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Neuroblastoma (NB) is one of the leading causes of cancer-associated death in children. MYCN
amplification is aprominent geneticmarker forNB, and its targeting to haltNBprogression is difficult to
achieve. Therefore, an in-depth understanding of the molecular interactome of NB is needed to
improve treatment outcomes. Analysis of NB multi-omics unravels valuable insight into the interplay
between MYCN transcriptional and miRNA post-transcriptional modulation. Moreover, it aids in the
identification of various miRNAs that participate in NB development and progression. This study
proposes an integrated computational framework with three levels of high-throughput NB data
(mRNA-seq, miRNA-seq, and methylation array). Similarity Network Fusion (SNF) and ranked SNF
methods were utilized to identify essential genes and miRNAs. The specified genes included both
miRNA-target genes and transcription factors (TFs). The interactions between TFs and miRNAs and
between miRNAs and their target genes were retrieved where a regulatory network was developed.
Finally, an interaction network-based analysis was performed to identify candidate biomarkers. The
candidate biomarkers were further analyzed for their potential use in prognosis and diagnosis. The
candidate biomarkers included three TFs and seven miRNAs. Four biomarkers have been previously
studied and tested in NB, while the remaining identified biomarkers have known roles in other types of
cancer. Although the specific molecular role is yet to be addressed, most identified biomarkers
possess evidence of involvement in NB tumorigenesis. Analyzing cellular interactome to identify
potential biomarkers is a promising approach that can contribute to optimizing efficient therapeutic
regimens to target NB vulnerabilities.

Neuroblastoma (NB) is one of themost common solidmalignant cancers in
new births and has a sympathoadrenal origin1,2. NB patients are mostly
diagnosed before age 10, and the age at which diagnosis occurs is inversely
related to treatment outcomes3,4. Distinguishable from other pediatric
tumors, infants with low-risk tumors have an 88% survival rate, which has
been improved through advances in the cancer biology field.Moreover, NB
encounters spontaneous regression or differentiates into benign
ganglioneuromas5,6. Contrarily, the survival rate for older children, speci-
fically those between 18 months and 12 years, is ~49%. However, in young
adults (above 12 years), the survival rate plunges below 10% due to the
predominance of extensive hematogenous metastasis as NB progresses7.
Hence, this increases death cases despite the continuous multimodal

therapeutics8,9. The clinical treatment and presentation of high-risk NB
bringon relapse anda refractory state after significant responses to the initial
chemotherapy.

MYCN gene amplification is the best-known prognostic marker of
NB10. It has been established to antagonize several oncosuppressivemRNAs,
like p5311, and miRNAs, such as miR-18412, indicating that MYCN exerts
both transcriptional and post-transcriptional interaction on its targets.
Although MYCN is the most crucial target for NB therapy, its direct tar-
geting is challenging because of its pleiotropic effect and the difficulty of
blocking transcription factors13. As an alternative approach, drugs could be
designed to inactivate MYCN partners or transcriptional targets14. Conse-
quently, the construction of a comprehensiveMYCN regulatory network of
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various regulatory interaction types is needed. Overall, further investiga-
tions on thewholeNB cell interactomeorchestration are required to unravel
candidate biomarkers that could be targeted to prevent NB tumorigenesis.

High-throughput technologies have enabled the global analysis of
biological molecules, yielding vast amounts of omics data yearly15. Having
multi-omics datasets for the same cohort of patients provides insight into
biological interactions at different levels. It can lead to a better under-
standing of the molecular mechanism network that primes disease devel-
opment, such as cancers. A characteristic of high-throughput multi-omics
data is high dimensionality. For instance, a typical RNA-seq experiment
may produce expression data for tens of thousands of transcripts. Machine
learning methods help identify essential features in high-dimensional
datasets and predict potential disease biomarkers. Biomarker identification
contributes to understanding the underlying biology of the disease, such as
identifying associated driver genes or finding potential drug targets16.

Several studies have utilized machine learning techniques for studying
NB.Adeepneural networkusedNBgene expressiondata to classify patients
according to their International Neuroblastoma Staging System (INSS)
stage17. A Concatenated Diagnostic-Relapse Prognostic deep learning
model was used for NB survival prediction. The model consisted of an
autoencoder coupled with a multi-task classifier. It was trained on NB
transcription data to predict the Overall Survival (OS) and Event-Free
Survival (EFS)18. In19, copy number alteration data was incorporated with
expression data. A deep learning autoencoder combined with k-means
clustering was utilized. The model identified two high-risk NB subtypes,
each showing distinct survival outcomes. The authors in ref. 20 developed
an integrative network fusion for end-point prediction of NB. It was used to
analyze expression data and copy number data. Few reports tackled inte-
grative omics approaches in identifying effectors of MYCN, critical reg-
ulators, and potential therapeutic targets in the NB21,22. Similarity network
fusion (SNF) was used to integrate NB multi-omics data. A deep neural
network and recursive feature elimination were then used on the combined
data to predict patient survival. SNF achieved better integration for multi-
omics data than feature-level fusion. It also showed proficiency inmanaging
data heterogeneity and high dimensionality23. In another NB multi-omics
study, epigenomic profiling using hmTOP-seq and uTOP-seq was per-
formed. Transcriptomic profiling was conducted using mRNA-seq. Inte-
grative epigenomic and transcriptomic data analysis was used to discover
different cell signatures attributed to otherNB cell subpopulations24. AnNB
metastasis signature consistingof 18geneswas identified throughanalysis of
NBmulti-omics. RNA-seq and copy number variationdata for primary and

recurrent tumors were compared. Survival analysis was utilized to identify
prognostic biomarker genes25.

Here, we aim to identify NB biomarkers utilizing a multi-omics data
integrative approach. Data describing NB’s molecular nature at the DNA
methylation, mRNA, and miRNA levels were analyzed. Ranked SNF was
utilized to select essential genes and miRNAs relevant to NB. Finally, net-
work analysis was employed to identify their interaction and suggest
potential biomarkers. The identified candidate biomarkers were further
analyzed for their potential use as prognostic and diagnostic markers.

Results
Overview of the proposed framework
Multi-omics data were obtained for 99 patients. The data types included
were mRNA-seq, miRNA-seq, and methylation array data. Each data type
was utilized to construct a patient similarity matrix. The three similarity
matrices were then integrated using the SNF technique, producing a single
fused similarity matrix. The Ranked Similarity Network Fusion method
(rSNF) was then used to rank the features of each data type. The top 10% of
high-rank features from all data types were first filtered to determine can-
didate biomarkers.Then, the commongenes frommethylationandmRNA-
seq data were considered essential genes. Next, the interactions between the
identified set of essential genes and the previously determined high-rank
miRNAs were explored by building an interaction network. To create the
network,TF-miRNAandmiRNA-target interactions between the identified
genes and the filtered miRNAs were retrieved from public experimental
databases and integrated to construct a regulatory network. Finally, the
maximal clique centrality (MCC) was performed to identify hub nodes as
potential biomarkers (Fig. 1).

Parameter tuning and data integration
Different values have been evaluated iteratively for SNF hyperparameters
(T, k, α) to choose the best values for SNF convergence. Figure 2 illustrates
the relative change between fused graphs obtained in consecutive iterations.
For the T parameter, each iteration is present using one more fusion
iteration stepwhere (Ti+1 = Ti+ 1), as shown in Fig. 2 (a,b), shows the effect
of utilizing an increasing set of nearest neighbors (ki+1 = ki+ 1). Different
values of α have also been evaluated (Fig. 2c). As shown in Fig. 2, T = 15,
k = 20, and α = 0.5 were sufficient for convergence. Spectral clustering was
performedon the fused graph using 2:7 clusters. The number of clusterswas
set to c = 4, as Fig. 3 shows, which resulted in the highest ratio between
minimum intra-cluster similarity and maximum inter-cluster similarity.
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Fig. 1 | The proposed workflow. A block diagram for predicting NB candidate biomarkers.
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Feature selection
SNF was used to integrate the three similarity matrices into one fused
similarity matrix. Then, rSNF was used to assign ranks to all features. The
features were ordered by rank for each data type, and the top 10% of the
features were selected. As a result, 37,953 high-rank CpG sites from the

methylation array data, of which 67.8%mapped to 9099 genes, 4679 unique
high-rank genes from the mRNA-seq data, and 160 high-rank miRNAs
from the miRNA-seq data were selected. On comparing high-rank genes
from the methylation array and mRNA-seq data, 803 genes were shared
between both groups identified as essential genes (Fig. 4).

Regulatory network construction
TF-miRNA and miRNA-target interactions that involve a high-rank
miRNA and essential genes were retrieved from the transmir 2.0 and Tar-
base v8 databases. The genes encoding for transcription factors were
identified from the transmir 2.0 database Field, where 255 unique TF-
miRNA interactions were obtained, and 161 unique miRNA-target inter-
actions were retrieved from Tarbase v826.

Integrating all the interactions to construct a regulatory network
resulted in 90 miRNAs, 23 TFs, and 199 target genes. The network is then

Fig. 2 | Convergence of SNF using different hyperparameters. The selected values
sufficient for convergence are highlighted in red. a Number of iterations (T).
b Number of nearest neighbors (k). c The alpha (α) hyperparameter (used in

calculating the similarity matrix from the distance matrix). T = 15, k = 20, and
α = 0.5 were sufficient for convergence.

Fig. 3 | Evaluating clustering. The vertical axis corresponds to the ratio between
minimum intra-cluster similarity and the maximum inter-cluster similarity. The
horizontal axis shows the number of clusters used.

Fig. 4 | Identified essential genes. Shared genes between highly ranked genes from
the methylation array and mRNA-seq data.
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visualizedusingCytoscape27 (Fig. 5). Utilizing theMCCalgorithm28, the top
10 hub nodes were identified and ranked, as shown in Table 1. They
included three transcription factors and seven miRNAs in the regulatory

network and were considered potential biomarkers for targeting NB.
MYCN gene is shown to be the highest-ranked node. All the identified
candidate biomarkers are implicated in NB, such as MYCN or other
tumors, includingbreast cancers andglioma.The interactionnetworkof the
top 10 hub nodes, ranked according to the MCC score, is provided (Sup-
plementary Fig. 1).

Validation of the identified potential biomarkers
Survival analysis was conducted to study the correlation between the
expression of the identified hub nodes and the prognosis of NB patients.
Patientswere split into low- and high-expression groups based on the cutoff
mean ± 0.25 * standard deviation. Nodes with p value < 0.05 are considered
statistically significant. Table 2 illustrates the p values associated with the
Kaplan–Meier analysis. MYCN, POU2F2, and SPI1 transcription factors
demonstrated significant association with survival information, as illu-
strated inFig. 6.NomiRNAshave shown significant differencesbetween the
low- and high-expression groups (p value > 0.05). GSE62564 is an external
dataset of 498 NB patients that has been utilized as a validation dataset. The
three transcription factors maintained their significant association with
survival information, which suggests their prognostic potential, as shown in

Fig. 5 | TFs-gene-miRNAs regulatory network; consists of 195 nodes and
265 edges.Node shape and color are labeled as pink hexagons representing TFs, blue
ellipses representing genes, and yellow round squares representing miRNAs. The

nodes have directed and colored edges: the delta-shaped green arrows indicate
upregulation, while the T-shaped red arrows indicate downregulation. Black-
colored edges indicate regulation.

Table 1 | MCC score-based ranking of the hub 10 nodes in the
regulatory network

Node Type MCC score

MYCN TF 46

SPI1 TF 29

Hsa-miR-137 miRNA 28

Hsa-miR-421 miRNA 20

Hsa-miR-2110 miRNA 19

Hsa-miR-1305 miRNA 18

Hsa-miR-1976 miRNA 17

Hsa-miR-940 miRNA 16

POU2F2 TF 12

Hsa-miR-760 miRNA 11
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Fig. 7a–c. ThreemoremiRNAshsa-mir-137, hsa-mir-421, andhsa-mir-760
showed significant association with p values of 7.14E-06,0.001, 0.046,
respectively, as illustrated in Fig. 7d–f. Table 2 illustrates the p values
associated with the Kaplan–Meier analysis.

Moreover,NBpatient stageswere retrieved from theTARGETdataset,
and aChi-square test was conducted to evaluate the association between the
identified candidate biomarker expressions and NB stages. A p value of
<0.05 was considered statistically significant (Table 2).

Expression profiles of miRNAs were utilized from GSE128004. The
dataset consists of fifteen NB patients and three control samples. We eval-
uated the proposed miRNAs for their diagnostic potential. Six out of the
seven miRNAs were retrieved from the dataset. hsa-mir-421 and hsa-mir-
760 demonstrated a high potential to discriminate the patient group from
controls with the area under the curve (AUC) values > 0.7, as shown in Fig.
8a, b. On the other hand, hsa-mir-2110 had anAUCvalue of 0.556 (Fig. 8c).
All AUC values are listed in Table 3.

Discussion
Biomarkers identification for complex diseases, including cancers, is of
paramount importance in its diagnosis, prognosis, and treatment.
Numerous frameworks have been proposed for NB biomarkers prediction,
albeit only a few are from the perspective of utilizing multi-omics to wire
transcription factors-genes-miRNAs regulatory network. Herein, we con-
ducted an in-silico analysis of theNBmulti-omics dataset, includingmRNA,

miRNA, and methylation data retrieval, integration, regulatory network
construction, and analysis to identify candidate biomarkers for NB. In the
constructed network shown in Fig. 5, the MCC node ranking method was
utilized to determine the hub nodes (Table 1). Multiple analyses have been
conducted to validate the obtained results.

Among the identified candidates, theMYCN gene had the highest
degree of 46 and is significantly correlated withNB patient survival and
NB stage. Also, its interactions with the network are shown in Sup-
plementary Fig. 2. MYCN was found to be an amplified homolog to
v-MYC but different from MYC in the human NB29. As illustrated,
MYCN activates other hub nodes, including hsa-miR-760, hsa-miR-
421, and hsa-miR-2110. For example, the upregulated hsa-miR-760
regulates another hub TF, SPI1 (Fig. 5), which in turn upregulates
another identified hub mirRNA, hsa-miR-1976 (Fig. 5). These inter-
actions between different hub nodes starting from MYCN could be
implicated in NB tumor progression. Thus, its targeting could aid in
inhibiting the tumorigenicity of NB. MYCN also suppresses ATM
expression via its upregulation of hsa-miR-421 (Fig. 5), which pro-
motes neuroendocrine prostate cancer cells’ invasion and migration
potential30,31. MYCNwas found to stimulate rat fibroblast cells’ S phase
entry and their transformation into a more proliferative form with
rapid cell-cycle progression. Similar results were observed during
experimentation on growth factors-deprived quiescent fibroblasts32–34.
As shown in Fig. 5, hsa-miR-181-a, and -b are activated by MYCN,

Fig. 6 | Kaplan–Meier curves for the three TFs in NB patients. aMYCN, b SPI1, and c POU2F2.

Table 2 | P values associated with the Kaplan–Meier curve using log-rank statistical and Chi-square tests

Nodes MYCN SPI1 POU2F2 hsa-mir-137 hsa-mir-421 hsa-mir-2110 hsa-mir-1305 hsa-mir-1976 hsa-mir-940 hsa-mir-760

OS p value (TARGET) 0.022 0.025 0.036 0.197 0.35 0.072 0.471 0.582 0.66 0.97

OS p value (GSE62564) 1.48E-11 0.000495 1.46E-05 7.14E-06 0.001 0.206 0.917 0.091 0.76 0.046

Chi-square p value 0.0290 0.999 0.014 0.006 0.316 0.894 0.271 0.037 0.011 0.009

Nodes with p value < 0.05 are highlighted in bold.
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Fig. 7 | Kaplan–Meier curves of candidate biomarkers with statistical significance in the external dataset (GSE62564). aMYCN, b SPI1, and c POU2F2, d hsa-mir-137,
e hsa-mir-421, and f hsa-mir-760.

Fig. 8 | AUC values for the top three miRNAs. a hsa-mir-421, b hsa-mir-780, c hsa-mir-2110.
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which induces NB tumorigenesis35. Furthermore, it suppresses NB
invasion by directly targeting non-canonical TGF-beta pathway
genes36,37. MYCN regulates various cellular and molecular processes
that support NB tumorigenicity and biomass and its expression is the
highest in immature cells, which decreases the differentiation capacity
of these cells. This is consistent with the NB case, as NB cell differ-
entiation is accompanied by inhibition of MYCN expression38–44 and
NB cells’ self-renewal and maintenance of their pluripotency
properties45–47. Notably, NB invasion and metastasis behavior depend
on the MYCN state48,49. Interestingly, priming of NB detachment from
the extracellular matrix (ECM) for metastasis and invasion is achieved
by MYCN stimulation to block integrins α1 and β1 expression50,51.
Also, MYCN directs NB degradation of their ECM, metastasis, adhe-
sion, and invasive behaviors via promoting focal adhesion kinase
(FAK), which is responsible for integrins signaling, to stimulate
migration and metastasis in tumor cells52,53. Intriguingly, P53 blocks
the transcription of FAK, which emphasizes the role of MYCN cas-
cades to inhibit p5353.

SPI1 has an MCC score of 29 (Table 1) and is correlated with NB
patient survival (Table 2). Its regulatory network shows its direct activation
to hsa-miR-146a and hsa-miR-342, a repressive effect on hsa-miR-92a-1
andhsa-miR-20a, as shown inFig. 5). SPI1 (encodingPU.1protein) is oneof
theEts transcription factors family. It is known to regulatemultiplemiRNAs
in alignment with Supplementary Fig. 354. The Ets family regulates various
cellular processes, including apoptosis, proliferation, differentiation,
angiogenesis, lymphoid cell development, and invasiveness55–59. Mice lack-
ing PU.1 expression have neither lymphocyte, myeloid cells, nor their
progenitor cells60. Moreover, the loss of PU.1 expression is implicated in the
loss of cellular communication, leading to leukemia61. Also, minimal
reduction in PU.1 expression primes a preleukemia state, thus promoting
the development of acute myeloid leukemia62. It has been recently reported
that PU.1 antagonizes the expression of the P53 tumor suppressor protein,
thus blocking the expression of the cell cycle and apoptosis regulatory
proteins activation63. Furthermore, the involvement of PU.1 protein in
accelerating the speed of the replication elongation during the S phase of the
cell cycle coinciding with an accumulation of genetic mutations and no
DNA breakage in leukemia has also been reported64. Moreover, the PU.1
protein has been identified to promote glioma proliferation andmetastasis65

via the regulation of Phosphoribosylaminoimidazole Carboxylase and
Phosphoribosylaminoimidazolesuccinocarboxamide Synthase (PAICS)
that has been recently reported tobe implicated in glioma66, alongwithother
malignancies development and progression67–72. A study reported that the
expression of PU.1 protein is active in NB cells73. To the best of our
knowledge, the involvement of PU.1 protein in NB development and pro-
gression has not been reported yet.

POU2F2 (Oct-2) transcription factor was found to be correlated with
NB patient survival and tumor stage in our analysis (Table 2) with anMCC
score of 12 (Table 1). It regulates a set ofmiRNAs thatmay have a role inNB
tumorigenesis (Supplementary Fig. 4). From a biological aspect, POU2F2
expression in various cancers is shown to be upregulated and consequently
was proven to regulate various processes that aid cancer development. In
glioblastoma, it has been reported to regulate the metabolic shift from
oxidative phosphorylation to glycolysis (The Warburg effect fundamental
theory74) via PI3K/Akt/mTOR pathway promoting tumor cells prolifera-
tion, growth, and survival75. It promotes lung cancer’s proliferation and
mesenchymal characteristics via upregulating AGO176. In NB, POU2F2 is
responsible for cell development and proliferation and was reported in
previous bioinformatics analyses to be hypermethylated, which drives its
downregulation77,78. Still, more in vitro and animal model reports should be

conducted to elucidate the role of the POU2F2 transcription factor in reg-
ulating NB development and progression.

Numerous reports have verified the role of microRNA networks in
regulating post-transcriptionalmodifications of gene expression transcripts;
thus, they are present in all types of tissues to regulate a broad spectrum of
biological processes79.Hsa-miR-137 had anMCC score of 28 (Table 1) and
is correlatedwith theNB stage.Hsa-miR-137 represses somegenes involved
in NB cell fate commitment, survival, and differentiation, such as GRN,
GAD2, MEGF9, SLC1A5, SLC8A1, and SCN2A as illustrated in Supple-
mentary Fig. 580–84. It is known to be enriched in the brain tissues ofmice and
humans, with high expression in the hippocampus and cortical brain parts
and low expression in the brain stem and cerebellum85. Many studies
reported its role in modulating cellular differentiation and proliferation in
the adult brain and embryonic stages. Sun et al. reported the involvement of
hsa-miR-137 in halting cellular proliferation and stimulating their
differentiation86. The role of hsa-miR-137 in glioblastoma multiforme-
derived stem cells and brain malignancies stem cells differentiation into
neural lineage has also been established87. On the contrary, a report con-
firmed the hsa-miR-137 role in the induction of adult neural stem cell
proliferation and halting differentiation via repressing Ezh288. These reports
suggest that the role of hsa-miR-137 in neural stem cell differentiation is
context-dependent.Overall, these results support the role of hsa-miR-137 in
regulating pluripotency to differentiation states transition and its involve-
ment in regulating apoptosis priming; its depletion is accompanied by
developmental and tumor malformations89. A clinical analysis of 61 NB
samples unraveled that hsa-miR-137 has a substantially lower expression
with other higher prognostic factors, including high mouse/murine double
minute 2 (Mdm-2) and MYCN amplification90. It targets histone deme-
thylase, lysine-specific demethylase 1mRNA inNBcells, activatingmultiple
cellular processes that coincidewith tumor suppression91. Consequently, the
re-expression of hsa-miR-137 could be a therapeutic strategy as a potential
tumor suppressor.

In the case ofhsa-miR-421, it has anMCCscore of 20. It is an oncomiR
that is being activated byTGFB192 andMYCNas shown in Fig. 5. Hsa-miR-
421 repressesmanyneuronal-specific genes suchas SOBP,HIPK, SLC43A1,
FRS2, andOXR1 (Supplementary Fig. 6). Interestingly, aberrant expression
of hsa-miR-421 regulates various types of malignancies via driving various
genes, as shown in Fig. 5. Other than gastric cancer93, hsa-miR-421 over-
expression has a critical role in regulating pancreatic cancer94, breast
cancer95, and prostate cancer96. Lie et al. reported the role of hsa-miR-421 in
targeting myocyte enhancer factor-2D, which inhibits glioma cell glucose-
dependent processes, angiogenesis, and invasion and enhances glioma cell
sensitivity to radiotherapeutics97. Furthermore,MYCN amplification in NB
inhibits ATM cascade, a canonical cascade in DNA damage repair, apop-
tosis, and cell-cycle arrest, via hsa-miR-421. Hsa-miR-421 is overexpressed
inNB cells comparedwithmatched normal cells, increasing its proliferation
potential, migration, cell-cycle progression, and invasion capacity via tar-
geting the tumor suppressor,Menin98. This is due to the inducing role of the
TGFB1 transcription factor99.

Hsa-mir-2110 has previously been reported to act as a tumor sup-
pressor. Zhao et al. reported the role of eight of thirteen differentiation-
stimulatingmiRNAs, includinghsa-miR-2110, in direct or indirect blocking
MYCN expression. Furthermore, it was observed that the expression levels
of hsa-mir-137 and hsa-miR-2110 exhibit a substantial inverse correlation
with the levels ofMYCN, emphasizing their interactionwithMYCNmRNA
in NB progression100. Its effect on NB cell line survival has been reported
with varied differentiation induction methodologies. Furthermore, they
identified the clinical relevance of Tsukushi expression and hsa-miR-2110,
where thehigherTsukushimRNAlevel is associatedwith a low survival rate.

Table 3 | AUC values for candidate miRNAs

Candidate miRNAs hsa-mir-137 hsa-mir-421 hsa-mir-2110 hsa-mir-1305 hsa-mir-1976 hsa-mir-940 hsa-mir-760

AUC value 0.444 0.867 0.556 Not available 0.356 0.4 0.733
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Another report shows the oncosuppressive role of hsa-miR-2110 in NB via
targeting Tsukushi mRNA and inhibiting NB tumorigenesis101. Zhang et al.
investigated the inhibitory effect of upregulating hsa-miR-2110 on triple-
negative breast cancer cell proliferation, invasion, andmigration in vitro and
tumor growth in vivo102. As shown in Supplementary Fig. 7, MYCN prime
hsa-miR-2110 expression, which represses the inhibitor of differentiation
−3 (ID3), which has a critical role in sustaining cellular proliferation and
halting the differentiation process103,104.

Hsa-miR-1305 has an MCC score of 18 (Table 1) and is known as a
tumor suppressor via regulatingMdm-2.As shown in Supplementary Fig. 8,
hsa-miR-1305 has a repressive effect on CREBBP. It also represses the
THADA fusion gene, which is proven to trigger insulin-like growth factor 2
(IGF-2) mRNA binding protein 3, which is known to be overexpressed in
cancer105. Our network showed that hsa-miR-1305 downregulates the
COL12A1 gene, which encodes for collagen type XII α1 that is found to
trigger tumor progression and metastasis106–108. Hsa-miR-1305 also
represses TUBB, which encodes for the beta-tubulin protein that is broadly
expressed in the neuronal cells, which ultimately induces NB tumorigenesis
(Fig. 5)109. Cai et al. investigated the effect of suppressing hsa-miR-1305
expression on the aggressiveness of non-small cell lung cancer cells
(NSCLC), showing upregulation hsa-miR-1305 target Mdm-2, a p53
antagonist, which in role increases p53, a tumor suppressor, inducing
attenuation ofNSCLC110. Hsa-miR-1305 has been reported to have a critical
role in circCOG2-mediated colorectal cancer proliferation, migration, and
invasion via TGFB2/Smad pathway111. The role of exosomal hsa-miR-1305
has been established in inducing multiple myeloma tumorigenesis via
decreasing cellular hsa-mir-1305, thus increasing the abundance of its target
genes such as IGF1, FGF2, and Mdm-2112. Another report investigated the
effect of circRIP2 on targeting hsa-miR-1305 to activate the TGF-β2/Smad3
cascade to induce epithelial to mesenchymal transition (EMT), accelerating
bladder cancer aggressiveness113. It has been reported that hsa-miR-1305
silencing significantly inhibits hepatitis B virus-associated hepatocellular
carcinoma tumorigenesis114. Despite numerous previous reports, hsa-miR-
1305 role in NB tumorigenesis has not been studied. The diagnostic
potential of hsa-miR-1305 as a biomarker could not be validated due to the
limited availability of NB datasets that included expression data for this
specific miRNA.

Hsa-miR-1976 is correlated with the NB stage, as shown in Table 2. It
is shown to repress the LMTK3 transcription factor while regulating SPI1
and CREBBP (Supplementary Fig. 9). Hsa-miR-1976 is downregulated in
tumor tissues, where its lower expression correlates with worse overall
survival in a patient cohort obtained from the TCGA database. Hsa-miR-
1976 knockdown in triple-negative breast cancer markedly promotes EMT
and cancer stemness via direct regulation of phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit gamma115. Chen et al.116 reported
the downregulation of hsa-miR-1976 in NSCLC, and its upregulation
repress tumorigenesis via targeting phospholipase C epsilon 1. Another
report tackles the association between the abundance of hsa-miR-1976 in
plasma samples and the clinicopathological features of breast cancer
patients and its role as a non-invasive biomarker for breast cancer
diagnosis117. Thus, hsa-miR-1976 could be implicated in NB tumorigenesis
and be a potential biomarker.

Hsa-miR-940 directly represses some genes associated with the neu-
ronal differentiation of NB cells, such as TUBB, SLC1A5, MEGF9,
PIP4K2A, and MYO7B (Supplementary Fig. 10). Hsa-miR-940 regulates
cell survival and cancer resistance to chemotherapeutics by targeting the
MAPK1 cascade118. Zhang et al. reported its abundance effect in promoting
breast cancer via regulating FOXO3119. On the other hand, hsa-miR-940 is
dramatically silenced in glioma cells, and its upregulation functions as a
glioma suppressor via targeting cyclin kinase subunit 1, showing its tumor
suppression effect120. Another study reported its inhibitory effect on glioma
tumorigenesis via targeting methylenetetrahydrofolate dehydrogenase,
whichblocks folatemetabolism inmitochondria121. XuR. et al. reportedhsa-
mir-940 implication in halting EMT of glioma cells via targeting ZEB2122.
Other than being a salivary biomarker for pancreatic cancer123, it alsomarks

breast cancer, prostate cancer124, and esophageal squamous cell
carcinoma125. While the involvement of hsa-miR-940 in NB development
remains unreported, our analysis revealed a significant correlation between
its expression and NB stage.

Hsa-miR-760 is a hub node in our analysis with an MCC score of 11
(Table 1). As shown in Supplementary Fig. 11, it is upregulated by the
MYCN gene and regulates the SPI1 transcription factor. In addition, it
represses the PLD6 gene (phospholipase D), which facilitates many cellular
processes in cancer progression, metabolism, and growth. It has been
reported that the PLD6 gene alters mitochondrial fusion and fission
dynamics, which dysregulate cellular mitochondrial bioenergetics, conse-
quently, the progression of breast cancer126. Furthermore, hsa-miR-760 is
downregulated in various cancer types, such as breast, prostate, NSCLC,
gastric, and hepatocellular carcinoma, while upregulated in ovarian
cancers127. Moreover, it is proven that hsa-miR-760 inhibits chemother-
apeutics resistance in hepatocellular carcinoma via Notch1/Akt pathway128.
In bladder cancer, it was found that METTL1 indirectly degrades tumor
suppressor ATF3 mRNA mediated by miR-760, promoting tumor
progression129. In our analyses, hsa-miR-760 shows promising prognostic
and diagnostic ability. It is also correlated with the NB stage (Table 2, Fig. 7,
and Fig. 8). However, we did not find any reports about its association
with NB.

In conclusion, the proposed computational framework aims at inte-
grating multi-omics data to identify potential biomarkers in NB. After
integratingmRNA-seq,miRNA-seq, andmethylation array data using SNF,
feature selection was utilized to determine high-rank features. Interactions
between high-rank genes and miRNAs were retrieved to build a regulatory
network. It consisted of TF-miRNA interactions as well as miRNA-target
interactions. We analyzed the interaction network using MCC and identi-
fied ten candidate NB biomarkers, three transcription factors, and seven
miRNAs. Among them, the roles of MYCN, hsa-miR-137, hsa-miR-421,
and hsa-miR-2110 in NB tumor development and progression have been
studied and proven. On the other hand, the rest of the predicted biomarkers
in our study, such as SPI1, POU2F2, hsa-miR-1305, hsa-miR-1976, hsa-
miR-940 and hsa-miR-760, could serve as potential biomarkers to halt NB
tumorigenicity. In addition, their role in other tumor development and
progression has been studied. Our regulatory network shows that they
interact with some well-studied NB biomarkers, including MYCN, which
support their under-studied implication in NB development. Furthermore,
their potential use as diagnostic biomarkers and correlation with NB
patients’ survival and stage information were studied. Six out of our
10 candidate biomarkers were shown to be correlated with the INSS stage,
namely MYCN, POU2F2, hsa-mir-137, hsa-mir-1976, hsa-mir-940, and
hsa-mir-760. High vs. low expression of MYCN, SPI1, and POU2F2 were
shown to be correlated with significantly different survival outcomes, both
in our dataset and in the external validation dataset. Furthermore, survival
analysis of the external validation dataset suggested hsa-mir-137, hsa-mir-
421, and hsa-mir-760 could be potential prognostic markers. The receiver
operating characteristic (ROC) analysis on another external validation
dataset suggested that hsa-mir-421 and hsa-mir-760may also be diagnostic
markers. Thus, experimental validation of the roles of SPI1 and POU2F2 in
NB tumor progression could aid biomarker discovery. Furthermore,
priming the transcriptional expression ofmiR-1976 and targeting hsa-miR-
1305, hsa-miR-940, and hsa-miR-760 could block NB tumorigenesis.
Therefore, this study proposes a deeper understanding of MYCN inter-
actome, providing candidate routes for targeted therapies in NB.

Methods
Data retrieval
Multi-omics data were obtained for solid tumor samples from 99 patients.
The patients’ overall survival information and cancer staging according to
the INSSwere retrieved aswell. Three data typeswere downloaded from the
Therapeutically Applicable Research to Generate Effective Treatments
(TARGET) program website. First, methylation array data were obtained
using the Illumina Infinium Human Methylation 450 Platform.
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Methylation array data included beta values for 485577 features (reporter
IDs) andmean detection p values. mRNA-seq data were obtained using the
Illumina HiSeq2000 sequencing system. The dataset comprised FPKM
values for 56038 features. Finally, the miRNA-seq data was generated using
the Illumina-NextSeq500 system that included 1870 features (miRNAs).
Each data type was arranged into a feature-by-patient table. Links to the
methylation array, mRNA-seq, and miRNA-seq data are available in the
project GitHub repository (https://github.com/ComputationalBiologyLab/
Biomarker-discovery-in-Neuroblastoma-Multiomics).

Data preprocessing
Thequality of themethylation array datawas assessedby confirming that all
samples had a mean detection p value < 0.005. Around 20% of methylation
array beta values had Na values. That was due to a common SNP being
foundwithin 10 bp from the CpG site or, overlapping with a repeat element
within 15 bp from the CpG site, or the detection p value of the sample being
above 0.05. These rows were removed. Reporter IDs that mapped to mul-
tiple sites were also filtered. Features that mapped to the X or Y chromo-
someswere removed frommethylation array data andmRNAdata to avoid
selecting biomarkers related to sex130. Features that had zeros across all
samples were deleted from all datasets. mRNA FPKM values were trans-
formed to TPM values to accommodate comparison across samples131. The
total number of features before and after preprocessing is shown in Table 4.
Min-max normalization was then applied to all datasets.

Data integration
SNF is a statistical network model that integrates the different omics
data. A similarity network is created for each data type, in which a vertex
represents each sample (i.e., patient), and the degree of similarity
between samples is represented by weighted edges that connect the
vertices. Therefore, a complete patient similarity matrix is constructed
using edge weights. A sparse kernel matrix is also constructed where
edge weights are used for determining the K-nearest neighbors. This
operation sets the pairwise similarities of non-neighboring points to
zero. Utilizing both matrices, network fusion is performed by updating
the similarity matrix iteratively. After a specified number of iterations
sufficient for convergence, the resultant similaritymatrices are averaged
to obtain the fused matrix.

SNF has the advantage of extracting valuable information even from
small numbers of samples. Integrating similarity networks derived from
different data types preserves both common and complementing aspects of
these similarity networks, therefore showing the contribution of each data
type to the overall similarity network. SNF has been used to study five types
of cancer, namely glioblastomamultiforme, breast invasive carcinoma, lung
squamous cell carcinoma, colon adenocarcinoma, and kidney renal clear
cell carcinoma. For each cancer type, SNFwasused to integratemethylation,
mRNA, and miRNA expression data. On data integration, the researchers
identified different subtypes that were shown to have distinct clinical
hallmarks132.

SNF uses three hyperparameters: T is the number of fusion
iterations, k is the number of nearest neighbors to consider when
building the sparse kernelmatrix, and α is a hyperparameter used in the
scaled exponential similarity kernel, which is used to calculate pairwise
patient similarity values. SNF convergence was independently assessed
for each hyperparameter by iteratively changing the value and

calculating the relative change between fused graphs obtained in
consecutive iterations using the spectral norm. Both T and k were
selected from the range 2:50, while α was chosen from the range 0.05:1
with a step of 0.05. Based on the selected values (T = 15, k = 20, and
α = 0.5), The package “SNFtool” (https://CRAN.R-project.org/
package=SNFtool) was used to perform the SNF model on the three
data types, producing a fused similarity matrix.

Feature selection
The SNF feature selection technique was utilized to assign ranks to features
based on how informative they were to the developed fused network. rSNF
was performed by building a patient similarity matrix based solely on each
feature. Spectral clustering133was performedon the single-feature-based and
fused-based similarity matrices to identify disease subtypes. Then, the
normalized mutual information (NMI) score134 was utilized to determine
the concordancebetween the results of bothclustering. Thehigher the score,
themore important the feature contribution to the fused similarity network.
Different numbers of clusters have been tried (2:7).

The ratio between the minimum intra-cluster similarity and the
maximum inter-cluster similarity was employed to evaluate the clustering
quality. A good clustering should follow the principles of homogeneity and
separation135. They state that elements within the same cluster should be
close to each other (homogeneity), while elements in different clusters
should be distant (separation). This means that patients within the same
cluster would be highly similar, whereas patients in different clusters would
have a low similarity.

If the minimum similarity within a cluster is high, it ensures that all
other similarities within each cluster are even higher, which helps to group
similar patients together. This is achieved by calculating pairwise similarities
between all samples in each cluster separately and selecting the minimum
similarity across all clusters afterward.Moreover, a lowmaximumsimilarity
between patients in different clusters ensures that patients within different
clusters are even less similar, making the clusteringmore reasonable. This is
done by calculating pairwise similarities between all samples in different
clusters in which we pick the maximum value.

Therefore, a similarity measure of the ratio between the minimum
intra-cluster similarity (within) and the maximum inter-cluster similarity
(between clusters) has been utilized to compare the different numbers of
clusters to identify which is the best in terms of compactness and well
separation. We have selected the number of clusters that achieved the
highest ratio (c = 4).

Our approach is similar to the Dunn index136, which measures the
quality of clustering. However, the Dunn index utilizes distances between
samples, while we use sample similarities. The similaritymeasure we used is
calculated as follows:

∇ ck
� � ¼ minxi;xj2ck S xi; xj

� �
8xi; xj 2 ck; i≠j; 8k ¼ 0; 1; 2; . . . :; n ð1Þ

Where datasetDwithm samples, include x1; x2; x3; . . . :xm,n is thenumber
of clusters in the cluster set C, ∇ðckÞ denotes intra-cluster similarity of a
cluster, and S is the similarity between two samples. That will result in k
values where each one represents the inter-cluster similarity for each cluster
as shown in Eq. 1. The inter-cluster similarity between clusters4 ck; cr

� �
is

calculated as illustrated in Eq. 2.

4 ck; cr
� � ¼ maxxi2ck;xj2cr S xi; xj

� �
8xi 2 ck; xj 2 cr ; i≠j; k≠r;8k ¼ 0; 1; 2; . . . :; n

ð2Þ

The clustering quality ratio Q is calculated as follows:

Q Cð Þ ¼ minck2C∇ðckÞ
4 ck; cr
� � 8k ¼ 0; 1; 2; . . . :; n ð3Þ

Table 4 | The number of features before and after the
preprocessing stage

Data type Methylation
array

mRNA-seq miRNA-seq

Number of original features 485,577 56,038 1870

Number of features after
preprocessing

379,522 50,501 1594
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The features were ranked based on their NMI score. For all three data
types, it has been noticed that, after the initial few features, there was a
consistent decline in the NMI score. The remaining features had negligible
changes (Supplementary Fig. 12). To prioritize the most informative fea-
tures for the fused network, the top 10%were chosen (Supplementary Data
1–3). BothmRNA-seq andmethylation array featureswere thenmapped to
gene symbols, and shared genes were selected as essential genes along with
the high-rank miRNAs for subsequent analysis. The complete lists of high-
rank genes are illustrated in Supplementary Data 4.

Regulatory network construction and analysis
To gain a better understanding of the identified essential genes and high-
rankmiRNAs, possible interactions between the two sets were explored. To
build an interaction network, interaction data for these biological molecules
were obtained. Two types of gene-miRNA interaction data were retrieved.
TF-miRNA regulations were acquired from the transmir 0.2 database137,
and miRNA-target interactions were acquired from the Tarbase v8 data-
base. The transmir 0.2 database is a manually curated database with com-
prehensive information about the TF-miRNA regulations. The genes
encoding for transcription factors in the candidate essential genes were
identified through the database. Transmir 0.2 database includes experi-
mentally verified interactions with different levels of confidence. Level 2
interactions were predicted by ChIP-seq experiments and further verified
through high-throughput experiments, while literature-based interactions
were manually curated from scientific papers. Level 2 and literature-based
interactions were retrieved in our study. On the other hand, the Tarbase v8
database contains experimentally supported miRNA-target interactions.
From both databases, interactions found in humans were downloaded.
Interactions involving the identified high-rank features were extracted for
further analysis.

Further annotations were acquired from the transmir 0.2 database
website and added to our interaction tables. Transcription factors and
miRNAs were annotated with associated diseases. Transcription factors
were further annotated with prognostic correlations. The complete inter-
action and attribute tables are illustrated in Supplementary Data 5 and 6.

The regulatory network between TFs, genes, and miRNAs was con-
structed using Cytoscape software (version 3.9.1) after filtering normal cell
line interactions. Node shape, color, edge shape, and type (activation or
repression)weremodified for visualization.Network analysiswas employed
to evaluate and rank the hub TFs, genes, and miRNAs. MCC algorithm in
the Cytoscape plugin, CytoHubba, was utilized to identify the hub nodes in
the regulatory network as it showed high-quality performance and accuracy
over other measures, including radiality, stress, clustering coefficient, and
betweenness138–142.

Analysis of the identified candidate biomarkers’ association
with NB
Survival analysiswasperformedusing theKaplan–Meiermethodwith a log-
rank statistical test to explore the association of the proposed biomarkers
with the overall survival of NB patients and identify which will be of
prognostic potential. Biomarkers with p value < 0.05 are considered to have
prognostic potential. Another external dataset, GSE62564, has been utilized
to validate the results. The survival R package143 was used for this purpose.
The correlation between potential biomarker expressions and cancer stages
was also statistically assessed using the Chi-square test. A p value < 0.05 was
considered significant.

The ROC curve analysis was utilized to examine the diagnostic
potential of the identified miRNAs by assessing their ability to discriminate
between NB patients and normal samples. pROC R package144 was used to
generate ROC curves and calculate the AUC values for the proposed bio-
markers from the GEO dataset GSE128004.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Publicly available datasets were analyzed in this study. All the data used
in this study are derived from the TARGET database (https://target-
data.nci.nih.gov/) under TARGET Neuroblastoma (NBL) project.
Datasets used in validation were retrieved from Gene Expression
Omnibus (GEO) database under accession numbers GSE62564 and
GSE128004 and are available at the following URLs: https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE62564, https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE128004.

Code availability
The code for reproducing the transcriptomic analysis results is available in
the GitHub repository. See Code https://github.com/
ComputationalBiologyLab/Biomarker-discovery-in-Neuroblastoma-
Multiomics.
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