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Mechanistic mathematical models (MMs) are a powerful tool to help us understand and predict the
dynamics of tumour growth under various conditions. In this work, we use 5 MMs with an increasing
number of parameters to explore how certain (often overlooked) decisions in estimating parameters
from data of experimental tumour growth affect the outcome of the analysis. In particular, we propose
a framework for including tumour volumemeasurements that fall outside the upper and lower limits of
detection, which are normally discarded. We demonstrate how excluding censored data results in an
overestimation of the initial tumour volume and the MM-predicted tumour volumes prior to the first
measurements, and an underestimation of the carrying capacity and the MM-predicted tumour
volumes beyond the latest measurable time points. We show in which way the choice of prior for the
MM parameters can impact the posterior distributions, and illustrate that reporting the most likely
parameters and their 95% credible interval can lead to confusing or misleading interpretations. We
hope this work will encourage others to carefully consider choices made in parameter estimation and
to adopt the approaches we put forward herein.

Mathematical models are the primary tools by which we can examine
biological or clinical data to determine fundamental mechanisms, to test
hypotheses, and to make predictions. A mechanistic mathematical model
formalises assumptions of causality by describing underlying mechanisms
with the aim of exploring the limits and consequences of the input-output
relationship. Hereafter, the focus is on ordinary differential equation-based
mechanistic models (MMs). In the process of formalising biological pro-
cesses and functions into mathematical forms, parameter values are intro-
duced. The values of these parameters then become key factors in theMM’s
predictions and are typically estimated by fitting the MM to data (least-
square approach) or estimating their likelihood given the observed data
(Bayesian approach). Determining MM parameters given an observed
outcome is a challenging inverse problem that is highly sensitive to noise.

MMs can be used to predict an average response (by using a set of
parameter values based on all trajectories at once or on their average), to
predict a specific response (by using a set of parameter values based on a
specific trajectory in adataset), and topredictpopulation-level responses (by
using an ensemble of parameter value sets obtained in a manner that gen-
erates parameter joint-distributions). Prediction of a patient-specific
response requires estimating based on a specific trajectory and can be

used to develop a digital twin if the estimation is repeated to update para-
meter values as newdata is obtained1. Population responses require theMM
to be extended by a virtual clinical trial where the response is tracked for a
virtual population represented by an ensemble of parameter value sets2.

Model identifiability examines whether or not the parameters can be
uniquely determined given the system inputs and outputs3,4. A MM is
classified as structurally identifiable if model parameters can be determined
uniquely via the model structure under the assumption that the outputs are
error-free. If additionally, model parameters are uniquely determined even
in thepresence of noise in theoutputs, then themodel is said tobepractically
identifiable3. Simply put, if two different sets of parameters exist that give
identical dynamics, then the MM is not structurally identifiable, and will
implicitly also not be practically identifiable. AMMcan fail to be practically
identifiable for threemain reasons: (1) the data is not sufficient to identify all
model parameters (e.g., estimating the parameters of a logistic growth curve
based on data that only demonstrates an exponential growth phase); (2) the
MM is mis-specified, making one or more incorrect assumptions about the
system or its measurements; or (3) two or more model parameters are
somehow dependent or their actions are coupled as measured by the MM
output (e.g., estimating the parameters of an exponential growthmodelwith
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a growth rate a and death rate b, wherein only the net growth rate (a− b) is
identifiable). Inmodelling applications, it is important to check for practical
identifiability since model outputs are compared to noisy real-world data4,
as is the case in the presentwork. ForMMpredictions to bewell constrained
beyond the data, the MM taken together with the dataset should be prac-
tically identifiable. Ways to improve identifiability generally include redu-
cing thenumber ofmodel parameters, collecting andusingmoredata points
or over anextended range, or additional input conditions suchas varying the
dose of a particular treatment or the initial conditions of the experiment.

In practical applications, notably in Bayesian parameter estimation,
a greater level of noise in the data translates to wider, more poorly
constrained parameter distributions. But this so-called noise is typically
the combined result of (1) experimental measurement accuracy (signal-
to-noise ratio), which correspondingly degrades the accuracy of para-
meter estimates; and (2) inter-experimental variability such as that
observed across a set of patients. If the latter is the dominant source of
variability, which ideally should be the case, then the wider parameter
distribution estimated when the data is particularly noisy could actually
reflect the clinically relevant diversity of patient disease courses and
outcomes. Rather than focusing on the best fit or mode or median
parameter set, the whole of the posterior distribution can be used to
sample parameter sets and simulate the heterogeneity of inter-patient
response dynamics under a virtual clinical trial5,6. The posterior dis-
tribution forms an ensemble that can represent a virtual cohort, and the
differing response dynamics then extend the capabilities of the model to
explore potential heterogeneity in responses2.

For example, biological factors such as the sensitivity to angiogenic
signals and the timescale associated with the sprouting and development
of new blood vessels can affect the dynamic carrying capacity of a
tumour microenvironment. This carrying capacity, modelled as either a
constant parameter or a dependent state variable, plays a significant role
in determining the dynamic behaviour of a growing tumour and its
responsiveness to treatment5–7. Unfortunately, such factors are inher-
ently difficult to estimate from data as no measurement can be taken
directly on the capacity of a microenvironment to support a tumour.
Therefore, in most oncology settings where data is limited, the para-
meter(s) associated with a carrying capacity are likely practically non-
identifiable — but still incredibly useful as a mechanistic parameter or
variable in the model8. In a logistic- or Gompertz-type MM, the ratio of
tumour volume to carrying capacity slows down exponential growth
until themaximum size is obtained. In the generalised logisticMM, there
is an additional parameter that controls the strength of this ratio’s effect
on tumour growth. The tumour volume to carrying capacity ratio is so
significant, it was coined the proliferation saturation index in radiation
response modelling9, and was shown to play a significant role in deter-
mining patient-specific responses to radiation in a MM where the
radiation effect directly altered the carrying capacity10.

The best situation to parameterise a MM is to have complete time-
series datasets for every output in the MM as well as additional insights or
data on mechanisms described by the MM. Then, the MM can be para-
meterised and validated fully before being used to explore alternative
situations from those described by the data11. If the aim is to study com-
peting hypotheses for cancer development and treatment usingMMs, then
it is important that the parameters and/or the MM-predicted tumour
growth curve beyond the extent of the data be sufficiently constrained by
their estimation from available data, in order to challenge and discriminate
between competing hypotheses. If a MM and dataset taken together are
identifiable, then the region of highest likelihood in the parameter spacewill
be well constrained and the resulting MM predictions will be as well.

On the other hand, increasingly complex MMs that capture the
biological processes in greater detail, perhaps in order to correctly
capture the mechanism behind a particular therapy, will lead to more
parameters. This increase will likely ensure that the MM and data
together are not identifiable, making the higher-dimensional parameter
landscape more complex, with potentially many local minima, or

disconnected parameter space regions of equivalently high likelihood. In
such cases, a richer data set is required to adequately constrain the values
of the additional MM parameters, although such data might not be
available or even obtainable. Within the poorly constrained high like-
lihood regions of the parameter space, MM predictions could differ
significantly and affect conclusions, if not realised and handled with
care. In some cases, however, even poorly constrained parameters could
still yield relatively well-constrained predictive time courses (e.g.,
tumour volumes beyond themeasurement time points, or predictions of
time courses under a simulated treatment regimen), which are some-
times more clinically useful and relevant than the parameters12,13.

Here, we consider several MMs of tumour growth with increasing
complexity, and thus, increasing number of parameters. We use Bayesian
inference to examine the ability of experimental data to constrain each
MM’s parameters and explore the ability of the resulting parameterisations
to predict growth beyond the measured time points. Specifically, we
investigate the effects of including rather than neglecting data known to fall
beyond the measurements’ limits of detection (censored data) and the
choice of prior on the MM parameterisation results. Importantly, we show
that neglecting the censored data leads to an underestimation of the tumour
volume at early times and an overestimation at late times, resulting in an
overestimation of the tumour’s age and an underestimation of the carrying
capacity, two clinicallymeaningful quantities. Further, we demonstrate how
the choice of prior can significantly alter parameter estimation, especially in
MMs with more parameters, when the data is insufficient to adequately
constrain all of them.

Methods
Considering a range of tumour growth MMs
Let usfirst consider amodified, special caseof the generalised logistic growth
equation, also known as Richards’ curve14

dC
dt

¼ μ

minðα; 1Þ C 1� C
κ

� �α� �
CðtÞ ¼ κ

1þ κ=C0

� �α � 1
� 	

e�maxð1;αÞμt
 �ð1=αÞ
ðRich MMÞ

where C(t) is the tumour volume in mm3, and κ is both the fixed carrying
capacity and the steady state ofC(t→+∞). The coefficient μ=minðα; 1Þ is
either μ for α ≥ 1 or μ/α for α < 1. This seemingly peculiar choice of coef-
ficient better handles the change in the behaviour of this function
about α = 1.

The Rich MM simplifies to the Logistic growth equation15 for α = 1,

dC
dt

¼ μC 1� C
κ

� �
CðtÞ ¼ κ

1þ κ=C0 � 1

 �

e�μt
; ðLogis MMÞ

to the Gompertz growth equation16 as α→ 0,

dC
dt

¼ �μC ln
C
κ

� �
CðtÞ ¼ κ

C0

κ

� �e�μt

; ðGomp MMÞ

and to exponential growth capped at κ as α→ + ∞, namely

CðtÞ≈minðC0e
μt; κÞ: ðExpCap MMÞ

As the simplest MM we consider unbounded, exponential growth of the
tumour, expressed as

dC
dt

¼ μC CðtÞ ¼ C0e
μt : ðExp MMÞ

The Rich MM has 4 unknown quantities (κ, μ, α, C0) to be estimated, the
LogisMM,GompMMand ExpCapMMhave 3 (κ, μ,C0), and the ExpMM
has 2 (μ, C0).
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Parameter estimation
For each MM variant considered, the MM parameter likelihood function
(L), given by Eqns. (2) or (3), and its associated Posterior, Eqn. (1), are
estimated using the Markov chain Monte Carlo (MCMC) method imple-
mented by phymcmc17, a graphing and analysis wrapper for emcee18.
Specifically, emcee’s default sampler, the affine-invariant “stretch move”
sampler proposed byGoodman&Weare19 with a stretch scale of 218, is used.
The initial position for each chain is log-normally distributed at random
around a roughly SSR-minimised parameter set for eachMM (obtained via
steepest-descent).

The profile log-likelihood curves (maximum ln½L� versus a single
MM parameter) correspond to the maximum achievable L for a fixed
value of one of theMMparameters while allowing all others to vary so as
to maximise L. The value of this maximum likelihood for one fixed
parameter, and the corresponding values of the remaining parameters, is
sought by using the MCMC method described above, with 40 chains of
10,000 steps. Here, no particular attention is paid to discarding burn-in
steps to remove residual effects from the initial positions, to assess the
independence of the parameter sets retained by theMCMCprocess, or to
ensure the chains’ convergence. This is because the process only aims to
identify and retain a single parameter set: that which yields the highestL,
along with its L value, out of the 400,000 parameter sets thus obtained.
This procedure is repeated as the value of the fixed MM parameter is
varied in small increments, shown as dots on the profile log-likelihood
curves, over the interval of interest for that parameter. This approach
provides only an approximation of these values, but the smooth
appearance of the profile log-likelihood curves suggests sufficient
accuracy for the purposes herein.

The estimated posterior likelihood distributions and associated mea-
sures correspond to all parameter sets obtained from 300 chains of
10,000 steps each, yielding 3,000,000 parameter sets, which is preceded by a
burn-in of no less than 10,000 steps. The 300 chains’ initial position is
selected as explained above, but chains rapidly move away from their initial
position such that the effect of the latter is no longer visible after the burn-in
steps are discarded. The process yields 3million accepted parameter sets, of
which at least 30,000 (1%) are completely independent based on the com-
puted autocorrelation time18, which gives a rough approximation of how
many MCMC steps must separate a chain’s past and present positions
(parameter values) in order for the two positions to no longer be correlated.

The reported 95% credible intervals (95% CI) correspond to the
Bayesian CI provided by phymcmc’s phymcmc_parstat script. The
script computes the one-dimensional posterior distribution for the para-
meter (or the log10 of the parameter, as specified below), marginalised over
all other parameters (hereafter the marginal posterior distribution, MPD),
and the 95% CI bounds then correspond to the narrowest contiguous span
of that parameter that encloses 95% of the MPD’s probability. This proce-
dure can lead to strange 95% CIs when the MPD is multi-modal and the
highest density 95%CIwould otherwise correspond to two ormore disjoint
regions. For example, this is possibly an issue for κ in the ExpCapMMwhen
using a linearly uniform prior.

A difference is said to be statistically significant herein if the 95% CI of
onemeasure excludes themean ormode (as specified) of the othermeasure,
or if the two measures’ 95% CI do not overlap.

Results
Important considerations in parameter estimation
The experimental data considered herein corresponds to the control group
in data published by and described in Benzekry et al.20. Briefly, ten C57BL6
mice were injected subcutaneously, on the caudal half of their back, with 106

Lewis Lung Carcinoma (LLC) cells, said to correspond to a tumour volume
of ~ 1mm3. Measurements were taken by callipers and recorded in mm3 at
various times post-injection. Due to the small tumour volumes shortly after
injection, only 2/10mice could bemeasured at 5days post-injection (dpi), 8/
10 at 6 dpi and 7 dpi, and 10/10 from then on. At later times, mice were
euthanized for ethical reasons once tumours reached amaximumvolumeof
1.5 cm3 such that 9/10 remained at 18 dpi, 7/10 at 19 dpi, 5/10 at 20 dpi, 2/10
at 21 dpi, and only 1/10 remained at 22 dpi.

We used a Markov chain Monte Carlo (MCMC) method to sample
and ultimately estimate the posterior likelihood distribution (hereafter
Posterior) of eachMM’s parameters from Bayes’ theorem. The Posterior of
the MM parameter set p!, given the experimental data, is given by

Posteriorð p!jdataÞ ¼ Lðdataj p!Þ � Priorð p!Þ
PðdataÞ / Lðdataj p!Þ � Priorð p!Þ

ð1Þ
whereLðdataj p!Þ is the likelihood function which describes the probability
of having observed the data given p!;Priorð p!Þ is the prior distribution for
p!which includes physical constraints (e.g., cannot physically be negative)
and any prior knowledge (e.g., from previous measurements), and PðdataÞ
is a normalisation factor sometimes called the evidence or the average
likelihood of the data. Since we only concern ourselves with comparing the
relative likelihoodof thedata fordifferent p!, wedonotneed to compute the
absolute likelihood and therefore can safely omitPðdataÞ. For the likelihood
of the data given p!, we first consider simply

Lðdataj p!Þ ¼ exp � SSRð p!Þ
2 σ2C

� �

¼ exp �
PNt

k¼1

P ≤ 10

mouse¼1
log10½CMMð p

!
;tkÞ��log10½CmouseðtkÞ�

n o2

2 σ2C

2
4

3
5;

ð2Þ

where SSR is the sum of squared residuals between the log10 MM-predicted
tumour volume at the kth measurement time tk given p!;CMMð p!; tkÞ, and
that observed in each mouse for which that time point was measurable,
Cmouse(tk), and σ2C is the variance of the log10 tumour volumemeasurements,
which is a fixed value for all mice and measurement times, as explained
below. Here, Nt = 13 is the number of distinct measurement times in the
dataset, where tk¼½1;Nt � ¼ f5; 6; 7; 11; 12; 13; 14; 15; 18; 19; 20; 21; 22g dpi.
Eqn. (2) corresponds to the un-normalised probability density function

Fig. 1 | Experimentally measured tumour volume
over time. The different coloured dots represent the
tumour volume time course of 10 distinct mice
from20, shown using either a (a) linear or (b) loga-
rithmic y-axis. The upper grey band corresponds to
the upper limit of detection (C = 1.5 × 103 mm3).
The dashed grey lines correspond to the Exp MM-
predicted tumour volume (C0 = 20 mm3,
μ = 0.22 d−1) multiplied or divided by 2.1 (102σC ),
matching the increasing spread inmeasurements for
larger volumes. This indicates inter-mouse varia-
bility in C is consistent with a log-normal distribu-
tion, following Eqn. (2).
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(PDF) for the normal distribution of log10C, rather than the PDF for the log-
normal distribution ofC, and as such does not include the log-normal PDF’s
normalisation factor∝ 1/C. Eqn. (2) omits the normal PDF’s normalisation
factor, 1=

ffiffiffiffiffiffiffiffiffiffiffi
2πσ2C

p
, because it is a constant, and we are only interested in the

relative likelihood, as explained above.
The likelihood of the data given the parameter set was chosen to be a

functionof the residuals of log10C, rather than the tumour volume,C. This is
because the inter-mouse variability in the tumour volume data is more
consistent with a log-normal (C ×

� err) rather than a normal (C ± err) dis-
tribution.This canbe seen inFig. 1where thedata is shownusingboth linear
and logarithmic scales. The log10 tumour volume measurements appear
symmetrically distributed about the mean log10C at each time point with a
constant standard deviation, i.e. one that does not depend on log10C.

Correctly choosing the weights of residuals between model and data is
an important step to perform before proceedingwith parameter estimation.
Yet, this step is often overlooked and data variability is assumed to be
normally rather than log-normally distributed. In our experience, the latter
error distribution is far more commonly encountered in experimental
measurements in biology21, notably in microbiology12, anatomy22,
pharmacology23, neuroscience24,25. It follows from the central limit theorem
for a process based on the multiplication, rather than the sum, of random
variables. For the specific case of tumour growth, Benzekry et al.26,27 have
demonstrated that the assumption of normal error distribution is incorrect
for the measurement of growing tumour volume over time.

A fixed standard deviation σC = 0.16was used for all data points, which
corresponds to the standard deviation of log10½CmouseðtkÞ� across all mice at
time point tk, averaged over all tk. Thismeans that at any given time point tk,
95% of the log10 tumour volume measurements should fall within ± 2σC of
the mean log10ðCÞ at that time point, or about 2.1-fold (102σC ), shown as
dashed grey lines in Fig. 1.

Parameter estimation was performed using tumour volume mea-
surements for all mice with measurable tumour volumes over all time
points, rather than based on the average tumour volume at each time point.
This implicitly takes into consideration the different number of measure-
ments at each time point, avoiding the issues of having to explicitly weigh
certain averagedmeasurement time pointsmore or less heavily based on the
number of points they represent, or to decide how best to average mea-
surements (e.g., arithmetic vs geometric average) at each time point. This
process of handling all points as a single set is mathematically equivalent to
estimating the parameters’ posterior for the first mouse, subsequently using
it as theprior indetermining theposterior for the secondmouse, and soon, a
machine learning method sometimes referred to as sequential Bayesian
updating.

The parameter sets explored by the MCMC runs were used not
only to sample and estimate theMMparameters’ posterior, but also to
efficiently sample the shape of the likelihood function around the
best-fit and/or the most likely parameter set. Herein, the best-fit
parameter set refers to the maximum likelihood estimate (MLE), i.e.
that which maximises the likelihood function (L), whereas the most
likely parameter set refers to the maximum a posteriori (MAP) esti-
mate, i.e. that which maximises the joint Posterior distribution, Eqn.
(1). This distinction, and specifically the Prior and Posterior dis-
tributions in Eqn. (1), will be discussed inmore detail in later sections.
Initially, we will focus on the likelihood function and the best-fit
(MLE) parameters alone.

Parameter values that maximise the likelihood function in
each MM
Figure 2a–gpresents the solutionof eachMMagainst thedata. The variability
(68% and 95% credible interval) of the MM solutions is the smallest in the

Fig. 2 | Solutions of each MM fit to the tumour volume measurements and
associated parameters. a–e For eachMM explored herein, the curve corresponding
to the best-fit (MLE) parameter set, i.e. that whichmaximises the likelihood function
(Eqn. (2)) is shown as a coloured line. A total of 1000 MCMC-accepted parameter

sets were sampled at random with replacement to generate curves of which 68% (or
95%) fall within the pale (or dark) grey regions, respectively. f, g Tumour volume
curve for each MM's best-fit (MLE) parameters against the data on a (f) logarithmic
or (g) linear scale. h–k Profile log-likelihood curves for each MM parameter.
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intermediate region when all 10 mice have measurable tumour volume, and
the growth is largely purely exponential. The solutions varied most, both
within each and betweenMMs, as the number ofmeasurablemice decreased
near the lower limit of detection at early times, and at late times when mice
were euthanized before the tumour volume exceeded 1500mm3.

Figure 2h–k reports the profile log-likelihood curve, i.e. the maximum
ln½L� that is attainable (Eqn. (2)) for a given value of one of the parameters,
shown for each parameter in each of the MMs4,28. For example, given
C0 = 1mm3, the value of the remaining parameters is sought so as to achieve
the maximum likelihood possible for this value of C0. The tumour in each
mouse was initiated with the injection of 106 cells, which is thought to
correspond to C0 ≈ 1mm320. The best-fit (MLE, i.e. that which maximises
Eqn. (2)) initial tumour sizes for all MMs (Fig. 2h) is larger than this
estimate, namely from ~5mm3 in the Gomp MM, ~10mm3 in the Logis
MM and Rich MM, and up to ~20mm3 in the Exp MM.

In Fig. 2h, at lowC0 values, the profile log-likelihood curve (max. ln½L�
vs C0) of the Rich MM corresponds to that of the Gomp MM. As C0 is
increased, themaximumL improves and briefly (over a narrow range ofC0

values) matches the Logis MM profile log-likelihood curve. It goes on to
reach thehighestL before gettingworse asC0 is increased further, eventually
approaching the profile log-likelihood curves of the ExpCap MM and
ultimately ExpMM for the largestC0 values. Note that as differentC0 values
are explored (i.e., for different assumed values of C0), all other parameters
are adjusting accordingly to maximise L. As C0 is increased, the Rich MM
profile log-likelihood curve follows that of the Gomp MM (α → 0), then
Logis MM (α = 1), and finally ExpCap MM (α → + ∞) curves, which
suggests that larger values of C0 correspond to larger values of α.

Figure 2k shows that in the Rich MM, a higher likelihood is obtained
for α = 1 Logis MM, than for α→ 0 GompMMor α→+∞ ExpCapMM.
The best fit (MLE) is found for α ~ 2, but the likelihood varies far less as a
function of α, than as a function of the otherMMparameters. In particular,

once α is smaller than ~ 0.1 (or greater than ~ 10) making α any smaller (or
larger) neither improves nor worsens L.

Figure 3 explores the shift in the best-fit (MLE) parameters as α is
varied in the Rich MM, and in particular the transition from the Gomp
MM to the Logis MM to the ExpCap MM. The best-fit Rich MM para-
meters exactly match those of the Gomp MM for α less than about 0.1,
those of the Logis MM at α = 1, an important transition point for the
RichMM, and those of the ExpCapMM for α greater than about 10. As α
is varied from small values≪ 1 to large values≫ 1, the best-fit values for
C0 and κ transition smoothly between the GompMMbest-fit values and
the ExpCap MM. There is a relatively narrow range α ~ (0.1, 10) where
the specific value of α has an impact on ln½L� and on the best-fit (MLE)
values of C0 and κ. In Fig. 3b, theMLE of C0 vs that of α demonstrates, as
stated above, that larger MLE values of C0 correspond to larger MLE
values of α.

For parameter μ, the transition in the best-fit (MLE) value as α is
increased is not as simple: it depends on the choice of coefficient for
the generalised logistic MM. As α → 0, μ → + ∞ if the coefficient of
the ODE is μ, or μ asymptotes to the Gomp MM best-fit μ if the
coefficient is μ/α, becoming independent of α. For α→+∞, μ→+∞
if the coefficient is μ/α, or μ asymptotes to the ExpCapMMbest-fit μ if
the coefficient is μ. This represents a change in the meaning of
parameter μ and α as α is varied, which is problematic when trying to
interpret μ and α from a biological or physical standpoint. When the
coefficient is set to μ=minð1; αÞ, as in the Rich MM, the best-fit μ
gradually increases from its MLE value in the Gomp MM, then
abruptly settles between its MLE value for the Logis MM and ExpCap
MM, discontinuously rather than smoothly. This provides a more
consistent physical meaning for μ as α transitions from α < 1 to α > 1.
Replacing minð1; αÞ with an expression with a smoother transition
around α = 1, would provide a better, more gradual and consistent

Fig. 3 | Shift in best-fit (MLE) parameters for variants of the Rich MM. Three
variants of the generalised logistic growth equation are explored. The 3 coloured
curves correspond to variations in the growth rate coefficient: The RichMM as used
herein with a coefficient of μ=minðα; 1Þ (orange dashed) is compared to expressions
with a coefficient of either μ/α (purple solid) or μ (olive solid). The vertical dashed
line indicates α = 1, corresponding to the LogisMM.The horizontal lines correspond

to the best-fit (MLE) value of the quantity on the y-axis (e.g., C0, μ, etc.) for the
ExpCap MM (α→ + ∞, solid), Logis MM (α = 1, dashed) and Gomp MM (α→ 0,
dotted). b The MLE value of C0 is larger as α gets larger. cWhile coefficient μ/α
(purple) yields μ→+∞ as α→+∞ and coefficient μ (olive) yields μ→+∞ as α→
0, the μ=minðα; 1Þ coefficient (orange) of the Rich MM expression used herein
provides a more consistent meaning and value for parameters μ and α as α is varied.

Fig. 4 | Parameter sensitivity at different measurement time points.
The central difference of log10Cwith respect to the log10 of each parameter about
the best-fit (MLE) parameter set, computed as log10½Cðt; p � ð1þ f ÞÞ=Cðt; p � ð1�

f ÞÞ�=log10½ð1þ f Þ=ð1� f Þ� with f = 10−8, was used to explore the sensitivity of
different measurement time points to relative, percent variations in each
parameter.
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meaning for μ over the full range of the Rich MM behaviour, but we
are unsure how to obtain such an expression.

Figure 4 explores how different measurement time points inform
each MM parameter. This parameter sensitivity analysis relies on a
local estimation of the derivative of the measurements (log10C) with
respect to the log10 of each parameter (relative % change) about the
best-fit parameter set, following a method introduced by Miao et al.29.
While μ is typically best informed by the intermediate time points, in
the region where the growth is mostly exponential and all mice have
measurable tumour volumes. Unsurprisingly, the initial tumour size,
C0, is informed most heavily by the earliest time points, and the
carrying capacity, κ, by the latest time points.

Appropriately handling unmeasurable data points
In the previous section, all unmeasurable points, i.e. those for mice
whose tumour was too small to be measured (12 points) and those who
had to be euthanized because their tumour had reached a volume of
1500 mm3 (28 points), were neglected. This poses 2 problems. First,
this discards meaningful information, namely that the tumour in these
mice is known to be either smaller or larger than the lower or upper
limit of detection, respectively. Second, it introduces a bias in the
parameter estimation in that only the largest tumours measurable at
early time points, and only the smallest ones at the later time points, are
informing the likelihood of parameter sets. This effectively favours a
theoretical curve that is higher at early times and smaller at later times
than it should otherwise be.

Following the procedure described in30 for handling censored data, i.e.
data with lower and upper limits of detection (LLD andULD, respectively),
we revise the likelihood function for the data given p! as

Lðdataj p!Þ ¼ Lmeasuredðdataj p!Þ � Lunmeasuredðdataj p!Þ ð3Þ

where Lmeasuredðdataj p!Þ is that given in Eqn. (2), and

Lunmeasuredðdataj p!Þ

¼
YNt

k¼1

1þ 1
2
erf

log10½LLD=CMMð p!; tkÞ�ffiffiffiffiffiffiffiffi
2σ2C

p
 !

þ 1
2
erf

log10½CMMð p!; tkÞ=ULD�ffiffiffiffiffiffiffiffi
2σ2C

p
 !" #Uk

;

ð4Þ

where Nt = 13 is as in Eqn. (2), and Uk is the number of mice with
unmeasurable tumour volumes at time tk. This expression is the sum of the
probability for onemouse to have tumour volume below the LLD at time tk,
given the MM-predicted log10CMMð p!; tkÞ,

PLLDðtkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2C

p Z log10ð LLD Þ

�1
exp � ½x � log10CMMð p!; tkÞ�

2

2σ2C

" #
dx

¼ 1
2

1þ erf
log10½ LLD =CMMð p!; tkÞ�ffiffiffiffiffiffiffiffi

2σ2C
p

 !" #
;

ð5Þ

and the probability for onemouse to have a tumour volume above the ULD
at tk,

PULDðtkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2C

p Z 1

log10ðULD Þ
exp � ½x � log10CMMð p!; tkÞ�

2

2σ2C

" #
dx

¼ 1
2

1þ erf
log10½CMMð p!; tkÞ=ULD �ffiffiffiffiffiffiffiffi

2σ2C
p

 !" #
;

ð6Þ

where erf is the error function. The probability for Uk mice to have
unmeasurable tumour volumes at tk, i.e. volumes that fall outside the
measurable range of [LLD,ULD], is then simply PLLDðtkÞ þ PULDðtkÞ


 �Uk .
For example, at time tk=1 = 5 dpi, 8 mice were unmeasurable such that
Uk=1 = 8. If all mice had measurable tumour volumes at all measurement

Fig. 5 | Solutions of each MM and associated parameters when including
unmeasurable volumes. Panels a–k are as in Fig. 2, but correspond to the result
obtained when accounting for the 38 unmeasurable tumour volumes bymaximising

the likelihood function defined in Eqn. (3). For comparison, the best-fit (MLE)
curves when not accounting for unmeasurable data (Lunmeasured ¼ 1, Eqn. (2)) are
shown as dashed lines in panels a–g.

https://doi.org/10.1038/s41540-024-00409-6 Article

npj Systems Biology and Applications |           (2024) 10:89 6



times, i.e. if Uk ¼ 0 8 k 2 ½1;Nt �;Lunmeasuredðdataj p!Þ ¼ 1 and Eqn. (3)
reduces to Eqn. (2).

While the ULD is known, namely ULD = 1500 mm3, the LLD will
need to be estimated as an additional parameter, constrained to be ∈ (0,
19) mm3, where zero is excluded since some mice were unmeasurable
and 19 mm3 is the smallest tumour volume that was measured within
this data set and is therefore, at least sometimes, measurable. The fact
that a 19 mm3 tumour can be measured does not guarantee that it is
always measurable, nor that smaller tumours cannot be measured. In
reality, the likelihood that a tumour volume is sufficiently large to be
measured likely increases progressively for increasing tumour volumes,
rather than sharply at a fixed LLD. But in the absence of sufficient data or
a study intentionally designed to inform this function, a fixed LLD offers
a practical alternative. Under these conditions, the most likely value for
the LLD is 18:�9 mm3, i.e. the closest value to themaximum allowed value
for the LLD.

Figure 5 shows the new solutions and profile log-likelihood curves
based on the revised likelihood function, Eqn. (3), which takes into account
all 38 time points where the tumour volume was unmeasurable. The new
tumour growth curves for all 5MMs are lower at early times and higher at
later times, with the old solution (dotted line) falling outside the new
solution’s 95% credible interval (grey shading), when properly accounting
for unmeasurable volumes. Whereas failing to account for the unmeasured
tumour volumes favoured a value of α ~ 1.4, i.e. Logis MM-like or ExpCap
MM-like rather than Gomp MM-like, accounting for these unmeasured
values favours α→ 0, i.e. Gomp MM-like growth.

Consistent with the new solutions predicting lower volumes at earlier
times and higher volumes at later times, we find that the best-fit (MLE)
values for the initial tumour volume,C0, are lower and those for the carrying
capacity, κ, are higher than those of the old solution which did not account
for unmeasurable volumes. The best-fit (MLE) initial tumour volume,C0, is
~1.5mm3 for the Gomp MM and Rich MM, ~4.5mm3 for the Logis
MM and ExpCap MM, and ~8.4mm3 for the Exp MM. These values are

more consistent with the expected tumour volume given the number of
implanted tumour cells, namely 106 cells ≈ 1mm3.

Considering the impact of the parameter prior
Up until now, we have comparedMMs and parameter estimation based on
maximising the likelihood function alone. Now we turn our attention to
Priorð p!Þ, an important term in Eqn. (1) which, together with Lðdataj p!Þ
discussed above, will allow us to estimate the MM parameters’ Posterior
distribution.

We compare 4 possible posteriors: using the likelihood function given
byEqn. (2) orEqn. (3), combinedwitheither a linear or logarithmicuniform
prior for all parameters. A linear uniformprior is simply Priorð p!Þ / 1, and
a log-uniform prior is given by

Priorð p!Þ / 1
C0 � μ � κ � α � LLD

; ð7Þ

where κ is omitted for the ExpMM,α is included only for the RichMM, and
LLD is included only when the likelihood function is given by Eqn. (3), but
not when it is given by Eqn. (2). The MM parameters were constrained to
C0 2 0;1½ Þmm3; μ 2 0;1½ Þ1=d; κ 2 ½0; 106�mm3; α 2 ð10�5; 105Þ, and
LLD= [0, 19] mm3. The choice of these bounds is discussed below. These
constraints were imposed by setting Priorð p!Þ ¼ 0 when any parameter in
p! falls outside its bounds.

Figure 6 shows maximum values and CIs for the log10 of each
parameter, for each MM, under all 4 scenarios. Recall that herein the
best-fit parameter (MLE) refers to that whichmaximises the joint, multi-
dimensional likelihood function (L), and the most likely parameter
(MAP) is that which maximises the joint, multi-dimensional Posterior
(its mode). The joint Posterior, Eqn. (1), is not to be confused with the
one-dimensional marginal posterior distribution (MPD) for a given
parameter, marginalised over all other parameters, and its associated
mode and 95%CI. TheMAP (black star) can be markedly different from

Fig. 6 | Comparing the parameter’s maxima and
credible intervals under 4 different assumptions.
For each parameter (different panels), for each MM
(different colours) under each of the four assump-
tions (different line styles, annotated in the bottom
right panel), the joint,multi-dimensional Posterior’s
most likely parameter set (MAP, 1st number, black
star), as well as the parameter’s marginal posterior
distribution’s (MPD's) mode (2nd number, circle)
and 95% CI (numbers in square brace, +), are pro-
vided. All numbers and CIs correspond to the
probability density distributions (Posterior orMPD)
for the log10 of each parameter, e.g.
Pðlog10C0Þ dðlog10C0Þ rather than PðC0Þ dC0. The
vertical dotted line corresponds to c the upper
constraint on κ = 106 mm3; or d α = 1 where the
(Rich MM) corresponds to the (Logis MM).
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the mode of the MPD (coloured circle), especially when the data poorly
constrains a parameter and the latter’s CI is very wide (e.g., Fig. 6c, d for
the Rich MM parameters κ and α), and more so when a linear uniform
prior is used (e.g., Fig. 6c for κ in the ExpCap MM). For all MMs, the
MPD for the initial tumour volume (log10C0, Fig. 6a) is statistically
significantly different under the assumption of a linearly uniform prior
when also excluding data outside the LOD (Excl. unmeasurable & Lin-
uni. prior) than under the assumption of a log-uniform prior when
including data outside the LOD (Incl. unmeasurable & Log-uni. prior).
The inclusion or exclusion of the unmeasurable data alone, for a given
prior, was sufficient to alter log10C0 statistically significantly (no overlap
in the 2 measures’ 95% CI, see “Methods”) in the Logis MM and Exp
MM. The impact is less pronounced for the tumour growth rate (μ), and
even less so for the carrying capacity (κ). Themode of the joint Posterior
(MLE), and the mode of the MPD of log10κ, both estimate a larger

carrying capacity when including rather than excluding unmeasurable
data, for an equivalent prior assumption. Looking at the 95% CI, how-
ever, the shift is not statistically significant (95% CIs overlap) in most
cases, partly because of the CI’s width.

Figure 7 provides amore informative view of the parameters’MPDs for
each MM. In particular, it demonstrates why reporting mean or median or
mode (MAP) and95%CIcanbemisleading. For example, someof theMPDs
for the carrying capacity (κ) are multi-modal, notably in Fig. 7c for the Rich
MMwhen the unmeasurable data is excluded, and in Fig. 7g for the ExpCap
MMwith a linear uniformprior. These secondarymodes are behindmany of
the widest CIs observed in Fig. 6. Such multi-modal MPDs translate poorly
when reported as a 95% CI, as in Fig. 6c. This is partly because the 95% CI
reported herein are computed to correspond to a single contiguous interval
(see “Methods”), rather than identifying a sometimes disjoint set of bounds
that would most tightly contain 95% of the MPD’s density.

Fig. 7 | Comparing the marginal posterior distributions under 4 different
assumptions. For each parameter (different columns), for eachMM(different rows)
under each of the four assumptions (different lines within each graph), the MAP
parameter set corresponding to themode of the joint Posterior (vertical line), as well

as the MPD divided by its maximum (rel. MPDðlog10pÞ dðlog10pÞ) for each para-
meter (curve), are provided. The Posterior and MPD are those for the log10 of the
parameters, e.g. Pðlog10C0Þ dðlog10C0Þ.
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Amulti-modalMPDcan arise out of a unimodalLwhen the latter is
multiplied by the prior. For example, themulti-modalMPD for log10κ in
the ExpCap MM in Fig. 7g results from multiplying the unimodal
likelihood function by the linear uniform prior. A linear uniform prior
for κ (Prior(κ) dκ ∝ dκ for κ ∈ [0, 106] mm3 and zero otherwise) corre-
sponds to an exponentially increasing prior density for log10κ (Pri-
or(y) dy∝ 10y dy for y∈ [−∞, 6] and zero otherwise, where y � log10κ).
When it multiplies the marginal Lðlog10κÞ, the product results in a
second mode at larger values of log10κ. Comparing the profile log-
likelihood curves for κ in Fig. 5j for the ExpCapMM (red) and LogisMM
(green), we see that both asymptote to a non-zeromaximumLwhen κ is
greater than some value, the peak and the non-zero asymptotic value of
maxðLÞ as κ→∞ differ by ~ 150-fold (e5) in the ExpCapMM compared
to ~ 107-fold (e16) in the LogisMM.As such, the linear uniform prior was
sufficient to counter the ~ 150-fold disadvantage in the ExpCapMM, but
not that in the Logis MM.

The Exp MM has the narrowest posterior distributions while the
RichMM posteriors are the widest, an indication of how well the data
can inform MMs with increasing numbers of parameters. As shown
in Fig. 3, the shift in the maximum likelihood (MAP) as α is varied
from 0 to + ∞ is minimal, while the best-fit (MLE) value of each
parameter varies sometimes widely, e.g. κ varies from ~ 104 to 103 as α
goes from zero to infinity. This is to be expected since α controls
which MM the Rich MM most resembles, and all the MMs have
different profile likelihood curves for each parameter. Generally,
when all parameters of a MM are tightly constrained by the data,
resulting in narrow profile likelihood curves, the choice of prior is less
significant since the data is sufficient to overcome the effect of the
prior (e.g., the ExpMM, Fig. 7n, o). Otherwise, the choice of prior can
have a significant effect on the resulting posterior (e.g., κ in the
ExpCap MM, Fig. 7g).

Priors and their bounds together should, as much as possible,
correspond to all that is physically known about the parameter prior to
conducting the experiment, no more and no less. For example, since
both C0 and κ have the same physical dimensions as the tumour
volume, and since variability in the latter is log-normally distributed, a
log-uniform prior seems appropriate because (1) a uniform distribu-
tion expresses that we have no reason to prefer one set of values over
another; and (2) a logarithmic scale expresses that there is an equal
likelihood of finding the parameter over any one interval of dðlog10CÞ,
rather than dC, given the nature of the variability inC (Fig. 1). Indeed, a
linearly uniform prior assumes that κ is 10× more likely to be found in
[10,000, 20,000] mm3 than in [1000, 2000] mm3, whereas a log-
uniform prior assumes that κ is equally likely to be found in [10,000,
20,000] mm3 or in [1000, 2000] mm3.

Themore appropriate choice of prior for μ and α is less obvious: a log-
uniform distribution was chosen based on our past experience applying
MMs in virology, where most parameters are log-normally distributed31–33.
Notably, the uncertainty of virus concentration measurements, like that of
tumour volumemeasurements, is log-normally distributed34. Post-analysis,
the profile log-likelihood curves (Fig. 5i, k) suggest these two parameters
have a sensitivity (change inmaxL asμ orα are varied) that is symmetric on
a logarithmic scale. For example, in Fig. 5k around α = 1, a small change,
dðlog10αÞ in either direction results in a similar change in maxL. Similarly,
in Fig. 5i for the Exp MM, Gomp MM and Logis MM, the profile log-
likelihood curve has a symmetric sensitivity about itsmode to small changes
in dðlog10μÞ. This suggests that a log-uniform prior is probably the more
appropriate choice for these two parameters, but verifying the impact of a
linear versus a logarithmic uniform prior is advisable.

The prior also imposes bounds on each parameters, and these bounds
should also reflect our physical knowledge. For example, we know nothing
of the growth rate (μ), other than it shouldbepositive, henceμ 2 0;1½ Þ1=d.
Bounds on the carrying capacity (κ) were originally chosen 2 0;1½ Þmm3.
But since all values of the carrying capacity (κ) much larger than the largest
measurable tumour volume (~105 mm3) will make little practical difference

for inference, i.e. leave L largely unchanged, an artificial upper bound of
106 mm3 was imposed to provide a finite domain to enable the MCMC
chains to converge. This, however, means that the true posterior is un-
normalizable. As such, care should be taken in interpreting not only κ, but
any other parameter whose value might correlate with κ, and whose MPD
andMAP could shift if the artificial bound on κ had been handled correctly.
This is also true for α whose value has no impact on the shape of the Rich
MM-predicted tumour growth curve once it is small or large enough, i.e.
beyond [10−5, 105]. Introducing an alternative parametrization, e.g. β = 1 /
(1+ 1 / α) such that α 2 0;1½ Þ maps to β ∈ [0, 1] with a linear uniform
prior in β, can sometime successfully enable the full domain of the
unbounded parameter to be explored by sampling and estimating the finite
domain of the alternative one.

The bounds chosen for initial tumour volume (C0 2 0;1½ Þmm3)
deserve further discussion. Past work has often chosen to fix C0

20,26,27, in
part because the data is often insufficient to constrain all MM para-
meters. However, Fig. 5h demonstrates that this choice favours some
MMs over others: C0 = 1 mm3 is well-supported (high max L) by the
GompMM, but decreasingly so for the LogisMM, ExpCapMM, and Exp
MM. If we knew C0 = 1 mm3 to be exact, this would actually be a case of
the data unambiguously rejecting some of these MMs over others. In
reality, we know that C0 is not exactly equal to 1 mm3: the volume of 106

cells would be expected to vary at least like the rest of the volume
measurements as 100± σC mm3, i.e. [0.47, 2.1] mm3. But if this initial
tumour volumewasmeasurable via callipers applied to the outside of the
mouse, like the other volume measurements, it would be larger than the
imagined, theoretical volume occupied by 106 well-packed tumour cells,
possibly by a few millimetres for each of the width and length measured
to estimate the volume (π6 ×width

2 × length 26). On the other hand, C0

could be substantially smaller than 1 mm3 if only a fraction of the
inoculated cells ultimately form the seed from which the tumour grows,
while the remaining cells are lost (e.g., phagocytosed). Amore physically
appropriate lower bound for C0 could be the volume of a single LLC cell,
~10−5 mm3, but it is difficult to similarly identify a suitable upper bound.
Here, we decided not to constrain C0 at all, and let the data, notably the
smallest measured tumour volumes, impose this upper bound. Had it
been possible to physically justify setting the bounds of C0 ∈ [10−5,
2] mm3, for example, certain MMs, especially the Exp MM when
excluding unmeasurable tumour volume, would have provided poor
overall likelihoods, possibly disqualifying them when compared against
the others.

Discussion
In this work we explored five ordinary differential equation mechanistic
models (MMs) for cancer tumour growth. We used published data26 of
Lewis Lung Carcinoma growth in mice to constrain the parameters of the
MMs which varied in complexity from 2 to 4 parameters to be estimated.
We made use of Bayesian inference to estimate the MM parameters pos-
terior distributions, and made use of the fact that the tumour volume
measurement variability between mice appears to follow a log-normal
distribution as the basis for our choice of likelihood function.

We demonstrated that including measurements known to be outside
the upper and lower limits of detection (LOD), as opposed to simply
neglecting them, has an important impact on several parameters. Notably,
we showed that by discarding these data, the MM’s solutions are biased in
such away that theMM-predicted tumour volumes are higher at early times
and lower at later times than when these data are included. Consequently,
the best-fit (MLE) value for the initial tumour volume (C0) shifted to lower
values, and that for the carrying capacity or maximum tumour size (κ)
shifted to higher values, when properly accounting for the unmeasurable
(censored) data. The value of these 2 parameters significantly alters the
predicted tumour growth curves beyond the measured time points, which
others have relied upon before27.

Many tumour growth data sets are unable to constrain all MM
parameters to a satisfying extent, especially in MMs with a larger
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number of parameters, as was the case here for the Generalised logistic
growthMM RichMM, and to a lesser extent the Gompertz and logistic
growthMMs. To address this challenge, it is common practice to fix the
value of some of the MM parameters. For example, C0 is sometimes
fixed based on the number of tumour cells injected into the animal. For
the data set used here, this value is said to be 106 cells ≈ 1 mm3. By
estimatingC0 for all ourMMs, we found that the best-fit (MLE) value of
C0 was the smallest for the Gompertz MM, followed by the logistic and
exponential growth MMs. As such, by fixing C0 to a certain value, one
favours some MMs at the expense of others, leading to MM selection
bias. Since the MM choice also biases the MM-predicted tumour
growth curve beyond themeasured time points, this can be particularly
problematic in applications where these MMs are pushed beyond the
region of validation. It also means that an experimental study designed
to accurately measure C0, or at least aiming to measure the smallest
possible tumour volumes, would be particularly helpful in informing
MM selection.

Simpson et al.35 used the profile log-likelihood to explore the practical
identifiability of three sigmoid curves (LogisMM,GompMM, and a version
of Rich MM) based on coral data. Their dataset included later time points
indicating a slowing down of the growth, and they found, rather surpris-
ingly, that the Logis MM model was practically identifiable whereas the
GompMMwas not, specifically for parameterC0. TheGompertzmodel is a
very common model of tumour growth, possibly because it often recapi-
tulates the desired dataset quite well36. Its limitation, however, is the non-
mechanistic description of growth slowdown that occurs with increasing
tumour sizes.Herein,we refrain fromrecommending anyMMsover others,
in part because the dataset used lacks measurements of sufficiently small
tumours to inform early growth kinetics, and of sufficiently large tumour
volumes to characterise the carrying capacity. Yet, these two regimes are
where the 5MM’s predictions differ most and, as such, are critical to
robustly informmodel selection. The goal of the present work was to show
how often overlooked decisions in parameter estimation can impact key
results and conclusions, including model selection. The process of model
selection requires an accurate assessment of the goodness-of-fit and model
complexity, relyingonmeasures suchas theAkaike orBayesian information
criteria, see for example37,38. A number of choices made herein (e.g., setting
arbitrary bounds on κ and α) have biased and artificially bounded what
would otherwise have been improper posteriors in some MMs, and would
compromise the reliability of a model selection analysis.

We also showed that the choice of priors, and their corresponding
bounds, when using Bayesian parameter estimation can have a significant
effect on the resulting posterior and most likely parameter set (MAP). This
effect is stronger when data is limited39, as is often the case in mathematical
oncology applications. Truncated normal distributions40 or uniform
distributions41–43 are commonchoices for priors.Guckenberger et al.44 tested
the sensitivity of their posteriors to several choices of prior, including nor-
mal, Gamma, and uniform distributions. Where parametrised MMs are
applied to simulate tumour growth by sampling parameters from assumed
distributions, log-normal distributions are sometimes chosen45, because
they ensure sampled parameters are positive, and the resulting simulated
dataset has a low mean and a high variance46, such as tumour volume
measurements47. But in the absence of any knowledge about the parameters,
linear and logarithmic uniform priors appropriately reflect this lack of
knowledge about the parameters, relying instead on the data to inform the
posterior. Based on the present data, the profile log-likelihood curves’
sensitivity to each parameter suggests that log-uniform priors are a more
appropriate choice for all parameters of the 5 tumour growthMMsexplored
in this work. It is unclear whether this is a property of theseMMs, or is also
partly a property of the data. As such, future work should continue to
evaluate these two priors and their effect on the results.

In summary, we proposed an easy to re-use mathematical fra-
mework based on Bayes’ theorem to estimate MM parameters in a
manner that better captures inter-individual tumour volume mea-
surement variability, and incorporates all measurements, including

those beyond the LOD. The framework provides not only a robust way
to identify the best-fit (MLE) parameters, i.e. those that maximise the
likelihood function but also a parameter and growth curve sensitivity
analysis in the form of a distribution of solution curves and the shape of
the maximum likelihood function about these parameters, i.e. the
profile log-likelihood curve4,28. We recommend that future works
suitably evaluate the impact of physically justifiable priors (linear and
logarithmic uniform) on Bayesian parameter estimation in mathe-
matical oncology applications, where data is often limited and noisy,
and such choices can make a significant difference. We encourage the
presentation of more complete, graphical views of parameter posterior
distributions, rather than just modes and credible intervals, so these
impacts can be better understood and eventually better managed.

Data availability
No experimental data was generated as a part of this study. All experimental
data used in this study was previously published and cited accordingly in
reference20.

Code availability
Themathematical algorithmsused in thiswork are freely available at https://
github.com/cbeauc/phymcmc17.
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