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Early dynamics of chronic myeloid leukemia on nilotinib
predicts deep molecular response
Yuji Okamoto1,2,23,24, Mitsuhito Hirano2,24, Kai Morino1,3, Masashi K. Kajita 1,4,5✉, Shinji Nakaoka 1,6,7, Mayuko Tsuda2,
Kei-ji Sugimoto8, Shigehisa Tamaki9, Junichi Hisatake10, Hisayuki Yokoyama 11, Tadahiko Igarashi12, Atsushi Shinagawa13,
Takeaki Sugawara14, Satoru Hara15, Kazuhisa Fujikawa16, Seiichi Shimizu17, Toshiaki Yujiri 18, Hisashi Wakita19, Kaichi Nishiwaki20,
Arinobu Tojo2,21 and Kazuyuki Aihara1,22✉

Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by the BCR-ABL1 tyrosine kinase. Although ABL1-specific
tyrosine kinase inhibitors (TKIs) including nilotinib have dramatically improved the prognosis of patients with CML, the TKI efficacy
depends on the individual patient. In this work, we found that the patients with different nilotinib responses can be classified by
using the estimated parameters of our simple dynamical model with two common laboratory findings. Furthermore, our proposed
method identified patients who failed to achieve a treatment goal with high fidelity according to the data collected only at three
initial time points during nilotinib therapy. Since our model relies on the general properties of TKI response, our framework would
be applicable to CML patients who receive frontline nilotinib or other TKIs.
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INTRODUCTION
Chronic myeloid leukemia (CML) originates from a hematopoietic
stem cell affected by a reciprocal translocation between chromo-
somes 9 and 22, which results in the formation of the BCR-ABL1
fusion gene in the short derivative of chromosome 22 (Ph
chromosome)1. In this rearrangement, latent ABL1 tyrosine kinase
is constitutively activated by its oligomerization mediated by the
N-terminal region of BCR and causes an unregulated expansion of
myeloid cells, especially mature granulocytes2. CML is generally
diagnosed during the stable chronic phase (CP). Since BCR-ABL1-
positive cells (called CML cells in the following) are quite
dependent on BCR-ABL1 for their growth and survival, ABL1-
specific tyrosine kinase inhibitors (TKIs) have clinically demon-
strated substantial reduction of CML cells and restoration of
normal hematopoiesis in the vast majority of CP-CML patients3–7.
At present, frontline TKIs for newly diagnosed CP-CML include

imatinib3, dasatinib4, nilotinib5–7, and bosutinib8, among which the
latter three are the second generation TKIs with more potent activity
than the former one. The actual therapeutic response to TKIs is
estimated by quantitative polymerase chain reaction analysis of BCR-
ABL1 transcripts in peripheral blood and is represented by the ratio of
BCR-ABL1mRNA to ABL1mRNA on the international scale (IS)9–11. The
consensus optimal response to TKIs in CP-CML is major molecular
response (MMR, IS≤ 0.1%) within 1 year of therapy12, whereas a

significant number of CP-CML patients achieve superior or deep
molecular response (DMR; MR4.5, IS≤ 0.0032%)13–15, especially on
frontline nilotinib or dasatinib4–7. Furthermore, a recent series of
clinical trials on TKI discontinuation revealed that nearly a half of CP-
CML patients maintained treatment-free remission (TFR) following
>2 years of DMR on TKIs16. Thus, to ultimately reach TFR, the practical
target of CML treatment is to achieve DMR as early as possible after
frontline TKI therapy, and the switch to another TKI may be a
therapeutic option when DMR is not likely to be obtained. Thus, an
algorithm to enable the early prediction of DMR achievement on TKI
therapy would be quite valuable.
In this paper, we propose a mathematical framework that can

predict the efficacy of nilotinib in each CML patient only from
short time-series data. We constructed a simple classification
method that can estimate whether a CML patient reaches DMR or
not within 24 months after nilotinib administration. The key to
success is to focus on the dynamical behavior of CML cells.

RESULTS
Current scoring systems and guidelines are not suitable for
DMR classification
The dataset analyzed in this study was obtained in a phase II
clinical trial named the N-road study17 that aimed to examine the
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safety and efficacy of nilotinib for newly-diagnosed CML patients.
Complete blood counts (CBCs) and IS were measured in a single
certified laboratory center every 3 months for 2 years. In this study,
we analyzed the data from the eligible 32 patients. Hereafter,
among the eligible patients, we defined 18 patients who have
reached DMR by 24months as DMR patients and remaining 14
patients as non-DMR patients (Supplementary Figs. 1–2). See
Supplementary Materials for the detailed information.
Recently, K. Sasaki et al. reported optimal IS values that predict

the highest probability of reaching a sustained DMR at specific
time points between 3 and 12months18. However, to the best of
our knowledge, there are neither scoring systems nor algorithms
for early prediction of DMR achievement in CML patients under
TKI therapy. Therefore, we examined whether the current scoring
systems and guidelines in CML clinical practice could be adapted
to predict DMR. The European LeukemiaNet (ELN) guideline in
201312 recommends the EUTOS prognostic score for prediction of
complete cytogenetic response (CCyR) and progression-free
survival (PFS) on frontline imatinib. In the N-road study dataset17,
the EUTOS score did not precisely discriminate DMR from non-
DMR patients (Fig. 1a). We tested another prognostic score, the
EUTOS long-term survival (ELTS) score, which is newly adopted in
ELN guideline 202015. The ELTS score was developed for
prediction of long-term survival considering leukemia-related
death. As well as the EUTOS score, the ELTS score also did not
distinguish between DMR and non-DMR patients in the N-road
study (Fig. 1b). In addition, the definition of response to frontline
TKIs employed in the ELN12,15 required at least 12-month
observation to discriminate the two populations in the same
cohort (Fig. 1c–e). Then, we sought for key features to construct a
better method of early DMR prediction.

Key features for DMR prediction
Potential key features should be found in the dynamics of CML
cells in CML patients on TKIs because mathematical studies on
CML19–25 explained the characteristic dynamics of CML cells in
CML patients on TKIs and successfully predicted relapse.
Particularly, M. Horn et al. suggested that relapse was predictable
based on residual leukemic stem cells and reduction slopes of IS23.
However, for the purpose of DMR prediction from short-term
measurements, most models are too complex to obtain suitable
parameter values for each patient. Numerous approaches have
been proposed to overcome these data-shortage problems such
as high-dimensional data in general26 and prostate cancer in
specific27,28. In this research, we overcome this problem by
focusing on two important key features on the dynamics of CML
cells in CML patients and by proposing an adequately-simple
mathematical model, which can reproduce the two key features
from a small dataset.
Two key features for early DMR prediction in CML patients are

the decreasing rate and the convergence value of IS time-series
data (Fig. 2). Both early and late dynamics of IS can be clearly
represented by these two features (Fig. 2a, b). Additionally, the
distributions of these two features in DMR and non-DMR patients
seem to be distinguishable (Fig. 2c, d). Thus, we can discriminate
DMR patients from non-DMR patients, if we accurately estimate
these two features from short time series of IS values. Hereafter,
we discuss a mathematical way to estimate these two features.

Our proposed method showed a good performance for
distinguishing between DMR and non-DMR patients
First, we propose a mathematical model, which describes the time
evolution of the white blood cell (WBC) count in CML patients
(Eq. 1 in Methods). Our model includes two variables: the normal
WBC (namely BCR-ABL1-negative) count and CML cell (namely
BCR-ABL1-positive) count. Furthermore, each variable has two
parameters: the recovery rate and the convergence value for the

normal WBC count, and the reduction rate and the convergence
value for the CML cell count. Since both the cell counts are
mathematically calculated by the measurement of IS and the total
WBC count in our model (Eqs. 2–3 in Methods), we can estimate
the variables and parameters (Fig. 2e, f). The first feature, the
decreasing rate of IS, corresponds to the reduction rate of the CML
cells. The second feature, the convergence value of IS, corre-
sponds to the convergence value of the CML cells. Our
mathematical model sufficiently approximates the time series of
IS for various CML patients (Fig. 3a and Supplementary Fig. 2).
These findings indicate the validity of our proposed model.
Second, we discuss how we deal with estimated parameter

values to classify the TKI response (Fig. 3b–d). DMR and non-DMR
patients were clearly separated on a parameter plane of the CML
cell reduction rate and convergence value (Fig. 3c). To obtain
appropriate threshold values of the two patients groups, we
determined horizontal and vertical lines on the parameter plane
by using all the eligible patient data points (see “DMR prediction
criteria” in Methods). With the threshold values, we positively
discriminated between DMR and non-DMR patients in the
analyzed N-road dataset with 100 % accuracy (Fig. 3d). On the
other hand, another set of parameters did not clearly separate
patients (Fig. 3b). We note that, in Fig. 3, all the time points of all
patients data were used to estimate our model parameters.
However, the parameters can be estimated based only on three
time points for each because of our model’s simplicity. To classify
patients into DMR or non-DMR based on the estimated
parameters, the threshold values that separate DMR and non-
DMR patients in the parameter plane still need to be determined.
Third, we discuss an approach to determine the threshold

values of the CML cell reduction rate and convergence value in a
CML patient by utilizing information from other patients. We
employed the leave-one-out cross-validation. The dataset with 32
patients is divided into two groups, one is the training set
composed of 31 patients, and the other is the validation dataset
composed of one patient. By applying the aforementioned
framework to data from the training dataset, we obtained
estimated parameter values of each patient and optimized the
threshold values under a certain criterion. For the optimization, we
employed three different objective functions, i.e., maximizing
accuracy, maximizing sensitivity, and maximizing specificity. An
optimal threshold value is given by maximizing a corresponding
objective function (see also “DMR prediction criteria” in Methods).
Based on the optimized threshold values, we predicted a patient
of the test dataset whether the patient will reach DMR or non-
DMR from short-term measurements. For the test patient, we set
the correctness score as 1 or 0 if the DMR prediction successes or
fails, respectively. After the cross-validation, i.e., the 32 times of the
prediction test, we obtain the classification performance as an
average of the correctness scores among 32 patients (see also
“Performance of DMR prediction” in Methods). In Fig. 4, we
summarize the performance of DMR predictions. Our proposed
approach, which uses data only at 3 initial time points (at 0, 3, and
6months), reached the performance of the ELN definition at
12months of therapy. Furthermore, our method enhanced
specificity and F1 scores compared to the EUTOS scoring system
and ELN guidelines. As for the ELTS scoring system, it estimated
most patients as “Intermediate risk” or “High risk”. By assuming
that these classifications correspond to non-DMR, we consider it
difficult for the ELTS scoring system to detect non-DMR patients
(see also Supplementary Fig. 6 for the confusion matrices of the
ELTS score-based prediction). In Supplementary Figs. 7–8, we
analyzed the EUTOS score-based and ELTS score-based prediction
results based on the patient’s characteristics using the parameters
for these scores (see also “EUTOS score-based and ELTS score-
based DMR prediction” of Supplementary Materials). We note that
the difference of our three methods relies on the way to obtain
the threshold values, i.e., maximizing accuracy, maximizing
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sensitivity, and maximizing specificity (see also “DMR prediction
criteria” in Methods). The classification performances of our three
optimization methods balanced the four scores: accuracy,
sensitivity, specificity, and F1 scores. In addition, the performance
scores of our three methods were equal to or higher than those of
most current scoring systems and guidelines when we adopted
MR4.5 for DMR definition (Fig. 4). The exceptions are the cases of
specificity of the ELTS score and sensitivity of the ELN guidelines
that achieved 100 % performance. These seemingly good scores
come from the biased prediction of the score/guidelines (see
Supplementary Fig. 6). The similar results were also obtained for
MR4.0 and complete molecular response (CMR) (Supplementary
Fig. 5) (see Methods for the definitions of MR4.0 and CMR). Thus,
our algorithm has high potential to predict non-DMR patients on
frontline nilotinib, and our method should improve the current
CML treatment.

DISCUSSION
Finally, we discuss whether the presented mathematical model is
applicable to other frontline TKIs including imatinib and dasatinib.
The BCR-ABL1 transcript dynamics under imatinib treatment21,23

was similar to the IS dynamics under nilotinib treatment analyzed
in our study. Although further investigations are needed, we
expect that our model can be applied to imatinib treatment. TKIs
achieve rapid complete hematological response, including normal
WBC counts, in a vast majority of patients with CML. However,
among ever approved TKIs, only dasatinib reveals a peculiar
property of rapid mobilization of non-leukemic lymphocytes,
especially NK cells and CD8+ CD57+ large granular lymphocytes,
in peripheral blood peaking 1–2 h after an oral intake29,30. This
unique phenomenon frequently results in transient elevation of
WBC counts in blood testing of CML patients even with stable
molecular response. Similar effects on blood cell dynamics are not
observed with any other TKI. Accordingly, the present mathema-
tical model is likely to be applicable to TKIs except for dasatinib.
In conclusion, it is suggested that our mathematical method has

an ability to predict the possibility to achieve DMR in a
retrospective cohort of CML patients treated with frontline
nilotinib. This outcome is due to the suitable degree of simplicity
of our mathematical model: it is simple enough to operate with
short-term time series but also complex enough to distinguish
between DMR and non-DMR patients. The ultimate goal of CML
treatment is likely to be TKI-free maintenance of DMR, and the
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achievement of durable DMR is a prerequisite for this goal31.
Furthermore, timely prediction of nilotinib failure to achieve DMR
will enable the consideration of other therapeutic approaches32,
which will allow sustained DMR leading to TFR. Therefore, the
present study contributes to the progress of clinical treatment that
is supported by quantitative measurement of disease dynamics
and mathematical analysis.

METHODS
Definition of deep molecular response (DMR)
In this study, we employed DMR as the criterion for effective drug
response in CML patients. There are multiple definitions of DMR
such as MR4.0 (IS ≤ 0.01%) and MR4.5 (IS ≤ 0.0032%)9,12–15. If a
patient’s IS becomes lower than one of the above threshold values
at a certain time point, it is considered that the patient reaches the
DMR corresponding to the employed threshold value. There is a

stricter criterion designated as CMR32. A patient is considered to
reach CMR, if his/her expression of the BCR-ABL1 gene is not
measurable at two consecutive time points. In this paper, we
designated patients as CMR who reached MR4.5 at both 21 and
24months. Because lower IS implies a more favorable situation for
CML patients, CMR is considered to be a better criterion. However,
the measurement of low BCR-ABL1 expression is technically
challenging, i.e., non-negligible noise/error is often contained in
such measurements. Therefore, we employed MR4.5 for this
analysis (Figs. 1–4). In Supplementary Figs. 3–5, for MR4.0, MR4.5,
and CMR, we compared the numerical results corresponding to
Figs. 1, 3b–d, and 4.
Here, we note a more detailed definition of DMR patients. We

designated patients whose IS decreased below 0.0032% at a
certain time point as DMR patients. However, in a subset of these
DMR patients, their IS fluctuated and/or again increased above
0.0032%. In this study, we treated these patients as DMR patients.
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In further investigation, this point may be reconsidered, if more
detailed clinical information becomes available. One of the
reasons for IS reoccurrence is the acquisition of drug resistance.
However, we cannot distinguish patients who acquired drug
resistance based on the available information, because observa-
tions over a longer time span are needed for that purpose.

Detailed information of the N-road trial
We used the dataset from the N-road trial17, which was a phase II,
single-arm, open-label, multi-center clinical study for newly
diagnosed CP-CML patients. This study was organized based on
previous trials on nilotinib5–7. The CP-CML diagnosis had to be

made by chromosome banding or fluorescent in situ hybridization
(FISH) or reverse transcription polymerase chain reaction. The
N-road aimed to investigate the safety and efficacy of nilotinib in
newly diagnosed CP-CML patients based on the early achievement
of CMR. The primary endpoint was the CMR (defined as MR4.5 in
the N-road study) achievement rate within 24months. This trial
included 53 patients and was conducted from August 2012 until
July 2017. Nilotinib 300mg twice daily was administered to
patients for 24months. If patients did not reach the criteria for
optimal response defined by the N-road study referring to the ELN
2013 definition12 at any time point, the administration of nilotinib
up to 400mg twice daily as second-line therapy was allowed.

10
1

10
1

IS
[%
]

Pt. 07

0 3 6 9 12 15 18 21 24

Time [months]

10
4

10
5

W
BC
s
[n
um
/
l]

10
1

10
1

IS
[%
]

Pt. 18

Measured data
Estimated data

0 3 6 9 12 15 18 21 24

Time [months]

10
4

10
5

W
BC
s
[n
um
/
l]

Normal level

10
1

10
1

IS
[%
]

Pt. 27

0 3 6 9 12 15 18 21 24

Time [months]

10
4

10
5

W
BC
s
[n
um
/
l]

10
1

10
1

IS
[%
]

Pt. 41

0 3 6 9 12 15 18 21 24

Time [months]

10
4

10
5

W
BC
s
[n
um
/
l]

10
1

10
1

IS
[%
]

Pt. 01

0 3 6 9 12 15 18 21 24

Time [months]

10
4

10
5

W
BC
s
[n
um
/
l]

10
1

10
1

IS
[%
]

Pt. 21

0 3 6 9 12 15 18 21 24

Time [months]

10
4

10
5

W
BC
s
[n
um
/
l]

10
1

10
1

IS
[%
]

Pt. 38

0 3 6 9 12 15 18 21 24

Time [months]

10
4

10
5

W
BC
s
[n
um
/
l]

10
1

10
1

IS
[%
]

Pt. 39

0 3 6 9 12 15 18 21 24

Time [months]

10
4

10
5

W
BC
s
[n
um
/
l]

4000 6000 8000 10000
Convergence value of
normal WBCs [number/ l]

0

2

4

6

R
ec
ov
er
y
ra
te
of

no
rm
al
W
BC
s
[1
/m
on
th
]

13

4
5

7

9

10

11

1319

16

18

2123

25

27
28 29

30

31

32
34

35
37

38

39

41 46

47

48
52

53

non-DMR
(MR4.5)
DMR
(MR4.5)

10
1

10
0

10
1

10
2

Convergence value of
CML cells [number/ l]

0

2

4

6

8

R
ed
uc
tio
n
ra
te
of

C
M
L
ce
lls
[1
/m
on
th
]

0.70
1.001

3

4
57

910

11

13

16

18

19
21

23

25

27

28

29

3031

32

34
35

37 38

39

41

464748
52 53

Low risk
High risk
non-DMR
(MR4.5)
DMR
(MR4.5)

10
1

10
0

10
1

10
2

Convergence value of
CML cells [number/μl]

0

2

4

6

8

R
ed
uc
tio
n
ra
te
of

C
M
L
ce
lls
[1
/m
on
th
]

1

3

4
57

910

11

13

16

18

19
21

23

25

27

28

29

3031

32

34
35

37 38

39

41

464748
52 53

non-DMR
(MR4.5)
DMR
(MR4.5)

DMR (MR4.5) non-DMR (MR4.5)(a)

(b) (c) (d)

Fig. 3 DMR and non-DMR patients were separated on the plane of the reduction rate and convergence value of CML cells. a The
estimated time series of CML dynamics (red dashed lines) sufficiently approximated the measured data for IS [%] and for WBC counts [number
/ μl] (black solid lines). The patients shown in the colored boxes were chosen as examples from the patients within the same color regions
shown in (c). b The distribution of the convergence value and recovery rate [1/month] of normal WBCs did not show a correlation in terms of
nilotinib response. The number indicated on each dot is patient #. c The distribution of the convergence value and reduction rate of CML cells
was apparently classified into several subsets: a set including most DMR patients (the blue region), non-DMR patients (the orange region), and
outlier patients (other color regions). d By choosing optimal threshold values, the distribution of DMR patients shown in (c) was perfectly
separated from that of non-DMR patients. Notably, this result was obtained by using all patient data points.
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Notably, our mathematical framework requires only IS and WBC
counts. Other laboratory findings were also obtained but were not
used in this paper. In addition, in this study, we analyzed the data
from the eligible 32 patients; the remaining 21 patients were
ineligible for analysis due to missing data of one or more CBC and/
or IS measurements. Furthermore, in this paper, moving to the
second-line therapy or not was not thematized.
This trial was approved by the institutional review boards of the

participating institutions and was conducted in accordance with
the ethical guidelines for medical and health research involving
human subjects. This study also adhered to the ethical principles
of the Declaration of Helsinki. All patients provided written
informed consent to participate in the study. This N-road study is
registered in University hospital Medical Information Network
(UMIN) system, and its ID is UMIN000008565 17.

Details of the EUTOS score, the ELTS score, and the criteria of
the current guideline
Here, we introduce details of the EUTOS score19, the ELTS score15,
and the ELN guidelines from 201312 and 202015 to be related to
our study. Both the EUTOS score19 and the ELTS score15 are the
prognostic scores to estimate the survival risk at baseline (i.e.,
before the TKI administration). The EUTOS score19 was proposed
as a score to predict CCyR and subsequently PFS. The EUTOS score
is calculated by the spleen size below costal margin and the
basophil ratio as follows:

EUTOS score :¼ 4 ´ spleen size below costal margin cmð Þ
þ 7 ´basophil ratio ð%Þ:

If the EUTOS score of a patient is >87, the patient is designated
as being in a “High risk” situation. The ELTS score was recently
adopted in the ELN guideline 202015 and proposed for long-term
survival considering leukemia-related death. At baseline, the ELTS
score is calculated by the age in completed years, the spleen size
below costal margin, the percentage of blasts in peripheral blood,

and the platelet count as follows:

ELTS score :¼ 0:0025 ´ age in completed years
10

� �3
þ 0:0615

´ spleen size below costal margin ðcmÞ
þ 0:1052 ´ blasts in peripheral blood ð%Þ
þ 0:4104 ´ platelet count

1000

� ��0:5
:

A CML patient is considered as “High risk” if the patient’s ELTS
score is >2.2185, “Low risk” if the score is <1.5680, and
“Intermediate risk” otherwise.
In the ELN guideline 201312, the condition of a patient is

classified into three stages according to the relationship among IS,
chromosome banding analysis (CBA) from bone marrow cells, FISH
of blood interphase cell nuclei, and the duration since the
beginning of TKI administration: The three stages are “Failure”,
“Warning”, and “Optimal” starting from the worst. At the 3-month
time point, the threshold value between “Warning” and “Optimal”
is set at 10% of IS. At the 6-month time point, the threshold value
between “Failure” and “Warning” is set at 10%, and that between
“Warning” and “Optimal” is at 1%. At the 12-month time point,
these threshold values are set at 1% and 0.1%, respectively. The
above information is illustrated in Fig. 1.
We should note that the ELN guideline 202015 changed the

criteria of the risk stage. However, the changes did not affect the
results obtained from our dataset. Here, we explain the change
related to our analysis and why it did not affect our result. One of
the changes related to our analysis is the “Failure” stage criteria at
the 3-month time point. The criteria of the guideline in 201312 do
not explicitly refer to IS values, but those in 202015 refer to IS
values. According to the guideline in 2020, a patient is confirmed
as the “Failure” stage if the IS value satisfies the following both
conditions: the IS value is >10% at the 3months; the same IS level
is confirmed again before the 6months. The N-road dataset has IS
values every 3 months. Therefore, no patient satisfied the second
condition. Thus, the changes in the ELN guideline 2020 did not
affect our results.

Our method
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Fig. 4 Our prediction method achieved favorable performance in comparison with the criteria of the current scoring systems and
guidelines. We summarize the performance for accuracy (blue bars), sensitivity (green bars), specificity (orange bars), and F1 scores (purple
bars) of the EUTOS score, the ELTS score, the ELN guideline for the cases of 3, 6, 12months, and our proposed method (presented with the
three rightmost labels). In the current study, “positive” and “negative” indicate DMR and non-DMR patients, respectively. In the cases of the
EUTOS scores, the ELTS scores, and the ELN guidelines, we decided to estimate a target patient as “positive”, if the patient was classified as
“Low risk” or “Optimal”. Under this estimation, we obtained accuracy, sensitivity (the true positive rate), and specificity (the true negative rate)
for each case. In our setting, the prediction of non-DMR patients is highly important, because the administrated TKI should be promptly
changed for them. Thus, our method was superior to the EUTOS score and the ELN guideline because our method showed higher specificity
than them. The ELTS score cannot distinguish between non-DMR and DMR patients. Notably, each of our three results was optimized in terms
of accuracy, sensitivity, and specificity through the training period. See also “DMR prediction criteria” and “Performance of DMR prediction” in
Methods.
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We tested the performance of the EUTOS score, the ELTS score,
and the ELN guideline for DMR prediction in our dataset as shown
in Fig. 4. It should be noted that the EUTOS score, the ELTS score,
and the guideline were not proposed for DMR prediction. In the
cases of the EUTOS score and the guideline with 3 months and
6months (labeled as “ELN guideline as of 3 months” and “ELN
guideline as of 6 months”), the results indicated high “sensitivity”
and low “specificity”; therefore, the prediction of non-DMR
patients based on them is very difficult. On the contrary, for the
ELN guideline as of 12months, specificity was higher at 57%. Thus,
for accurate prediction of non-DMR patients based on the
guideline the 12months duration is necessary. The ELTS score
has higher “specificity” than the ELN guideline as of 12months.
However, the “sensitivity” and “accuracy” are significantly low. This
result indicates that the ELTS score is not suitable for the
prediction of DMR patients (see Supplementary Figs. 3 and 5 for
the performance of the EUTOS score, the ELTS score, and the
guideline in the cases of MR4.0, MR4.5, and CMR). The
performance of the current guidelines, excluding the EUTOS score
and the ELTS score, was tested in 32 patients. Since spleen size
data, which are required to calculate the EUTOS and the ELTS
scores, were not available for two patients, the EUTOS and ELTS
scores were evaluated in the remaining 30 patients.

Dynamical model of CML cells
Here, we introduce the details of our dynamical model. We
modeled the dynamics within peripheral blood of CML patients.
Administration of an effective TKI results in the reduction of CML
cells (BCR-ABL1-positive WBC) and the increase of normal WBCs
(BCR-ABL1-negative WBCs) in peripheral blood. In this study, we
assumed that the number of CML cells and that of normal WBCs
exponentially change with time. We also assumed that these
numbers asymptotically converge to constant values. Then, the
time series of these numbers can be described as a couple of
linear differential equations as follows:

dxiðtÞ
dt ¼ aix�i � aixi tð Þ;

dyiðtÞ
dt ¼ biy�i � biyi tð Þ;

(1)

where xi tð Þ and yi tð Þ represent the number of normal WBCs and
that of CML cells for the ith patient at time t, respectively. Their
convergence values are denoted by x�i and y�i . The coefficients ai
and bi represent the recovery rate of normal WBCs and the
reduction rate of CML cells for the ith patient, respectively.
Examples of the dynamics generated by the model are shown in
Fig. 2e and f.

Relationship between measured values and CML dynamics
We explain the relationship between our model and measure-
ments from CML patients. We can convert two measurement
variables, the WBC count and IS, into two state variables in our
model, xi tð Þ and yi tð Þ, via the following procedure. The WBC count
clearly agrees with the sum of xi tð Þ and yi tð Þ. Then, the WBC count
for the ith patient at time t, denoted by WBCi tð Þ, is described as
follows:

WBCi tð Þ ¼ xi tð Þ þ yi tð Þ: (2)

The definition of IS is the ratio of the BCR-ABL1 gene (mRNA)
expression to the ABL1 gene (mRNA) expression: The BCR-ABL1
gene is expressed in CML cells, whereas the ABL1 gene is
expressed in both CML cells and normal WBCs. Here, we assume
that the total mRNA expression level is proportional to the
number of cells. We denote the ratio of the total ABL1 mRNA
expression level in normal WBCs to that in CML cells by c. Thus, IS
for the ith patient at time t, denoted by ISi tð Þ [%], is described as

follows:

ISi tð Þ ¼ max
yi tð Þ

cxi tð Þ þ yi tð Þ ´ kIS ´ 100; 0:0032
� �

; (3)

where kIS is the conversion factor of IS, and our dataset of the
N-road adopts kIS ¼ 1:2. Because the detection limit of IS
measurements in this dataset is 0.0032%, we set the lower bound
as 0.0032.
These Eqs. (2) and (3) can transform the WBC count WBCi tð Þ and

IS ISi tð Þ into xi tð Þ and yi tð Þ, respectively. However, the constant
ratio c is generally unknown. Thus, we estimated the ratio c and
the parameters of the CML dynamical model ai ; bi ; x�i ; and y�i from
the measurements. See Methods for the detailed methods for the
parameter estimation.
IS is an international standard value that is converted using a

laboratory-specific conversion factor (CF), which is calculated by
comparing the actual measured values of patients’ samples
between each laboratory and the international reference labora-
tory11. Bio Medical Laboratories (BML), which performed IS testing
in the N-road study, obtained CF= 1.2 from the Institute of
Medical and Veterinary Science (IMVS) in Adelaide, Australia,
which is the reference laboratory for international standards. We
adopted CF= 1.2 for the value of kIS in the Eq. (3).

Fitting IS time-series data with piecewise functions
In this part, we explain the method to estimate IS dynamics
parameters shown in Fig. 2c, d. To obtain the decreasing rate and
convergence value of IS, we defined a piecewise function with two
domains as follows:

fi tð Þ ¼ log ISi 0ð Þ þ log IS�i �log ISi 0ð Þð Þ
τi

´ t;
log IS�i ;

if 0 � t < τi;

if t � τi;

(
where 10IS

�
i is the IS convergence value, log IS�i � log ISi 0ð Þ� �

=τi is
the IS decreasing rate of the ith patient, and τi [month] is a
boundary between the two domains. Then we solve the following
optimization problem:

minimize
IS�i ;τi

X
t¼0;3;¼ ;24

fi tð Þ � log bISi tð Þ� �2
:

We used the Adam optimizer of the TensorFlow machine
learning library to solve the problem.

Parameter estimation of the CML dynamical model
Here, we introduce the optimization method to estimate the
parameters of Eqs, (1), (2), and (3). The measurement value of the
WBC count and that of IS for the ith patient at the time t are
denoted by dWBCi tð Þ and bISi tð Þ, respectively. Then, the optimiza-
tion problem is described as follows:

minimize
x�i ;y

�
i; min;ai ;bi ;c

X
i2P�

X
t¼0;3;¼ ;24

ln ISi tð Þ � ln bISi tð Þ� �2
þ lnWBCi tð Þ � ln dWBCi tð Þ
� �2

subject to x�min � x�i � x�max; y
�
i; min � y�i ; ai; bi; c > 0:

As for the fitting IS data with the piecewise function, we used
the Adam optimizer to solve this optimization problem. We
employed the method of Lagrange multipliers, and the constraint
isP
i2P�

R x�min � x�i
� �þ R �x�max þ x�i

� � þ R y�i;min � y�i
� �

þ R �aið Þ þ R �bið Þ
n o

¼ 0;

where R xð Þ :¼ maxðx; 0Þ is the ramp function. In our setting, the
Lagrange multiplier was set to 100. We set the lower bound x�min ¼
3100 ½count=μl� and the upper bound x�max ¼ 9800 ½count=μl� in
the constraint condition to maintain the convergence values of
normal WBCs within the normal levels of healthy humans.
Furthermore, we set the lower bound y�i;min in the constraint
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condition to keep ISi tð Þ beyond the detection limit of IS, i.e., y�i;min

is obtained by solving
y�i;min

cx�i þy�i;min
´ kIS ´ 100 ¼ 0:0032: A set of patient

indices is denoted by P� . In Fig. 3, the parameters are estimated by
utilizing all patient data, i.e., P� contains all patients
ði ¼ 1; ¼ ; 32Þ. In Fig. 4, we checked how our proposed method
outperformed the existing guidelines in terms of DMR patient
prediction using short time series. For this sake, we did leave-one-
out cross-validation, i.e., P� contained 31 patients used for the
training dataset, and the remaining one patient was the
prediction-target patient. We repeated this data splitting 32 times
employing subsequently all 32 patients as the prediction target
patient.

Parameter estimation for the prediction-target patient
Here, we introduce an approach to estimate parameters of the
prediction-target patient only from three data points. As we have
discussed in Fig. 3b–d, the classification is performed on the plane
of the CML cell convergence value y�i and its reduction rate bi .
Thus, we introduce a method to estimate the two parameters
from three data points, which are specifically denoted by ŷ�i and
b̂i . Notably, the gene expression ratio parameter c is already
estimated in the previous training step. Hereafter, we assume that
all ISs of the three data points are greater than the detection limit.
Otherwise, clearly according to the definition of DMR, the patient
must be a DMR patient. Under this assumption, from Eqs. (2) and
(3), the estimated number of CML cells at time t, denoted by ŷi tð Þ,
is obtained as follows:

ŷi tð Þ ¼ c ´ bISiðtÞ
100 ´ kIS þ c � 1ð Þ ´ bISi tð Þ dWBCi tð Þ:

Then, the estimated convergence value ŷ�i and the reduction
rate b̂i are obtained as follows:

ŷ�i ¼ ŷi 0ð Þŷi 2Δtð Þ � ŷi Δtð Þ2
ŷi 0ð Þ � 2ŷi Δtð Þ þ ŷi 2Δtð Þ ;

b̂i ¼ 1
Δt

ln
ŷi 0ð Þ � ŷi Δtð Þ
ŷi Δtð Þ � ŷi 2Δtð Þ

� �
;

where Δt represents the interval of measurement points. In our
dataset, the N-road, the data are measured every 3 months, i.e.,
Δt ¼ 3 ½month�, meaning that we utilized the data
f dWBCiðtÞ; bISiðtÞg for t ¼ 0; 3; and 6 ½months�. Based on the
estimated parameters ŷ�i and b̂i , our model predicts DMR or
non-DMR for the target patient. Note that, according to our DMR
definition, we regard a patient as DMR, if the patient’s IS value
satisfies the DMR definition (IS ≤ 0.0032% for MR4.5) for
t ¼ 0; 3; or 6 ½months�.

DMR prediction criteria
We introduce an approach to determine the criteria for DMR
prediction. As presented in Fig. 3d, DMR patients should show
large enough bi and small enough y�i . To estimate the parameters
ðŷ�i ; b̂iÞ, we define a parameter region fðŷ�i ; b̂iÞjŷ�i � Y and b̂i � Bg
for the criteria. If the estimated parameters ðŷ�i ; b̂iÞ are included in
this region, the patient is predicted to be a DMR patient. These
threshold values Y and B are determined by using the training
data, i.e., patients whose ID are included in a set P�. We explored
the optimal Y and B that maximize the accuracy, sensitivity, or
specificity. We used the exploration intervals 0.1 and 0.05 for Y and
B, respectively. These indices are the common concept in the
classification context as follows. The accuracy is the ratio of
patients who are successfully predicted. The sensitivity, the true
positive rate, is the ratio of DMR patients who are successfully
predicted. The specificity, the true negative rate, is the ratio of
non-DMR patients who are successfully predicted. We note that

“positive” (“negative”) indicates “prediction as DMR” (“prediction
as non-DMR”). In this sense, “true positive” (“false positive”)
indicates that the prediction as DMR is “correct” (“incorrect”).
As described above, if a patient satisfies the DMR definition

within its initial three time points, the patient is considered to be a
DMR patient. In Fig. 4 and Supplementary Fig. 5, the numbers of
such patients were 15 for MR4.0, 10 for MR4.5, and 2 for CMR. All
these patients were estimated to be “Optimal” in the case of the
ELN guidelines12,15. For MR4.0 and MR4.5, only one patient of
them was estimated to be “High risk” in the case of the EUTOS
score, and the others were estimated to be “Low risk”. For CMR, all
the patients were estimated to be “Low risk” in the case of the
EUTOS score. In the case of the ELTS score, only one of the
patients for MR4.0 and MR4.5 was estimated to be “Low risk” and
the others were estimated to be “High risk” or “Intermediate risk”,
and all of the patients for CMR were estimated to be “Intermediate
risk”.
Here, for each accuracy, sensitivity, and specificity, we remark

how to choose the optimal threshold ðY; BÞ. In the case of
maximizing accuracy, we obtained the multiple possible sets of
optimized ðY; BÞ that maximize accuracy. Then, from the possible
sets, we selected the set ðY; BÞ closest to the average values of the
possible sets. In the case of maximizing sensitivity, we obtained
the multiple possible sets Y; Bð Þ which achieve the largest
sensitivity. However, under this condition of maximizing sensitiv-
ity, we can freely magnify the parameter region corresponding to
DMR. To keep the area of the region reasonable, from the above
possible sets, we again selected parameter sets that achieve the
maximal true negative rate. Finally, we selected the largest Y and
the smallest B among the sets that had passed the both selections
as the optimal set. In the case of maximizing specificity, similar to
the case of sensitivity, we obtained the multiple possible sets
Y; Bð Þ which achieve the largest specificity. Then, from the possible
sets, we again selected parameter sets that achieve the maximal
true positive rate. Finally, we selected the smallest Y and the
largest B among them as the optimal set.

Performance of DMR prediction
Through the above framework, by maximizing the accuracy,
sensitivity, or specificity, we obtained three prediction results as
shown in Fig. 4 (for MR4.5) and Supplementary Fig. 5 (for MR4.0,
MR4.5, and CMR). We used accuracy, sensitivity, specificity, and
F1 score to evaluate the classification performance of the
prediction results. F1 score is defined as F1 score :¼ 2 TP

2 TPþFPþFN,
where TP, FP, and FN indicate the number of true positive, false
positive, and false negative cases, respectively.
We obtained the classification performances as follows. As we

employed the leave-one-out cross-validation, the dataset with 32
patients is divided into two groups, one is the training set
composed of 31 patients, and the other is the validation dataset
composed of one patient. For the test patient, we set the
correctness score as 1 or 0 if the DMR prediction successes or fails,
respectively. After the cross-validation, i.e., the 32 times of
prediction test, we obtain the classification performance as an
average of the correctness scores among 32 patients.
Our results with specificity maximization provided good

performance especially in terms of specificity. Thus, this method
can successfully predict non-DMR patients from short-term
measurements. In future studies analyzing a larger dataset, we
plan to employ machine learning methods for the optimization of
our framework. The prediction of characteristic features of CML
patients may also represent a future research avenue. In Fig. 3c,
one can find that some patients were outliers, i.e., they were
separated from most DMR and most non-DMR patients. Further
clinical analysis on these outliers may provide new characteristic
features of CML patients. As an example of related works, M. Horn
et al. showed that patient classification on parameter space
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predicted relapse23. Thus, prediction of relapse may be another
possible application of our mathematical framework.
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