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Speed and accuracy instructions affect two aspects of skill
learning differently
Teodóra Vékony1, Claire Pleche 1,2, Orsolya Pesthy3,4, Karolina Janacsek4,5 and Dezso Nemeth 1,4,6✉

Procedural learning is key to optimal skill learning and is essential for functioning in everyday life. The findings of previous studies
are contradictory regarding whether procedural learning can be modified by prioritizing speed or accuracy during learning. The
conflicting results may be due to the fact that procedural learning is a multifaceted cognitive function. The purpose of our study is
to determine whether and how speed and accuracy instructions affect two aspects of procedural learning: the learning of
probability-based and serial-order-based regularities. Two groups of healthy individuals were instructed to practice on a cued
probabilistic sequence learning task: one group focused on being fast and the other on being accurate during the learning phase.
The speed instruction resulted in enhanced expression of probability-based but not serial-order-based knowledge. After a retention
period, we instructed the participants to focus on speed and accuracy equally, and we tested their acquired knowledge. The
acquired knowledge was comparable between groups in both types of learning. These findings suggest that different aspects of
procedural learning can be affected differently by instructions. However, only momentary performance might be boosted by speed
instruction; the acquired knowledge remains intact. In addition, as the accuracy instruction resulted in accuracy near ceiling level,
the results illustrate that response errors are not needed for humans to learn in the procedural domain and draw attention to the
fact that different instructions can separate competence from performance.
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INTRODUCTION
The ability to acquire motor, perceptual, and social skills enables
us to function effectively in everyday life. Many skills are initially
learned with external instructions; for example, the driving
instructor usually gives the student specific instructions on how
to handle the car, or the trainer tells the athlete to focus on
accuracy or speed for a particular movement. Although many
different instructions can be given during skill learning, for
instance, to break down the to-be-learned elements into chunks1

or to focus explicitly on particular regularities2,3, speed and
accuracy instructions are frequently used during real-life skill
learning as well as in laboratory experiments. Additionally, it is also
essential to understand the effect of such instructions because
neuroscience studies are often interpreted in conjunction with
behavioral results, thus, the potential effects of instructions also
play an important role in how we interpret neuroscientific results
on skill learning. Here, we aim to investigate how emphasizing
speed or accuracy influences different aspects of skill learning.
Scientific interest has increased to reveal the optimal circum-

stances to excel in skill acquisition, an essential element of which
is procedural learning4–6. Studies investigating skill acquisition in
sports have found that novice learners benefit from accurate
instructions, whereas proceduralized skills of experts become
more enhanced under speed constraints7–9. Similarly, Hoyndorf
and Haider10 have found accuracy strategy to impair the
expression of implicit skill acquisition compared to speed
instruction; however, learning did occur under accuracy instruc-
tions. The study of Barnhoorn and colleagues11 has found that
speed instruction enhances the representations of repeating

explicit sequences, while more accurate responses lead to a faster
selection of responses via better stimulus-response associations.
Studies above indicate that speed and accuracy instructions can
affect skill learning.
Contrarily, in our previous work, we have shown that skill

learning is not necessarily boosted by speed constraints: we have
found that procedural knowledge can be equally acquired and
maintained under speed and accuracy instructions12. Importantly,
procedural learning is a multifaceted cognitive function13–15:
possibly, the different results were due to a lack of sufficient
separation between learning mechanisms, with different propor-
tions of them contributing to the outcome. This raises the
question of which aspect of procedural learning is more
influenced by speed or accuracy instruction. In this follow-up
study, we sought to fill this gap by exploring the effects of speed
and accuracy instructions on two essential aspects of procedural
learning: acquiring and retrieving probability-based and serial-
order-based regularities.
Procedural learning encompasses learning of different forms of

regularities that can be distinguished on both conceptual and
methodological levels13–16. One major aspect of procedural
learning is the ability to learn the order of a series of repeated
events (with some embedded noise, in probabilistic sequences, or
without noise, in deterministic sequences). We refer to this type of
learning as serial-order-based learning. Another aspect of
procedural learning is the ability to learn frequency or
probability-based short-range associations between elements of
the sequence, hereafter referred to as probability-based learning.
From a theoretical perspective, it is important to note that both
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forms of learning can be considered statistical learning:
probability-based learning refers to the acquisition of second-
order transitional probabilities that are less than one, whereas
serial-order-based learning refers to the acquisition of transitional
probabilities that are equal to one.
While both types of learning are based on input statistics, they

measure independent features of the input structure. Previous
studies have shown that these two aspects of learning are even
characterized by distinct neural mechanisms14,16–18 and develop-
mental trajectories19. Moreover, it has been shown that while
probability-based learning typically occurs incidentally (implicitly)
and relatively rapidly, resulting in robust representations, serial-
order-based learning may occur either incidentally or intentionally
and take a longer time to develop14,16. There is no need for a
previously built-up representation for probability-based learning,
as only the detection of local statistical structures is required,
leading to learning that occurs incidentally. A serial-order-based
learning approach, on the other hand, involves a more global and
complex representation of sequence structure determined by
interactions of multiple events across space and time and is,
therefore, more akin to intentional, goal-directed learning. We
hypothesize that the more incidental, rapid learning of
probability-based regularities could be more easily manipulated
by instructions, and based on previous findings indicating better
procedural learning under speed instructions7,8,10, we expect
speed instructions to boost the expression of the probability-
based aspect of procedural learning.
Our previous results using the non-cued version of the

Alternating Serial Reaction Time (ASRT) task showed that neither
the expression of procedural knowledge nor the extent of the
acquired knowledge was affected by speed or accuracy instruc-
tions12. Here, to further elaborate on these results, we aimed to
identify which aspect of procedural learning played a role in this
previous null result. Using the non-cued version of the task, the
probability- and serial-order-based aspects of learning would only
become distinguishable at the behavioral level after 7–8 45min-
long sessions20, as serial-order-based learning develops much
slower than probability-based learning15. To overcome this issue,
we used the cued version of the ASRT task19. The cueing allows us
to dissociate these two aspects of procedural learning after a few
blocks of practice, bringing them into the same time frame of
acquisition. In this four-choice visuomotor task, predetermined
(pattern) trials alternate with randomly chosen trials. This
alternating structure results in some chunks of stimuli being more
probable than others. Serial-order-based learning can be mea-
sured by the difference between elements appearing as part of
the predetermined pattern vs. appearing randomly but with equal
appearance probabilities. Probability-based learning can be
measured by contrasting the random trials with different
probabilities (see more details in the Methods section).
To test how speed and accuracy instructions affect the

expression of probability-based and serial-order-based knowl-
edge, we instructed participants to practice the cued version of
the ASRT task focusing on speed or accuracy (Different Instruction
Phase). After a short break, participants’ acquired probability- and
serial-order-based knowledge were tested again, this time, with a
focus on both speed and accuracy. Our main goal was to
determine whether (1) speed/accuracy instructions affect
probability-based vs. serial-order-based knowledge differently,
(2) the instructions affect the expression of knowledge (Different
Instruction Phase) and the acquired knowledge (Same Instruction
Phase) equally. Although our study is exploratory, we hypothe-
sized that probability-based learning processes would be more
affected by instructions than serial-order-based learning.

RESULTS
Did the two groups perform equally before learning (practice
phase)?
To ensure that the potential differences in learning were not due
to pre-existing differences in baseline RT and accuracy between
the groups, we compared the median RT and accuracy between
the two groups during the practice session. No differences were
found in RT (U= 294, p= 0.88, rRB= 0.03, BF01= 3.03) or accuracy
(U= 297.5, p= 0.82, rRB= 0.04, BF01= 3.43).

Did the instructions change overall reaction times and
accuracy?
To test whether overall reaction time (RT) in the Different
Instruction Phase differed between groups (i.e., whether the
speed/accuracy instruction had the expected effect on response
tendencies), a mixed-design ANOVA with the within-subject factor
of Epoch (Epoch 1 vs. Epoch 2 vs. Epoch 3 vs. Epoch 4) and the
between-subject factor of Group (Speed Group vs. Accuracy
Group) was run with median RT as the dependent variable. A
gradual decrease in RTs was observed over the course of the task,
irrespective of trial type [main effect of Epoch, F(1.65,
75.71)= 47.23, p < 0.001, ηp2= 0.51, BFexclusion < 0.01]. Response
times were significantly faster in the Speed Group than in the
Accuracy Group [MAccuracy Group= 464 ms ± 13.22 SE, MSpeed

Group= 348ms ± 13.22 SE, main effect of Group: F(1,47)= 38.13,
p < 0.001, ηp

2= 0.45, BFexclusion < 0.01]. The Epoch × Group
interaction was not significant, F(1.65, 75.71)= 0.39, p= 0.64,
ηp

2= 0.01, BFexclusion= 2.89.
A similar mixed-design ANOVA was performed with accuracy as

the dependent variable to test whether accuracies were different
between the groups in the Different Instruction Phase. Accuracy
decreased over the course of learning, irrespective of trial type
[main effect of Epoch: F(1.23, 56.57)= 9.12, p= 0.002, ηp2= 0.17,
BFexclusion < 0.001]. The Accuracy Group were more accurate than
the Speed Group [MAccuracy Group= 98.6% ± 2.2 SE, MSpeed Group=
83.3% ± 2.2 SE, main effect of Group: F(1,53)= 24.18, p < 0.001,
η

p

2= 0.35, BFexclusion < 0.001]. The change in accuracy over the
course of learning was different between the two groups as a
gradual decrease in accuracy was only detectable in the Speed
Group [Epoch × Group interaction: F(1.23, 56.57)= 6.16, p= 0.01,
ηp

2= 0.12, BFexclusion= 0.01].
The RTs and accuracies were also compared during the Same

Instruction Phase. The Speed Group remained slightly faster
(MAccuracy Group= 355ms ± 7.13 SE, MSpeed Group= 331ms ± 7.68
SE, U= 396.5, p= 0.02, rRB= 0.39, BF01= 0.34) and less accurate
(MAccuracy Group= 96.3% ± 0.4 SE, MSpeed Group= 92.3 % ± 1.6 SE,
U= 430.5, p= 0.003, rRB= 0.50, BF01= 0.09) than the Accuracy
Group after the change of the instructions.
Taken together, speed and accuracy instruction affected the

response tendencies of the participants: the Speed Group was
faster and less accurate, while the Accuracy Group was slower and
more accurate in the Different Instruction Phase. As slight
differences remained in the Similar Instruction Phase, further
analyses of both phases were performed on standardized values
[learning score of the given epoch/median RT of the given epoch].

Did the instructions affect the learning of probability-based
regularities in the Different Instruction Phase?
The learning of probability-based regularities was measured by
the difference between random high-probability and random low-
probability trials (standardized by the median RT of the
corresponding epoch). A mixed-design ANOVA was run on the
probability-based learning scores of the Different Instruction
Phase with the within-subject factor of Epoch (Epoch 1 vs. Epoch
2 vs. Epoch 3 vs. Epoch 4) and the between-subject factor of
Group (Accuracy Group vs. Speed Group). Overall, Speed Group
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showed larger learning scores compared to the Accuracy Group
[MAccuracy Group= 0.04 ± 0.01 SE, MSpeed Group= 0.08 ± 0.01 SE,
main effect of Group: F(1, 46)= 7.64, p= 0.008, ηp

2= 0.14,
BFexclusion= 0.48]. No main effect of Epoch was found, F(1.80,
82.79)= 2.21, p= 0.12, ηp

2= 0.05, BFexclusion= 3.11, and the
interaction between Epoch and Group was non-significant,
F(1.80, 82.79)= 1.57, p= 0.22, ηp2= 0.03, BFexclusion= 3.46 (Fig. 1).

Did the instructions affect knowledge of probability-based
regularities in the Same Instruction Phase?
In the Same Instruction Phase, standardized probability-based
learning scores were compared between the groups. Contrary to
the results of the Different Instruction Phase, no difference was
found between groups in the Same Instruction Phase, U= 221,
p= 0.18, rRB=−0.23, BF01= 2.20 (Fig. 1).

Did the instructions affect the learning of serial-order-based
regularities in the Different Instruction Phase?
The learning of serial-order-based regularities was quantified by
the difference in RTs between random high-probability vs. pattern
high-probability trials (standardized by the median RT of the
corresponding epoch). A mixed-design ANOVA was run on the
standardized serial-order-based learning scores of the Different
Instruction Phase with the within-subject factor of Epoch (Epoch 1
vs. Epoch 2 vs Epoch 3 vs. Epoch 4) and the between-subject
factor of Group (Accuracy Group vs. Speed Group). The two
groups showed similar level of serial-order-based learning in the

Different Instruction Phase [MAccuracy Group= 0.03 ± 0.01 SE, MSpeed

Group= 0.02 ± 0.01 SE, main effect of Group: F(1, 46)= 0.12,
p= 0.74, ηp2= 0.003, BFexclusion= 7.38]. No main effect of Epoch
was found, F(1.51, 69.30)= 0.48, p= 0.57, ηp2= 0.01, BFexclusion=
32.98, and the interaction between Epoch and Group was non-
significant, F(1.51, 69.30)= 1.23, p= 0.29, ηp2= 0.03, BFexclusion=
138.65, indicating that the trajectory of learning was also similar
(Fig. 2).

Did the instructions affect knowledge of serial-order-based
regularities in the Same Instruction Phase?
Standardized serial-order-based learning scores were compared
between the groups in the Same Instruction Phase. Similar to the
results of the Different Instruction Phase, no significant difference
was found between the two groups in the Same Instruction Phase,
U= 295, p= 0.86, rRB= 0.03, BF01= 3.49 (Fig. 2).

Did the instructions affect the ability to report explicitly on
the sequence?
We performed a mixed-design ANOVA on the explicit sequence
report scores of the Different Instruction Phase with the within-
subject factor of Epoch (Epoch 1 vs. Epoch 2 vs Epoch 3 vs. Epoch
4) and the between-subject factor of Group (Accuracy Group vs.
Speed Group). Sequence report performance improved over time
as revealed by the main effect of Epoch, F(2.22, 102.09)= 17.19,
p < 0.001, ηp2= 0.27, BFexclusion < 0.001. Overall, the performance
of the two groups was similar [main effect of Group: F(1,

Fig. 1 Learning of probability-based regularities. a The dynamics of learning of probability-based regularities with accuracy or speed
instructions. The y-axis represents the standardized learning scores [(random low-probability trials − random high-probability trials in the
given epoch)/median RT of the given epoch], and the x-axis of the five epochs (the first four are of the Different Instruction Phase, and the fifth
one is of the Same Instruction Phase). The Accuracy Group is presented with yellow, while the Speed Group with blue color. Error bars
represent the standard error of the mean. In the Different Instruction Phase, the Speed Group shows an advantage of learning, but it
disappears in the Same Instruction Phase. b Individual data of the significant main effect of Group of probability-based learning in the
Different Instruction Phase. Triangles and dots represent the individual data points. c Individual data of the lack of significant main effect of
Group of probability-based learning in the Same Instruction Phase. Triangles and dots represent the individual data points.
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46)= 1.44, p= 0.24, ηp2= 0.03, BFexclusion= 1.64]. However, the
interaction between the Epoch and Group factors approached
significance [Epoch × Group interaction: F(2.22, 102.09)= 2.94,
p= 0.05, ηp2= 0.06, BFexclusion= 0.81]. This trend-level effect was
due to the fact that Accuracy Group performed better on
sequence reports in the first epoch [MAccuracy Group= 86.4% ± 2.3
SE, MSpeed Group= 74% ± 2.4 SE]; however, they achieved similar
performance by the last epoch of the Different Instruction Phase
[MAccuracy Group= 96.9% ± 2.6 SE, MSpeed Group= 94.5% ± 2.6 SE]
(Fig. 3).
In the Same Instruction Phase, the two groups performed

similarly in terms of explicit sequence report scores, MAccuracy

Group= 97.2%, MSpeed Group= 97.9%, U= 309, p= 0.53, rRB= 0.08
BF01= 2.88 (Fig. 3).

DISCUSSION
The aim of our study was to reveal the effects of speed and
accuracy instructions on two essential aspects of procedural
learning. To this end, healthy young adults were tested on a cued
version of a probabilistic sequence learning task, which enabled us
to quantify the effects of speed and accuracy instructions on the
learning of probability-based and serial-order-based regularities.
Participants performed the task with the instruction to focus on
speed or accuracy during the task (Different Instruction Phase).
Following a short break, participants were tested again, but this
time, they had to focus on speed and accuracy equally (Same
Instruction Phase). We found that the performance during the

learning of probability-based information was improved under
speed instruction, whereas performance during the learning of
serial-order-based regularities was not affected by the two
different strategies. It is important to emphasize that only the
expression of knowledge was affected by the instructions. When
the acquired knowledge was tested (with instructions to focus on
speed and accuracy equally), equal probability-based and serial-
order-based knowledge were revealed irrespective of whether
participants focused on speed or accuracy during the initial
learning.
Our previous results using the non-cued version of the

probabilistic sequence learning task (in the non-cued version,
the pattern and random trials are not differentiated by visually
distinct stimuli, and participants are not informed that every
second element is part of a repeating pattern) showed that
neither the expression of knowledge nor the acquired knowledge
was affected by speed or accuracy instructions12. In the current
study, similar to the results of the non-cued version of the task,
acquired knowledge was resistant to instructions, thus, both
probability-based and serial-order-based regularities were learned
successfully under speed and accuracy instructions. The non-cued
version of the task could not easily disentangle the probability-
and serial-order-based aspects of learning, because using the non-
cued version, these two aspects of learning will only become
visible after 7–8 45min-long sessions of practice20. Based on the
results of the current study (i.e., that expression of the knowledge
of probabilities can be affected by instructions), the lack of
performance difference using the non-cued version might have

Fig. 2 Learning of serial-order-based regularities. a The dynamics of learning of serial-order-based regularities with accuracy or speed
instructions. The y-axis represents the standardized learning scores [(random high-probability trials − pattern high-probability trials in the
given epoch)/median RT of the given epoch], and the x-axis of the five epochs (the first four are of the Different Instruction Phase, and the fifth
one is of the Same Instruction Phase). The Accuracy Group is presented with yellow, while the Speed Group with blue color. Error bars
represent standard error of the mean. Both groups show equal learning in both phases. b Individual data of the lack of significant main effect
of Group of serial-order-based learning in the Different Instruction Phase. Triangles and dots represent the individual data points. c Individual
data of the lack of significant main effect of Group of serial-order-based learning in the Same Instruction Phase. Triangles and dots represent
the individual data points.
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been due to the serial-order-based learning component, which
proves to be resistant to speed and accuracy instructions. Our
finding that the expression of the knowledge of probability-based
regularities is better under speed instructions, but the acquired
knowledge is not affected is somewhat congruent with the
findings of Hoyndorf and Haider10. In their study, better learning
performance was found under speed instructions; however,
similarly to our results, this was attributed only to performance
effects, that is, to the alterations in performance rather than to the
direct effect on learning per se.
Alternatively, the difference between our findings with the non-

cued and cued versions of the probabilistic learning task could be
explained by the fact that memorizing sequence elements
requires divided attention, which may affect the outcome of
probability-based learning. However, this is unlikely because (1) it
has been shown previously that there is no difference between
implicit and cued versions in terms of probability-based learn-
ing21, and (2) learners with both accuracy and speed instructions
were able to report the sequence to the same extent. Therefore,
we can conclude that speed and accuracy instructions differently
affect the knowledge expression of probability- and serial-order-
based information.
Given the slope of the learning curve in our study, in contrast to

the explanation of Hoyndorf and Haider10, it is more likely that the
speed instruction improved the expression of the knowledge of
probabilities than that the accuracy instruction worsened it;
however, this advantage is no longer measurable without the help
of the speed instruction. This finding draws attention to an
important problem in the measurement of learning. The majority

of cognitive studies measure learning in a single context and draw
conclusions about brain-behavior relationships based on the
expression of knowledge or “momentary performance”, i.e., the
temporary fluctuation of behavior22–25. However, the measured
momentary performance is not always equivalent to the acquired
knowledge (competence) that could be measured in the long
term. Acquired knowledge (competence) and knowledge expres-
sion (performance) can differ due to many factors such as fatigue,
manipulation of inter-stimulus intervals, practice, latent learning,
or overlearning of the skill26,27. Our study showed that compe-
tence and performance can differ, especially when evaluating
probability-based learning. Therefore, using only a single session
to evaluate learning might be problematic when we intend to
describe the long-term knowledge of probability-based regula-
rities, which serves as the base of many learning, memory, and
decision-making tasks (e.g., Gluck, Shohamym & Myers28). If
contextual factors influence the measured performance, and we
use these scores to make conclusions on brain-behavior relation-
ships, then it can lead to wrong conclusions easily. We
recommend taking into account the possible differences between
measured competence and performance when designing learning
studies.
Our study showed that participants learning with accuracy

instructions acquired stable probability-based and serial-order-
based knowledge despite minimizing motor (response) errors
during initial learning. Although in terms of probability-based
knowledge, the speed instruction showed an advantage during
the initial learning, the acquired knowledge was comparable with
both instructions for both probability- and serial-order-based

Fig. 3 Post-block sequence report performance. a Dynamics of post-block sequence report performance. The y-axis indicates the mean
sequence report performance in percentage. The x-axis shows the epochs (Epoch 1–4: Different Instruction Phase, Epoch 5: Same Instruction
Phase). The yellow line indicates the Accuracy Group, and the blue line the Speed Group. Both groups were able to report on the sequence.
No significant group difference was found in either phase; however, on a trend-level, the Accuracy Group performed better in the first epoch.
The error bars represent standard error of the mean. b Individual data of the lack of significant main effect of Group of the main post-block
sequence report performance in the Different Instruction Phase. Triangles and dots represent the individual data points. c Individual data of
the lack of significant main effect of Group of the main post-block sequence report performance in the Same Instruction Phase. Triangles and
dots represent the individual data points.
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learning. Based on the theory that the brain functions as a
Bayesian inference machine29, our results are especially intriguing
as they can seemingly contradict findings that errors facilitate
learning30. In our brain, associations between events are formed
by continuously, adjusting the estimated probability distribution,
which is referred to as the prior. If a prediction error is made, the
prior should be updated according to the new probabilistic
structure29. Our study - similarly to our findings with the non-cued
version of the probabilistic sequence learning task12 and other
sequence learning studies31,32—found that a low number of
motor errors did not impair the serial-order-based learning and
the acquired knowledge of probability-based regularities as could
be predicted by these theories. However, the increased number of
motor errors (as in the speed condition in our study) might be
advantageous for the initial performance on probability-based
regularities, although the advantage disappears when the learning
information needs to be accessed under different conditions.
Thus, it is possible that the motor errors may not be as important
for updating the priors under all circumstances. However, there
are arguments against this interpretation. First, the predictive
model may be already capable of performing reliable predictions
even at an early stage of learning. Second, fewer errors are made
by participants who perform worse in RTs, potentially indicating
that prediction errors may take on a different form when specific
instructions are provided. Third, it is unclear if and how predictions
or prediction errors in the brain translate to accuracy and RTs in
behavior, as well as whether errors made during a behavioral task
are caused by brain predictions or if there are other factors as well.
To address these issues, further studies are needed on the
relationship between the effect of speed and accuracy instructions
on learning mechanisms and prediction errors.
Another potential interpretation of the lower performance of

probability-based learning under accuracy instruction could be
that participants in this group focused more on correct answering
rather than speed, which is reflected in the RT difference scores as
the relatively slow responses would result in poorer discrimination
between trial types. However, this possibility is not likely, as, in our
previous study with the non-cued version, no differences were
observed between the groups in learning, although large
differences in average RTs were detected12. More importantly,
the lack of difference between groups after the change of the
instructions speaks against the possibility that the lack of
differentiation was worse for participants who performed under
accuracy instructions. Even if this were true, it does not change
our conclusion that only knowledge expression is affected by
instructions, but learning was similar for both groups.
Looking at our results from the perspective of the implicitness

(incidentality) vs. explicitness (intentionality) of learning, the
cueing in the learning task made the structure of the learned
sequence (the pattern trial vs. random trial distinction) explicit to
the participants. The explicitness of this aspect is clear, as
participants were able to report the sequence with high precision
on the post-block sequence report task. However, we cannot state
that serial-order learning is entirely explicit: although RTs of
pattern high-probability trials reflect mostly explicit knowledge,
the features of random high-probability trials are acquired
through implicit learning. Therefore, higher serial-order-based
learning (i.e., the higher difference between the most explicitly
and mostly implicitly learned aspects) might indicate more explicit
learning than probability-based learning. This assumption is
supported by some evidence showing a positive correlation
between sequence knowledge and serial-order-based learning19.
However, other studies show that even if participants can
successfully report the sequence on the post-block sequence
report task, they do not necessarily show enhanced serial-order-
based learning18,33. Thus, they cannot use their explicit knowledge
to boost performance on the ASRT task. We cannot exclude the
possibility that the performance on random high-probability trials

is influenced by implicit, incidental processes18. Although we did
not directly test that, we can assume that probability-based
learning is relatively implicit, as participants are not aware of the
probabilities of different trials. In this perspective, our results imply
that speed-focused instructions selectively affect purely implicit
knowledge expression, and more explicit processes are less
influenced. Future studies will be required to investigate further
how explicitness might influence the effect of speed and accuracy
instructions on performance, as explicit and implicit memory
processes can occur parallel during skill learning33.
Purely explicit knowledge of the sequence was evaluated by the

post-block sequence report performance. Here, we found a trend-
level advantage for the participants who learned with accuracy
instructions. It could mean that instructions to focus on accuracy
increase the explicitness of the to-be-learned pattern at the
beginning of the task. The reason for this result could be that it is
harder to follow cueing at a faster speed, which is consistent with
the findings that increasing response-to-stimulus interval is
associated with higher explicitness in sequence learning34. These
results could have an important message from a methodological
perspective: future studies may consider giving speed instructions
if they aim to keep participants implicit in a particular pattern of
learning. We must stress, however, that the speed and accuracy
differences were at trend levels; therefore, more studies are
needed to draw firm conclusions about the effect of instructions in
this regard.
Lastly, as a limitation of our study, we should mention the lack

of a control group, which would have helped overcome the
potential bias caused by the fact that pattern elements were cued,
which would have caused participants to speed-up disproportio-
nately to these elements. However, we do not think that this
distorted our results, as the difference was only observed in
probability-based learning, where only random (non-cued)
elements were compared. Another limitation of the study is that
the gender ratios were not equalized in our study: the sample was
predominantly female due to the non-uniform availability of
female and male participants. To our knowledge, no gender
differences in initial ASRT task performance have been reported so
far. Because of this, we could not exclude entirely the possibility
that the effect of instructions on the two investigated aspects of
procedural learning differs according to gender, which would be
worthwhile to explore in future research.
Our study investigated the effects of speed and accuracy

instructions on two essential aspects of procedural learning,
namely, the acquisition of probability-based and serial-order-
based regularities. Based on our results, speed and accuracy
instructions affect these two aspects of procedural learning
differently; although picking up probability-based regularities
can be faster with speed instructions, it does not result in more
stable acquired knowledge. On the other hand, the learning of
serial-order-based regularities seems to be resistant to instruc-
tions, thus, to the manipulation of speed/accuracy trade-off. As the
performance and retrieval of knowledge are also affected
differently in probability-based learning, it draws attention to
the differences in competence and performance in the measure-
ment of learning. Moreover, the fact that learning has occurred
with almost errorless performance suggests that procedural
learning does not depend exclusively on response errors.

METHODS
Participants
Fifty-six healthy young adults participated in this study. Eight
participants were excluded from the analysis because, based on
their performance, they did not follow the instructions properly.
Six of them were excluded based on their sequence report
performance (accuracy below 30%, see details in the “Analysis of
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the post-block sequence report task” section), and two of them
based on general speed and accuracy (exclusion criteria same as
in Vékony et al.12). As a result, 48 participants (43 females)
remained in the final sample, which is sufficient to detect group
differences on the ASRT task. Participants were randomly assigned
to one of the two experimental groups: Accuracy Group (N= 26)
and Speed Group (N= 22).
The age of the participants ranged from 18 to 34 years

(Mage= 21.21 years ± 2.81 SD). All of them were undergraduate
students who received course credit for participating (Meducation=
14.10 years ± 2.01 SD). Their working memory performance was in
the normal range, measured by the counting span task (MCounting

Span= 3.67 ± 0.98 SD)35. Handedness was determined by the
laterality quotient based on the Edinburgh Handedness Inventory
(Nright-handed= 35, Nleft-handed= 3, Nambidextrous= 10)36. No signifi-
cant group differences were observed in these measures (see
Table 1). None of the participants reported a history of
neurological or psychiatric disorders. All participants had a normal
or corrected-to-normal vision. Written informed consent was
obtained from all participants. The study was approved by the
Research Ethics Committee of the Eötvös Loránd University,
Budapest, Hungary, and was conducted in accordance with the
Declaration of Helsinki.

Justification of sample size
A power analysis was conducted using G*Power version 3.1.9.737

to determine the minimum sample size required to test our
hypotheses. Results indicated the required sample size to achieve
80% power for detecting at the lowest expected effect size of
ηp

2= 0.12 as in SPSS38 (derived from previous ASRT studies that
detected group differences using mixed-design analysis of
variance, ANOVA19,39–41), at a significance criterion of α= 0.05,
was N= 30 and N= 38 for the between-within interaction and a
between-subjects main effect of a 2 × 4 ANOVA, respectively. Thus,
the obtained sample size of N= 48 is adequate to test the study
hypotheses.

Cued version of the Alternating Serial Reaction Time (ASRT)
task
We used the cued version of the ASRT task19. Four empty black
circles appeared horizontally in the middle of the screen (Fig. 4a).
The Z, C, B, and M keys on a QWERTY keyboard corresponded to
the four circles on the screen. A target stimulus (a drawing of a
dog’s head or penguin) appeared in one of the four circles.
Participants were instructed to use their middle and index fingers
on both hands to indicate the location of the stimuli by pressing
the corresponding key on a keyboard. After a correct keypress, the
target stimulus disappeared from the screen, and after a 120ms-
long response-to-stimulus interval, a new target appeared in one
of the four positions.

The order of appearance of the target stimuli followed an
alternating sequence: every other element appeared in a
predetermined (pattern) position, and the remaining elements’
positions were randomly chosen from the four possible locations.
The predetermined elements followed a four-element sequence.
We mark sequence positions from left to the right as 1 to 4; a
possible sequence is, for example, 2431. In this case, the
alternating sequence was 2r4r3r1r (where r indicates a random
position). The predefined and random elements result in an
alternating eight-element sequence. Each block of ASRT contained
ten repetitions of the 8-element sequence preceded by five
random trials as warm-up trials. Thus, each block contained 85
trials in total. The participants were permitted to take a short break
after each block and continue when they were ready.
The predetermined (pattern) and random elements were

visually distinct: pattern elements were marked with dog heads
and random ones with penguins. Participants were informed that
the dog heads followed a predetermined sequence and that the
penguins appeared randomly. They were not informed about the
exact sequence but were asked to find the order of appearance of
the dogs to improve their performance. For each participant, one
of the six unique sequence permutations was selected pseudor-
andomly. For a given participant, the sequence permutation was
the same throughout the experiment.
Because of the alternating sequence of random and pattern

trials, some runs of three consecutive trials (referred to as triplets)
were more probable than others (Fig. 4b). For instance, if the
sequence was 2r4r3r1r, triplets such as 2-X-4, 4-X-3, 3-X-1, and 1-X-
2 (where X indicates the middle element of a triplet) occured with
a higher probability than triplets such as 2-X-1 or 2-X-3 as their
first and third elements could be either a pattern or a random trial.
We refer to more probable triplet types as high-probability triplets,
and less probable ones as low-probability triplets42. Please note
that the expression triplet refers to three consecutive elements of
the sequence (which can be evaluated as a high- or low-
probability triplet), whereas the expression trial refers to a single
element of the sequence (which can be a pattern or random
element, and also, the last element of a high- or low-probability
triplet). Sixty-four different triplets could occur during the task.
Sixteen of them were high-probability, and 48 of them were low-
probability triplets. High-probability triplets can be formed by two
pattern trials and one random trial in the middle (50% of all trials)
or two random trials and one pattern trial in the middle (12.5% of
all trials). Thus, 62.5% of all trials were the last element of a high-
probability triplet, and 37.5% of all trials were the last element of a
low-probability triplet (Fig. 4c). In summary, three trial types could
be differentiated: (1) predetermined (pattern) elements appearing
as the last element of a high-probability triplet (henceforth
referred to as pattern high-probability trials); (2) random elements
appearing as the last element of a high-probability triplet
(henceforth referred to as random high-probability trials); and
(3) random elements appearing as the last element of a low-
probability triplet (henceforth referred to as random low-
probability trials).
Random high-probability trials and random low-probability trials

share the same sequence properties (neither of them is a
predetermined element) but differ in statistical properties as they
correspond to the last element of a high-probability or a low-
probability triplet, respectively. The learning of probability-based
regularities was measured by the difference in RTs between
random high-probability and random low-probability trials: faster
RTs are expected for random high- vs. low-probability trials. On the
other hand, random high-probability and pattern high-probability
trials share the same statistical properties (they are both high-
probability trials) but differ in sequence properties as they
correspond to random or pattern elements, respectively. The
learning of serial-order-based regularities was quantified by the
difference in RTs between random high-probability vs. pattern

Table 1. Characteristics of the two experimental groups.

Accuracy group
(N= 26)

Speed group
(N= 22)

Group
comparison

Age (years) 21.54 ± 3.09 20.82 ± 2.46 p= 0.38

Education (years) 14.54 ± 2.16 13.60 ± 1.74 p= 0.10

Gender (m/f) 2/24 3/19 p= 0.50

Handedness (r/l/a) 20/1/5 15/2/5 p= 0.70

Counting span 3.53 ± 0.93 3.83 ± 1.03 p= 0.29

Means and standard deviations for age, education, and counting span are
presented. For gender (m male, f female) and handedness (l left-handed, r
right-handed, a ambidextrous) case numbers per group are presented.
Error-values indicate standard deviation.
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Fig. 4 The Alternating Serial Reaction Time (ASRT) task. a Visualization of the Alternating Serial Reaction Time task. A drawing of a dog head
or a penguin appeared as a target stimulus in one of the four locations. Every other trial (dog) followed a predetermined order of appearance,
while the remaining trials (penguin) appeared at randomly selected positions (r). b The formulation of triplets in the task. Each trial was
categorized as a pattern high-probability trial, a random high-probability trial, or a random low-probability trial based on the positions of the
two preceding trials. c An example of the different triplet types. Two main cases can occur: the triplet is ending in a pattern trial (50%), or a
random trial (50%). If the triplet is ending in a pattern trial, then the n-2 trial is necessarily a pattern trial due to the alternating sequence;
therefore, the last element can be at only one particular position, which is defined by the four-element sequence of predetermined elements.
If the triplet is ending with a random trial, four cases are possible: after the first two elements, the third element can be in any position.
However, one out of these four cases will match the formation that occurs when a triplet ends in a pattern trial. Therefore, it will also be a
high-probability triplet. d The calculation of the serial-order-based and probability-based learning scores.
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high-probability trials: with greater serial-order learning, faster RTs
are expected for pattern high-probability vs. random trials (Fig. 4d).

Post-block sequence report task (within the ASRT task)
The explicit knowledge of participants was tested after every ASRT
block. Participants were instructed to type in the order of pattern
elements (dog head stimuli) using the four response keys. Each
sequence report task lasted until 12 keypresses and was repeated
after each block of ASRT16–18,43. The reason behind providing 12
button presses was that participants were not informed about the
length of the sequence they had to look for. Therefore, we wanted
to provide an opportunity for the participants to type longer
sequences in their answers. Also, a higher number of keypresses
enabled us to differentiate between guesses and valid knowledge.
The task was assessed based on response accuracy (i.e., % of

correct keypresses, see details in the “Analysis of the post-block
sequence report task” section). For example, if the sequence was
1r2r3r4r, the correct answer would be 1234 four times, that is,
123412341234 (100% correct answer). As the starting position of
the sequence does not affect the learned probabilities, the
answers 234123412341, 341234123412, and 412341234123 were
equally evaluated as 100% correct. The test of explicit knowledge
(hereafter referred to as sequence report) was performed in both
the Different and Same Instruction phases after each block.

Study design
First, participants completed three practice blocks of the ASRT task
to familiarize themselves with the response keys; all presented
stimuli were random during practice. The participants then
completed 20 blocks of the ASRT task (1 block= ~1–1.5 min).
The Accuracy Group was instructed to perform the task as
accurately as possible; the Speed Group was told to be as fast as
possible during the task (Different Instruction Phase). After 20
blocks, participants rested for 10min. After that, the participants
performed another set of five blocks of the ASRT task. However,
this time, they were instructed to focus equally on speed and
accuracy (Same Instruction Phase) (Fig. 5). In both phases, after
each block, the post-block sequence report task was performed.

Analysis of the ASRT task
Preprocessing of the ASRT task was performed following standard
methods42,44. We collapsed the blocks of the ASRT task into five
analysis units (epochs). Thus, the first epoch contained blocks 1–5,
and the second epoch contained blocks 6–10, and so forth.
Therefore, the Different Instruction Phase contained four epochs,
and the Same Instruction Phase contained one epoch.
Each trial was categorized as the third element of a random

high-probability, pattern high-probability, or random low-
probability triplet (i.e., the probability of each trial was evaluated
based on the position of the previous two trials). Trials with
inaccurate responses, trials that were the last elements of trills
(e.g., 1-2-1), and repetitions (e.g., 1-1-1) were excluded from the
analysis, as participants typically show pre-existing tendencies
toward them20 (see analysis without excluding trills and repeti-
tions in “Analysis without excluding trills and repetitions” section
of the Supplementary Materials). Median RT were calculated
separately for the three trial types in each epoch. As a substantial
ceiling effect occurs with accuracy instructions during the ASRT
task12, we only considered RTs for analysis.
Based on these three types of trials, scores for serial-order- and

probability-based learning can be quantified19. The learning of
probability-based regularities was defined as the difference in
median RTs between random high- and low-probability trials. The
learning of serial-order-based regularities was defined as the
difference in median RTs between pattern high-probability and
random high-probability trials. As a result of the speed/accuracy
instructions, RTs were highly different between the two groups
(see section “Did the instructions change overall reaction time and
accuracy?”). To ensure that the potential differences in learning
were not due to significant differences in RT, we divided the
learning scores by the median RT of the given epoch. Non-
standardized results can be found in the Supplementary Materials
(“Results of analyses with non-standardized learning scores”
section) as well as visualization of the three trial types (random
high-probability, random low-probability, and pattern high-
probability trials) and the average RTs (“Visualization of trial types
and average RTs” section).
Statistical analysis was performed using JASP 0.1645. We used

mixed-design ANOVAs to compare general speed and accuracy
changes, probability-based and serial-order-based learning of the

Fig. 5 Study design. Participants completed three blocks of practice to familiarize themselves with the task. After that, participants received
instructions to either be accurate (Accuracy Group) or fast (Speed Group) during the next phase of the experiment (Different Instruction
Phase). Moreover, they were told that specific stimuli (the dogs) followed a predetermined sequence, and they should use this information to
improve their performance. Participants completed 20 blocks of the ASRT task. After each block ASRT task, participants had to perform the
sequence report task (SR). After the Different Instruction Phase, participants rested for 10 min. Next, during the Same Instruction Phase, the
participants’ tasks remained the same, but this time, they were instructed to be equally fast and accurate.
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two groups in the Different Instruction Phase (see “Comparison of
probability-based vs. serial-order-based learning” section of the
Supplementary Materials for a comparison of the two learning
types). For the ANOVAs, corrected df values and corrected p values
are reported (if applicable) along with partial eta-squared (ηp2) as
the measure of effect size. Mann–Whitney U tests were used to
compare the performance of the practice phase, as well as the
learning of serial-order-based and probability-based regularities in
the Same Instruction Phase. Rank-Biserial Correlation (rRB) values
are reported as effect size measures for the Mann–Whitney U tests.
In addition to the frequentist approach, Bayesian ANOVAs and

Mann–Whitney U tests were performed with similar parameters.
Here, we present the results of Bayesian Model Averaging and
report the BF exclusion (BFexclusion) values (1/BFinclusion) along with
frequentist statistics. BFexclusion values indicate the amount of
evidence for excluding a given factor from our model. Thus, values
below 1 support inclusion, and values above 1 support exclusion
of the given factor. Full model comparisons are included in the
Supplementary Materials (see “Bayesian Model Comparisons”
section in the Supplementary Materials). Cauchy prior distribution
was used for the ANOVA with a fixed-effects scale factor of r= 0.5,
and a random-effects scale factor of r= 1 (JASP Team, 2021).
Bayesian Mann–Whitney U tests were performed using the default
prior distribution (r= 0.707).

Analysis of the post-block sequence report task
After each block of the ASRT task, the sequence report task was
performed by the participants. The participants were instructed to
type in the order of pattern elements (dog head stimuli), using
response keys, up to 12 keypresses. The accuracy of sequence
reports was calculated separately for each block. Each keypress
was scored as correct or incorrect relative to the position of the
previous keypress. We then calculated the percentage of correct
keypresses. Here, the possible values ranged from 0 to 100%
(0%= no key press was correct after the previous key press;
100%= all key presses were correct after the previous key press).
Thus, an accuracy of 100% indicated that the series of keypresses
perfectly reflected the sequence embedded in the ASRT task.
Then, the 20 block-wise percentage scores of the Different
Instruction Phase and the five percentage scores of the Same
Instruction Phase were calculated and averaged according to the
four epochs (blocks 1–5 for Epoch 1, blocks 6–10 for Epoch 2, etc.).
A higher explicit knowledge percentage score reflects a more
stable explicit knowledge of the sequence structure.
To evaluate how explicit sequence knowledge emerged during the

task, a mixed-design ANOVA was run on epoch-wise explicit sequence
report scores. The same between and within-subject factors were
used for the ANOVA run on the ASRT task. To compare explicit
sequence knowledge in the Same Instruction Phase, Mann–Whitney
U tests were run on the sequence report performance with
parameters similar to those of the ASRT learning scores.
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