functional modules, 
along with their use in combination therapies, can help circumvent 
these obstacles (Table 2).

Homing and trafficking. To leave blood vessels and accumulate 
within solid tumours, circulating T cells must undergo extravasa-
tion, a highly coordinated process mediated by an array of factors 
such as adhesion molecules, chemokines and chemokine recep-
tors108. The tumour vasculature, however, has a deregulated che-
mokine profile and downregulates key adhesion molecules such as 
intercellular adhesion molecule 1 (ICAM-1) (ref. 109). In addition, 
natural T cells may not express the appropriate chemokine receptors 
to enable trafficking into specific tumour tissues, leading to poor 
homing and opening the door to tumour immunoevasion110. One 
strategy to overcome this deficit is to engineer T cells to express 

chemokine receptors such as CCR2 (refs 111,112), CCR4 (ref. 113) and 
CXCR1 (ref. 114). Tumours often secrete chemokines for these recep-
tors to attract supporting stromal cells; thus, ectopic expression of 
these receptors or other factors that may enhance tumour traffick-
ing in adoptively transferred T cells provides a potential means to 
preferentially direct their migration to the tumour site, which has 
been shown to improve antitumor efficacy in animal models.

Expansion and persistence. After trafficking to the tumour site 
and encountering their cognate antigen, T cells must undergo rapid 
expansion to attain the appropriate numbers relative to the tumour 
burden. The efficacy of CAR-T-cell treatment in clinical trials has 
been highly correlated with the T cells’ capacity for in vivo expan-
sion and persistence5,44,115. Preconditioning treatments with chemo-
therapeutics that deplete native lymphocytes12,13 or small-molecule 
inhibitors such as ibrutinib have been shown to improve CAR-T-
cell engraftment in haematologic malignancies115,116. For CAR-T 
cells to achieve optimal activation and proliferation, they require 
not only CD3ζ​ and co-stimulatory domain activity, which provide 
signals 1 and 2, but also a third signal provided by immunostimula-
tory cytokines. However, these activating cytokines are often down-
regulated in the microenvironment of solid tumours. To overcome 
this hurdle, several transgenic-based strategies have been developed 
to deliver those missing cytokines. Preclinical studies have shown 
that T cells engineered to secrete IL-12 (refs 117,118), IL-15 (ref. 119), 
IL-18 (ref. 120) and IL-21 (ref. 121) can help to promote the cells’ pro-
liferation and reshape the tumour microenvironment. However, 
exogenous expression of such cytokines can ultimately hinder  
ex vivo expansion and result in increased toxicity in some cases122.  
In addition, several inflammatory cytokines may potentially coun-
teract CAR-T-cell therapy by triggering negative feedback regu-
latory loops to dampen inflammation via indirect induction of 
immunosuppressive responses123–125.

Chimeric cytokine receptors — engineered chemokine receptors 
with modified functions — can be used to achieve selective expan-
sion of T cells by an administered cytokine126. However, systemic 
administration of cytokines can result in significant toxicities127–130. 
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It has been shown that an engineered, constitutively active IL-7 
receptor (IL-7R) does not require extracellular IL-7 for the antitu-
mor effects of GD2-CAR-T cells against metastatic neuroblastoma 
and orthotropic glioblastoma xenograft models131. The receptor, 
derived from a naturally occurring gain-of-function IL-7R mutant 
found in lymphoblastic leukaemias132,133, has a cysteine in the 

juxtamembrane domain that promotes dimerization of the receptor 
and initiates signalling independently of IL-7. In another example 
of this strategy, transgenic expression of cytokines tethered to their 
receptors can deliver stimulatory signals to the T cell while dimin-
ishing the risk of systemic toxicities associated with the administra-
tion of soluble cytokines134.
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Table 2 | Functional modules for improving efficacy

Module Examples Purpose Refs

Chemokine receptor CCR2, CCR4, CXCR1 Improve homing and trafficking 111–114

Secreted cytokines IL-12, IL-18, IL-21 Improve proliferation and persistence 117,120,121

Constitutively active cytokine receptor IL-7R Improve proliferation and persistence 131

Viral antigen +​ virus-specific T cells EBV, CMV Improve proliferation and persistence; reduce 
GVHD

136,139,151

ECM-degrading enzymes Heparanase Breakdown tumour stroma 140

CARs against tumour-associated cells Targeting CAFs, TAMs, TECs and  
Treg cells

Weaken immunosuppressive barriers in the tumour 
microenvironment

118,141–144

Dominant-negative receptors TGF-β​ Counteract immunosuppression 151

Switch receptors PD-1–CD28, IL-4/IL-7 Counteract immunosuppression 152,252

Secreted antibodies Anti-PD-L1, anti-PD-1 Locally delivered checkpoint blockade 253,254

Custom response modules SynNotch Programmable response in response to antigen 
engagement

185

T-cell backpacks Nanoparticles loaded with TGF-β​ 
inhibitor and IL-15

Counteract immunosuppression and improve 
proliferation

193–195

EBV, Epstein–Barr virus; CMV, cytomegalovirus; PD-L1, programmed death-ligand 1.
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Vaccine-based approaches can also be used to enhance T-cell 
proliferation by using CAR-T cells that keep an identified native 
TCR, such as one that is specific for a viral antigen135–138. In this 
context, administration of an attenuated virus, such as vaccinia, or 
viral antigens present in host cells, provides stimulation through the 
native TCR and promotes T-cell activation. However, clinical trials 
evaluating virus-specific CARs have not shown a clear advantage 
compared with standard second-generation CAR-T therapy41,136,139. 
In fact, preclinical studies have shown that signalling through both 
the TCR and the CAR can accelerate T-cell exhaustion and result in 
diminished persistence46.

Targeting the tumour stroma and supporting cells. It has been well 
established that solid tumours coerce non-transformed stromal and 
immune cells, such as myeloid-derived suppressor cells (MDSCs), 
tumour-associated macrophages (TAMs), cancer-associated fibro-
blasts (CAFs), tumour endothelial cells (TECs) and regulatory  
T cells (Tregs), to support and maintain the tumour97. Importantly, 
these conditioned cells can directly suppress CAR-mediated anti-
tumor effects in the tumour microenvironment53. In some cases, 
malignant cells can recruit these supporting cells to perform various 
functions, such as remodelling of the extracellular matrix (ECM), 
enhancement of angiogenesis and secretion of growth factors, and 
evasion of immune surveillance. Targeting supporting cells can thus 
help promote lymphocyte infiltration, and may weaken the immu-
nosuppressive barriers of the tumour microenvironment. CAR-T 
cells have not only been administered concomitantly with agents 
that modulate the tumour microenvironment53, but have also been 
engineered to directly modulate it, for example through overexpres-
sion of heparanase for degradation of the ECM, which resulted in 
enhanced therapeutic efficacy in a neuroblastoma tumour model140. 
CAFs involved in maintaining the ECM can also be targeted using 
CARs specific for fibroblast activation protein141, and other can-
cer-associated cells such as TAMs, TECs and Tregs can be targeted 
using CARs directed against tumour-microenvironment-specific  
antigens118,142–144.

Immunosuppression in the tumour microenvironment. Tumour 
cells, together with tumour-associated stromal cells, suppress 
T-cell function through an array of immunosuppressive signals, 
such as transforming growth factor-β​ (TGF-β​), IL-10 and the Fas 
ligand (refs 97,145). Tumour cells can also activate immune check-
point receptors on T cells, such as the receptors PD-1 and CTLA-
4, via expression of their ligands. Immune checkpoints are part 
of the physiological mechanisms for attenuating T-cell activation. 
Blocking the activation of immune checkpoint receptors by using 
mAbs, a strategy for reinvigorating T cells termed checkpoint block-
ade, has recently emerged as an effective immunotherapy for sev-
eral cancers106. Preclinical studies have shown a synergistic effect 
when CAR-T therapy is combined with checkpoint blockade146,147, 
and recent clinical reports have suggested that anti-PD-1 agents 
enhance the efficacy of CD19-CAR-T therapy in patients with 
refractory diffuse large B-cell lymphoma and acute lymphoblastic 
leukaemia148,149. Despite these encouraging reports, a phase-I study 
that used a third-generation GD2-CAR for patients with neuroblas-
toma reported absence of improvements in efficacy when combined 
with anti-PD1 administration150. Therefore, the potential benefits of 
combining CAR-T-cell therapy with checkpoint blockade have to 
be tested further by taking into account the specific CAR used and 
the patient’s clinical history. Moreover, whereas combining check-
point blockade with CAR-T cells may improve their potency, it 
could also increase toxicity, owing to the dampening of T-cell safety  
mechanisms.

Immunosuppression in the tumour microenvironment can also 
be circumvented with engineered dominant-negative receptors, 
which are truncated receptors for inhibitory molecules (such as 

TGF-β​) that lack intracellular signalling domains151. These decoy 
receptors compete with endogenous receptors by binding to and 
depleting the ligand, resulting in decreased signalling of inhibitory 
pathways in immune cells. Taking this approach to the next level, 
the immunosuppressive tumour microenvironment can also poten-
tially be used against the tumour itself through switch receptors: 
using this approach, inhibitory signals can be reversed into stimu-
latory signals with fusion receptors composed of the extracellular 
domain of inhibitory receptors (such as PD-1) and the signalling 
domains of stimulatory molecules (such as CD28)152.

Selectively knocking out endogenous genes through targeted 
nucleases, a powerful technique that is revolutionizing T-cell engi-
neering, can also be applied to prevent tumour-derived immuno-
suppression. Checkpoint molecules such as PD-1 (ref. 153), CTLA-4 
(ref. 154) and lymphocyte activation gene 3 (LAG-3) (ref. 155) have 
been efficiently deleted by CRISPR–Cas9 (clustered regularly-inter-
spaced short palindromic repeats–CRISPR-associated system 9) or 
TALENs (transcription activator-like effector nucleases), render-
ing T cells less prone to checkpoint inhibition and exhaustion, and 
resulting in improved antitumor efficacy and persistence in preclin-
ical models. Advances in multiplexed assays have enabled targeting 
of multiple gene targets for simultaneous deletion154,156. However, 
caution must be exercised with such approaches as these inhibitory 
receptors are part of physiological processes involved in modulating 
T-cell activity, and permanently unleashing T cells with no feedback 
and attenuation mechanisms may increase the risk of toxicity owing 
to uncontrolled activation. Importantly, recent work demonstrated 
that PD-1 is a tumour suppressor gene, raising the possibility that 
deletion of PD-1 in engineered T cells could ultimately increase the 
risk of malignant transformation157.

Metabolism and suppression. Following activation, T cells must 
adapt their metabolism to meet the energetic demands associated 
with rapid proliferation and effector function, such as the produc-
tion of cytokines and cytotoxic payloads. Consequently, the meta-
bolic profile of T cells is intimately linked to the regulation of T-cell 
function and differentiation stage. The aberrant metabolic milieu 
in tumour microenvironments, as a result of the high metabolic 
activity of tumour cells and dysfunctional tumour vasculature, is 
both hypoxic and acidic, depleted of nutrients such as glucose and 
glutamine, and lacks key amino acids such as arginine and tryp-
tophan due to the upregulation of the inhibitory enzymes indole-
amine 2,3-dioxygenase-1 (IDO-1) and arginase by the tumour 
stroma100. This unfavourable environment inhibits T-cell effector 
functions and promotes a defective T-cell state. Metabolically repro-
gramming T cells by gene editing can potentially help them resist 
these conditions. Ectopic expression of PPAR-γ​ co-activator 1α​ 
(PCG1α​) can rescue mitochondrial function and lead to increased 
cytokine production in T cells, resulting in enhanced antitumor 
efficacy158. Modifying cholesterol metabolism by knocking out acyl-
CoA:cholesterol acyltransferase 1 (ACAT1), an enzyme involved in 
esterification of cholesterol, can also potentiate the effector func-
tions of CD8+ T cells159, whereas resistance to reactive oxygen 
species can be conferred by expression of catalase, which relieves 
oxidative stress in the tumour microenvironment160.

The choice of CAR co-stimulatory domain can also drive  
T cells towards distinct metabolic profiles. Whereas co-stimulation 
through CD28 enhances aerobic glycolysis, 4-1BB drives mitochon-
drial biogenesis and oxidative metabolism, which may account for 
the phenotypic differences seen between CARs with these different 
domains17,45.

Avoiding antigen escape with bispecific CARs. Resistance to 
CAR-T therapy has been observed in the form of antigen escape, 
a process by which the tumour escapes CAR targeting by down-
regulating or mutating the CAR’s target antigen161 via selection of 
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antigen-negative cells7 or via lineage switch162,163. Although clinical 
trials with the CD19-CAR in B-cell acute lymphoblastic leukaemia 
(B-ALL) have reported high complete response rates (70–90%), 
relapse with CD19-negative tumours occurred in >​20% of respond-
ers5,7,11,164–167. In the context of solid tumours, antigen escape poses 
a potentially even greater challenge given their extensive hetero-
geneity in antigen expression. A recent trial of ten patients with 
glioblastoma treated with peripherally infused EGFR variant III 
(EGFRvIII)-specific CAR-T cells reported that five of seven patients 
who underwent tumour resection after treatment had reduced 
EGFRvIII expression in tumour tissue168. EGFRvIII antigen escape 
has also been implicated as a resistance mechanism for a peptide 
vaccine169. In a separate trial, a patient with glioblastoma treated 
with an IL-13 receptor α​2 (IL13Rα​2)-specific CAR had recur-
rent tumour with decreased antigen expresssion170. These clinical 
data, alongside preclinical studies demonstrating the emergence 
of antigen loss variants, underscore the need for targeting multiple  
antigens119,161,164,171–173.

Bispecific CARs have the potential to mitigate this escape mech-
anism by targeting two antigens simultaneously (OR gate, Fig. 4c)172. 
Tandem bispecific CARs can be constructed by linking two scFv 
domains in series174,175; these constructs may require optimization 
of the orientation of the heavy and light chains to achieve correct 
pairing and a favourable conformation for binding, and the linker 
length needed for targeting each antigen must be taken into consid-
eration. For a bispecific CAR targeting CD19 and CD20, a CD19-
proximal and CD20-distal scFv configuration was found to be ideal 
as these antigens require a short and long spacer, respectively174; in 
this format, the CD19 scFv effectively served as a linker to proj-
ect the CD20 scFv away from the surface. In another example, a 
CD19–CD22 bispecific CAR required a loop configuration, with 
the CD19 variable heavy (VH) and light (VL) chains flanking the 
CD22 scFv (CD19VL–CD22VH–CD22VL–CD19VH); this CD19–
CD22 bispecific CAR is currently being tested in clinical trials for 
both paediatric and adult B-ALL and lymphoma176 (NCT03241940 
and NCT03233854).

Alternative formats of multi-antigen CAR therapies involve 
co-expressing two or more CARs of different specificities in the 
same cell using ribosomal skip sequences, or treatment with mixed 
CAR-T cell populations177–179. This combinatorial approach cir-
cumvents the need for engineering and optimizing a new CAR 
construct; yet it is important to note that dual expression of two 
full-length CARs substantially increases the genetic payload to be 
delivered to cells, whereas adding an additional scFv module has 
only a minimal impact on the payload. This is an important consid-
eration when devising cell therapies: for viral-based gene delivery, 
for example, larger constructs are associated with decreased trans-
duction efficiencies. In the only study that has directly compared 
multi-antigen CAR platforms to date, pooled infusions of mono-
specific CARs were inferior to the tandem CAR or to dual CAR 
expression on the same cells in a preclinical model of glioblastoma 
multiforme172.

The immune response induced by CAR-T-cell killing of tumour 
cells could also play an important part in preventing the rise of anti-
gen-loss variants by inducing ‘epitope spreading’, which occurs when 
lysis of tumour cells in an inflammatory milieu leads to presenta-
tion of additional tumour antigens to lymphocytes, inducing paral-
lel cell-mediated and humoral antitumour immune responses180,181. 
A preclinical study utilizing immunocompetent mice supported 
this model: mice whose EGFRvIII-positive tumours were cleared 
by treatment with EGFRvIII-CAR-T cells could reject EGFRvIII-
negative tumour cells in subsequent re-challenge experiments, 
whereas tumour naive mice could not reject EGFRvIII-negative 
cells182. In clinical studies, patients receiving mesothelin-specific 
CAR-T cells developed elevated antibody responses against self-
proteins, including mesothelin183. These data also raise the prospect 

of potentially enhancing the generation of physiological immune 
responses through combination therapies with checkpoint inhibi-
tors that could potentially unleash tumour-reactive T cells and 
enable antitumour immunity beyond the specificity determined 
by the CAR. The contribution of epitope spreading to antitumor 
activity in patients undergoing CAR-T therapies remains unknown, 
as this phenomenon has not yet been thoroughly evaluated in  
clinical trials.

Other strategies for increasing efficacy. An alternative approach 
for cancer immunotherapy is based on the use of T cells as vehicles 
to deliver therapeutic agents to the tumour site. T cells engineered 
to secrete a soluble form of herpes virus entry mediator that inhib-
ited B-cell lymphoma proliferation through the B and T lymphocyte 
attenuator signalling axis augmented the efficacy of CD19-CAR-T 
therapy184. A separate study reported a versatile system, termed 
‘synNotch’, for the integration of signals from molecular stimuli 
in the local microenvironment into cellular responses185. Using 
this approach, T cells could be programmed to express antibodies, 
adjuvants, cytotoxic molecules or cytokines in response to binding  
to target cells.

MicroRNAs (miRs) are another attractive target for improv-
ing CAR-T therapy, as these non-coding RNAs are involved in the 
physiological regulation of T-cell development and effector func-
tion186–189. However, the immunosuppressive tumour microenvi-
ronment can downregulate key miRs such as miR-17-92 (ref. 190). 
Transgenic expression of miR-17-92 in CAR-T cells, for instance, 
led to enhanced proliferation, interferon-γ​ (IFN-γ​) production and 
increased the durability of treatment in a murine glioma xenograft 
model191. miR engineering is a promising strategy to augment CAR-
T-cell function, potentiated by its capacity for genetically encoded 
transcriptional control of endogenous or exogenous genes191,192.

Advances in biomaterials and drug delivery offer promising 
alternative avenues for increasing the efficacy of adoptively trans-
ferred cells. T cells can be outfitted with nanogel or liposome ‘back-
packs’ loaded with therapeutic agents such as TGF-β​ inhibitors193,194 
or IL-15 (ref. 195), endowing the treatment with time-limited release 
functionality. The release properties of these depot formulations can 
be fine-tuned by chemical means or even configured to unload dur-
ing cytolysis through perforin-mediated rupture of the particles196.  
T cells can also be loaded inside biopolymers197, along with adjuvants, 
and implanted directly onto solid tumours198. In this approach, the 
combination of debris from dying cells and the adjuvant promotes 
activation of immune cells directly at the tumour site.

Towards an off-the-shelf T-cell product
The first two CAR-T therapies to be approved by the FDA, Kymria 
and Yescarta, are currently priced at US$475,000 and US$373,000, 
respectively199–202. Although some consider this a steep cost to pay, 
others deem it conservative given the robust potency, response 
rates and curative potential against otherwise refractory conditions. 
Nonetheless, providing personalized CAR-T treatment to the mil-
lions of patients with cancer worldwide may not be economically 
sustainable with current technologies. Furthermore, manufacturing 
autologous T cells ex vivo may be problematic when patients have 
low T-cell counts, as occurs with those who have been heavily pre-
treated with chemotherapy regimens. Therefore, the development 
of universal, off-the-shelf T-cell products that are effective and per-
sistent could dramatically reduce manufacturing costs and increase 
accessibility to this revolutionary cancer therapy.

An alternative — and potentially less costly — approach is to 
use T cells from an allogeneic source46,203–205, but this strategy bears 
additional complications in the form of potential cellular rejection 
and GVHD206. In this context, disruption of key genes through 
gene-editing tools can offer solutions156: a TALEN-based editing 
approach was used to create an allogeneic CD19-CAR-T treatment 
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for two infants with B-ALL (ref. 207), whereby native TCRs from 
the donor cells were depleted by disrupting the TCR-α​ constant 
locus (TRAC) to render them non-reactive to the recipient’s endog-
enous cells. The CD52 locus was also targeted for deletion so that 
the infused cells could be spared from lymphodepletion by the 
anti-CD52 antibody administered to deplete the host T cells. The 
infants achieved molecular remission after treatment but developed 
GVHD, possibly due to residual TCR-expressing cells present in 
the donor product207. This strategy is currently being investigated 
in clinical trials for CARs targeting CD19 (NCT02808442) and 
CD123 (NCT03190278 and NCT03203369). Another strategy to 
avoid GVHD is to express the CAR in haematopoietic stem cells or 
other T-cell precursors that can be rendered tolerant to host anti-
gens through the natural process of T-cell selection and maturation 
in a functional thymus208–210. Alternatively, cells may be sourced 
from induced pluripotent stem cells by using cellular reprogram-
ming techniques, providing a potentially unlimited supply of T-cell 
precursors that can be expanded indefinitely and differentiated in 
vitro into T-cell subsets expressing specific CARs211,212.

Knocking out the TCR effectively avoids GVHD, but the infused 
cells can still be rejected by the host immune system. A possible 
solution involves the disruption of the β​-2 microglobulin gene, 
which can ablate human leukocyte antigen I (HLA-I) expression to 
help donor CAR-T cells evade host CD8 T cells154,156. However, the 
CAR-T cells could still be vulnerable to rejection via CD4 cytolytic 
cells or lysis by NK cells as part of the ‘missing-self ’ response213,214. 
Inserting non-classical HLA-E molecules, which are much less poly-
morphic than HLA-I, may help to avoid NK-cell-mediated rejection 
by the missing-self response215,216.

An alternative approach to overcome the costs of ex vivo indi-
vidualized cell generation is to transduce the T cells in vivo. In this 
regard, a recent study has provided proof-of-concept evidence of 
nanoparticle carriers loaded with DNA encoding the CAR and a 
transposase that facilitates transgene integration217. The modified 
cells showed significant expression levels and expression frequen-
cies, and mediated antitumor effects in a preclinical model. T cells 
can be targeted in this approach by using anti-CD3ε​ antibodies 
decorated on the nanoparticle surface.

Delivery of CAR genes
Delivery of CAR-encoding genes to T cells ex vivo is most com-
monly achieved with viral vectors5,6,218. Gamma-retroviral- and 
lentiviral-based delivery result in high expression and transduc-
tion efficiencies, but these have a limited payload (~8 kilobases 
(kb)) and pose the theoretical risk of insertional oncogenesis219. The 
potential for this risk arises from the random nature of integration 
into the host genome, although no instances of this occurring in 
clinical trials using CAR-T cells engineered through these methods 
have been reported. Alternatively, transposon-based systems are 
capable of delivering a larger payload (~100 kb), cost effective, scal-
able and potentially less immunogenic than viral vectors220–222. This 
approach requires delivery of plasmid DNA encoding the transgene 
and transposase components, which is most commonly achieved 
through electroporation221, a method that can be toxic to the cells 
and is not as efficient as viral-based delivery. Hybrid systems that 
utilize non-integrating viral vectors to deliver the transposase and 
transgene are currently under investigation223–225.

Non-integrating transient expression systems such as mRNA 
electroporation avoid the potential for insertional mutagenesis, but 
expression of the CAR is short-lived and is diluted with each cell 
division183. The development of targeted nucleases such as CRISPR–
Cas9226, TALENs207, zinc fingers227 and homing endonucleases228 
enable the targeting of the CAR gene to specific sites in the genome. 
Recent work has also demonstrated that delivering the CD19-CAR 
gene into an endogenous TCR locus by CRISPR–Cas9 resulted in 
uniform CAR expression, reduced tonic signalling and TCR-like 

regulation of expression, and enhanced T-cell potency226. The ideal 
target locus for other CARs may differ depending on the level of 
expression needed for optimal function.

Clinical results
The majority of CAR-T cell clinical trials conducted thus far have 
targeted CD19 to treat B-cell malignancies. CD19 is an ideal tar-
get, owing to it being highly expressed in the B-cell lineage and 
not being expressed in other tissues. Moreover, the on-target, 
off-tumour toxicity that results in B-cell aplasia can be managed 
with intravenous immunoglobulin. Remarkable responses have 
been observed with CD19-CAR-T therapy in patients with refrac-
tory B-ALL, chronic lymphocytic leukaemia, non-Hodgkin lym-
phoma, follicular lymphoma and diffuse large B-cell lymphoma229. 
Additionally, the first results of a CAR targeting CD22 on B-cell 
malignancies, published within the past few years, showed impres-
sive activity in CAR-naive patients and patients who relapsed with 
CD19-negative disease following CD19-CAR-T therapy230–232. 
Clinical trials of targeting other B-cell antigens, such as B-cell mat-
uration antigen (refs 233,234), CD20 (refs 235,236), Igκ​ (refs 237,238) and 
ROR1 (refs 239,240), are underway.

Adverse effects. The primary adverse effects observed with 
CAR-T therapies have been CRS and neurotoxicity. Neurotoxicity 
occurs in approximately 40% of patients and is characterized by 
aphasia, seizures, ataxia, delirium and other disturbances of the 
nervous system. In the vast majority, the symptoms are fully 
reversible, but in a small number of patients it led to cerebral 
oedema and death. Although the pathophysiology of this syn-
drome has remained enigmatic, a recent study proposed a plau-
sible mechanism based on clinical data from patients receiving 
CD19.BBz-CAR-T cells68: CAR-T cells can induce endothelial cell 
activation in the central nervous system, resulting in increased 
permeability and coagulopathy; a low ratio of angiopoietin 1 
(ANG1) to ANG2 then results in dysregulated endothelial cell 
activation and a breakdown of the blood–brain barrier. These 
data raise the prospect that approaches for normalizing the 
ANG1/ANG2 ratio could prevent or reverse the syndrome, and 
that agents such as recombinant BowANG1 could potentially be 
tested for this indication in the context of a clinical trial241. Less 
potent CARs might induce cytotoxicity but secrete lower cytokine 
levels. One such CAR targeting CD19 with a low-affinity binder 
is already in clinical trials, and in a series of nine patients, none 
experienced grade 3 or above neurotoxicity242. In summary, neu-
rotoxicity remains an important concern following CD19-CAR-T 
therapy, but the majority of occurrences are fully reversible, and 
mortality rates are below 5%, which is in line with other treat-
ments for aggressive B-cell malignancies.

Tackling solid tumours. Preliminary clinical results using CAR-T 
cells to treat solid tumours have not been as striking as those in 
blood cancers, but are only the first steps towards antitumor effi-
cacy for this more challenging subset of tumours. One trial reported 
that 3 out of 11 patients treated with a GD2-CAR achieved com-
plete remission40,243. In another, 4 out of 17 patients with sarcomas 
achieved stable disease91 with a HER2-CAR and no lymphodeple-
tion, and 1 out of 6 patients achieved a complete response92 with 
a lymphodepleting regimen. Additionally, a patient treated with 
IL13Rα​2-CAR-T cells delivered intracranially to treat glioblastoma 
showed regression of disease for at least 7.5 months21. These results 
are just the beginning of what will probably be a long road ahead for 
CAR-based therapies against solid tumours. The challenges include 
toxicities and limited efficacy in the face of a suppressive tumour 
microenvironment, but the engineering of new safety mechanisms 
as well as efficacy-enhancing elements will pave the way to success 
in the treatment of these cancers.
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Outlook
The immune system has a remarkable ability to identify and eradi-
cate dysfunctional cells, but acquired and inherited mutations in 
transformed cells enable their evasion from immune recognition. 
The engineering of CAR-T cells that redirect immune function 
against malignant cells marks the beginning of a new era in cancer 
therapy, marked by the encouraging initial success against B-cell 
malignancies with the CD19-CAR, which provides a proof-of-
principle system for extending this therapeutic paradigm to other 
cancers. The primary hurdles limiting the success of CAR-T therapy 
thus far are treatment-associated toxicities and relapse of antigen-
negative tumours. Tackling solid tumours poses several additional 
challenges, owing to a paucity of tumour-restricted antigens, high 
levels of tumour heterogeneity, poor T-cell trafficking and persis-
tence, and the immunosuppressive effects of the tumour micro-
environment. The next generation of CAR technology is moving 
towards the development of multifaceted smart T-cell machines 
that can: (1) simultaneously target multiple antigens; (2) be regu-
lated either via small molecules or via intrinsic sensors; (3) be modi-
fied by gene editing to augment potency and endow resistance to 
suppressive factors present in the tumour microenvironment; (4) be 
equipped with recognition programs to discriminate between can-
cer and healthy cells; and (5) have intrinsic fail-safes and/or suicide 
switches. Bridging principles of immunology with recent develop-
ments in synthetic biology and genetic engineering will drive the 
development of the next generation of CAR-T therapies.
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