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Quantifying the impact of the COVID-19 lockdown
on household water consumption patterns in England
Halidu Abu-Bakar 1, Leon Williams 1✉ and Stephen H. Hallett 2

The COVID-19 lockdown has instigated significant changes in household behaviours across a variety of categories including water
consumption, which in the south and east regions of England is at an all-time high. We analysed water consumption data from
11,528 households over 20 weeks from January 2020, revealing clusters of households with distinctive temporal patterns. We
present a data-driven household water consumer segmentation characterising households’ unique consumption patterns and we
demonstrate how the understanding of the impact of these patterns of behaviour on network demand during the COVID-19
pandemic lockdown can improve the accuracy of demand forecasting. Our results highlight those groupings with the highest and
lowest impact on water demand across the network, revealing a significant quantifiable change in water consumption patterns
during the COVID-19 lockdown period. The implications of the study to urban water demand forecasting strategies are discussed,
along with proposed future research directions.
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INTRODUCTION
The ongoing COVID-19 pandemic had its first confirmed case in
the United Kingdom in late January 2020, but transmission
increased rapidly leading to the government imposing a lockdown
on the whole population, banning all “non-essential” travel and
contact with people outside one’s home on 23 March 2020.1

Globally, the lockdown has caused households to change their
typical consumption behaviours drastically across a variety of
major categories, resulting in an initial sharp increase in spending,
especially in essentials and food items.2 Studies dedicated to the
impact of COVID-19 on water consumption focused on aggregate
demand and general demand peaks. For example, in Germany, a
significant shift in aggregate demand peak was observed from
07:10 pre-lockdown to 09:40 during lockdown.3 In a Waterwise4

report, certain regions in the UK saw a 35% increase in peak daily
consumption during the lockdown. In Brazil, analysis of data from
26 days pre-lockdown and 26 during lockdown has revealed an
11% increase in household water consumption attributable to the
lockdown.5 Although this rise can be generally attributed to an
increase in diurnal consumption owing to people remaining at
home, increase in preventive behaviours such as hand-washing1

also became contributory factors.
Household water demand in England and Wales is already at an

all-time high, constituting 55% of the 32 Cubic Gigametres per year
(Gm3/yr) total UK household water consumption footprint, with
southeast England having the highest per capita consumption
(PCC) and being already declared as severely water-stressed.6–8 The
impacts of the extended time people stayed at home under the
lockdown and the ensuing changes in behaviour arising from this
have been an increase in household water demand, exacerbating
existing pressure on network water supply.
Water utility companies are increasingly searching for ways to

understand the full nature of household water use, how to
improve network demand forecasting and achieve effective water
efficiency interventions. By presenting a data-driven detailed
characterisation of household clusters, including their unique

patterns, we have demonstrated how the understanding of the
impact of these unique patterns of behaviour on network demand
can help in the design of demand forecasting and intervention
that targets households on the basis of their shared cluster
characteristics. Many demand strategies have relied on existing
socioeconomic (SE) and sociodemographic (SD) household vari-
ables (e.g., ACORN9) and self-reported behaviours through surveys
and water use diaries.10,11 Our work not only significantly
enhances the precision of forecasting and intervention when
enriched with SE and SD variables, but also provides a scalable
framework for the inclusion of ordinary-metered and unmeasured
households that share SE/SD characteristics peculiar to particular
clusters.
We analysed the weekly water consumption data, at an hourly

resolution, for January to May 2020 of 11,528 smart-metered
households. We then classified the households according to their
temporal patterns of consumption, highlighting their unique
characteristics and their respective shares of relative and absolute
consumption before and during the COVID-19 lockdown.
All households in the study are from a single water provider,

collected across two geographical areas 50 miles apart consisting
of 24 District Metering Areas (DMAs). As the aim of this study was
to quantify the impact of the Covid-19 lockdown on aggregate
water demand while highlighting household clusters’ under-
pinning temporal demand patterns, only anonymised smart meter
data was utilised. Data on SD/SE or occupancy variables of the
participating households were not available.

Overall temporal water consumption patterns
The analysis revealed an average consumption of 3256 cubic
metres per day (m3/d) for the 11,528 households across the
network for the period before the COVID-19 lockdown, equating
to a per household consumption (PHC) of 284 litres per day (l/h/d),
as per the UK average.12 Consumption remained even between
the first week of January (J1) and the first week of February (F1)
averaging 350m3/d (291 l/h/d), followed by a 20% decline in
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February week 2–3 (F2–F3), before returning to average values in
February week 4 (F4) to March week 3 (M3) as in Fig. 1b. A sharp
increase was recorded in March week 4 (M4), the week of the
COVID-19 lockdown, to 3756m3/d (326 l/h/d), a rise of 10% on the
previous week, reaching 4747m3/d (411 l/h/d) in May week 4

(MY4), some 46% above pre-lockdown average. The cause of the
20% drop in consumption in the second week of February 2020
remains unknown. The water utility did report the loss of four days
of data in that period owing to equipment power outage. The
absence of any other plausible cause is suggestive that this may

Jan Feb Mar Apr May
2019 262.33 263.25 265.42 272.61 263.84
2020 289.44 262.86 305.01 350.63 373.38
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have resulted from “Storm Ciara”,13 which brought heavy rain and
very strong winds to the region on 9 February 2020, causing
widespread power issues.
Comparison between this study and similar data from the

previous year, January–May 2019, for the same households
revealed similar patterns of consumption and cluster behaviours.
However, analysis of the data revealed a respective rise in PHC
across the network of 13%, 22%, and 29% in March, April and May
2020 (Fig. 1a).
To examine the temporal (hourly) consumption patterns, four

quartiles (Q1–Q4) were assigned to the values between the lowest
and highest consumption range, revealing a consistent 24-hour
pattern throughout the period irrespective of the volume of
consumption (Fig. 2a–d). Households Q1 represents 1–2% (per
hour) of daily consumption and occurs invariably between 00:00
and 06:00. Q2, representing 3–4% of daily consumption, occurs
principally between 14:00 and 15:00 and Q3, 5–6%, occurring at
different times, particularly 12:00–13:00 and 21:00. The Q4 (peak)
occurs at 9:00–11:00 and 19:00–20:00. The daily mean network
water demand was 27% higher during lockdown than pre-
lockdown, median 43% higher and Q4 26% higher. Figure 1e
presents a comparison of consumption before and during the
lockdown.
According to our findings, households’ proportion of total

hourly water demand depends upon the clusters they belong to
(Fig. 2g, h), although the ratio of their hourly consumption to their
daily demand is largely consistent irrespective of the time of year
or volumes consumed (Fig. 2a–d).

Household cluster characterisation before and after lockdown
The results reveal four distinct clusters of household water
consumers characterised by unique diurnal and night-time
consumption patterns. The clusters are named Evening Peak
(EP), Late Morning (LM), Early morning (EM), and multiple
peak (MP).

EP
Households in EP typically use ~6% of their daily consumption
between 07:00 and 08:00 but their most significant consumption
occurs between 19:00 and 20:00, which invariably constitutes
~10% of their daily demand in just 1 hour. Their Q2 constitutes
~4% of their relative daily consumption per hour and occurs
between 09:00 and 16:00, with Q1, occurring between 00:00 and
05:00, representing ~1–2% (Fig. 2a). During the pre-lockdown
weeks, this cluster constituted ~30% of the households across the
network and has been responsible for over 50% (~76 m3/hr) of the
relative consumption between 19:00 and 22:00 (Fig. 2g) and ~33%
(1065m3/d) of the total daily consumption, with a mean (x) of
39m3/hr, standard deviation (σ) of 25 m3/hr and maximum (max)
of ~92 m3/hr (Fig. 2e).
During the lockdown, the percentage of households in EP

dropped to a network average of 25% and their dominance of
consumption between 19:00 and 22:00 decreased to an average
45%, being ~135 m3/hr (see Fig. 2h) along with their share of
the total daily consumption, which also decreased to 26%

(~1087 m3/d). Lockdown hourly mean, standard deviation and
maximum for EP were, respectively, x 63 m3/hr, σ 44 m3/hr and
max 165 m3/hr (Fig. 2f).

LM
LM describes households whose peak (Q4) occurs typically at
~10:00, representing ~11–12% of their relative daily water
consumption in just 1 hour, with their next significant water use
activities (~5% of daily consumption/hour) occurring at 19:00. Q2
for this cluster constitutes ~4% of their relative daily consumption
per hour and occurs between 14:00 and 17:00, with a Q1 being
identical to EP and EM (Fig. 2b). On average, this cluster has the
highest relative consumption between 10:00 and 12:00, constitut-
ing 38% (~63m3/hr) pre-lockdown (Fig. 2g.), was represented by
~30% of households and had a 25% (808m3/d) share of the total
daily consumption, with x 28m3/hr, σ 19m3/hr and max 76m3/hr
(Fig. 2e).
The percentage of households in LM increased to an average of

37% across the network during the lockdown weeks but their
consumption between 10:00 and 12:00 remained at an average of
38%–~74m3/hr (see Fig. 2h). Their share of the total daily
consumption increased to ~31% (~1281m3/d). Lockdown being
respectively x = 51m3/hr, σ= 36m3/hr and max= of 134 m3/hr
(Fig. 2f).

EM
Households in EM have the fewest instances of peaks which
constitute ~12–13% in 24 hours and occurs between 07:00 and
08:00. Q3 for this cluster, ~7% of their relative daily consumption,
occurs at 19:00, Q2 between 10:00 and 17:00, constituting ~3–4%
of their relative daily consumption per hour, and Q1 identical to EP
and LM (Fig. 2c). On average, this cluster, made up of 26% of
household, was responsible for 40% (~59m3/hr) of pre-lockdown
consumption occurring between 07:00 and 08:00 (Fig. 2g.) and
22% (723m3/d) of the total daily consumption, with x of 26 m3/hr,
σ of 17 m3/hr and max of 73m3/hr (Fig. 2e).
EM experienced the sharpest decrease in the number of

households during the lockdown period—an average of 12%
across the network, resulting in a significant drop in their share of
relative consumption between 07:00 and 08:00 to from 40% to
20%–~38m3/hr (see Fig. 2h). Their share of the total daily
consumption also fell to 12% (433m3/d). Lockdown being,
respectively, x 17m3/hr, σ 10m3/hr and max of 40m3/hr (Fig. 2f).

MP
MP has the highest instances of Q4s within 24 hours (about seven
instances of 6–7% of their relative daily consumption). They also
have multiple instances of Q3s and Q2s at 5% and 4% of relative
daily consumption, respectively. Their Q1, like the other clusters,
resides between 00:00 and 06:00, constituting ~2–3% of relative
daily consumption (Fig. 2d). During the pre-lockdown weeks, this
cluster represented 14% of the households across the network. MP
dominates consumption between 00:00 05:00—at an average of
32% (~8 m3/hr) (Fig. 2g) and about 20% (661m3/d) of the total

Fig. 1 Households’ consumption patterns and trends before and during the COVID-19 lockdown in the UK. a Differences in per household
consumption (PHC) for January–May 2019 and 2020. b Weekly average 24-hour consumption for all households–January week 1 (J1) to May
week 4 (MY4)—showing normal consumption trend, anomaly due to data loss and increase in consumption during lockdown period. c Hourly
consumption patterns, showing households’ average proportion of hourly consumption to their daily average. d Households’ hourly mean
and standard deviation consumption in litres. e Boxplots illustrating the comparison between pre-lockdown and lockdown total consumption
in cubic metres (m3). Value at the top of whisker is the maximum consumption; bottom of whisker is the minimum consumption; top bound
of the box is the upper quartile value; bottom bound of the box is the lower quartile value; the line in the centre of the box is the median and
the x in the centre of the box is the mean (x). f Weekly cluster consumption trend showing how much each of the four clusters consumes per
week in m3. The error bars indicate standard deviation (σ). g Weekly number of households per cluster. The error bars indicate standard
deviation (σ).
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daily consumption, with x 19m3/hr, σ 8m3/hr and max 29m3/hr
(Fig. 2e).
MP experienced the most significant increase in the number of

households during the lockdown period—a 93% increase
between M3 and M4 maintaining an average of 26% of all

households during the lockdown period. This has resulted in an
increase in their share of hourly consumption between 00:00 and
07:00 to an average of 45%–~24m3/hr; between 12:00 and 17:00
to an average of 39%–~98m3/hr and 23:00 to 36%–~60m3/hr (see
Fig. 2h). Their share of the total daily consumption also rose to
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~32% (~1326m3/d). Lockdown being, respectively, x 67m3/hr, σ
34m3/hr and max of 110 m3/hr (Fig. 2f).
In another study,14 segmentation was based on heterogeneous

micro-component consumption patterns and behaviour regula-
rities and temporal characteristics. This work, unlike our study,
performed a disaggregation of sub-minute smart meter data into
end-use events, subsequently clustering households based on
their end-use similarities. One difference of this study to the one
here reported, however, is the consumer household sample size.
In our study, some 11,528 households were assessed, and
currently, sub-minute smart meters are unavailable across such a
large region. Our segmentation was derived from normalised
hourly smart meter data, being based on temporal patterns of
consumption. The silhouette coefficient value, when ‘t-distributed
stochastic neighbour embedding’ (t-SNE)15 was used for dimen-
sionality reduction (as opposed to PCA), improved slightly from 3.9
to 4.1 for n_cluster= 4. However, this improvement only margin-
ally enhanced the k-means results (by < 1%). Household con-
sumption patterns over a 24 hour period16 are generally typified
by minimal activities during the early hours (00:00–06:00),
followed by a significant diurnal rise (07:00–10:00), a diurnal drop
(11:00–16:00) and then another significant rise from 16:00 to
20:00. The significant differences in the clusters are underpinned
by the time and percentage of both relative and absolute peak
consumption (Q4) and time and percentage of the next most
significant event (Q3). Our results demonstrate conclusively that,
whilst many intercluster pattern similarities exist in Q1s, Q2s and
Q3s (accounting for the relatively low silhouette coefficient score),
for EP, LM and EM, 94% of households share the same demand
peak times with their intracluster neighbours (Fig. 3), the
remaining 6% being within ±1 hour of the typical peak times.
MP, however, has no typical demand peak time and households in
this cluster are characterised by several peak and near peaks
events at different times.
This paper provides a reliable quantified characterisation of

household water consumption patterns across the network. It has
revealed the extent to which the COVID-19 lockdown has
impacted materially on these patterns of consumption, leading
to a marked change in demand. Table 1 shows the summary of
the COVID-19 impact on water demand at PHC level.
Peak demand pattern management forms the core of water

DSM strategy17 and as such the accurate identification of
household consumption patterns underpinning peak temporal
demand18 and detailed characterisation of these patterns
represents an important step towards the development of
strategies aimed at reducing consumption and improving
demand forecasting. Studies have established how both exogen-
ous (e.g., seasonal) and endogenous (e.g., SE/SD) variables18

contribute to peak demand, thereby enabling predictions. Our
characterisation of household clusters encapsulates multiple
levers such as the times of peak demand for each cluster, their
relative proportion of water consumed at the peak, their absolute
proportion of the peak demand as well as their absolute shares of
hourly consumption. This allows a precise identification and
prediction of geographical consumption hotspots at multiple
resolutions (hourly, daily, monthly or annually) and sets

parameters for more precise forecasting for the utility and shifting
the peak demand in households.17 For example, our model allows
the utility to determine not only the proportion of peak demand
between 07:00 and 08:00 to total network demand but also to
identify the households underpinning that and the relative
proportion of the households’ daily demand that this constitutes.
Household water demand is characterised by marked temporal

variation, with diurnal patterns of demand being the most
diverse.19 For peak demand management, it is vital to keep track
of times of peak demand and the groups of households
contributing to that. One of the difficulties faced by water
companies is the ability to track effectively individual household
patterns of behaviour, ascertaining the extent to which these
patterns change and their impact on aggregate demand. Previous
studies have clustered households based on shared micro-
component patterns to examine the likely impact of alterations
in consumption of particular water use events and other cluster
characteristics, coupled with seasonal variability and occupancy,
on aggregate demand.20 Our work allows the quantification of the
impact that each cluster has on aggregate demand at any given
time and further allows the tracking of household movements
from one cluster to another, as well as the associated peak
characteristics. This makes it possible to quantify the impact of
change in household circumstances such as a change in work
patterns, tenure, household appliance use, occupancy, SD or SE
variables and leakage.
Our work also provides a basis for identifying water consump-

tion hotspots within the distribution network and supports
seasonal and regional temporal load monitoring in both normal
and unusual times, such as during pandemics, to help mitigate
water stress and the resultant impact on the environment and
water resources.
All households assessed in the study derive from a single water

provider, drawn across two geographical areas 50 miles apart
consisting of 24 DMAs. As the aim of this study was to quantify the
impact of the Covid-19 lockdown on aggregate water demand
while highlighting household clusters’ underpinning temporal
demand patterns, only anonymised smart meter data were
utilised. Data on sociodemographic/SE or occupancy variables of
the participating households were not available.
January week 2 (J2) recorded a sharp increase of 57% of

households in EM, ostensibly signifying a return to work
(characterised by 07:00–08:00 peaks) after the Christmas break,
and a simultaneous decrease in LM and MP by 17% and 33%
(characterised by diurnal and MPs), respectively (Fig. 1e, f). The
next significant cluster migration event occurred between March
week 3 and 4 (M3 and M4), which saw a 93% increase in MP and a
52% decrease in EM, ostensibly signifying more people working
from home and assuming MP characteristics (Fig. 1e, f).
Our study addresses fundamental policy issues relating to the

Demand-Side Management (DSM) of water resources. First, it
focuses on the categorisation of households by their respective
temporal as well as the aggregate impact on network demand, as
a basis for demand forecasting. Focusing on peak patterns of daily
water consumption can lead to both relative and absolute water
conservation.21 Metering alone is capable of reducing PCC by

Fig. 2 Clusters’ hourly consumption patterns and comparison of clusters’ share of consumption before and during the COVID-19
lockdown in the UK. a Cumulative pattern and percentage of hourly consumption for households in the “Evening Peak (EP)” cluster.
Consumption is in (m3). b Cumulative pattern and percentage of hourly consumption for households in the “Late Morning Peak Peak (LM)”
cluster. Consumption is in (m3). c Cumulative pattern and percentage of hourly consumption for households in the “Early Morning Peak (EM)”
cluster. Consumption is in (m3). d Cummulative pattern and percentage of hourly consumption for households in the “Multiple Peak (MP)”
cluster. Consumption is in (m3). e Average daily consumption per cluster pre-lockdown. f Average daily consumption per cluster during the
lockdown. e, f Value at the top of the whisker is the Maximum consumption; bottom of the whisker is the minimum consumption; top bound
of the box is the upper quartile value; bottom bound of the box is the lower quartile value; the line in the centre of the box is the median and
the x in the centre of the box is the mean (x). g Clusters’ share of total hourly consumption pre-lockdown. h Clusters’ share of total hourly
consumption during the lockdown.
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Fig. 3 24 h patterns of individual households in clusters. a 24-hour patterns for a random sample of households in the EP cluster. a 24-hour
patterns for a random sample of households in the LM cluster. a 24-hour patterns for a random sample of households in the EM cluster.
a 24-hour patterns for a random sample of households in the MP cluster. a–d Circles indicate observed peaks.
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15%,8,22,23 which, as reported by UKWIR,24 could be significantly
improved by the clustering of households into categories of water
consumption characteristics, achieving marked accuracy improve-
ments in demand forecasting.
Second, our analysis of the unique patterns of behaviour of the

household clusters before and during the lockdown provides the
water sector with an insightful basis for the assessment of network
demand load and its distribution attributable to the impact of the
COVID-19 lockdown.
Third, the approach presented offers a methodology to support

examination of resilience for future unforeseen events capable of
placing immense stress on network demand in particular and the
water resources in general. The approach adopted is aligned with
UK water legislation (the Water Act 2014)25 as it (a) sets the
grounds for long-term water resource planning by informing the
provision of a range of measures to sustainably manage water
resources and (b) helps to improve household water use
efficiency, reduce aggregate demand and reduce the pressure
on water resources.
We conclude that whilst the scope of this study focuses on the

characterisation of consumption patterns attributable to the
COVID-19 pandemic lockdown, the work has also identified
significant implications for future research. First, our segmentation
method and characterisation of consumption patterns can be
adapted to support demand management strategies by delivering
intervention feedback to households according to their specific
cluster characteristics. Second, the model can play a role in
seasonal and temporal (diurnal and night-time) water consump-
tion dynamics. Third, it is estimated that households’ internal
leakage constitutes ~10% of the total network water consump-
tion.26 Many network leakage detection systems rely on the
analyses of night flow patterns by monitoring when hourly flow
value surpasses a fixed threshold at the same time interval.26,27

Our cluster characterisation delivers a framework that would
facilitate the tagging of network households that fall in this
category (typically MP), for a targeted leakage intervention.
Drawing from this work, we further consider that to gain improved
insight into consumer patterns, future research should incorporate
data from high temporal resolution smart meters, that can offer
greater discrimination than the hourly data available to us here.
This would have significant cost implications and thus such work
may need to wait to benefit from new generations of future
metres as technology develops. Future work should also cross-
correlate electricity supply smart meters as well as other corollary
data such as prevailing weather patterns.

METHODS
In all, 20 weeks’ smart meter data for January to May 2020 were obtained
from 20,000 anonymised households and processed using exploratory

machine learning (ML) for unsupervised pattern recognition and super-
vised pattern classification.
To achieve a robust classification model, the clustering and labelling

process was performed on each week’s normalised data set. Several
models were then constructed using each of the labelled data sets. The
classification accuracy of models drawing on pre-lockdown data sets was
similar to that of lockdown-derived data sets. The process of data
normalisation, however, removed all scale properties from the data set
such that all data points are between 0 and 1.

Data preprocessing
Data cleaning, integration, feature reduction, and transformation were
conducted to improve the accuracy of the ML algorithms.28 The data were
pivoted into 24 hour columns so that each datapoint was a weekly mean,
derived using Eq. 1:

x ¼
P

xi
n

(1)

where x is the monthly mean consumption for each of the 24 hour
columns;

Px
i is the sum of each of the 24 hour columns and n is the

number of each of the 24 hour columns. Outliers such as commercial
customers (n= 830), null values and inconsistent customers were removed
leaving 11,528 consistent households comprising 891 unique postcodes
across 25 DMAs, in two areas in East Anglia, England (Town A and Town B).
The weekly data were labelled thus: January week 1 to week 4= J1..J4;
February week 1–week 4= F1..F4; March week 1–week 4=M1..M4; April
week 1–week 4= A1..A4 May week 1–week 4=MY1..MY4.

Data normalisation
The data set values presented with differing ranges. A min–max scaler28

was applied to achieve a linear transformation on the original data by
normalising the data range such that the range was set between 0 and 1
(Eq. 2):

z ¼ xi �min xð Þ
max xð Þ �min xð Þ (2)

Where z is the normalised value; xi is the raw value of range attribute being
normalised; min(x) is the minimum attribute of the range and max(x) is the
maximum attribute of the range.
This normalisation preserves the relationships among the original data

values within a range,28 i.e., all range attributes are expressed as a fraction
of the range max, which makes it particularly ideal for revealing patterns
by highlighting the times of peak, near peak or lowest consumption in a
uniform fashion.

Dimensionality reduction
Dimensionality reduction using ‘t-distributed stochastic neighbour embed-
ding’15 was applied to transform the 24-hour features of the normalised
data into two dimensions (TA1 and T2), which was a crucial process for the
improvement of clustering and classification accuracy, the goal being to
preserve the meaningful structure of the features while using fewer
attributes to represent them.28,29

ML process
ML pattern-mining techniques were used to explore the normalised data
sets for unknown patterns, perform cluster analysis on all observations
(households) in the data set based on found patterns, label the
observations with the assigned clusters, train a classification model with
the labelled data and “predict” the clusters for the remaining normalised
data set.

Pattern recognition (clustering)
The “k-means algorithm”, a “centroid-based partitioning clustering
method” was chosen, owing to the nature of the data points (n) in the
data set and the fact that his algorithm typically employs exclusive
segregation of clusters such that each object must belong to exactly
one group, where each partition represents a cluster and k ≤ n, where k is
the number of specified clusters. That is, it divides the data into k groups
(each with a defined centroid) such that each group contains at least one
object.28,30

Table 1. Comparison between pre-lockdown and lockdown impact
on household clusters’ water demand.

EP LM EM MP

Average number of households pre-
lockdown (J1–M3)

3470 3442 3016 1600

Percentage of households 30% 30% 26% 14%

Average number of households during
lockdown (M4–MY4)

2842 4239 1627 2820

Percentage of households 25% 37% 14% 24%

Pre-lockdown PHC (l/h/d) 307 235 240 413

During lockdown PHC (l/h/d) 383 302 266 470

Percentage increase 25% 29% 11% 14%
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The objective function for the K-means clustering algorithm is the
squared error function31 (Eq. 3):

J ¼
Xk

k¼1

Xn

i¼1

xi � μkð Þ2�� �� (3)

Where J is the objective function (sum of the squared error), k is the
number of clusters, n is the number of objects (data points), xi is object i, μk
is the centroid for xi’s cluster (thus, xi � μkð Þ is the Euclidean distance
between point xi and centroid μk).
Determining the optimal number of clusters (or the k value) in the

normalised data set became our fundamental challenge. We applied the
Elbow method, which uses the “Within-Cluster-Sum-of-Squares (WCSS)”28

algorithm, to the data set and arrived at k= 4.
The silhouette coefficient algorithm,28,31 used to measure the similarity

of objects in the data set to their assigned clusters compared with other
clusters, revealed that k= 4 has the highest coefficient (0.41), making 4 the
optimal number of clusters (Eq. 4).

s oð Þ ¼ b oð Þ � a oð Þ
max a oð Þ; b oð Þf g (4)

Where s(o) is the silhouette coefficient value of data point or object o in the
data set, a(o) the mean distance between object o and the neighbouring
objects in the same cluster, and b(o) the minimum mean distance between
o and all objects in other clusters.
The k-means algorithm was applied to the data set with the following

parameters: k= 4; maximum iteration= 300 and random state= none.
These steps were repeated on the remaining data sets (February–May),
ending the unsupervised machine learning process.

Pattern classification
The purpose of our pattern classification is to use training samples from
the labelled data set to predict the clustering of our input data using its
features.32 A supervised learning technique was used to perform pattern
classification on the remaining input data set to aid comparison of the
classification with the clustering outputs. To achieve a robust classifica-
tion model, the clustering model was applied successively to each
week’s normalised data and values labelled. Several models were then
constructed using each of the labelled data sets. A “train-test-split”28

model evaluation procedure was used to compare the classification
accuracies of two supervised approaches: K Nearest Neighbour (KNN)—
a distance-measuring pattern classification algorithm and Logistic
Regression (LR)—a probabilistic pattern classification algorithm.32–34

Each of the labelled data sets was split into 60% train and 40% test and
used in training and testing the model to evaluate how well each
algorithm performed in predicting the labels on that same data. Starting
with KNN, we tested the accuracy of the model within a “k range” of k=
1..k= 25. Testing accuracy for LR was between 93% and 94% on all the
data sets, which makes it a better performing model for the data set. A
further LR classification model was built for the assignment of cluster
labels to the remaining normalised data set, achieving a classification
accuracy of 94%.

DATA AVAILABILITY
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