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Norovirus is a leading cause of acute gastroenteritis (AGE) globally. AGE resulting from norovirus
causes significant morbidity and mortality in countries of all income levels, particularly among young
children and older adults. Prevention of norovirus AGE represents a unique challenge as the virus is
genetically diverse with multiple genogroups and genotypes cocirculating globally and causing
disease in humans. Variants of the GII.4 genotype are typically themost common genotype, and other
genotypes cause varying amounts of disease year-to-year, with GII.2, GII.3, and GII.6 most prevalent
in recent years. Noroviruses are primarily transmitted via the fecal-oral route and only a very small
number of virions are required for infection, which makes outbreaks of norovirus extremely difficult to
control when they occur. Settings like long-term care facilities, daycares, and hospitals are at high risk
of outbreaks and can have very high attack rates resulting in substantial costs and disease burden.
Severe cases of norovirus AGE are most common in vulnerable patient populations, such as infants,
the elderly, and immunocompromised individuals, with available treatments limited to rehydration
therapies and supportive care. To date, there are no FDA-approved norovirus vaccines; however,
several candidates are currently in development. Given the substantial human and economic burden
associated with norovirus AGE, a vaccine to prevent morbidity and mortality and protect vulnerable
populations could have a significant impact on global public health.

Norovirus is a leading cause of acute gastroenteritis (AGE) worldwide,
causing ~685 million cases annually1. Each year, an estimated 1.5 million
deaths occur globally due to all-cause AGE2, with 136,000 to 278,000 related
to norovirus infection2–6. Young children, older adults, and immunocom-
promised individuals are particularly vulnerable to severe norovirus disease
and its associated complications2. In lower-income countries, deaths from
norovirus AGE are common among children as a result of severe diarrhea
and dehydration2; in higher-income countries, deaths occur less frequently
and aremore commonly observed in the elderly7 due to complications from
disease including sepsis, cardiac complications, malnutrition, and colon
perforation8.

Occurrence of norovirus
Endemic disease
Estimates of norovirus AGE occurrence differ substantially in publications
reflecting variability in methods of surveillance, laboratory test(s) used,

study populations examined, and year-to-year variation in circulating
genotypes. In one global systematic review of community-based surveil-
lance studies conducted in all ages, norovirus AGE incidence rates ranged
widely from 12.5 to 60 per 1000 person-years (PYs)9. Surveillance for nor-
ovirus in most countries is largely based on outbreak detection with indi-
vidual cases not reported; therefore, estimates of population-based
norovirus AGE incidence come primarily from cohort studies. One cohort
study performed among patients enrolled in Kaiser Permanente health
plans in the District of Columbia, Maryland, Oregon, and Virginia from
2012 to 2013 estimated the community incidence of norovirus AGE overall
as 68.9 per 1000 PYs, and the incidence of norovirus-related outpatient
medically attended AGE as 5.6 per 1000 PYs10. Norovirus AGE incidence
was highest among children <5 years of age (community incidence, 152.1
per 1000 PYs; outpatient incidence, 25.6 per 1000 PYs), followed by older
adults aged ≥65 years (community incidence, 75.8 per 1000 PYs; outpatient
incidence, 7.9 per 1000 PYs)10.
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Outbreaks
Norovirus AGE outbreaks are associated with high attack rates and sub-
stantial economic and clinical burden.Themost commonly reported setting
for norovirus outbreaks in the US and other industrialized countries is
healthcare settings. The costs to hospitals associated with outbreaks can be
substantial, depending on the number of units affected11. Two systematic
reviews of norovirus outbreaks occurring in hospitals and nursing homes
worldwide found a median attack rate of 50% (range, 9–78) during an
outbreak event andaprotracteddurationof outbreakwith ameanof 16 days
(range, 3–44) in nursing homes and 19 days (range, 6–92) in hospitals12,13.
Both patients and staff are important drivers of transmission of norovirus,
though evidence suggests a larger number of transmitted infections occur in
outbreaks when the index cases are patients than when index cases are
staff14,15. In a 1-year surveillance study of gastroenteritis outbreaks in three
hospitals in England, attack rates of confirmed norovirus AGE during
hospital outbreaks were 24.5% for staff (95% CI, 17.8–31.2) and 53.2% for
patients (95% CI, 41.5-65.0)16. Guidelines to help control outbreaks in
healthcare settings include enhanced hand hygiene and environmental
cleaning, restriction of patient movements, and exclusion of ill staff from
work17.

Outbreaks in long-term care facilities (LTCFs) are of particular con-
cern, as individuals receiving care in these settings are more likely to be
elderly or haveunderlyingmedical conditions. Patients typically live in these
facilities for longer than a hospital stay, with daily nursing support and
shared rooms and common areas, which increases the potential for rapid
spread and larger outbreaks18–20. Although person-to-person is the most
common transmission route in LTCFs, shared dining facilitiesmay increase
foodborne exposure risk18. Norovirus AGE attack rates during outbreaks in
LTCFs canbeup to45%andare associatedwithhospitalization rates of~4%
and mortality rates of ~2%18,21, making LTCFs an important target for
surveillance and control of norovirus.

Other commonly reported settings for norovirus AGE outbreaks
include restaurants and catered events, schools and childcare centers, and
settings where individuals reside in close contact, such as cruise ships or
dormitories22.Ananalysis of norovirus outbreaks reported to theCenters for
Disease Control and Prevention (CDC) CaliciNet in the US between 2009
and 2013 reported the most common settings as long-term care facilities
(62.5% of outbreaks), restaurants (9.8%), schools and communities (5.7%),
parties or events (5.4%), and hospitals (3.6%)23. Cruise ship outbreaks are
estimated to account for only a small proportion of outbreaks, an estimated
1% in the US between 2009 and 2012; however, the numbers of individual
cases associated with these outbreaks can be very large24. Since 2006, ~90%
of cruise ship outbreaks with known causative agents involved
noroviruses25. Based on data from the CDCMaritime Illness Database and
Reporting System, the incidence rate of AGE on passenger ships was 16.9
cases per 100,000 travel days in 201926. Among passengers, AGE incidence
rates increased with increasing ship size and voyage length26.

Norovirus AGE causes substantial economic and clinical burden, with
direct healthcare costs and lost productivity from personal illness or time
spent caring for an ill child estimated to cost $60 billion globally each year27.
A simulation model estimated the economic burden of norovirus stratified
globally andbyWorldHealthOrganization region to examinedirect costs of
illness (e.g., clinic visits and hospitalization) and productivity losses due to
norovirus28. Themodel estimated annual global costs related to norovirus as
$4.2 billion in direct health system costs and $60.3 billion in societal cost28.
Children aged <5 years account for the highest estimated societal cost col-
lectively while costs per illness are highest for adults aged >55 years28. The
2019 Global Burden of Disease Study estimated that children <5 years
account for 33% of all deaths and 56% of disability-adjusted life-years
(DALYs) globally, with adults aged ≥70 years accounting for 40% of nor-
ovirus deaths globally and 11% of DALYs2.

A reduction in norovirus AGE incidence was observed during periods
of shutdown for COVID-19 29,30,31,32; however, recent data have shown that,
with the lifting of COVID-19 pandemic restrictions, norovirus AGE inci-
dence has returned to pre-pandemic levels33. Due to limitations in

surveillance (based on outbreaks only), it is challenging to determine the full
burden of norovirus. Observational studies have attempted to quantify
incidence rates in smaller, defined populations, but wider, routine
population-based surveillance is needed to fully appreciate the societal
impact of norovirus AGE. Real-world studies, specifically those that utilize
epidemiologicmodeling,may be of utility in assessing norovirus occurrence
and the potential impact of vaccines to reduce disease burden.

Norovirus biology and molecular epidemiology
Noroviruses are icosahedral viruses in the familyCaliciviridae, with a single-
stranded, positive-sense RNA genome34,35. Virions are non-enveloped and
quite small, about 40 nm at their largest diameter34. The genome is a single
RNA segment ~7.5 kilobases long, divided into four open reading frames
(ORFs)34. ORF1 encodes six non-structural proteins, including the RNA-
dependent RNA polymerase or RdRp protein34. Other ORF1 proteins
include an N-terminal protein, a NTPase, a “3A-like protein”, a VPg, and a
viral protease34. ORF2 encodes the major capsid protein, VP1, which is
further subdivided into shell (S) or protruding (P1 and P2) domains. ORF3
encodes the minor capsid protein, VP234. ORF4 is encoded by the murine
norovirus subgenomic RNA, in an alternative reading frame overlapping
the VP1 coding region36.

Noroviruses are genetically diverse and can infect a wide variety of
hosts, including humans, dogs, pigs, mice, bats, and sea lions37,38. They are
divided into 10 genogroups (GI to GX) based on VP1 amino acid
sequence39,40. Each genogroup is subdivided into genotypes37–40 based on
capsid amino acid sequence, with 49 genotypes currently described39.
Noroviruses can also be classified based on their RdRp (“polymerase”)
sequence, with at least 60 P-types currently circulating. Each virus strain can
be classified based on its capsid and polymerase genotypes, which is similar
to the dual-numbering system seen in influenza or rotavirus strains. For
example, GII.4[P4] has a GII.4 capsid and a GII.P4 polymerase. Recombi-
nation is possible between different polymerase and capsid genotypes, most
commonly at the ORF1-ORF2 juncture, leading to many different strains
such as GII.13[P16] or GII.3[P12]39,41–43. Genogroups GI, GII, GIV, GVIII,
and GIX can all infect humans; however, GI and GII genotypes are by far
most common, accounting for ~90% of all reported cases and outbreaks in
humans38,39,44,45.

A specific GII norovirus genotype, GII.4, is most prevalent in human
norovirus AGE cases44,45. GII.4 viruses have been responsible for the
majority of outbreaks and sporadic cases for at least the last 15 years44,45. Less
is known about norovirus diversity prior to around 2000, whenmore robust
surveillance efforts were established, but earlier large-scale outbreaks in the
1980s and 1990s are known to also have been caused by GII.4 variants,
suggesting some consistency with more modern observations46,47. It has
since been demonstrated that GI and other GII genotypes are relatively
genetically static37,48,49, while newGII.4 variants have replaced previous ones
historically every 2–5 years prior to 201237,48,49. New variants are named
when they have become epidemic in at least two geographically diverse
locations39. Since themid-1990s, there have been six newGII.4 variants that
have caused widespread epidemics: 1996 Grimsby, 2002 Farmington Hills,
2004 Hunter, 2006 DenHaag, 2009 NewOrleans, and 2012 Sydney37. GII.4
2012 Sydney has persisted for more than a decade now, though it did
recombine with a novel polymerase gene around 2015, identified in sur-
veillance as GII.4 Sydney[P16]50. The predominance of GII.4 Sydney over
the past decade has been hypothesized to be in part due to a lack of
immunity in adults, facilitating continued circulation and predominance of
this variant51.

Though generally accepted as the most predominant genotype, the
exact proportion of disease attributed to GII.4 varies somewhat by setting,
surveillance system, geography, year of data collection, and population. For
example, prevalence was reported as 58% among outbreaks reported from
September 2013 to August 2016 in the United States52, 65% in international
laboratory-based outbreak surveillance of norovirus specimens from Eur-
ope, Asia, Oceana, and Africa collected from January 2005 to November
201653, 67% in published observational studies (2004–2012) of
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non–outbreak-associated cases in children54, and 41% among a birth cohort
prospectively followed for the first 2 years of life in Lima, Peru, from June
2007 to April 201155. The next most common genotypes reported in out-
break surveillance from high- and middle-income countries in recent years
include GII.2, GII.3, GII.6, and (transiently, primarily in Asia) GII.1752,53.
Among GI genotypes, GI.3 has been the most common in recent years52,54.
The exact proportions of disease due to any of these genotypes varies year to
year but are almost always less than the proportion attributed to GII.453.
Figure 1 presents contemporary genotype data from pediatric norovirus
AGE cases collected globally through NoroSurv between 2016 and 202356.
The most commonly identified genotypes over the time period were GII.4,
GII.3, GII.2, and GII.6.

Studies that have examined norovirus outbreaks over time have
observed increases in incidence that correlate with the emergence of new
variants. For example, in an analysis of norovirus outbreak data in the US
from the National Outbreak Reporting System and CaliciNet from August
2009 to July 2019, the longest norovirus season was observed in 2015–2016,
which coincided with the emergence of the GII.4 Sydney[P16] variant,
although the peak-to-mean ratio and number of reported norovirus out-
breaks were generally similar to other surveillance years57. Increases in
norovirus incidence have been shown in multiple countries with the
emergence of GII.2[P16] in 2015–2016 and GII.17[P17] in 2014–2015. For
example, data from norovirus outbreaks in China from 2016 to 2018 found
that GII.2[P16] caused an increase in norovirus outbreaks during winter
2016–1758. Previous data from China had reported a peak in GII.17 nor-
ovirus cases during 2014–2015, followed by a decrease in GII.17 in
2015–201659. An increase in norovirus cases was also observed in Germany
in 2016 in association with the emergence of GII.2[P16]60. In an epide-
miological study in Ibaraki Prefecture, Japan, of surveillance data from
September 2012 to August 2018, variation in norovirus frequency over time
was observedwith the emergence of newvariants61.However, it is important
to note that not all new variant emergences have been associated with
increased disease activity, which suggests a complex interplay of viral fitness
and immune escape62.

Emergent norovirus variants do not appear to originate in an animal
reservoir and there is no evidence of zoonotic transmission63, which raises
the question as towhether there is a human reservoir of these viruses.While
none has been clearly identified, molecular epidemiological surveillance is
very sparse in lower-middle-income and low-income countries where vast

numbers of infections occur64 and intra-host viral evolution could con-
tribute to new mutations65. It has also been hypothesized that immuno-
compromised individuals may be a source of new variants63.

Evidence suggests that GII.4 infections tend to result in more severe
clinical disease than other genotypes66,67; however, the question of disease
severity has been difficult to study because of many confounding issues.
GII.4 viruses appear to be more common among the elderly, especially in
LTCF outbreaks, and are often linked to person-to-person transmission.
Meta-analyses and large outbreak studies have found evidence for increased
severity of disease caused by GII.4 viruses68. In one study of infected chil-
dren, GII.4 cases presented to healthcare providers were more likely to
receive oral rehydration fluids, a measure of disease severity, when com-
pared with non-GII.4 cases69. This pattern was also reported in a cohort of
Canadian children66, a study of infected children in Finland70, and a study
among residents of nursing homes in the Netherlands71. In outbreak set-
tings, GII.4 has been shown to be associated with higher hospitalization and
mortality rates67,68. There are a few possible biologic reasons for higher
severity in GII.4 cases, including higher viral load, increased ligand binding,
or rapid evolution that evades the host response68,71–74. However, it should
also be noted that outbreaks caused by GII.4 often occur in healthcare
facilities, where populations may be at higher risk of severe disease, which
may bias outcomes68,71–75.

GII.4 is the most commonly reported genotype across all ages,
occurring at similar frequency among children and adults. Importantly,
when novel GII.4 variants emerge, they disproportionately cause disease in
older age groups68. Potential biases arising from the design of surveillance
systems shouldbe consideredwhen looking at reported genotypeprevalence
across cases. In the United States, for example, surveillance is conducted for
outbreaks (not individual cases), which are more likely to occur in health-
care settings75. Because elderly people are over-represented in healthcare
settings, and because GII.4 causes outbreaks (as opposed to “sporadic”
cases) more often than other genotypes, this may result in the observed
higher burden of GII.4 in older adults.

A 1974 human challenge studywith different (heterologous) norovirus
genotypes indicated that infection with one genotype is not protective
against infectionwith other genotypes76.However, challenge study doses are
not thought to reflect natural infection since the infectious doses were
unnaturally high and some of the challenge strains are uncommon; as such,
results from those studies should be interpreted with caution. Some
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Fig. 1 |Number of sequences by specimen collection date for the top 4 most prevalent norovirus genotypes and GII other and GI genotypes between 2016 and 2023, among
children under 556. Reproduced with permission from NoroSurv. https://www.norosurv.org/login. Accessed December 15, 2023.
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observational studies of norovirus AGE have similarly demonstrated that
infection with one genotype does not protect against subsequent genotypes
from the same genogroup77–79, while other observational cohort studies have
shown protection against both repeated infections with the same genotype
(homologous) as well as heterologous genotypes80. More recent data from a
field efficacy trial conducted in 2016–2018 suggested protection against
GII.2 illness after administration of a bivalent GI.1 and GII.4 vaccine81. To
explain these observed findings, it has been hypothesized that ‘immuno-
types’ of groupings of genetically similar noroviruses exist that provide
heterotypic immunity within each type48. Prevalence of immunotypes may
be due to differences in evolution patterns between these types, with
genetically static genotypes more prevalent among younger age groups. In
contrast,GII.4maypredominate amongolder age groups because of its high
rate of evolution in VP1. This is still an active area of research, with cir-
cumstantial evidence supporting real-world cross-protection within
immunotypes. Identifying cross-protection at the genotype level in the real
world is important but will be challenging since individuals have complex
exposure histories and circulating genotypes are ever-changing.

Transmission and natural history
Transmission of norovirusmainly occurs via the fecal-oral route. Norovirus
is highly contagious – though its precise infectiousness remains an area of
uncertainty. Based on analysis that considered the aggregation of particles
(as visualized by electronmicroscopy), the infectious dose of norovirus was
estimated to be as low as 18 virions82. Other estimates that rely on quantified
dose ranges given in human challenge studies arrive at higher estimates on
the order of 1000 virus particles83. Regardless of the true precise estimate,
norovirus is ahighly infectious agent.The virus spreads directly fromperson
to person or indirectly through contaminated food or water84. Infected
individuals shed billions of viral particles per gram of stool or vomit, which
can contaminate food, water, and surfaces40. Vomiting can result in sig-
nificant environmental contamination85, leading to transmission through
fomites and airborne droplets. A study of norovirus transmission in LTCFs
found that vomiting was a primary driver of transmission86. Even after
symptoms resolve, transmission can occur. In immunocompetent indivi-
duals, viral RNA can be detected in stool for several weeks after symptoms
resolve87,88; in immunocompromised individuals, chronic illness and viral
shedding can persist for weeks to years and become a chronic infection89–91.
Asymptomatic individuals can also excrete a substantial amount of virus,
and therefore are also an important source of transmission. The norovirus
viral replication cycle is not fully defined, and the primary human receptor
has yet to be identified92,93. Current evidence suggests that norovirus viral
entry occurs through attachment to histo-blood group antigens (HBGAs)
on the surfaces of gut epithelial cells. The presence of HBGAs on host-
mucosal surfaces is determined by the fucosyl-transferase-2 (FUT2)
gene94,95. Individuals with functional FUT2 possess HBGAs necessary for
viral docking (“secretors”), whereas individuals with defects in FUT2 do not
express the appropriate HBGA necessary for viral docking (“non-
secretors”)96. Non-secretors are resistant to some genotypes, including
GII.4, GI.1, and some other “secretor-dependent” genotypes96. Individuals
who are non-secretors are found in ~20% of European populations, with
higher prevalence observed in South Asia and lower prevalence observed in
Latin America97. The relationship between transmission and secretor status
may even be strain-dependent, as GII.4 infections have been documented
among non-secretors98.

Norovirus seasonality can vary according to climate. Temperate cli-
mates see norovirus infections and disease year-round, but epidemic peaks
are concentrated in the winter99, with 63% to 73% of cases occurring during
winter months (e.g., October-March in the northern hemisphere)7,69.
In these climates, norovirusmay spreadmore easily during thewinter due to
its ability to thrive in colder temperatures40 and increased human contact
indoors100. In tropical climates and the southern hemisphere, norovirus
AGE follows a less distinct seasonal pattern, with peaks observed in the
winter and cooler and/or rainiermonths (roughlyApril to September), but a
distribution of cases is also observed throughout the year101.

Transmission risk factors include contact with contaminated food,
water, and surfaces18,102,103. Food supply contamination with norovirus can
occur at production or during food preparation104,105. High-risk foods
includeproduce (particularly leafy greens and fresh fruits) and shellfish (e.g.,
oysters)106–110. Cooked food later handled by an individual with a norovirus
AGE infection may also become contaminated; thus, good hygiene in
foodservice establishments is essential to avoid such contamination13.Water
supply contamination with fecal material containing norovirus can rapidly
affect large populations111–113. In high-income countries, more infections are
transmitted from person to person rather than through exposure to con-
taminated food or water96. Foodborne transmission of norovirus accounts
for ~14% of norovirus AGE outbreaks globally114; however, data are over-
whelmingly from high-income countries. Foodborne and waterborne
transmission rate estimates from low-income countries are lacking but are
thought to be much higher96. Environmental transmission risk factors
include cohabitating with large numbers of individuals, contact with
infectious individuals, and improper hand washing. Outbreaks occur
commonly in settingswhere people are in close contact, such as dormitories,
military centers, prisons, resorts, cruise ships, daycares, and LTCFs. In high-
income countries, LTCFs and hospitals are the most common settings of
norovirus AGE outbreaks115,116. In the United States, 52% of reported nor-
ovirus AGE outbreaks occur in LTCFs and 3% occur in hospitals or acute
care facilities115. However, in Europe, Australia, Canada, and Japan, out-
breaks in LTCFs and acute care settings/hospitals are roughly equal in
proportion116.

Adaptive immunity
Immunity to norovirus is notwell understood but is thought to be imperfect
and of limited duration. Recent estimates of the immunity duration to
norovirus varywidely, fromas little as 27months to as longas 9 years117,118 In
earlier human challenge studies, it appeared that immunity following
challenge was of short duration (from about 2months to 2 years)76,119,120. It
was also observed in some of these studies that there was a subgroup who
were entirely resistant to infection or disease, at least from theGI.1 challenge
strain119,120. It is now known that this resistance is moderated by the FUT2
gene as described above. Understanding of immune acquisition was limited
from these studies since they were conducted on adults who already had a
lifetime of exposure and used unnaturally large challenge doses of
virus76,117,119,120. Contemporary birth cohort studies have further advanced
understanding of acquired immunity. The MAL-ED study, conducted
among birth cohorts in several low- and middle-income country settings,
indicated that natural GII subgroup infection provides protection against
subsequent gastroenteritis caused by GII and that immunity builds up over
multiple infections121. However, there was little immunity acquired against
infection and no evidence of protection from GI infection121. Modeling
studies estimate a longer duration of immunity of ~4–9 years to all nor-
oviruses (i.e., not genotype-specific)118. As noted in the molecular epide-
miology section above, there is no evidence of protection across genogroups
and limited cross immunity among genotypes in the same group. HBGA
blocking antibody is thought to be associated with protection from nor-
ovirusdisease andvaccine response122–126, but a cutoff value for antibody titer
correlated with protection has yet not been defined. Loss of immunity may
be a result of antibody and cellular immunememory decay and/or immune
escape of emerging genotypes and variants122,123.

Symptoms
Norovirus AGE symptoms usually emerge ~ 1 day after exposure, although
a small number of cases exhibit symptoms in as few as 0.5 days113,127.
Common symptoms include nausea, vomiting, and diarrhea; less common
symptoms include fever, lethargy, weakness, and headache113,128. Symptoms
usually last for ~ 2 days129,130. While people with norovirus AGE typically
recover quickly, viral shedding can persist for weeks after infection131.
Norovirus AGE ranges in severity frommild to life-threatening, with young
children, elderly, and immunocompromised individuals at the highest risk
for severe disease. Most clinical case definitions for AGE require diarrhea;
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however, a significant portion of norovirus-infected individuals experience
vomiting in the absence of diarrhea. One study found that 35% of children
aged < 2 years experienced vomiting but not diarrhea132. In outbreak
investigations, which do not evaluate endemic disease, suspected norovirus
is frequently defined as persons experiencing vomiting and/or diarrhea ( ≥ 3
loose stools in a 24 h period) whose symptoms have no other known
cause133. Studies that require diarrhea in the case definition may under-
estimate true burden if they do not include vomiting-only illnesses.

Case definitions for norovirus AGE vary by location and institution.
According to the US Centers for Disease Control and Prevention, the case
definition of norovirus AGE is a disease primarily consisting of vomiting,
abdominal cramps, nausea, and diarrhea, with an onset of symptoms
12–48 h after exposure. In Ireland, the definition of norovirus AGE is any
person with vomiting (particularly if projectile) and/or diarrhea; detection
of norovirus in feces using≥1 of four laboratory tests (norovirus via electron
microscopy; virus-specific RNA; virus-specific antigen; or small round
structured virus via electronmicroscopy); and an epidemiologic link, either
human to human transmission or exposure to a common source134.

Diagnosis
Norovirus may be suspected based on symptoms, but routine testing is not
usually conducted outside of outbreak investigations. Laboratory con-
firmation of norovirus is generally not necessary in clinical settings,
although it may be useful in select situations, for example in immuno-
compromised patients with severe or persistent symptoms or for public
health purposes during outbreaks of gastroenteritis. The most widely used
method is reverse-transcription real-time polymerase chain reaction (RT-
PCR) assays, which provides high sensitivity and specificity, can estimate
viral load in stool samples52,105,135, and can discriminate between
pathogens52,105,135. Enzyme immunoassays (EIAs) can also be used to diag-
nose norovirus AGE in stool samples but have poor sensitivity105,135–138.
Ideally, stool specimens should be collected < 2–3 days fromsymptomonset
and frozen or refrigerated to ensure nucleic acid integrity135.

Clinical and epidemiologic criteria are commonly used to identify
outbreak cases.Outbreaks ofAGEcanbe attributed tonoroviruswhen there
is a mean (or median) illness duration of 12–60 h; a mean (or median)
incubation period of 24–48 h; vomiting in >50% of individuals; and no
enteric bacteria found139.

Treatment and prevention
Treatment
To date, no US Food and Drug Administration-approved therapies are
available for norovirus AGE140,141. Most norovirus AGE episodes last
2–3 days, are self-limiting, and are managed with hydration and supportive
care142. Severe cases may require medical intervention to alleviate fluid loss,
including hospitalization142. In lower-income countries with limited access
to rehydration therapies, prevention of norovirus AGE is essential. Beyond
infection control precautions, rehydration treatments do not differ sub-
stantially from the treatment of other non-bacterial causes of diarrhea27.

In immunocompromised individuals with persistent norovirus
infections89,91,143,144, complications can be treated using intravenous fluids,
parenteral nutrition, and adjustment of immunosuppression142. Given the
risk for chronic and severe disease, immunocompromised individuals could
potentially benefit from prevention through vaccination or norovirus
antiviral treatments140–142.

Vaccine prospects
Norovirus vaccine development is challenging due to the virus’s genetic
diversity, lack of a robust cell culture system for in vitro assays, and an
incomplete understanding of natural immunity145. At the time of this
writing, known vaccine candidates in discovery or development are based
on virus-like particles (VLPs), mRNA, adenovirus vectors, or P-particles,
which use only the P domain of the VP1 protein145–149. A combined
rotavirus-norovirus vaccine,which includes antigens to both causes ofAGE,
has also been explored150–152.

The most advanced vaccine candidate to date (formerly known as
TAK-214 [Takeda Pharmaceuticals]; now being developed by Hillevax as
HIL-214) is an intramuscular VLP-based bivalent vaccine that contains
antigens toGI.1 andGII.4 genotypes that has been studied in both adult and
pediatric populations153–155. In a phase 1/2 trial, serumantibody responses to
HIL-214were observed in adult participants, though therewas little increase
in antibody levels following a second intramuscular dose154. A recent phase 2
trial in children aged 6months and 4 years reported substantial immuno-
genicity (determined by pan-Ig and HBGA titers) 28 days after HIL-214
dosing, with stabilization or slight increase in titers 28 days after the second
dose155. A phase 2b field efficacy study of TAK-214 demonstrated higher
measures of vaccine-induced immunity (measured through pan-Ig, IgA,
and HBGA-blocking antibody titers) than baseline levels, waning 1 year
following vaccination. The findings also suggested some cross-genotype
protection against non–vaccine-type GII.2 illnesses in vaccinated
individuals81; further research into the observed cross-protection is war-
ranted. HIL-214 is currently being examined in a phase 2b study in infants,
which was initiated in 2022 (NCT05281094).

An oral norovirus vaccine candidate (Vaxart, Inc.) uses a non-
replicating adenovirus-based vector expressing the VP1 gene from the GI.1
norovirus strain, a double-stranded RNA adjuvant, and a bivalent GI.1/
GII.4 composition156. This vaccine was well-tolerated and led to robust IgA
responses in recipients from a single-site, randomized, double-blind, pla-
cebo-controlled, phase 1 study156. An intramuscular, VLP-based, mRNA
vaccine against norovirus is beingdevelopedbyModerna,which is currently
under investigation in aphase 1/2 study in adults149. Twoadditional vaccines
are under clinical investigation inChina147. The first is a bivalent VLP-based
vaccine (National Vaccine and Serum Institute) composed of two recom-
binant VLPs representing theGI.1 and theGII.4 genotypes147. The second is
a quadrivalent vaccine consisting of four aluminum salt adjuvanted VP1
proteins representingGI.1, GII.3, GII.4, andGII.17 genotypes147. Additional
preclinical-stage vaccines are also in development145,146.

Conclusions
Norovirus is now the leading global cause ofAGE inmany regions in the era
of pediatric rotavirus vaccination. Disease burden is highest in young
children and older adults, resulting in substantial health and economic
impact in both lower- and higher-income countries, including >200,000
deaths a year across all ages and ~70,000 among children under 5. The high
transmissibility of the virus and short incubation period make norovirus
very difficult to control, leading to outbreaks of substantial cost and size,
particularly in closed or semi-closed settings such as dormitories, military
centers, resorts, cruise ships, prisons, daycare centers, LTCFs, and hospitals.
Norovirus causes substantial societal burden in terms of morbidity and
healthcare utilization across the globe. The lack of standard testing for
norovirus outside of outbreak settings makes estimation of the true burden
of disease challenging from routine sources and is an area for improvement.

There is currently no licensed vaccine for norovirus AGE, and many
features of the virus and the human immune response to it have made
vaccine development a challenge. Genotype GII.4 is the primary cause of
global norovirus AGE; however, non-GII.4 genotypes may be under-
estimated in existing outbreak-focused surveillance systems. Multivalent
vaccines are needed to provide broad coverage of the at-risk population, and
regular composition updates based on norovirus epidemiology may be
required. Given the substantial morbidity and mortality associated with
norovirus AGE, a vaccine to prevent the disease would have a significant
impact on global public health.

Data availability
The data summarized in this review are from published articles and are
publicly available.
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