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Uncovering cancer gene regulation by accurate regulatory
network inference from uninformative data
Deniz Seçilmiş 1, Thomas Hillerton1, Daniel Morgan 1, Andreas Tjärnberg 2, Sven Nelander3, Torbjörn E. M. Nordling 4 and
Erik L. L. Sonnhammer 1✉

The interactions among the components of a living cell that constitute the gene regulatory network (GRN) can be inferred from
perturbation-based gene expression data. Such networks are useful for providing mechanistic insights of a biological system. In
order to explore the feasibility and quality of GRN inference at a large scale, we used the L1000 data where ~1000 genes have been
perturbed and their expression levels have been quantified in 9 cancer cell lines. We found that these datasets have a very low
signal-to-noise ratio (SNR) level causing them to be too uninformative to infer accurate GRNs. We developed a gene reduction
pipeline in which we eliminate uninformative genes from the system using a selection criterion based on SNR, until reaching an
informative subset. The results show that our pipeline can identify an informative subset in an overall uninformative dataset,
allowing inference of accurate subset GRNs. The accurate GRNs were functionally characterized and potential novel cancer-related
regulatory interactions were identified.
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INTRODUCTION
Living organisms are orchestrated by the biochemical reactions
that occur as a result of the interactions between biomolecules.
For that reason, understanding the biochemical, physiological, and
pathological processes from a gene regulation perspective is of
importance. These processes in a living organism on a gene level
can be represented via a gene regulatory network (GRN) that can
be inferred from perturbation-based gene expression data, e.g.,
where each gene in the system is knocked down in a separate
experiment. Such GRNs are useful for providing mechanistic
insights of a biological system. Accurately performed inference on
cancer data might propose alternative treatments since novel
gene regulatory links carry the potential to identify new drug
targets.
Several GRN inference methods have been proposed including

least squares, LASSO1,2, Robust Network Inference algorithm
(RNI)3, Context Likelihood of Relatedness (CLR)4, Genie35, and
Inferelator6. However, the inference of the mentioned GRNs from
the biological data has severe limitations, among which the most
crucial one is noise of the dataset which negatively affects the
performance of any inference method. It has been shown that
even the best performing inference methods tend to exhibit very
poor accuracy if the signal-to-noise ratio (SNR) is low7, and that
real datasets have low SNR8. Previous work has been done in order
to propose solutions for this problem in GRN inference, mostly
exploiting stability during bootstrapping as a means to reduce the
effect of noise. For instance, a nested bootstrapping algorithm has
been proposed to control the false discovery rate (FDR) in GRN
inference of noisy datasets, in order to improve the accuracy of
the applied method8. However, these solutions are applied
directly to inferred GRNs of noisy datasets, and if the dataset as
a whole is not informative then the improvement may be limited.
In this study, in an attempt to overcome the challenge of

experimental noise, a subset-selection pipeline was developed

where the main aim is to improve the SNR of the dataset by
permanently removing the least informative genes and their
experiments from the system until reaching an informative subset.
The novelty of this study lies in the collection of the most
informative genes in a dataset before the GRN inference is
performed, and reaching a subset allowing the inference of the
accurate GRNs.

RESULTS
Previous studies have shown that accurate GRN inference relies
mainly on the SNR of the datasets7–10. For this reason we
developed a subset-selection pipeline to improve the SNR level of
the system.
In order to identify the genes lowering the system’s SNR level,

the pipeline temporarily removes each gene from the dataset, and
the SNR of the remaining subset is measured followed by the
return of the removed gene into the dataset. After this is done for
all genes, the gene whose removal caused the largest SNR gain is
permanently removed from the system. This procedure is
repeated for each reduced subset until only two genes remain
(Fig. 1a, b).
The reduction algorithm was applied to data from generated

true GRNs of size 250–1000 genes from GeneSPIDER7, and a 200-
gene GRN and dataset from GeneNetWeaver (GNW)11 for
assessing the performance of the pipeline. The genes were also
removed randomly for comparison. Figure 2 exhibits the
performances of the reduction algorithm and of random removal
in terms of the area under the receiver operating characteristic
and precision-recall curves (AUROC and AUPR, respectively) for the
size of 750 genes. Accuracy results from other sizes are displayed
in Supplementary Figs. 1–3. Figure 3 shows the performance of
the reduction algorithm on the GNW data in comparison with
random removal. Each AUROC and AUPR point in Figs 2 and 3
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were obtained by GRN inference with least squares with cut-off
(LSCO)12 from the reduced dataset, as described in the “GRN
inference methods” subheading in the Methods section.
The reduction algorithm improves accuracy and SNR consider-

ably better than random selection. The reason that random subset
selection has a positive effect on these measures is that smaller
subsets have fewer degrees of freedom and are therefore easier to
predict and have higher SNR. To assess the statistical significance
of the difference between the performances of the reduction
algorithm and random removal, the paired Wilcoxon test was
applied to the SNR, AUROC, and AUPR levels obtained from both

removal strategies. The use of a nonparametric test was due to not
meeting the normality assumption in any of the variables
according to the Shapiro–Wilk test. For all measures from all
dataset sizes except one (AUPR of 250 genes), the reduction
algorithm was statistically significantly different (p < 3.1e−05)
from random removal (Supplementary Table 1).
When starting with 750 genes in the GeneSPIDER data, AUROC

reached a plateau at almost the perfect level and AUPR made a
sharp increase when ~200 genes remained in the dataset (Fig. 2).
500- and 1000-gene datasets followed a similar trend for AUROC
in terms of reaching a plateau, and a constant increase until the

Fig. 1 Workflow of the subset-selection algorithm. a The subset-selection algorithm, where each gene is removed together with its
knockdown experiments, and SNR of the remaining dataset is measured. The gene is then put back and the procedure is repeated for all
genes in the dataset. b The inner part of the algorithm showing the changes in SNR after each removal and the detection of the gene whose
removal increases SNR the most and therefore will be permanently removed. c The simulation step applied for the calculation of the expected
accuracy of the GRN inference, where Atrue refers to the true GRN that can either be fully synthetic or estimated from the real data, Ysim
denotes the generated expression matrix from Atrue, Ainferred is the inferred GRN, while the accuracy was evaluated in terms of the area under
the ROC and precision-recall curves.

Fig. 2 Performance of the subset-selection algorithm on the 750-
gene GeneSPIDER synthetic dataset. The performance in terms of
AUROC and AUPR of the subset-selection algorithm is shown,
compared to the performance of random gene removal. The x-axis
represents the remaining subset size.

Fig. 3 Performance of the gene reduction algorithm on the 200-
gene GeneNetWeaver synthetic dataset. The performance in terms
of AUROC and AUPR of the subset-selection algorithm is shown,
compared to the performance of random gene removal. The x-axis
represents the remaining subset size.
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very end was observed for the AUPR values with the 500-gene
dataset performing considerably better than the 100-gene dataset
(Supplementary Figs. 2 and 3). On the other hand, for the 250-
gene dataset a constant increase in both AUROC and AUPR values
was observed, which is probably due to the small starting size
(Supplementary Fig. 1).
For the 200-gene GNW data, a marked increase in both AUROC

and AUPR values occurred when ~65 genes remained, and the
AUROC level reached almost 1 when ~30 genes remained (Fig. 3).
We also investigated a simpler approach of selecting genes

based on their entropy (Supplementary Figs 51–54). For all
starting sizes, this method did not outperform random selection in
terms of AUROC. For starting sizes 500 and 750 genes it also did
not improve compared to random selection in AUPR, but for 250
and 1000 genes some improvement was observed, yet at modest
AUPR levels. In conclusion, the entropy-based subset-selection
method generally performed poorly and cannot be
recommended.
In the analyses and inferences of the selected L1000 datasets,

the reduction pipeline was run on the datasets and the SNR level
of subsets of each cell line was measured. Simulation and
benchmarking of expected inference accuracy at different SNR
levels using in silico data were performed. Finally, GRNs were
inferred from the most informative subset of each cell line and
functional analysis and classification were made for these accurate
subset GRNs.

Benchmarking the reduction pipeline
The subset-selection pipeline was applied to all L1000 cell lines. It
progressively removes the gene whose exclusion improves SNR
the most, continually increasing the SNR of the dataset. In Fig. 4,
the gradual increase of the SNR levels reflecting the informative-
ness of the remaining subsets is shown.
In order to determine the most suitable inference method for

network generation and GRN inference, both LSCO and LASSO
were benchmarked on different subset sizes and SNR levels. The
results from the A375 cell line are shown in Fig. 5, and from all cell
lines in Supplementary Figs 22–39.
It can be observed from the benchmarking of the two inference

methods on the subsets of A375 cell line (Fig. 5) that a radical
increase in both AUROC and AUPR levels starts at the 50-gene
subset, and that LSCO generally outperforms LASSO at both true
GRN generation and GRN inference. Therefore, the LSCO method
was chosen for both the true GRN generation and the GRN
inference for its high accuracy and computational efficiency.
The accuracy for subsets using LSCO sharply improves at

around 50 genes (Fig. 6). For this reason, the inference of
the “accurate GRNs” was performed on the 50-gene subsets of all
cell lines.

Inference of accurate subset GRNs from L1000 subsets
After establishing that the 50 most informative genes result in
accurate GRNs, we next inferred such GRNs by applying LSCO to

Fig. 4 The SNR level of SNR-enriched subsets of the nine selected
L1000 cell lines. The x-axis represents the subset size, the y-axis
denotes the SNR, and each curve represents a cell line.

a.

b.

Fig. 5 Evaluation of methods for benchmarking GRN inference
accuracy with simulation. The evaluation was made for the subsets
of the A375 cell line in terms of AUROC (a) and AUPR (b). The legend
shows the algorithm used to generate the true GRN for bench-
marking, and the algorithm used to infer the GRNs from the
simulated data as the first and second labels. For example, ‘LSCO &
LASSO’denotes that the true GRN was generated with LSCO and the
GRNs were inferred with LASSO.

a.

b.

Fig. 6 Expected accuracy of subset GRNs. The accuracy was
derived from simulations using LSCO and measured as AUROC (a)
and AUPR (b) on the nine L1000 cell lines. The x-axis represents the
subset size, the y-axis the AUROC and AUPR values, and each curve
represents a cell line.
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these subsets in each of nine L1000 cell lines. An average sparsity
of about 3–5 links per gene is considered biologically plausi-
ble3,13,14. In order to get close to this, we selected GRNs with a
sparsity ranging from 2 to 5 links per gene. Among these, the one
whose number of links matches best with the number from the
simulation resulting in the most optimal accuracy was selected,
and called “the accurate GRN”. The accurate subset GRN of the
HT29 cell line is shown in Fig. 7, and the accurate subset GRNs of
all nine L1000 cancer cell lines can be found in Supplementary
Figs 40–48.
The SDHB gene is a tumor suppressor gene, and has previously

been shown to be downregulated in colorectal cancer15. However,
to our knowledge, possible activators for treatment have not yet
been proposed. In our inferred subset GRN for the HT29 cell line
(Fig. 7), several genes including DNAJB12, TOMM22, TMEM97,
S100A4, RABGGTA, and BLCAP suppress SDHB, suggesting
possible mechanisms of SDHB suppression. A database search of
these genes was performed in the TRRUST16 and RegNetwork17

databases but none of these genes was found to regulate SDHB.
We also searched the network databases FunCoup18 (links with
>0.80 confidence), Pathway Commons19, and GeneMania20 and
found support for a link between SDHB and TOMM22 in both
FunCoup (confidence 0.997) and GeneMania, and between SDHB
and DNAJB12 in GeneMania. We therefore propose that the
inferred regulators of SDHB could be valid potential regulatory
targets for colorectal cancer treatment.
The inferred subset GRN from the PC3 prostate cancer cell line

(Supplementary Fig. 47) suggests several genes as suppressors of
SDHB, such as PNKB, PWP1, PNP, HADH, HTATSF1, and BAZ1B,
among which PWP1, HTATSF1, and BAZ1B are transcription
regulators. BAZB1 is a kinase, and HTATSF1 has RNA-binding
activity. SRRM1 activates SDHB in the subset GRN. Again, these
relations are not present in the TRRUST and RegNetwork
databases. We, however, found that SDHB is linked to PNP and
HADH in the FunCoup (confidence= 0.827 and 0.999) and
GeneMania networks. The relation between SDHB and HADH also
appears in Pathway Commons, and GeneMania links SDHB to
SRRM1. These network and pathway connections provide support
for the validity of these novel regulatory mechanisms for prostate
cancer treatment.

The inferred subset GRN from the MCF7 breast cancer cell line
(Supplementary Fig. 46) highlights that the GM2A and PRKACA
genes are activated and suppressed by several genes. Over-
expression of GM2A in breast cancer has previously been shown21,
where one of the investigated cell lines was MCF7. In the inferred
GRN, GM2A is activated by NOL3, AKT1, KIAA0196, and ACOT9,
and suppressed by LIPA, PWP1, JMJD6, and CCDC86, among which
PWP1 and JMJD6 are transcription regulators. The JMJD6 protein
has RNA binding and histone demethylase activity. Although
these interactions with GM2A are not present in the TRRUST and
RegNetwork databases, indirect evidence of their validity was
found in RegNetwork where GM2A and its identified regulator
NOL3 are regulated by two third-party genes, TFAP2A (q= 0.0007)
that is a DNA-binding transcription regulator and an enzyme, and
JUN (q= 0.0006), a DNA-binding transcription regulator and
oncogene. The likelihood of finding a common regulator by
chance was calculated as the square of the total number of targets
of each common regulator divided by the total number of protein-
coding genes, followed by Bonferroni correction of these
probabilities and excluding cases above 0.05. In addition to this,
the presence of a link between GM2A and LIPA was found in
GeneMania. This adds support to the validity of our identified
interactions as potential mechanisms in breast cancer.
Another example is the PRKACA gene, an oncogene that has

been linked to breast cancer22. The inferred GRN indicates that it is
suppressed by NUP85 and IST1H2B, and activated by CHAC1,
PWP1, PP2R5E, NOL3, and PNP, of which PWP1, as stated above, is
a transcription regulator. Searching the TRRUST and RegNetwork
databases did not verify any of our predicted PRKACA interactions,
yet the connection between PRKACA and NOL3 was indirectly
supported in RegNetwork by a third gene, E2F1, a DNA-binding
transcription regulator, that regulates both (q= 0.02). Further
evidence was found in that FunCoup (confidence 0.991), Pathway
Commons, and GeneMania contain a link between PRKACA and
NUP85. These observations support the validity of our proposed
regulatory mechanisms for breast cancer treatment.

Functional analysis of the accurate subset GRNs
In order to characterize and validate the accurate subset GRNs, we
analyzed them for pathway enrichment, overlap with a functional
association network database, and protein class.
The pathway enrichment analysis in this study was performed

via PathwAX wherein the genes of the accurate subnetworks were
tested for significant association to KEGG pathways23 with
network crosstalk enrichment analysis. The results are in
Supplementary Table 6. We note that cancer-related pathways
such as ‘cell cycle’, ‘Oxidative phosphorylation’, and ‘Protein
processing’ were significantly enriched in several of the cell lines.
Among other recurring pathways we note ‘Alzheimer’s disease’,
‘Parkinson’s disease’, and ‘Huntington’s disease’, which have been
linked mechanistically to cancer24–26.
The pathway ‘Peroxisome’ was significantly enriched for the

subset GRN of the prostate cancer cell line PC3. The peroxisome
has previously been linked to prostate cancer27–30, and PC3 was
one of the investigated cell lines in the study by Mueller et al.27.
The subset is thus highly relevant for the connection between
prostate cancer and the peroxisome. CAT, a member of
Peroxisome pathway in the antioxidant system, is in the subset
GRN activated by CEBPZ, TMCO1, CLASRP, and PPP2R3A. Of these,
CEBPZ is a transcriptional regulator, yet its regulatory effect on the
expression of CAT is not known.
The inferred GRNs were further compared to the FunCoup

functional association network database18 (Table 1). In general,
relatively few of the inferred regulatory links were found in
FunCoup, which is perhaps not surprising given that FunCoup
contains undirected functional links that do not represent
regulatory interactions. However, the overlap was significant

Fig. 7 The accurate GRN of the HT29 colon cancer cell line. The
nodes demonstrate the informative genes of this L1000 cell line, and
blue and red edges represent the regulatory interactions which are
either activation or suppression, respectively.
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(p < 0.05) in five cell lines with a hypergeometric test. One of
these, MCF7, matched no significant pathways above, and PC3
only one pathway, indicating that these GRNs may represent
unknown mechanisms. In order to investigate whether the
significant match was due to the success of the subset-selection
algorithm identifying an informative subset for accurate GRN
inference or not, we also inferred GRNs from the full-size datasets
of the L1000 cell lines and compared the inferred GRNs with a
sparsity of ~3 links per node on average to the related FunCoup
networks and found that no overlap was significant (Supplemen-
tary Table 5).
Protein class analyses were performed for the genes of the

selected subsets in terms of the activity of their proteins. In order
to achieve this, the human proteome was downloaded from
UniProt31, including the keywords transcription regulation, trans-
membrane, DNA binding, kinase, metabolism, RNA-binding,
enzyme (from molecular function), and signaling. Additional data
were downloaded from COSMIC32 from which oncogenes and
tumor suppressor genes were obtained. The genes belonging to
each selected cell line were assigned a protein class according to
this scheme (Fig. 8).
Most of these classes tend to be enriched in L1000 gene sets

relative to UniProt, particularly kinase, metabolism, enzyme,
oncogene, and tumor suppressor gene. Mainly transmembrane
and DNA binding tend to be depleted. The highest enrichments in
subsets relative to their original L1000 set were observed for A375
(kinase, enzyme, RNA binding), MCF7 (signaling, RNA binding,
metabolism), PC3 (transcription regulation, signaling, RNA bind-
ing), and HCC515 (transcription regulation). These cell lines thus
underwent a further enrichment of regulatory functions during
the subset selection. A few cases of further depletion were also
observed, for instance of DNA binding in A375 and A549.

Knockdown effect on the target
Since a successful knockdown of the target gene is important, the
knockdown effects on the targets were investigated and are
shown in Fig. 9. Volcano plots of the knockdown effects are
provided in the supplementary material (Supplementary Figs.
4–21). Significance analyses of the targeted genes show that a
majority of the targets were successfully downregulated. However,
in addition to the nonsignificant changes in their expressions, a
portion of the targets was observed to be significantly upregu-
lated. In A375, A549, HCC515, HEPG2, and HT29, 6–10% of the
genes were significantly upregulated, while this proportion
increases up to 20–26% in HA1E, MCF7, PC3, and VCAP cell lines.

DISCUSSION
Uninformative data have previously been shown to negatively
affect the performance of GRN inference methods, leading to poor
accuracy. In order to overcome this problem, a progressive subset-
selection method is proposed, removing the genes that are the
most affected by noise. This approach proved to capture the most
informative and therefore the most accurately inferrable subsets,
which can be considered a major advance in the GRN inference
area since the high noise problem is a general issue for all real
datasets.
The subset-selection algorithm was validated by synthetic data

and true GRNs. The performance of the algorithm was shown to
significantly outperform random removal of genes. We applied
the algorithm to L1000 datasets of nine selected cancer cell lines
and observed that we could increase SNR to a level that permits
accurate GRN inference.
We examined whether the experimental L1000 perturbations

were successful via nonparametric significance analysis of the
targeted genes’ expression and visualized them by volcano plots.
A majority of the target genes were significantly knocked down
compared to their controls. However, also many significantly
upregulated genes were observed, as well as nonsignificantly up-
and downregulated ones. One possible reason for this from the

Table 1. The comparison of the accurate subset GRN of each cell line
to the related FunCoup network of the same genes.

Cell line Overlap Links in
FunCoup

Links in the
inferred GRN

p-Value

A375 6 36 84 0.001*

A549 4 106 130 0.83

HA1E 6 90 96 0.14

HCC515 6 74 104 0.09

HEPG2 7 33 221 0.02*

HT29 13 97 197 0.04*

MCF7 19 79 125 5e−09*

PC3 10 77 91 0.0004*

VCAP 10 88 170 0.08

* Marks statistical significance with p < 0.05.

Fig. 8 Protein class enrichment of each cell line and their 50-gene
subsets. The x-axis shows the cell line, and the y-axis shows the class
enrichment relative to UniProt fractions as log(ratio).

Fig. 9 Knockdown effect on target. Significant and nonsignificant
up- and downregulation of the shRNA target genes in the studied
L1000 cell lines.
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biological perspective is that these genes are highly important for
the system, and their expression is immediately restored by
feedback mechanisms in the cell. If the reaction is very strong, this
could lead to temporal overcompensation and an observed
increase in expression. This could be revealed by a time series of
measurements, but unfortunately the L1000 shRNA perturbations
are limited to the 96 h time point.
In the benchmarking of the real data, using in silico datasets

where the properties of the real datasets are mimicked, a
significant improvement in LSCO’s inference accuracy in terms
of AUROC and AUPR was observed when increasing the SNR level
of the dataset as the subset becomes smaller. The improvement
was stronger and came earlier for LSCO compared to LASSO,
especially when used for inferring a true GRN for simulations.
Given this variability, it is possible that combinations of other
inference algorithms might perform even better.
The benchmarking of different subset sizes in different cell lines

with LSCO indicated that in order to infer accurate GRNs, the
minimum SNR level of the dataset should be at least ~0.05. For the
L1000 datasets, this means losing more than 90% of the initial
data with the proposed subset-selection algorithm. However, in a
situation where the majority of the genes have noisy measure-
ments, it becomes unbeneficial to include them in the system. In
GRN inference where the aim is to reliably discover regulatory
interactions, including noisy data that lowers the informativeness
of the dataset is unacceptable. On the other hand, the possible
removal of important genes such as oncogenes may obscure their
potential interactions with other genes, and cause their effect in
cancer to remain unknown. In an attempt to minimize this risk,
such genes can be kept. However, then more genes must be
sacrificed in order to achieve the desired SNR for the inference to
be accurate. This would result in a smaller subset, which may be a
greater drawback.
The time complexity of the subset-selection algorithm is in

principle O(n2) for n genes. However, due to the currently used
SNR calculation at each step this is further increased to O(n3)
because it relies on singular value decomposition. This time
complexity means that while it is fast up to a few hundred genes,
for datasets of around 1000 genes several days of computation
might be needed to complete the subset selection.
One result of this study is accurate subset GRNs for nine cancer

cell lines. These include a large number of new regulatory
interactions among transcriptional regulators and oncogenes, and
suggest new potential therapeutic targets. We have focussed on a
few cases of cancer relevance that would deserve experimental
follow-up and validation.

METHODS
Calculation of the SNR
The smallest value from the singular value decomposition of the gene
expression matrix is considered to be the signal, and the variance
multiplied by a degrees-of-freedom-dependent chi-square constant is
considered to be the noise in this study. The ratio between the signal and
noise is shown in Eq. (1).

SNR � σN Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ�2 1� α;NMð Þλp (1)

where σN(Y) denotes the smallest value from the singular values of the
expression matrix Y,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ�2 1� α;NMð Þp

the inverse chi-square distribution
with 1− α confidence level and NM degrees of freedom (N genes, M
samples), and λ the variance of the noise.

Datasets
The pipeline was applied to selected datasets from the LINCS L1000 data33.
However, for the calculation of the expected accuracy of the inference and
the validation of the existing links in the corresponding GRN, in silico
networks and perturbation datasets with properties similar to the real

datasets were generated ranging from the full size of the dataset to smaller
but more informative subset sizes. Supplementary Figs 22–39 show all the
benchmark results using either LSCO or LASSO for inference of a true GRN
to generate simulated data as well as inference of GRNs from simulated
data, in terms of AUROC and AUPR measurements for the subsets of the
nine L1000 cell lines.

Synthetic GRNs and datasets
In this study, we used two different in silico GRN and data generation tools,
namely GeneSPIDER7, and GeneNetWeaver11 (GNW). In the synthetic data,
the most important property is considered to be the SNR due to the basis
of the proposed subset-selection algorithm. For this reason, we set the SNR
levels of the GeneSPIDER datasets to 0.001 in accordance with the SNR
levels of the L1000 datasets (Table 2). For the GeneSPIDER datasets, this
was possible as the tool itself allows this property to be set by the user.
However, in GNW, this was not an option. On the other hand, by using
their default settings for the noise parameters (0.05 coefficient for
stochastic, and 0.025 standard deviation for the Gaussian noise), we were
able to obtain a final dataset with 0.0079 SNR, which is reasonably close to
the SNR levels of the L1000 and GeneSPIDER datasets.
In order to explore the effectiveness of the subset-selection algorithm

for various SNR values, we also generated two different datasets from the
250-gene GeneSPIDER network with SNR of 0.01 and 0.0001 which are 10-
times higher and lower, respectively, than the biologically realistic SNR
values (~10−3) (Table 2). The accuracy of the subset selection on these
datasets can be found in Supplementary Figs 49–50.

Generation via GeneSPIDER
To assess the performance accuracy of the algorithm, synthetic GRNs in
various sizes (250, 500, 750, and 1000 gene), and datasets from these GRNs
with three replicates per gene and SNR of 0.001 were generated with the
GeneSPIDER Network.m and Dataset.m tools. The true GRNs were
generated in scale-free topology allowing three links per gene on average.
Random Gaussian noise was generated with a standard deviation
calculated specifically to meet the requirement for the desired SNR level,
and then added to the noise-free gene expression matrix generated from
the true GRN (Eqs. 1–2).
For real data, “true GRNs” were generated by first inferring GRNs at

several sparsities with the least-squares cut-off (LSCO) method, and then
selecting the most sparse GRN with at least 2 links per node on average.
The preference of this method was made based on its computational
efficiency on large scale datasets and competitive accuracy shown in the
small benchmark whose results are provided in Fig. 5 for A375 cell line and
in the supplementary material for all nine cell lines (Supplementary Figs.
22–39). Second, these inferred networks were used as the true GRNs for
the generation of the in silico datasets, which was performed by involving
the perturbation design matrices (P) of the real datasets in order to directly
reflect the number of replicates into the simulation, as well as adding
random noise calculated based on the SNR levels of each dataset and their
subsets.

Table 2. The main properties of the L1000 datasets that are used in
the subset-selection pipeline.

Cell line Tissue Size SNR

A375 Skin 649 × 1879 0.0020

A549 Lung 744 × 2016 0.0017

HA1E Embryonic kidney 716 × 2092 0.0017

HCC515 Lung 803 × 2390 0.0010

HEPG2 Liver 650 × 2129 0.0030

HT29 Colon 746 × 2901 0.0012

MFC7 Breast 512 × 1282 0.0030

PC3 Prostate 697 × 1670 0.0023

VCAP Prostate 664 × 1717 0.0021

The sizes of the datasets are represented by (genes × experiments).
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The linear model for the expression matrix generation is shown in Eq. (2).

YGenerated ¼ � ATrueð Þ�1 ´ PReal þ EGenerated (2)

In Eq. (2), ATrue is the network matrix which is inferred from the real
dataset with the LSCO method and then stabilized. PReal indicates the
original perturbation matrix of the real dataset or its subset, EGenerated the
random noise matrix generated based on the SNR level of the real dataset
that the simulations are performed for, and YGenerated the generated
expression matrix. YGenerated and PReal are used to infer a GRN, which is then
compared to ATrue for calculating the expected accuracy of the inference of
the real dataset. The simulation procedure is visualized in Fig. 1c.

Generation via GeneNetWeaver
To assess the performance of the proposed subset-selection pipeline on
another synthetic data coming from a different tool, an additional true
GRN of 200 genes was extracted from the E. coli network that is available in
GNW, and three datasets from this “true” GRN were generated that were
afterward used as the biological replicates in one merged dataset of size
200-by-600. The 200-gene network was extracted from the full-size E. coli
network by requesting at least 100 regulators from random vertices, and
neighbor selection was made by the GNW setting “random among top
50%”. A kinetic model was then generated by keeping all autoregulators,
which was used to generate datasets. Three knockdown datasets from this
kinetic model were generated from a combination of ordinary differential
equations and stochastic models. We avoided the normalization step at
this moment, and saved it for the merged dataset. We further calculated
the log2 fold changes for each dataset as the logarithm base 2 of the ratio
between each gene’s expression and the control. Some of the control
values happened to be zeros, which would cause infinite values for the fold
changes as matlab assigns these for the division by zero. To avoid infinite
values in the fold changes, we added an arbitrary value of 0.001 to all
controls. We then set the infinite log2 fold change values to zeros as
matlab assigns infinite values to log2(0). After this was done for all three
datasets, we merged them into one single data matrix, and then
normalized each gene over its three replicates by subtracting the mean
and dividing by the standard deviation.

Reduction of true GRN during subset selection
For synthetic data, the true GRN of the dataset is reduced iteratively in
accordance with the removal of the same gene from the dataset. However,
due to the lack of a true GRN in the case of real data, a different approach
is applied here. At regular subset intervals (N= 50), a simulation step is
included in this pipeline which generates a subset GRN and data with the
same SNR as the real data subset, which is used to estimate the expected
accuracy of a GRN inferred for the subset (Fig. 1c).

L1000 datasets
L1000 is a collection of perturbation datasets produced by the namesake
platform, including shRNA (short-hairpin RNA), small molecule and protein
perturbations performed on 77 cancer cell lines, gathered from the
measurements on various time points such as 6, 12, 24, 72, 96, 120, and
144 h. The Q2Norm Level 3 L1000 data were downloaded from https://
www.ncbi.nlm.nih.gov/geo/ with the accession GSE92742 including all the
mentioned types of perturbations, time points, biological and technical
replicates of the measured and inferred genes. Level 3 was used because it
is the only provided normalized data that does not collapse replicates.
Only directly measured expression levels were used, not inferred ones. In
this study, only the shRNA perturbations collected at the 96 h time point in
eight cell lines (A375, A549, HA1E, HCC515, HEPG2, HT29, MCF7, and PC3)
and 120 h of one cell line (VCAP) were considered for inference. The
inconsistent number of biological replicates per gene is not considered a
problem, hence all biological replicates were kept. In each biological
replicate, usually multiple shRNAs are used that target different parts of the
same gene in order to mitigate off-target effects. However, sometimes
different biological replicates for the same target gene use different sets of
shRNAs. To avoid biases we only kept those common among all biological
replicates of one target gene.
Fold changes were calculated for GRN inference using the included

empty vector controls per cell line. Table 2 describes the dimensions in
each of the nine selected cell lines (genes × experiments) as well as their
SNR level.

Performance evaluation
The performance of the subset-selection pipeline was calculated from
synthetic true GRNs and datasets. The pipeline was applied by removing
the genes not only from the dataset but also from the true GRN to
calculate the accuracy of inferred GRNs after every removal and for further
assessment. As a baseline for comparison, genes were also removed
randomly from the true GRNs and datasets. This enabled the calculation of
the statistical significance of the proposed pipeline, which are shown in
Supplementary Table 1. To compare SNR-based subset selection to a
procedure based on variation, we also applied entropy-based removal on
the synthetic data where the gene entropy was calculated as in Zambelli
et al.34 (Supplementary Figs. 51–54). The limitation of not having known
GRNs for the L1000 datasets is overcome by means of synthetic data
generated from the “true GRNs” that are generated as described above.
Inferred GRNs based on these in silico datasets can then be benchmarked
against the “true GRNs”. GRN inference can be performed via a variety of
perturbation-based inference methods such as LSCO or LASSO. Both of
these methods were applied to each subset.
The decision of the best inference method in each case was followed by

the detection of the optimal GRN sparsity providing the best accuracy
among all the inferred ones ranging from full to empty. In this case, rather
than the application of a certain model selection criterion such as AIC35 or
BIC36, a manual selection was made based on the consideration of a
biologically meaningful sparsity level (allowing ~3 links per node)12,13 and
multiple accuracy measures including true positive rate (TPR, or recall, or
sensitivity), false-positive rate (FPR) and precision (in terms of the area
under the ROC and PR curves). The reason for selecting a manual sparsity
optimization over a criterion taking its place in the literature is due to the
fact that all of these model selection criteria point out the best model
among all the others. However, it does not guarantee the best model in
general. On the contrary, the manual selection in this study with an
arbitrary approximation of the outgoing links set to three per gene enables
multiple accuracy measures to be taken into account together in the
selection of the desired GRN.

GRN inference from the real datasets
After the detection of the best performing method for each subset of each
cell line as well as the GRN with the optimal sparsity level was made, real
GRNs from the subsets of the L1000 cell lines could be inferred via the best
performing inference methods with an expected level of accuracy
calculated in the simulations. This was followed by the identification of
the desired GRNs that the simulations suggest.
Once having the “accurate GRN”, the inferred links and their

corresponding genes should be evaluated. For this reason, a database
search was performed in PathwaX37 for pathway enrichment analysis.
In addition to this, functional class analysis was performed in terms of

the proteins coded by the genes of interest. The outputs are presented and
discussed in the “Results” and “Discussion” sections, respectively.

GRN inference methods
In this study we used two GRN inference approaches, least-squares cut-off
(LSCO)12 and LASSO1,2, using existing wrappers implemented in the
GeneSPIDER Matlab toolbox. The Glmnet implementation of LASSO was
used, which applies an L1-regularized penalty for the sparsity of the
inferred GRN. For LSCO, the wrapper implements a sparsity cut-off for the
inferred least-squares regression coefficients in order to achieve a set of
GRNs whose sparsities range from full to empty. Using both methods, 50
GRNs of different sparsity were inferred for each dataset and compared to
the true synthetic GRNs to obtain the areas under the ROC and precision-
recall curves. Inferred GRNs having ~2–5 links per gene on average were
mainly considered for biological database validation.

CODE AVAILABILITY
The source code of the subset-selection algorithm, and a small demo can be found at
https://bitbucket.org/sonnhammergrni/genespider/src/subset-selection/ as SubsetS-
electionSynthetic.m and SubsetSelection.m, respectively.

DATA AVAILABILITY
The synthetic networks and datasets are available at https://bitbucket.org/
sonnhammergrni/genespider/downloads/ as .mat files for four different dataset sizes
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for GeneSPIDER and one size for GNW. The real L1000 datasets are available at
https://www.ncbi.nlm.nih.gov/geo/ with the accession GSE92742.
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