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Effective watershedmanagement hinges on understanding water sources and pollution origins. In the
Hangbu Watershed of Chaohu Lake, China, we analyze pollution source patterns and propose an
adaptive strategy. This adaptive strategy is defined as a flexible and dynamic approach that adjusts
management practices and policies in response to evolving environmental conditions and emerging
data onpollution sources. The analysis includes examining the trends, periodicity, andmutagenicity of
pollution sources. The results demonstrated substantial variations in sources, with nitrogen and
phosphorus. The adaptive approach enables prioritizing crucial pollution sources, with farmland
identified as a significant contributor under varying conditions. Specific pollution sources with growth
trends and control robustness have been recognized as vital contributors, even though their
contributions to the nitrogen and phosphorus flux at the watershed outlets may not be the most
prominent. The results of this study could guide the sustainable management of watersheds.

Over the past century, the average global temperature on Earth has
increasedby at least 1.1 °C since 18801,2, and theworldpopulationhas grown
by ~4.4 billion to nearly 8 billion people between 1980 and today3. These
profound changes have considerably influenced land use patterns and
watershed characteristics, leading to shifts in hydrogeology, vegetation
cover, rainfall-runoff patterns, and water quality4,5. Source apportionment
in watershed management is a critical analytical process for identifying
diverse sources of pollutants and assessing their specific contributions6.
However, current methods typically focus on analyzing data from a specific
year, often relying on a static perspective and neglecting the dynamic
changes in land use, climate, and human activity over a long period of time7.
Apportionment results based on static assumptions may lead to over-
estimating or underestimating sources, which may not be applicable due to
changes in specific sources8. This has also created challenges for long-term
watershedmanagement9. It is thusnecessary to adopt adaptivemanagement
to, enable timely adjustment of reduction strategies under changing
conditions.

Generally, pollution sources can be categorized into three types. The
first type is closely linked to natural conditions, as pollutant emissions are
directly influenced by factors such as rainfall, wind direction, and tem-
perature. For instance, rainfall can impact runoff processes and water
quality6. The second type includes sources strongly associated with human

activities, such as industrial emissions, vehicle exhaust, agricultural fertili-
zers, and wastewater discharge10. For example, increased irrigation in
farmland can lead to higher concentrations of fertilizers in water bodies8.
The third type encompasses sources that are influenced by an interplay of
both natural conditions and human activities, leading to distinct emission
characteristics. Many scholars have demonstrated that pollution sources
undergo drastic changes over a long period of time11,12. Tan et al. (2023)13

reported that the share of pollution attributed to rural domestic activities,
which includes household wastewater, septic systems, and agricultural
runoff, decreased from 23.50% to 20.04% from 1995 to 2005 and then
increased to 20.42% by 2020. Hu et al.14 showed that the net anthropogenic
phosphorus inputs progressively increasedby1.4 times from1980 to2015 in
the Yangtze River basin in China. Previous studies have underestimated or
overestimated the true extent of pollution, as the cycles of meteorological
changes and social dynamics that notably impact pollution sources span
long time scales. Climate research, for instance, requires long-term data
spanning decades or even centuries to explore trends and cyclical
variations15. Similarly, the lengthof a social cycle varies dependingon factors
such as development stage, political system, and cultural characteristics,
typically ranging from 30 to 50 years16. We acknowledge that the dynamics
of pollution sources over time can vary significantly. Many sources are
changing simultaneously in China, a consequence of rapid development.
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But, it is also true that certain pollution sourcesmay remain stable, showing
little meaningful change. Conversely, some sources might change abruptly
in response to sudden alterations in environmental or constructed condi-
tions. This complex behavior underscores the importance of a nuanced
approach to studying pollution dynamics over time. Current researchmust
not only consider the changes in the types of pollution sources and their
contributionsbut also concurrently identify thediversepatternsof change in
these sources. This includes examining variations in their intensity, fre-
quency, and impact areas to fully understand the dynamic nature of water
quality and to develop effective pollution control strategies.

At present, although identifying specific key sources provides valuable
information, their importance extends beyond merely pinpointing impor-
tant sources. For example, certainmethods, such as export coefficients17, the
phosphorus index (PI)18, source characteristic factors, composition and
ratio methods, chemical mass balances19, receptor modeling and materials
flow analysis20, enable researchers to quantify the relative contributions of
different point sources to overall pollution levels between sources, such as
industrial discharge, and nonpoint sources (NPSs), such as agricultural
runoff. However, these methods assume that pollution sources have a
uniform impact over time21,22. This assumption does not fully capture the
complexities of real-world scenarios where non-linear factors such as
topography, land use, rainfall patterns, and hydrodynamic processes can
considerably alter pollutant transport and the contributions of various
sources. Additionally, other methods overlook pollutants’ temporal and
spatial variations, which seriously limits the accuracy of key sources23,24.
Nonetheless, the changes in pollutant emissions over a long period of time
can be analyzed as a non-stationary time series25,26. The Seasonal Trend
Decomposition using locally weighted regression (STL) method has been
applied towater quality assessment by considering the periodic and random
characteristics of pollution during the change process27–29. The Auto-
regressive Integrated Moving Average (ARIMA) model, which combines
time series and regression analysis, can effectively capture changes in dif-
ferent periods and provide valuable insights for guiding pollutant
control30–32. Physics-basedmodels arefirmly rooted in physical laws and can
simulate environmental processes, especially those related to hydrology and
pollution dispersion.Moreover, source apportionment can be regarded as a
multi-objective problem that incorporates the long-term contributions and
trends of different sources. It provides decision-makers with a series of
Pareto-optimal solutions by comparing the non-dominance relationships
among different source33. These solutions enable decision-makers to
determine the best plan based on various factors.

Our primary objective in this study is to identify a dynamic source
apportionment framework that integrates the STL method, ARIMA and
physics-based models. Specifically, we aim to understand the patterns of
change in pollution sources and their impacts utilizing an extensive
inventory of both long-term and dynamic sources. This approach is
designed to provide a comprehensive and nuanced view of source appor-
tionment, accommodating the complexities and temporal variations
inherent in environmental data.We selected theHangbuRiverwatershed in
the Chaohu Lake basin, China, to study the dynamics of pollution sources.
This watershedwas selected due to itsmix of land uses and varied sources of
pollution for studying nitrogen and phosphorus dynamics in comparable
watersheds. The sources of nitrogen and phosphorus are attributed to two
major categories: human activities and natural sources (Fig. 1)34,35. Human
activity sources include industrial sewage; urban domestic; rural domestic;
urban NPSs; intensive livestock and poultry breeding industry; dispersed
livestock and poultry breeding industry; the planting industry; and aqua-
culture. Natural sources refer to background-level pollution from natural
land and river sediments.

Results
Varying source composition and contributions
By considering various scenarios and identifying uncertainties in the con-
tributions of different sources towatersheds (SupplementaryTable 1, Tables
2 and 3), it is possible to assess how environmental factors, climate change,

and socio-economicdevelopment influence thedistributionof these sources
over time. A hydrological year refers to a 12-month period used for mea-
suring precipitation and streamflow in hydrology. The categorization of a
hydrological year—intowet, normal, or dry—relies on long-term analysis of
precipitationand streamflow.Wet years significantly exceed,while dry years
fall below, the long-term average, indicating periods of surplus or scarcity,
respectively. Normal years align closely with the historical average, serving
as a baseline for water resource equilibrium. In a wet hydrological year with
high socio-economic development (Scenario 1) (Fig. 2(a)), the planting
industry is identified as the dominant contributor of nitrogen and phos-
phorus, constituting~64%and38%, respectively, of the total loads.Here, the
nitrogen and phosphorus load from the planting industry amount to
~7672.47 tons (t) and 314.10 t, respectively. This dominance can be
attributed to several factors specific to local wet conditions. First, in wet
hydrological years, there is increased runoff and leaching from agricultural
lands,whichoften results in increased transport of nitrogenandphosphorus
from fertilizers and soil nutrients into water bodies, further contributing to
elevated nutrient loads in surface waters. In such scenarios, the planting
industry, with its extensive use of fertilizers and other agrochemicals,
becomes a major source of these nutrients. The intensive livestock and
poultry breeding industry is the second largest contributor, accounting for
approximately 12% of the total nitrogen loads (1448.51 t) and 20% of the
total phosphorus loads (163.04 t), primarilydue to the runoff and leachingof
manure and other waste products, which are also exacerbated by heavy
rainfall. However, these observations differ in a dry hydrological year with
high socio-economic development (Scenario 2) (Fig. 2b), where the planting
industry, despite remaining the dominant source, contributesmarkedly less
nitrogen, at approximately 1904.55 t, which accounts for approximately
36%. This difference is largely due to reduced runoff and leaching under
drier conditions36. Light rainfall does not notably affect the migration of
phosphorus attached to sediment9. Similarly, in a normal hydrological year
with high socio-economic development (Scenario 5) (Fig. 2(e)), the planting
industry again emerges as the most substantial contributor to nitrogen and
phosphorus, showing a substantial increase to 2617.95 t and 142.14 t,
respectively, accounting for 39% and 27% of the total loads. These findings
underscore the considerable influence of rainfall variations on the con-
tributions of different sources and highlight the importance of considering
climatic factors when interpreting source apportionment results.

To explore the contributions of pollution sources under the different
development scenarios, we analyzed three typical scenarios—a low devel-
opment scenario (Scenario 3), a moderate development scenario (Scenario
4), and a high development scenario (Scenario 5)—to demonstrate the
impacts of economic growth, population increase, and land use changes on
pollution loads. In a normal hydrological year with low socio-economic
development (Scenario 3) (Fig. 2c), the planting industry was the primary
contributor, with a nitrogen contribution of 17466.36 t, accounting for 76%
of the total nitrogen loading.Urbandomestic sources,mainly fromuntreated
or improperly treated sewage dischargeddirectly into rivers, rank the second,
with a nitrogen contribution of 4059.19 t, accounting for approximately 18%
of the total loading. In contrast, forphosphorus contribution,urbandomestic
sources emerge as the most principal contributor, with 293.11 t, accounting
for 45% of the total, while the planting industry ranks the second, with
166.44 t, accounting for 25% of the total. Economic growth and population
increase may lead to higher pollution levels from fertilizers37. In a normal
hydrological year with moderate socioeconomic development (Scenario 4)
(Fig. 2d), the planting industry remained the primary source, contributing
91% of the total nitrogen load (32278.28 t) and 58% of the total phosphorus
load (556.56 t).Humanactivities and landuse changes are increasing rapidly,
leading to an increase in pollution closely associated with human activities,
such as agriculture and the livestock breeding industry. Moreover, driven by
increased productivity, wastewater treatment plants have been constructed
in watersheds over the past decade to treat industrial and urban wastewater.
In a normal hydrological year with high socio-economic development
(Scenario 5) (Fig. 2(e)), the planting industry remained the largest nitrogen
source, with a contribution of 2617.95 t contribution (39% of the total). In
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comparison, intensive livestock andpoultry breeding industry source ranked
the second, with a contribution of 1495.06 t (22% of the total). The planting
industry contributed the most phosphorus, with 142.14 t (27% of the total),
followed by aquaculture, with a contribution of 131.62 t (25% of the total).
Environmental systems, influenced by factors such as seasonal variations,
climate shifts, and land use changes, are inherently dynamic. Relying on data
from a specific year would miss these fluctuations, potentially skewing
apportionment results. For example, pollution patterns in dry and wet
hydrological years can differ markedly due to varying runoff. Our findings
highlight the importance of multiyear analyses for obtaining a comprehen-
sive understanding of pollution sources.

Tendency, periodicity, and mutagenicity of sources
The complexity of long-term and temporal trends in nitrogen and phos-
phorus emissions requires an understanding of how development and

hydroclimate variability impact the physicochemical processes responsible
for changes in water quality38. In this study, the 36-year long-term values
(from1985 to 2020) of specific sources in the study areawere analyzed using
the Mann-Kendall (M-K) method and the least squares method. The M-K
method, as a non-parametric test, was employed to detect the importance of
trends in the time series data of emissions. In turn, the least squaresmethod
was applied to quantify the magnitude of the detected trends. Emissions
from rural domestic sources increased by 414.98 t per year for nitrogen and
17.73 t per year for phosphorus between 1985 and 1991. From1992 to 2020,
the annual emission of pollutants from rural domestic source decreased.
Specifically, the nitrogen gradients of the fitted lines for these annual
emissions were 385.24 t a−1 and 16.41 t a−1, respectively. This analysis also
confirmed a marked downwards trend from urban domestic discharge to
direct discharge of industrial sewage from 1985 to 2003, followed by a slight
decline in subsequent years. However, nitrogen emissions exhibited an

Fig. 1 | Changes in pollution sources in agricultural watersheds over the past 40 year.As socio-economic development progresses, industrial sources in watersheds, urban
non-point sources, and urban domestic source have emerged and increased successively.
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overall upwards trend during 2000–2020, with a particularly notable
increase before 2010, when all sources except urban domestic and industrial
sewage showed a marked increase. This trend can be largely attributed to
several factors. First, the extensive development of agricultural land and
intensive use of nitrogen-rich fertilizers during this period were found to
direct contributors to increased emissions. Furthermore, a shift towards
more intensive agricultural practices occurred during the early 21st century
inChina, including the overuse of fertilizers and the cultivation of high-yield
crop varieties, which demandmore nitrogen. These practices, coupled with
inadequate nutrient management, resulted in elevated nitrogen levels in
adjacent water bodies. Additionally, the loss of soil organic materials due to
runoff, especially in the 2010s, further exacerbated this situation. These
factors collectively contributed to the heightened nitrogen emissions
observed during this period39.

In this study, we model the spatial or temporal variability in nitrogen
and phosphorus by establishing a linear relationship between the STL
decompositions of precipitation, emissions from different sources, and
environmental variables. The changes in environmental factors versus riv-
erine fluxes reveal robust relationships characterized by linear increases in
riverine fluxes. The correlations among precipitation, construction land
area, and urbanNPSs emissions were linear and significant, with coefficient
of determination (R2) values of 0.93 for nitrogen and 0.96 for phosphorus
(SupplementaryTable 4). The strong correlation can be primarily attributed
to the inherent link between urbanization, population growth, and the
expansion of construction land. This expansion inevitably leads to an
increase in urban NPSs pollution. Urbanization, characterized by the
widespread emergence of impervious surfaces such as concrete and asphalt,

drastically reduces the ability of soil to absorb rainwater and transportsmore
urban pollutants into local water bodies40,41. These changes intensify urban
NPSs emissions and disrupt natural hydrological processes, thereby
impacting the severity of urban pollution and the sustainability of water
resources42–44.

The periodic variations in several source emissions, such as urban
NPSs, the planting industry, and natural sources, were strongly influenced
by precipitation45, especially for the planting industry. Agricultural devel-
opment has long been identified as a factor that strongly affects the quantity
and quality of water bodies46. There are linear relationships among pre-
cipitation, farmland area, fertilizer application amount, and source emis-
sions from the planting industry,withR2 values of 0.72 for nitrogen and 0.76
for phosphorus (Supplementary Table 4).Moreover, the periodic variations
in precipitation are positively correlated with nitrogen and phosphorus
emissions. For the studied period, if the periodic trend of annual pre-
cipitation exhibited a change of 1mm, nitrogen and phosphorus emissions
increased by 2354 t and 287.14 t, respectively (Supplementary Table 5).
Temporal variations in nitrogen concentrations in surface water are pre-
dominantly influenced by seasonal climate changes, especially during per-
iods of nutrient application47–49. Additionally, excessive manure application
to meet crop demands can lead to adverse effects on soil phosphorus con-
ditions. This over-application often results in a marked increase in phos-
phorus concentration in the soil solution, which may subsequently leach
into adjacent water bodies50.

In this study, ARIMA modeling was employed to quantify the varia-
bility in pollution sources. In our analysis, for the random term of the
nitrogen from the planting pollution source, the ARIMAparameters are set

Fig. 2 | The proportion of pollution source contribution in different scenarios.
Scenario 1 represents wet years with high socioeconomic development; Scenario 2
represents dry years with high socio-economic development; Scenario 3 represents

normal years with low socio-economic development; Scenario 4 represents normal
years with moderate socio-economic development; and Scenario 5 represents nor-
mal years with high socio-economic development.
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as 2, 0, and 2 for the p, d, and q values, respectively, resulting in anR2 of 0.27.
For the random term of the nitrogen from the urban NPSs, the parameters
are 4, 0, and 0, respectively, achieving satisfactory results with an R2 greater
than 0.57. Additionally, the random terms of phosphorus from the planting
industry, nitrogen from urban NPSs, and nitrogen and phosphorus from
natural sources exhibited characteristics of white noise. In statistical terms,
this means that their auto-correlation function and partial auto-correlation
function did not show a gradual decay in correlation with increasing time
lags. These findings revealed a robust and positive correlation between
periodic fluctuations in rainfall and emissions from the planting industry,
urbanNPSs, and background values fromnatural sources. These periodicity
and variability factors markedly influence the observed trends, particularly
in the case of planting source, which demonstrates the most pronounced
sensitivity to rainfall, exhibiting fluctuations ranging from 0.93% to 58.45%.
Based on the above results, the study quantified the trends and patterns of
changes in different sources over a long time series (Fig. 3).

Dynamic key source identification
Next, the pollution sources were ranked using a Pareto-based approach,
considering three dynamic contribution indicators over a long-term time

series (Supplementary Table 6), namely the contribution value (the relative
contribution of a pollution source to the total pollution load), trend of
change (the direction and magnitude of changes in a source’s pollution
contribution), and robustness (the consistency and reliability of a pollution
source’s contribution across different conditions and time periods).

However, it should be noted that the strategies for each source may
exhibit slight variations depending on the specific pollutant under con-
sideration. The Pareto front surface is shown in Supplementary Table 7,
with 33 layers of the Pareto front for nitrogen and 29 layers of the Pareto
front for phosphorus. In the case of nitrogen, dynamic source apportion-
ment revealed the planting industry as a key source in the region, covering
64.60% of the watershed; this industry is located mainly in the middle and
upper reaches of the watershed. Additionally, urban domestic sources are
determined to be key sources in the region, covering 3.99% of thewatershed
and primarily located in the upper reaches. Together, these areas con-
tributed 87.83% of the total nitrogen. Regarding phosphorus, dynamic
source allocation designates large-scale livestock and poultry breeding
industry pollution in the upper reaches, covering 22.00% of the watershed
area, as a key source. Simultaneously, the planting industry in the down-
stream region, which accounts for 14.15% of the area, and urban domestic

Fig. 3 |Different terms of nitrogen and phosphorus emission series. aThe trend termofNES; b the periodic; and c random termofNES fromplanting industry; d the trend
term of PES; e the periodic; and f random term of PES from planting industry.
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sources in the densely populated central region, which covers 2.53% of the
watershed area, are identified as key sources. These areas contributed
57.68% of the total phosphorus. Compared to conventional methods, the
dynamic source apportionment considers characteristics such as trends and
mutations (Fig. 4a, d). As a result, certain pollution sources, such as the
planting industry from sub-watersheds No. 13 andNo. 21 for nitrogen, and
theurbandomestic industry fromsub-watershedNo. 21 forphosphorus, are
identified as key sources, even though their contributions to the overall
output may not be the most prominent.

Discussion
Studies on source apportionment often focus on specific years or limited
periods. However, long-term factors from different sources exhibit diverse
trends. For example, farmland exports a varying percentage of nitrogen and
phosphorus, ranging from 36.17% to 90.93% and 10.85% to 58.01%,
respectively, during different hydrological years. This finding supports the
notion that pollutant sources can fluctuate over time due to changes in
environmental factors. Among the various changes, the dominant factor is
the trend,which is further influencedbyperiodicfluctuations resulting from
variations in rainfall patterns and societal factors. These additional elements
contribute to the complexity of management. The periodic changes
observed in long-term series can substantially impact the dynamic trend of
intrinsic nutrient inputs in watersheds. For instance, influenced by rainfall
periodicity and other factors, the coefficient of variation of the planting
industry contribution changes from 0.36 to 0.42.While the ARIMAmodel
captures discrete random changes, its influence is relatively small compared
to the impact of periodic changes.

Source apportionment under changing conditions is essential for
ensuring that the relevant measures are implemented51,52. We conducted a

cluster analysis on the Pareto-based stratification results by using recent,
forward, and maintenance strategies. In the short term, prioritizing pollu-
tion control from major sources becomes crucial when decision-makers
focus on the impact of these sources onwatershed exports. This perspective,
however, shifts in a long-term context. Here, decision-makers with a
forward-looking approach might emphasize emerging trends, potentially
spotlighting industries in urban domestic sectors that show a marked
upwards trend. It is hypothesized that these sectors contribute substantially
to environmental degradation over time. Conversely, decision-makers
aiming for robust strategies might favor targeting stable, easily manageable
sources such as industrial and rural domestic sectors. These choices reflect a
balance between immediate impact and long-term sustainability.

The prioritization strategies for source apportionment, both for a
specific year and over an extended period, are illustrated in Fig. 4 b–e. This
approach is consistent with the views on adaptive strategies for climate
change adopted by various countries and some departments around the
world, emphasizing the need for adaptable and context-specific strategies in
pollution control. For instance, in 2021, the executive branch of the United
States, through executive actions and coordination among various federal
agencies, updated the nation’s climate adaptation approach. This update
focused on protecting federal infrastructure and introducing accountability
measures for climate resilience. Norway has concentrated its efforts on
assessments, planning, monitoring of flood risk, and constructing more
resilient and sustainable communities53. In the United Kingdom, the
Thames Barrier stands as a testament to adaptive ingenuity, safeguarding
London from flooding and exemplifying robustness and flexibility in
adaptation strategies. Moreover, in the agricultural sector, adaptation is
evident through the revision of conventional farming practices. This
includes the enhancement of irrigation systems and the cultivation of

Fig. 4 | Key source identification and spatialization under different strategies. a Traditional strategies; b recent strategies; c forward strategies for nitrogen; d traditional
strategies; e recent strategies; f forward strategies for phosphorus.
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drought-tolerant crops, thereby ensuring the resilience of the global food
system against the intensifying effects of heatwaves and droughts. Each of
these national strategies reflects an approach to addressing the local impacts
of global climate change, showcasing the importance of tailored solutions in
building resilience.

In this study, we proposed an adaptivemethod that enhances real-time
decision-making and response capabilities. By analyzing real-time data, this
method enables the timely adjustment of strategies to adapt to changing
conditions. In contrast, traditional source apportionment relies on static
data and pre-determined measures54. Compared with results based on
specific years,whichmaydeviate fromprevious years,measures considering
long-termsource resultsweremore concentrated. In traditional approaches,
sources requiring reduction are prioritized based on their contribution to
the entire watershed, often with the planting industry being the primary
contributor. However, with adaptive source apportionment, we consider
not only the contributions of sources but also their trends and periodic
variations, which can lead to a scientifically informed strategy. For example,
when identifying key sources of phosphorus, sub-watersheds 8 and 14
contributed 13.29%and6.5%, respectively.However, their contributions are
anticipated to decrease in the future, and their stability is expected to be
relatively low, considering the dynamic contribution indicators: trend of
change and robustness (Supplementary Table 6). Consequently, we should
not prioritize implementing control measures in these areas.

Recognizing the importance of adopting comprehensive management
that encompasses both short-term and long-term perspectives is essential
for achieving effective improvements in water quality instead of relying
solely on individual strategies55. Decision-makers should consider several
factors when analyzing dynamic patterns of different sources over time
series, including each source’s contributionovermultiple years, the trends in
their variations, and the reliability of control effects associated with each

source. In light of these considerations, it is crucial to prioritize the devel-
opment of control strategies that emphasize long-term effectiveness and
resilience, particularly in temperate climates andpredominantly agricultural
watersheds, where typically exhibit distinct seasonal variations, which can
markedly impact the patterns of pollution sources.

Several steps need to be performed in the future. First, the analysis
employed linear equations to model the emissions and contributions of
different sources. It is essential to recognize that complex environmental
changes often lead to non-linear variations over time or in response to
environmental variables. For instance, in 2016, the Chinese government
designated protected zones for drinking water sources and terrestrial areas
within the Chao Lake watershed, with restricted and prohibited farming
areas covering an area of 1215.10 km2,56 (Fig. 5a, b). The assumption of
simple linear approximations may not align with the actual regulations.
Second, incorporating the contributions of different sources into a single
optimization layer assumes the equal importance of these influences. This
simplification is necessary due to data availability and consistency with
other regional planning processes, but it may not accurately reflect the
varying environmental impacts. Future research will seek to refine model
parameterization through the integration of Dynamic Key Source Identi-
fication analysis, utilizing multi-source data assimilation algorithms to
better reflect the dynamic nature of pollution sources. Third, we focused
primarily on the contributions, variations, and robustness of the sources. It’s
crucial to incorporate weighted factors to prioritize sources based on their
environmental significance, considering ecological, health, or socio-
economic impacts. This approach, moving away from treating all influ-
ences as equally important, will provide a more nuanced and effective
strategy for dynamic conservation and sustainable management of water-
sheds. Final, acknowledging the focus on phosphorus and nitrogen as the
main eutrophication drivers in our study, we recognize the importance of

Fig. 5 | Geographical location and regional characteristics of Chaohu Lake and Hangbu river. a Geographic location; b location map of monitoring stations of Chaohu
Lake in China; c digital elevation model and d soil distribution map of the Hangbu River.
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expanding our investigation to include a broader spectrum of pollutants,
such as metals, E. coli, and various minerals. Future efforts will aim to
include additional major nutrients and contaminants, thereby deepening
our comprehension of environmental issues and enhancing strategies for
ecosystem management and restoration in the region.

Methods
Accessibility and processing of data
The spatial heterogeneity of land use types (obtained from https://zenodo.
org) in the watershed was substantial from 1985 to 2020 (Supplementary
Table 8 and Fig. 1)57. The land use in the study area was dominated by
agricultural land (~62–69%), whichmainly consisted of dry land and paddy
fields. Large-scale agricultural development started in the 1980s in the
Hangbu River. The progressive land use change over the past indicated that
agricultural development culminated in 2000 and became stable. Simulta-
neously, construction land was developed in the Hangbu River, and its
proportion in the whole watershed changed from 1% to 4%, with a corre-
sponding decrease in natural lands (grassland and wetland). The digital
elevation map (obtained from http://www.ngcc.cn/ngcc/) and soil dis-
tribution of theHangbu River are displayed in Fig. 5(c) and (d), respectively.
The time series data, covering the period from 1985 to 2020, were derived
from yearbook data and field investigations (Supplementary Table 9-11).
The rural domestic pollution, intensive livestock and poultry breeding
industry pollution, dispersed livestock and poultry breeding industry pol-
lution, and aquaculture pollution were calculated based on township year-
book data, with the townships serving as the administrative units for data
collection and analysis (Supplementary Table 9). This study used a method
for processing long-term statistical series data based on administrative units
and auxiliary information which refers to additional data sources includes
geographical data, land use patterns, population statistics, and other relevant
environmental indicators obtained from various government reports, local
surveys, and academic studies. The method involved consolidating admin-
istrative units, matching statistical data with a standard administrative unit,
and integrating indicator data from multiple sources. The fused data were
also processed to ensure accuracy and reliability (Supplementary Section 1).

Construction of a long-term and dynamic sources inventory
A comprehensive figure that visually represents how each model and sta-
tistical test is integrated as shown in Supplementary Fig. 2. The long-term
anddynamic sources inventorywas constructedby integrating the following
models:
• Dynamic export coefficient model, which provides accurate pollutant

emission data.
• Soil and Water Assessment Tool (SWAT) model and Markov algo-

rithm, which offer insights into the process of pollutant transport in
river channels and allow obtaining distributed and precise contribu-
tions of pollution sources.

The export coefficient method, proposed by Johnes17, calculates pol-
lutant emissions from different sources (Supplementary Section 2). The
dynamic export coefficient model (DECM) was used to obtain more
accuratewatershedpollutant emission sources.Adetailed explanationof the
DECM is provided in our previous studies58,59. The formula for theDECMis
as follows:

Ui ¼
Xn
q¼1

D pcpi
� �

Bq Ji
� �h i

ð1Þ

where Ui is the i-th type of source emission, kg; D(pcpi) is the dynamic
export coefficient of the i-th type of source depending on different rainfall
amounts; pcp is the annual rainfall in a sub-watershed;Bq is the area of the q-
th type of calculation unit, considering land use, soil type, slope, population,
livestock, fertilizer and pesticide use, km2 and Ji is the inputs of the i-th type
of source considering the nutrient input from rainfall, fertilizer, and pesti-
cide use from big data by physics-based models, kg.

In this section, the accurate contributions of pollution sources were
obtained by employing the SWAT model, a hydrological model used to
simulate water balance and water quality processes in watersheds, and the
Markov algorithm. The SWATmodel is capable of simulating crop growth,
nutrient cycling, and sediment transport while also considering the influ-
ence of climate factors, such as rainfall, temperature, and solar radiation, on
hydrological processes52. Evaluation metrics such as R2, the Nash-Sutcliffe
model efficiency, and percent bias (PBIAS) were utilized to assess the per-
formance of the SWAT model (Supplementary Fig. 3, Tables 12, 13 and
Supplementary Section 2).

This study used the Markov algorithm to define upstream and
downstream relationships (Supplementary Fig. 4). Pollutants were gener-
ated upstream andmoved to downstream regions. Ultimately, they reached
the watershed outlet after a finite number of transitions. Our previous
research and Supplementary Section 3 provide a detailed explanation of the
method of incorporating spatial location information, which involved grid-
scale and source-transfer-sink simulations based on the Markov
algorithm60.

The response of pollution loads entering specific water bodies was as
follows:

ΔW ¼ Δ
Xl
i¼1

Pi
j

 !
ð2Þ

where,W is the load of the i-th type of source on the l-th reach entering the
specific water bodies, kg; Pi

j is the i-th type of source load to the outlets from
the j-th sub-watershed; and l is the number of reaches where the pollutant
was transferred to the specific water bodies.

Time series analysis and modeling
Identifying trends is crucial because it helps to understand the long-term
changes in different sources and reveals periodicities and other character-
istics of pollution processes. Data on long-term series of source emissions
and contributions were obtained through the model mentioned above, and
the change patterns of sources were identified. Specifically, by decomposing
the emissions over a long time series based on the STL model, the sources
were divided into different change patterns, and the distribution was
modeled to quantify their impact based on the M-K test, least squares
method, trigonometric function model and the Auto-Regressive Integral
Moving Average model (Supplementary Section 4).

The STL model uses robust local-weighted regression as a smoothing
method to estimate the value of a response variable23. The dynamic source
emission series can be expressed as the sum of three components: trend,
seasonal, and randomfactors.Theoriginal time series canbedecomposedas
follows:

Y ¼ Ytrend þ Yseasonal þ Yrandom ð3Þ

where, Y is the long-term series of source emission consumption, Ytrend is
the trend component,Yseasonal is the seasonal component and Yrandom is the
random component.

The variation characteristics of the time series of each component are
different due to different influencing factors. Among them, the trend
component is mainly affected by human activity and economic factors and
reflects amore extended period of development. The seasonal component is
a periodic fluctuation with a fixed length and amplitude influenced by
precipitation variation61. In this study, the temporal scale of pollution source
emissions is annual, so the seasonal component can also be considered
periodic. Various accidental factors, including national policies, influence
random components. The individual components are quantified using a
decomposition technique, and the quantified values of each component are
used to establish response equations with different environmental variables
in the Hangbu River. The response relationship models of the variables
relevant to emissions from different sources in the long-term series are as
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follows:

Ytrend ¼ aþ bX1 þ cX2 þ � � � þ nXn ð4Þ

Yseasonal ¼ y0 þ a sinðπf ðPpÞÞ ð5Þ

Y random ¼ ARIMAðp; d; qÞ ð6Þ
where, Pp is the periodicity trend of the precipitation data.

A trigonometric function was constructed to quantify the periodicity
trend of emissions over long time series. Then, the non-stationary pre-
cipitation data were decomposed into three components: a trend term,
periodicity trend, and random trend62. Similarly, a trigonometric function
was constructed for theperiodicity trendof precipitationdata over long time
series. Finally, a response relationship model was established between the
periodicity trend of emissions and precipitation data.

Yseasonal ¼ y0 þ a sinðπðt � bÞ=wÞ ð7Þ

Pp ¼ z0 þ a sinðπðt � bÞ=wÞ ð8Þ

Yseasonal ¼ f ðPpÞ ð9Þ

where, t represents the year between 1985 and 2020.
This study used the ARIMA model to quantify a random term of

pollution emissions. ARIMAmodels consist of three parameters, p,d, and q,
which represent the autoregressive component (p), the number of differ-
encesmade to achieve stationary time series (d), and the number ofmoving
averages (q), respectively.Whenspecificparameters are set to 0,ARIMAcan
be transformed into different forms, such as autoregressive (AR) and
moving average (MA) models63. The AR and MA mathematical formulas
are shown in Eq. (13) and Eq. (14), respectively.

Yt ¼ et þ φ0 þ φ1Yt�1 þ φ2Yt�2 þ � � � þ φpYt�p ð10Þ

where, {Yt , t = 0, ±1, ±2,⋯} is a time series; {et , t = 0, ±1, ±2,⋯} is a white
noise time series; and for any s < t; E Yset

� �
= 0.

Yt ¼ et � θ1et�1 � θ2et�2 � � � � � θqet�q ð11Þ

where, Yt is the dependent variable at time t; e is the white noise with
variance σ2; and {θq, q = 0, ±1, ±2,⋯}2[0, 1].

Dynamic identification of key sources
Identifying key sources in dynamic apportionment can be achieved by using
a multi-objective algorithm, an effective method for obtaining optimal
allocation results (Supplementary Section 5). This study established amulti-
objective function for dynamic source apportionment in watersheds with
the objectives ofmaximizing contributions,maximizing growth trends, and
achieving high robustness. Subsequently, the solutions were ranked by
solving the multi-objective ranking problem.

Objective function l: Maximum contribution

Load ¼ max

PN
n¼1

Pl
i¼1

Pi
j

N

ð12Þ

Objective function 2: Maximum trend of change

Load ¼ max k ð13Þ

k ¼ n
X

xy �
X

x
X

y= n
X

x2
� �� X

x
� �2� ��

ð14Þ

where, n represents the number of samples and x and y represent the
independent and dependent variables of the samples, respectively. Σ
represents the summation symbol,

P
xy represents the sumof the products

of x and y,
P

x represents the sum of x,
P

y represents the sum of y andP
x2
� �

represents the sum of the squares of x.
Objective function 3: Maximum robustness

Load ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
i¼1

XN
n¼1

Xl
i¼1

Pi
j � μ

 !2
vuut ð15Þ

Tomeet the diverse management needs of decision-makers, this study
employed the k-means clustering algorithm to investigate the generation of
different preference scenarios. The specific descriptions of the different
strategies are as follows:
• Recent strategy: This strategy aims tomaximize the short-termbenefits

of pollution prevention and control without considering the long-term
advantages.

• Forward strategy: This strategy focuses on pollution control and trend
monitoring. The goal is to allocate limited resources to more cost-
effective sources and prevent their further growth.

• Maintenance strategy: This strategy aims to sustain the current con-
tribution of the pollution source and the existing level of investment in
pollution control measures.

Data availability
Please refer to Supplementary Table 14 for the nomenclature used in the
study. Figure 1 is sourced from https://earthexplorer.usgs.gov/ and
https://earth.google.com/. The dataset generated or analyzed during
this study is publicly available online at https://doi.org/10.5281/zenodo.
8190168.

Code availability
The code used to analyze the modeled data are deposited in a DOI-minting
repository: https://github.com/lizi0320/code.git.
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