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Directed information flow during laparoscopic surgical skill
acquisition dissociated skill level and medical simulation
technology
Anil Kamat1, Basiel Makled2, Jack Norfleet 2, Steven D. Schwaitzberg3, Xavier Intes1,4, Suvranu De1,4 and Anirban Dutta 5✉

Virtual reality (VR) simulator has emerged as a laparoscopic surgical skill training tool that needs validation using brain–behavior
analysis. Therefore, brain network and skilled behavior relationship were evaluated using functional near-infrared spectroscopy
(fNIRS) from seven experienced right-handed surgeons and six right-handed medical students during the performance of
Fundamentals of Laparoscopic Surgery (FLS) pattern of cutting tasks in a physical and a VR simulator. Multiple regression and path
analysis (MRPA) found that the FLS performance score was statistically significantly related to the interregional directed functional
connectivity from the right prefrontal cortex to the supplementary motor area with F (2, 114)= 9, p < 0.001, and R2= 0.136.
Additionally, a two-way multivariate analysis of variance (MANOVA) found a statistically significant effect of the simulator
technology on the interregional directed functional connectivity from the right prefrontal cortex to the left primary motor cortex
(F (1, 15)= 6.002, p= 0.027; partial η2= 0.286) that can be related to differential right-lateralized executive control of attention.
Then, MRPA found that the coefficient of variation (CoV) of the FLS performance score was statistically significantly associated with
the CoV of the interregionally directed functional connectivity from the right primary motor cortex to the left primary motor cortex
and the left primary motor cortex to the left prefrontal cortex with F (2, 22)= 3.912, p= 0.035, and R2= 0.262. This highlighted the
importance of the efference copy information from the motor cortices to the prefrontal cortex for postulated left-lateralized
perceptual decision-making to reduce behavioral variability.
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INTRODUCTION
Virtual reality (VR) technology is increasingly being used for motor
skill training in medicine1; however, the investigation of the
brain–behavior relationship in VR compared to physical simulators
is lacking. Specifically, there is a need to study directional
information flow in the brain during interactions with the
environment for motor skill acquisition. During motor skill
acquisition, the goal of the interactions with the environment is
postulated to build models (called internal models2,3) that can
take the desired trajectory and output the corresponding motor
command (i.e., inverse models) or take an efferent copy of motor
command and predict the future state of the body (i.e., forward
models)4 for perceptual decision-making to reduce behavioral
variability. Internal models can then be used for sensory
processing, sensorimotor integration, and motor control leading
to expert performance. For example, specific actions are possible
whereas others are not in an operative field in laparoscopic
surgery, and the possibilities of goal-directed action in the
environment5, called “affordances,” must be learned by novices
for planning sensory-guided actions toward a goal6,7. The purpose
of the internal models is to inform action so that the central
nervous system can internally simulate possibilities of goal-
directed motor behavior in planning, control, and learning8. Here,
motor learning involves making sensory predictions from efferent
copies of motor commands, performing the action, and then
validating the predictions with corresponding sensory informa-
tion9 from the environment called the “reafferent,” that is, the

sensory information generated by the action and the interactions
with the environment. Such “reafferent” sensory input is crucial in
medical simulators for action monitoring8 and action-specific
perception that action is the consequence of one’s intention,
which is commonly referred to as agency. Christensen et al.10

investigated the coupling between action and perception based
on the effect of action execution on action perception. These
researchers found that integrating motor and multisensory
information for action-specific perception depended on the
cerebellum, which is thought to encode internal models11.
Specifically, an intact forward model can predict a future state
from the efferent copy of the motor command, thereby coupling
action execution with action perception. Moreover, patients with
cerebellar damage showed no beneficial influence of action
execution on action perception compared to healthy controls,
thereby showing a lack of action-perception coupling. Sensor-
imotor integration with the inverse model to determine the motor
commands for the desired goal-directed trajectory, then action
execution and action perception using the forward model for fine
control of voluntary movements11 will require the interaction of
the cerebellum with the cerebrum, i.e., the sensorimotor cortico-
cerebellar loops12.
Motor exploration, a trial-and-error process due to a lack of

adequate internal models in a novel environment for perceptual
decision-making, plays a critical role in motor learning13. During
goal-directed movement, reaching the goal is the “reward,” and
actions that lead to the goal are reinforced. For example, motor
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behavior for laparoscopic surgery training can be characterized as
a coordinated spatiotemporal three-dimensional (3D) movement
using two-dimensional (2D) camera feedback with the interaction
between the body and the environment within a restricted
surgical volume representing a novel procedure for novices. Here,
novices need to learn a complex bimanual motor task requiring
high-precision hand-eye coordination, depth perception in the 2D
view, and goal-directed tool control for optimal performance of
laparoscopic surgery14. Although there can be more than one
trajectory of goal-directed movement15, there are only a few
“efficient” trajectories, and not everyone can achieve proficiency16.
For example, novices may switch early from motor exploration to
motor exploitation17, where they reinforce “inefficient” trajectories
despite errors for goal-directed movement. Indeed, motor skill
automaticity, i.e., a decrease in the need for effortful control over
performance18, can be achieved despite the residual error.
Therefore, an adequate switch from motor exploration to motor
exploitation17 during the motor learning process is important13,
where explore-exploit decisions are increasingly being shown to
be dependent on behavioral variability19. Computational model-
ing of the interplay between the cerebellum and basal ganglia in
motor adaptation20 predicts that the learner is less likely to adapt
to perturbations when the expected movement variability is “low,”
and an underestimated variability can lead to an overly strong
reduction in the learning rate for small perturbations. Here,
switching to nonerror-based basal ganglia learning mechanisms
can also be due to the implicit cost of error correction for the
brain21; however, acquiring expert performance will require
deliberate practice22 with overestimated variability. Deliberate
practice22 is postulated to drive error-based cerebellar learning
mechanisms20 despite the cost of perfecting the internal model
for perceptual decision-making to reduce behavioral variability.
In this brain–behavior study, we aimed to capture the neural

correlates of behavioral variability in terms of neural variability23.
Development of the sensorimotor mapping during skill acquisition
is usually under variability “for all sets or series of observations
that are nonconstant and … nonstationary”24, including variability
in brain activation25. The inferences about the state of the tool and
the environment under noisy feedback will be made using a
perceptual model that novices need to develop based on the
prediction error during the trial-and-error process of motor
exploration. Therefore, understanding the variability in the brain
and behavior in the context of the perception-action cycle26 can
provide insights into individual exploration–exploitation trade-offs
in human motor learning27. Moreover, it is important for motor
skill training in medicine1 to monitor brain–behavior relationships
to identify novices who can learn more efficiently during the basal
ganglia-driven motor exploration stage27. Indeed, mobile
brain–behavior investigation during motor skill training in
medicine1 is feasible due to recent developments in portable
brain-imaging technologies28. For example, Nemani et al.29

assessed bimanual motor skills using functional near-infrared
spectroscopy (fNIRS) during laparoscopic surgery training. In this
study, we investigated the brain–behavior relationship in the
context of the perception-action cycle26 based on the directional
information flow in the novice brain compared to the expert brain.
Laparoscopic surgery training following the Fundamentals of

Laparoscopic Surgery (FLS) is a common education and training
module designed for medical residents, fellows, and physicians to
provide them with a set of basic surgical skills necessary to
conduct laparoscopic surgery successfully. The FLS training is a
joint education program between the Society of American
Gastrointestinal Endoscopic Surgeons and the American College
of Surgeons to establish box trainers (physical simulators) in
standard surgical training curricula30. FLS certification in general
surgery in the USA involves five psychomotor tasks with
increasing task complexity: (i) pegboard transfers, (ii) pattern
cutting, (iii) placement of a ligating loop, (iv) suturing with

extracorporeal knot tying, and (v) suturing with intracorporal knot
tying. This certification was introduced to systemize the training
and evaluation of cognitive and psychomotor skills required to
perform minimally invasive surgery. FLS is being used to measure
and document these skills for medical practitioners, where the
understanding of the brain–behavior relationship is crucial for
informed training and assessment31, especially in the context of
physical versus VR simulators during laparoscopic surgery train-
ing32. For example, surgeons rely on 2D visualization of the 3D
surgical field at a reduced depth and tactile perception33, where
3D vision has been shown to speed up laparoscopic training34

potentially by reducing the perceptual load35. Therefore, under-
standing the perception-action coupling from the brain–behavior
analysis can be used to improve VR simulators to help novices
learn more efficiently with exploration–exploitation trade-offs in
human motor learning27. For example, behavioral variability can
be artificially modulated in VR simulators20 to modulate the
exploration–exploitation trade-off in human motor learning27 that
can be individualized based on portable brain imaging of error
processing mechanisms36. However, VR-driven sensorimotor
stimulation may also have harmful aftereffects37, impeding
transfer to real-life conditions that can be probed with the
brain–behavior relationship in the context of sensation weighting
in the perception-action cycle38, e.g., a greater reliance on visual
feedback due to the lack of realistic kinesthetic and tactile
feedback in VR simulators. Therefore, understanding the
perception-action cycle from the brain–behavior analysis can aid
in improving the design of VR simulators in medicine, e.g.,
providing adequate sensory information with kinesthetic and
tactile feedback1,39 in addition to realistic visual and auditory
feedback guided by portable brain imaging.
The FLS task performance (see Fig. 1a) is graded based on the

speed and accuracy related to psychomotor skills40, where a
speed-accuracy trade-off during skill training can lead to
automaticity with a greater focus on speed despite residual
error18,41, i.e., an increased speed of action selection with
“inefficient” movement trajectories. Here, the early motor learning
phase recruits the cerebral structures involving the striatum
(nuclear complex of the basal ganglia) and the cerebellum, and
the interaction between these two structures is thought to be
critical for learning new movement trajectories42. Notably, the
cerebellum seems to provide a substrate for error-based learning
through updating a forward model, whereas the striatum under-
pins habit formation (related to automaticity)42. Therefore, we
postulate that successful motor skill acquisition requires adequate
updating of a forward model in the cerebellum43 during basal
ganglia-driven motor exploration that will be reflected in the
directional information flow in the brain cortico-basal ganglia-
cerebellar network44. Then, the hierarchy of cognitive control
during skill learning shows a rostrocaudal axis in the frontal lobe45,
where a shift from posterior to anterior is postulated to mediate
the progressively abstract, higher-order control expected from
experts. Numerous functional magnetic resonance imaging (fMRI)
and fNIRS studies have been published on skill learning33,46–53,
including training under stress54; however, these studies have not
systematically investigated the directional cortical information
flow55,56, its variability during FLS skill acquisition in physical
versus VR simulators, and its interaction with the skill level based
on statistical path analysis57,58.
In this study, we used fNIRS-based brain imaging, given that

fMRI is challenging for mobile brain–behavior studies of FLS skill
acquisition. Published fNIRS studies on skill learning showed the
involvement of the inferior parietal cortex, prefrontal cortex (PFC),
occipital cortex, and sensorimotor areas, including the premotor
and primary motor cortex (PMC), whereas fMRI studies showed
additional activation of deeper brain structures, including the
basal ganglia and cerebellum33,46–53, and a large-scale brain
network59,60. Here, fNIRS-based brain imaging has limited spatial
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and depth sensitivity61, which needs to be considered for
brain–behavior analysis. Then, the directional information flow55,56

can be elucidated based on dynamic functional brain connectiv-
ity62 that measures time-varying changes in cortical activation and
their dynamic reconfiguration63. Specifically, directed functional
brain connectivity based on time-varying Granger causality
analysis64 can be used to elucidate directional information flow
across brain regions in the context of motor exploration (novices)
versus exploitation (experts) underlying perception-action
coupling27.
Our prior work65 established the face and construct validity of

the VR simulator used in this study. Additionally, our previous
mobile brain–behavior study found wavelet coherence-based
interhemispheric primary motor cortex connectivity and its
coefficient of variation (CoV) to be different between physical
and VR simulators in novices66; however, the analysis of directed
information flow67 to elucidate the hierarchy of the related to the
perception-action cycle68,69 (Fig. 1b) was not performed. There-
fore, we investigated the directed information flow67 among the
following brain regions: the right PFC (RPFC), left PFC (LPFC),
supplementary motor area (SMA), right PMC (RPMC), and left PMC
(LPMC) (see Fig. 1b). These regions were identified based on the
sensitivity profile of our optode montage (Supplementary Fig. 1).
Figure 1b shows the postulated perception-action link where our
optode montage captured the dorsal stream for action starting
from action selection in dorsolateral PFC (drives random explora-
tion in novices23) to action sequencing in the SMA to action
performance in the PMC. Then, the efference copy information
from the PMC is transmitted to the SMA and PFC, whereas the

corollary discharge from the SMA is transmitted to the PFC. Here,
we distinguished between efference copy versus collateral
discharge based on whether the motor action was transmitted
versus the motor plan for action-perception70 in the PFC71. Then,
any conflict with the sensory reafference is monitored by the
angular gyrus for a subjective sense of agency72 in the simulation
environment. The ventral stream for the perception of the sensory
feedback from the environment at the primary sensory cortex
flows to the sensory association cortex and then to the posterior
association cortex (e.g., supramarginal gyrus), leading to conscious
perception in the ventrolateral PFC (VLPFC). Here, the PFC
interacts through reciprocal and reentrant connections with
different areas of the posterior association cortex73, including
the supramarginal gyrus, to integrate the information from
multiple sensory inputs and motor actions74 for action-
perception70. Figure 1c shows the automated anatomical labeling
(AAL)75 of the brain regions with Montreal Neurological Institute
(MNI) coordinates (see Supplementary Table 1) based on the
sensitivity profile (Supplementary Fig. 1).

RESULTS
Interregional directed functional brain connectivity
Repeated-measure two-way multivariate analysis of variance (two-
way MANOVA) found a statistically significant effect of skill level
(expert, novice) on interregional directed functional connectivity
from the RPFC to SMA (F (1, 15)= 6.045, p= 0.027; partial
η2= 0.287), LPMC to SMA (F (1, 15)= 7.892, p= 0.013; partial
η2= 0.345) and SMA to LPFC (F (1, 15)= 6.591, p= 0.021; partial

Fig. 1 Experimental setup. a Subject performing the bimanual FLS task while a continuous-wave spectrometer is used to simultaneously
measure functional brain activation via functional near-infrared spectroscopy to capture the perception-action link to the surgical training.
b Perception action model for surgical training in the physical and VR simulator environments. Our portable neuroimaging allowed
investigation of the dorsal stream of action in the following brain regions, including the right PFC (RPFC), left PFC (LPFC), SMA, right PMC
(RPMC), and left PMC (LPMC), based on the sensitivity profile of our optode montage (Supplementary Fig. 1). This study did not investigate the
ventral stream for perception, including the ventrolateral PFC (VLPFC) region, based on the sensitivity profile of our optode montage
(Supplementary Fig. 1). c Automated anatomical labeling (AAL) of the brain regions (see Supplementary Table 1), Supp_Motor_Area_R (SMA),
Supp_Motor_Area_L (SMA), Frontal_Mod_R (RPFC), Frontal_Mod_L (LPFC), Precentral_R (RPMC), Precentral_L (LPMC) based on the optode
sensitivity profile (Supplementary Fig. 1).

A. Kamat et al.

3

Published in partnership with The University of Queensland npj Science of Learning (2022)    19 



η2= 0.305). Additionally, two-way MANOVA found a statistically
significant effect of the simulator technology (physical simulator,
VR simulator) on the interregional directed functional connectivity
from the RPFC to LPMC (F (1, 15)= 6.002, p= 0.027; partial
η2= 0.286). Then, two-way MANOVA found a statistically sig-
nificant effect of the interaction between the skill level and the
simulator technology on the interregional directed functional
connectivity from the LPMC to RPFC (F (1, 15)= 8.523, p= 0.011;
partial η2= 0.362) and SMA to LPFC (F (1, 15)= 6.824, p= 0.020;
partial η2= 0.313). The details of the between-subject effects are
presented in Supplementary Table 2.
Figure 2 shows the mean response for each factor (shown with

colored arrows) adjusted for other variables in the model, i.e., the
plot of estimated marginal means of the significant interregional
directed functional brain connectivity after controlling the false
discovery rate of 0.05 with Benjamini–Hochberg adjustment.
Figure 2a, b, c show the plot of estimated marginal means of the
interregional directed functional brain connectivity affected by the
skill level (expert, novice), where efference copy information flows
from LPMC to SMA and the attentional control from RPFC to SMA,
both postulated for proficient sequencing of motor subtasks,
higher in experts than novices across both simulators. Figure 2d
shows the plot of estimated marginal means of the interregional
directed functional brain connectivity affected by the simulator
technology (physical simulator, VR simulator). Here, the higher
interregional directed functional brain connectivity from the RPFC
to LPMC in the VR simulator than in the physical simulator may be
related to increased attentional processes76 (or attentional
control) for motor control by the LPMC of the right-handed

subjects since the RPFC optodes were over the right middle
frontal gyrus (see Supplementary Table 1). However, the
interregional directed functional brain connectivity from the RPFC
to SMA trended toward being lower (Fig. 2b) in the VR simulator
compared with the physical simulator, which may underpin lesser
visuomotor attentional control of SMA in the VR. Additionally, the
interregional directed functional connectivity from LPMC to SMA
trended toward being higher (Fig. 2a) in the VR simulator than in
the physical simulator, which may underpin a more substantial
efference copy to SMA in the VR. Here, the VR simulator may have
required lesser executive control of attention for proficient
sequencing of motor subtasks than the physical simulator, which
needs further investigation. The interregional directed functional
connectivity from the SMA to LPFC, which is considered the
corollary discharge for action-perception70 in PFC71, trended
toward lower in the VR simulator than in the physical simulator
for the novice and attained a similar level as that of the expert (see
Fig. 2c). Notably, the VR simulator was novel for both the expert
and the novice, given that experts were experienced with the
physical simulator and human surgery, so a similar interregional
directed functional connectivity from the SMA to LPFC in the VR
simulator was expected and found, as shown in Fig. 2c. Moreover,
the interregional directed functional connectivity from the LPMC
to RPFC, which is considered the efference copy for executive
control of attention in the right-lateralized PFC71, decreased in the
VR simulator compared to the physical simulator for novices and
attained a similar level as that of the expert (see Fig. 2e). These
findings suggest a more substantial efference copy to SMA (for
proficient sequencing of motor subtasks) and lesser to RPFC (for
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(expert, novice) on SMA to LPFC directed functional connectivity. d Significant (p= 0.027) effect of the simulator technology (physical
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0.05 with Benjamini–Hochberg adjustment) interregional directed functional brain connectivity is shown with colored arrows for the factors,
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executive control of attention) in the VR simulator than the
physical simulator where the efference copy contributions were
comparable between experts and novices in the VR simulator.

FLS task performance score and coefficient of variation (CoV)
of the FLS task performance score
Repeated-measures two-way analysis of variance (ANOVA) found a
statistically significant effect of skill level on the FLS score
(F (1, 20)= 12.786, p= 0.002; partial η2= 0.390). Supplementary
Table 4 presents the tests of between-subject effects. Two-way
ANOVA also found a statistically significant effect of skill level on
the CoV of the FLS score (F (1, 21)= 4.370, p= 0.049; partial
η2= 0.172). Supplementary Table 5 presents the tests of between-
subject effects. Figure 3a shows that the FLS score of the experts
decreased in the VR simulator compared with the physical
simulator given that experts were experienced only with the
physical simulator and human surgery. Figure 3b shows that the
CoV of the FLS score of experts increased in the VR simulator
compared to the physical simulator.

Coefficient of variation (CoV) of interregional directed
functional brain connectivity
Two-way MANOVA found a statistically significant effect of the
interaction between the skill level and the simulator technology
on the CoV of the interregional directed functional connectivity
from LPMC to RPMC (F (1, 21)= 8.561, p= 0.008; partial
η2= 0.290). Supplementary Table 3 presents the tests of
between-subject effects. Figure 3c shows that the CoV of the
interhemispheric directed functional connectivity from LPMC to
RPMC increased in the VR simulator compared with the physical
simulator for novices but decreased for the experts. Here, the CoV

of the FLS score of experts increased in the VR simulator
compared with the physical simulator (Fig. 3b), so a decreased
interhemispheric inhibition from LPMC to RPMC may suggest an
increased CoV in performance in experts and vice versa in novices.

Brain–behavior relationships
Although the directed functional brain connectivity from the RPFC
to SMA, LPMC to SMA, and SMA to LPFC mediated the difference
between experts and novices (see Fig. 2), elucidation of the
structure of the interaction with the medical simulator technology
requires multiple regression and path analysis (MRPA) (SPSS Amos,
IBM, USA). For example, the VR simulator was novel for both the
expert and the novice, given that experts were experienced with
the physical simulator and human surgery. Therefore, an
interaction between the skill level and the simulator technology
was expected for the interregional directed functional connectiv-
ity from the SMA to LPFC, as shown in Fig. 2c, where the directed
functional connectivity was similar in the VR simulator for experts
and novices. Then, the difference between physical and VR
simulators was captured by the directed functional brain
connectivity from RPFC to LPMC (see Fig. 2d). Nevertheless, the
link between the directed functional brain connectivity and the
FLS performance score was missing, so multiple regression (with
backward elimination) analysis was performed. The results
demonstrate that the FLS score was statistically significantly
related to the interregional directed functional connectivity from
the RPFC to SMA with F (2, 114)= 9, p < 0.001, and R2= 0.136 (see
Fig. 4a). Here, a significant partial regression (R2= 0.136) of the
dependent variable (FLS score) with the predictor (RPFC to SMA-
directed functional connectivity) was found after controlling the
false discovery rate of 0.05 with Benjamini–Hochberg adjustment.
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Supplementary Table 6 presents the ANOVA results. Then, the
regression weights from the path analysis (Supplementary Fig. 3)
from the factors (expert vs. novice, physical vs. VR simulator) to the
directed functional brain connectivity (RPFC to LPMC, RPFC to
SMA, LPMC to RPFC, LPMC to SMA, SMA to LPFC) to the FLS
performance (FLS score) are shown in Table 1 (grayed rows are
significant after controlling for a false discovery rate of 0.05 with
Benjamini–Hochberg adjustment).
When investigating brain–behavior relationships in terms of CoV,

multiple regression (with backward elimination) analysis found that
the CoV of the FLS score was statistically significantly related to the

CoV of the interregional directed functional connectivity from RPMC
to LPMC and LPMC to LPFC with F (2, 22)= 3.912, p= 0.035, and
R2= 0.262 after controlling for a false discovery rate of 0.05 with
Benjamini–Hochberg adjustment (see Fig. 4b). Supplementary Table
7 presents the ANOVA results. Then, the regression weights from the
path analysis (Supplementary Fig. 4) from the factors (expert vs.
novice, physical vs. VR simulator) to the CoV of the directed
functional brain connectivity (RPFC to LPMC, RPFC to SMA, LPMC to
RPFC, LPMC to SMA, SMA to LPFC) to the CoV of the FLS
performance (FLS CoV) are shown in Table 2 (grayed rows are
significant after controlling for a false discovery rate of 0.05 with

Fig. 4 Brain–behavior relationships for the FLS score and the coefficient of variation (CoV) of the FLS score. a Interregional directed
functional brain connectivity from the RPFC to SMA as a significant (p= 0.01) predictor of the FLS score where RPFC to SMA functional
connectivity is significantly (p < 0.05) affected by skill level (expert vs. novice). b The plot shows the partial regression of the interregional
directed functional brain connectivity of the RPFC to SMA as a predictor of the FLS score. c CoV of the interregional directed functional brain
connectivity from the RPMC to LPMC (p= 0.01) and LPMC to LPFC (p < 0.001) as significant predictors for the CoV of the FLS score. The CoV of
the LPMC to RPMC functional connectivity was significantly (p < 0.05) affected by the interaction between the skill level and the simulation
technology. d The plot shows the partial regression of the CoV of interregional directed functional brain connectivity from the RPMC to LPMC
as a predictor of the CoV of the FLS score. e The plot shows the partial regression of the CoV of the interregional directed functional brain
connectivity from the LPMC to LPFC as a predictor of the CoV of the FLS score.

A. Kamat et al.

6

npj Science of Learning (2022)    19 Published in partnership with The University of Queensland



Benjamini–Hochberg adjustment). Here, the regression weight
estimates for the CoV of the RPMC to LPMC was 0.21, and that for
the CoV of the LPMC to LPFC was −0.30. Both values were
statistically significant after controlling for a false discovery rate of
0.05 with Benjamini–Hochberg adjustment.

DISCUSSION
Our study established a brain and behavior relationship using
MRPA with fNIRS-based directed functional brain connectivity data
that showed the feasibility of a portable, low-cost brain-imaging
tool to compare task-related cortical information flow in ambulant
subjects. Here, validation of medical simulation technology for
laparoscopic surgical training based on the brain and behavior
relationship is crucial given that psychomotor skill learning or
adjusting to changes in the environment, e.g., physical versus VR
environment, requires adequate motor exploration, leading to
more efficient subsequent learning13. In this study, we applied
spectral Granger causality64 to determine the directional informa-
tion flow in the brain networks and its CoV in physical and VR
simulators. We found that the directed functional brain con-
nectivity (Supplementary Fig. 2) from the RPFC to SMA during FLS

task performance mediated the difference between experts and
novices and predicted the behavior (FLS score), as shown in
Fig. 4a, b. Our results revealed the SMA as the key junction77 for
the information flow that differentiated the skill level (experts
versus novices) (see Fig. 2). Specifically, the SMA region has been
considered a key structure77 for directed information flow from
the LPFC, RPFC, LPMC, and RPMC brain regions during a bimanual
sequence operations task78–81, as shown in Fig. 1. SMA is a crucial
region for interlimb and eye-hand coordination82–85 that is critical
for perception-action coupling of the temporal organization and
bimanual movement execution78–81. Therefore, the top-down
executive control of the SMA is expected to differ18 between
experts and novices, where the top-down executive control from
PFC86 is known to have higher relevance in novices in facilitating
training-induced task performance29. The directed functional brain
connectivity from the RPFC to LPMC differentiated medical
simulation technology (physical versus VR simulator) (see Fig. 2),
which may be related to different uncertainty in physical versus VR
simulators leading to the downstream choice reflected in motor
cortex activity23.
Additionally, an interaction between medical simulation tech-

nology and skill level was captured by the directed functional

Table 1. Regression weight estimates for path analysis of the FLS score (grayed rows: significant after controlling for a false discovery rate of 0.05
with Benjamini–Hochberg adjustment).

Dependent var. Independent variable Weight Estimate S.E. C.R. P

RPFC to LPMC <--- Expert vs. Novice 0.02 0.12 0.13 0.89

RPFC to SMA <--- Expert vs. Novice −0.23 0.08 −2.94 0.00

LPMC to RPFC <--- Expert vs. Novice 0.15 0.11 1.47 0.14

LPMC to SMA <--- Expert vs. Novice −0.21 0.09 −2.45 0.01

SMA to LPFC <--- Expert vs. Novice 0.22 0.09 2.32 0.02

RPFC to LPMC <--- Physical vs. VR Simulator 0.23 0.12 1.93 0.05

RPFC to SMA <--- Physical vs. VR Simulator −0.13 0.08 −1.63 0.10

LPMC to RPFC <--- Physical vs. VR Simulator −0.09 0.11 −0.84 0.40

LPMC to SMA <--- Physical vs. VR Simulator 0.06 0.09 0.64 0.52

SMA to LPFC <--- Physical vs. VR Simulator −0.12 0.09 −1.26 0.21

FLS score <--- RPFC to LPMC −7.11 5.83 −1.22 0.22

FLS score <--- RPFC to SMA 21.01 8.43 2.49 0.01

FLS score <--- LPMC to RPFC 3.66 6.50 0.56 0.57

FLS score <--- LPMC to SMA 3.13 7.89 0.40 0.69

FLS score <--- SMA to LPFC −1.16 7.15 −0.16 0.87

Standard errors (S.E.) and critical ratios (C.R.) are also presented in addition to the p value (P) with two significant figures.

Table 2. Regression weight estimates for path analysis of CoV of the FLS score (grayed rows: significant after controlling for a false discovery rate of
0.05 with Benjamini–Hochberg adjustment).

Dependent var. Independent variable Weight Estimate S.E. C.R. P

RPMC to LPMC <--- Expert vs. Novice 0.05 0.11 0.47 0.64

LPMC to LPFC <--- Expert vs. Novice −0.03 0.10 −0.34 0.74

RPMC to LPMC <--- Physical vs. VR Simulator 0.05 0.11 0.43 0.67

LPMC to LPFC <--- Physical vs. VR Simulator −0.02 0.10 −0.19 0.85

LPMC to RPMC <--- Expert vs. Novice −0.02 0.13 −0.17 0.87

LPMC to RPMC <--- Physical vs. VR Simulator 0.08 0.13 0.60 0.55

FLS CoV <--- RPMC to LPMC 0.21 0.08 2.82 0.01

FLS CoV <--- LPMC to LPFC −0.30 0.08 −3.74 <0.001

FLS CoV <--- LPMC to RPMC −0.05 0.06 −0.78 0.44

Standard errors (S.E.) and critical ratios (C.R.) are also shown in addition to the p value (P) with two significant figures.
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brain connectivity from the LPMC to the RPFC and the SMA to the
LPFC (see Fig. 2), and these findings can be related to the
efference copy and collateral discharge, respectively. Here,
directed functional brain connectivity from the SMA to the LPFC
(see Fig. 2c, e) aligned with our prior work using wavelet
coherence-based functional connectivity measures87 that found
undirected functional connectivity between the PFC and SMA to
be lower for experts than novices in the physical simulators.
Therefore, a directed functional connectivity approach62 to the
fNIRS time series could capture the cascading directional
processing of goal-directed action69, as postulated based on the
dorsal stream of action in Fig. 1b. In this study, sliding-window
Granger causality provided a tool for identifying directed
functional interactions from the fNIRS time series data that did
not assume a static functional brain network across the whole FLS
task. Thus, this method could also capture the CoV across
repeated trials of the FLS task. An interaction effect between the
skill level and the simulator technology for the CoV was found for
the directed functional brain connectivity from the LPMC to RPMC,
as shown in Fig. 3. This finding aligned with our prior work using a
wavelet coherence-based functional brain connectivity measure88

that elucidated the brain–behavior relationship based on the CoV
between the LPMC-RPMC magnitude-squared wavelet coherence
metric and the FLS score; however, the directionality of the
information flow was not investigated earlier. Then, path analysis
for the brain–behavior relation showed that the CoV of the
directed functional brain connectivity from the RPMC to LPMC and
LPMC to LPFC were significant predictors for the CoV of the FLS
score, as shown in Fig. 4c–e. Here, our current study highlighted
the importance of portable brain imaging to evaluate medical
simulation technology. Specifically, Granger causality and a
multiple regression approach identified the directed information
flow related to efference copy and corollary discharge linked to
predictive internal signaling89 that mediated the interaction
between skill level and medical simulation technology.
In this study, we found that portable brain imaging for

brain–behavior modeling can evaluate medical simulation tech-
nology in terms of its interaction with the skill level within the
context of the perception-action cycle26. This difference was
captured by the directed functional brain connectivity from the
RPFC to LPMC (Fig. 2) during FLS task performance, which was
higher in the VR simulator than in the physical simulator for both
experts and novices. Here, the PFC is postulated to subserve
cognitive control90 and attentional processes76 that can depend
on the uncertainty23 underlying FLS training with different
medical simulation technologies. Then, the distinguishing directed
information flow for skill level as a predictor of FLS performance
was found to proceed from the RPFC to SMA (see Fig. 4a), which
trended toward being lower in the VR simulator than in the
physical simulator (see Fig. 2b). Jenkins et al.91 demonstrated that
PFC activation is associated with the learning of new sequence
tasks, whereas the lateral premotor cortex is more activated
during new learning and the SMA is more activated during the
performance of a prelearned sequence. Therefore, the descent of
the information flow from the PFC to the premotor/motor
cortex92,93 is expected in a VR simulator that was novel for both
the expert and the novice and affected the exploration strategy94.
Specifically, experts had prior knowledge of the FLS task and thus
could have used directed exploration in the VR simulator, whereas
novices could have depended on random exploration in the initial
stages of the FLS task23 in the VR simulator. This investigation of
different exploration strategies will require a higher density fNIRS
optode montage to segregate the dorsolateral, ventrolateral, and
rostrolateral PFC23 in our future work. The dorsolateral and
ventrolateral PFC can be related to attention control, cognitive
control, feature extraction, and the formation of first-order
relationships45,95–97 that are relevant during the initial stage of
motor skill learning in novices. Specifically, the dorsolateral PFC of

the dorsal stream is more involved in the visual guidance of
action, whereas the ventrolateral PFC of the ventral stream is more
involved in recognition and conscious perception98. Then, the
SMA and the PMC are crucial for coordinating bimanual move-
ment99, where SMA is crucial for the complex spatiotemporal
sequencing of movements79,100 necessary in FLS tasks. Then, in
the later stage of motor skill learning for proficiency16, rostrolateral
PFC may drive directed exploration based on relative uncer-
tainty23 to improve the robustness of the internal models.
In this study, an interaction between the medical simulation

technology (physical vs. VR simulator) and the skill level (experts
vs. novices) was found from the directed functional brain
connectivity from the LPMC to the RPFC and the SMA to the
LPFC (see Fig. 2f, e), and this interaction can be related to
efference copy and corollary discharge information flow, respec-
tively (see Fig. 1b). Here, the SMA contributes to the prediction of
the sensory consequences of the sequence of subtask-related
movement101, which is expected when an internal forward model
is available for fine motor control (e.g., for experts in the physical
simulator). Therefore, corollary discharge102 from the SMA to the
PFC is expected for experts who have experienced physical
simulators and human surgery for bimanual complex move-
ment79,100. However, the VR simulator was novel for both the
experts and the novices, so the corollary discharge102 from the
SMA to the PFC was reduced from the physical to VR simulator in
the experts and was comparable to the novices in the VR
simulator (see Fig. 2e). Furthermore, the efference copy from the
LPMC to the RPFC is postulated to be related to the functional
coupling of the prefrontal and premotor/motor areas that are
expected during cognitive manipulation103 under uncertain
conditions23. Here, an increased cognitive manipulation103 under
higher uncertainty23 for both the experts and the novices (both
inexperienced in VR) is postulated in the VR simulator compared
to the physical simulator70, i.e., an increased information flow from
the RPFC to the LPMC in the VR simulator (see Fig. 2d).
Additionally, the efference copy from the LPMC to the RPFC was
reduced from the physical simulator to the VR simulator in the
experts due to a lack of an internal model such that the LPMC- to
RPFC-directed functional connectivity in the experts was compar-
able to that in the novices in the VR simulator (see Fig. 2f).
Our prior work65 established the face and construct validity of

the VR simulator that is consistent with the current study results,
where only the skill level and not the simulator technology
exhibited a significant effect on the FLS score and its CoV (see Fig.
3a, b). Specifically, the expert had a higher FLS score (Fig. 3a) and
lower CoV (Fig. 3b) than the novice in the physical simulator;
however, in the VR simulator, the expert without VR experience
trended toward a similar level as the novice. Here, motor
variability influencing task performance has been postulated to
shape motor learning104,105, and motor variability typically tends
to decrease with practice106, which tends to drive the trade-off
between exploitation and exploration107. Subjects are expected to
learn to avoid the influence of motor variability on goal-directed
task performance104,105, as observed in the experts with reduced
CoV in the task performance (FLS score) in the physical simulator
than novices. Both experts and novices exhibited similar CoV in
the novel VR simulator (Fig. 3b). The variability (CoV) in the task
performance (FLS score) was significantly related to the variability
(CoV) in the directed functional brain connectivity from the RPMC
to LPMC and LPMC to LPFC, as shown in Fig. 4c, d, and 4e, which
presented a neural correlate of performance variability108. Here, an
increase in the CoV of the RPMC to LPMC and a decrease in the
CoV of LPMC to LPFC were related to an increase in the CoV of the
FLS score.
Additionally, an effect of the interaction between the skill level

and the simulator technology was found on the CoV of the directed
functional brain connectivity from the LPMC to RPMC, as shown in
Fig. 3c. The efference copy information from the bilateral motor
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cortices to the LPFC highlighted the left-lateralized perceptual
decision-making associated with behavioral variability (FLS score).
Here, we found hemispheric lateralization in perception-action
coupling in our right-handed subjects where the coupling between
the LPMC and the RPFC (see Fig. 2d, f) can be related to sensory
prediction (efferent copy from LPMC to RPFC) for action (executive
control from RPFC to LPMC) to respond to unexpected environ-
mental stimuli109,110 in the VR environment. Additionally, uncertainty
due to unexpected environmental stimuli109 is subserved by the
right PFC, where relative uncertainty (e.g., in experts) is represented
in the right rostrolateral PFC, whereas total uncertainty (e.g., in
novices) is represented in the right dorsolateral PFC23. In contrast,
the involvement of LPFC (see Fig. 2) as the recipient of the corollary
discharge information from SMA for action-perception coupling may
be related to its role in analyzing external information while
planning a goal hierarchy110 for proficient subtask sequencing. Then,
any conflict between the efferent information and the sensory
reafferent information can lead to a loss of subjective sense of
agency in the angular gyrus72 (see Fig. 1b). Future work on
improving the design of the VR simulator needs to address the
brain–behavior relationship by reducing the conflict between the
efferent information and the sensory reafferent information to
facilitate the sense of agency associated with learnability111 and
eventually motor skill “automaticity”18. Specifically, brain–behavior
monitoring can be used to drive the virtual environment in ‘real-
time’ to calibrate according to the degree of adaptation of the user’s
prediction models to create a subjective sense of agency in novices
as they learn psychomotor tasks with increasing task complexity, i.e.,
an adaptive VR simulator.
The experimental results of this study are conducive to the

exploration of transcranial electrical stimulation112 to facilitate
learnability in medical simulators. For example, mobile
brain–behavior analysis with fNIRS can capture the interaction
between the angular gyrus (AG) and the middle frontal gyrus
(MFG) that is underpinned by the dorsal superior longitudinal
fascicle (SLF II)113, and the subjective sense of agency may be
facilitated by neuroimaging-guided transcranial electrical stimula-
tion112 of the AG-MFG interactions114. The dorsal branch of the
superior longitudinal fasciculus, which is responsible for visuos-
patial integration and motor planning, is linked to lateralized hand
preference and manual specialization115. Here, the right MFG has
been proposed to be a site of convergence of the dorsal and
ventral attention networks76 for cognitive control that is relevant
in the perception-action cycle. The ventral superior longitudinal
fascicle (SLF III)113 is postulated to be more relevant in perception
(see Fig. 1b) from the supramarginal gyrus (SMG), where the left
MFG and left inferior frontal gyrus (IFG) are more involved in more
perceptually demanding FLS tasks, e.g., FLS suturing with
intracorporal knot tying116. Here, the ventral stream of perception
can be facilitated by neuroimaging-guided transcranial electrical
stimulation112 of SMG-IFG interactions114. Then, the coupling
between the SMA and LPFC may be related to patterns of
prelearned sequence of motor behavior performed in familiar
environments109 in the case of experts in the physical simulator.
Here, it is postulated that the interaction between the preSMA/
SMA and the PFC/IFG is underpinned by the extended frontal
aslant tract (exFAT)117 of the short frontal lobe connections118 that
have a role in executive function/ability119. The exFAT may be left-
lateralized117, which aligns well with left-lateralized activation for
more complex bimanual FLS tasks, e.g., FLS suturing with
intracorporal knot tying116. So, transcranial electrical stimula-
tion112 may facilitate the development of internal models120 as
well as efference copy and corollary discharge information flows,
which may facilitate predictive internal signaling89.
Limitations of this study include the spatial resolution of fNIRS and

the optimality of the parameter of the sliding-window method for
measuring dynamic functional connectivity62. The smallest window
greater than 50 sec was found by running stationarity tests on the

fNIRS time series. Here, a trade-off was made, i.e., on the one hand,
the window must be long enough to provide good frequency
resolution, and on the other hand, the window must be short
enough to satisfy the condition of stationarity. Therefore, instead of
an ad hoc window size121, we searched for an optimal122 sliding-
window pertinent to our data. In this study, we investigated the first
sliding window of 54 s across five repeated trials of FLS tasks when
the cutting was performed with the right hand for all right-handed
subjects (the cutting direction and the hand switched at different
timepoints after 54 s due to the surgical field constraints; see the FLS
pattern cutting video in the Supplementary Materials). Therefore, we
aimed to capture the initial stage in FLS pattern cutting skill
acquisition to investigate the action-perception link70 when the
perceptual model7 is being developed. Then, due to the limitations
of the spatial resolution of our fNIRS device, we investigated only
five brain regions, including the LPFC, RPFC, LPMC, RPMC, and SMA.
Here, the premotor and motor areas were combined in the PMC (see
Supplementary Table 1), and the fNIRS optode montage could not
distinguish the SMA proper from the preSMA brain regions, which
may be important to better assess the temporal structure123 of the
perception-action coupling link70. Additionally, we did not investi-
gate all of the subregions of the PFC, e.g., the ventrolateral PFC and
inferior frontal gyrus (IFG), that may have essential functional
interactions during FLS surgical skill acquisition112, where the
feasibility of fNIRS’ temporal resolution needs to be demonstrated
in the future to capture the fast interactions that are expected via
shorter frontal lobe connections118.

METHODS
Subjects and experimental design
The human study was approved by the Institutional Review Board of the
Massachusetts General Hospital, University at Buffalo, and the Rensselaer
Polytechnic Institute, USA. Convenience sampling recruited seven experi-
enced right-handed surgeons (experts, 5th-year residents, and attending
surgeons) and six right-handed medical students (novices, 1st- to 3rd-year
residents) to participate in the study. The subject details are provided in
Table 3. Only right-handed subjects were selected to avoid dominant
hemisphere-related intersubject variability.
Written consent was obtained from each subject before starting the

study. All subjects were instructed verbally with a standard set of
instructions on how to complete the FLS pattern cutting task on the
FLS-certified physical and the VR simulator124. For the completion of the
FLS pattern cutting task, the right-handed subjects were asked to grasp the
gauze using the left grasper (for traction) and cut along (and within) the
circular stamp with the right laparoscopic scissors (for cutting). The trial
time started when the subject touched the gauge and ended when the
circular cut piece was removed from the gauge frame, and the participants
were asked to cut the marked piece of gauze as quickly and as accurately
as possible. Data collection was performed with a block design of a rest
and stimulus period (the pattern cutting task). Specifically, after a 1-min
rest period (baseline data), the FLS pattern cutting task had to be
completed or stopped within 5 min (task data). This was repeated five
times (5 trials) for each participant in this repeated-measure study. The
performance score for each trial was recorded based on the FLS metrics.
A 32-channel continuous-wave near-infrared spectrometer (CW6 system,

TechEn Inc., USA) was used for optical brain imaging using infrared light at
690 and 830 nm. The optode montage consisted of eight long-distance
and eight short-distance sources coupled with 16 detectors. Twenty-five
long-distance (30–40mm) channels and eight short-distance (~8mm)
channels measured brain activation and systemic physiological signals,
respectively (brain regions listed in Supplementary Table 1) that were
assessed using the photon migration simulation in AtlasViewer software125.
Here, the photon migration forward matrix represents the sensitivity
profile. We selected the average fNIRS signal of the left and right middle
frontal gyrus for prefrontal cortex activation, i.e., LPFC and RPFC; the left
and right precentral gyrus for premotor/motor cortex activation, i.e., LPMC
and RPMC; and the bilateral supplementary motor area complex for
supplementary motor area activation, i.e., SMA. Supplementary Table 1
provides the Montreal Neurological Institute and Hospital (MNI) coordi-
nates. The optical fibers were duly arranged in a cap so that they did not
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obstruct the free movement of the participant during the FLS task
performance.

fNIRS data processing for the oxyhemoglobin time series
Motion artifact detection and correction were performed using
Savitzky–Golay filtering126 and bandpass filtering (0.01–0.1 Hz) in
HOMER3 software (https://github.com/BUNPC/Homer3). Then, the mod-
ified Beer–Lambert law was used to convert the optical signals of the
detectors into changes in the oxyhemoglobin (HbO2) concentrations for
partial path-length factors of 6.4 (690 nm) and 5.8 (830 nm). The short
separation channels (interoptode distance of 8 mm) captured the systemic
physiological signals originating from noncortical superficial regions. The
averaged signal from the long separation channels (interoptode distance
of 30–40mm) measured the HbO2 changes at the following brain regions:
LPFC, RPFC, LPMC, RPMC, and SMA. Supplementary Fig. 5 shows an
illustrative plot of the HbO2 time series.

Granger causality analysis
Granger causality using custom code measured the directed functional
connectivity that provided the strength and direction of cortical
information flow67 between a pair of brain regions from the LPFC, RPFC,
LPMC, RPMC, and SMA64. Granger causality is grounded upon the postulate
that one “causally” connected region would leave a component of its
signal on another region with some latency, i.e., an autoregressive model
(Granger Causality Description provided in the Supplementary Materi-
als)127,128. Here, short-time Fourier transformation (STFT) was employed for

nonparametric spectral Granger causality to estimate sliding-window
pairwise measures of Granger causality, thereby eliminating the need for
explicit autoregressive modeling67. The lowest frequency of 0.02 Hz was
found from the fNIRS power spectral density (after 0.01–0.1 Hz bandpass
filtering), so a nonoverlapping fixed window size of 54 sec (greater than
50 sec) was selected heuristically129.

Directed functional brain network
Granger causality in the neurovascular frequency range of 0.01 to 0.07 Hz87

was used to obtain directed connectivity for each pair of regions (a total of
20 connections). Supplementary Fig. 1 shows an example of 20
interregional directed connections for an illustrative time window. The
directed connectivity between each pair of brain regions was used to form
the directed functional brain network at each time window. Here, a
neurovascular frequency range of 0.01 to 0.07 Hz87 acted as a filter for
systemic and physiological noise, such as heartbeat and respiration130.

Statistical analysis
Individual data collected from seven experienced right-handed surgeons
and six right-handed medical students during the performance of FLS
pattern cutting tasks in a physical simulator and a VR stimulator were used
to determine the Granger causal directed functional connectivity metric for
each subject (seven experts, six novices) with each simulator technology
(physical, VR). The Shapiro–Wilk test was used to test normality for each of
the dependent variables (i.e., interregional directed functional connectivity
metric). Supplementary Table 8 shows the results from Shapiro–Wilk’s test
of normality for the Granger causality measure of each pair of brain regions
in experts and novices while performing FLS tasks in the physical and
virtual simulators across five trials. Then, the directed functional
connectivity (Granger causality) between each pair of brain regions for
the first window (54 s) of each trial was used to conduct a repeated-
measure two-way MANOVA in SPSS version 27 (IBM, USA) to determine
whether there was a significant difference in the interregional directed
functional connectivity based on the skill level (expert, novice), simulator
technology (physical simulator, VR simulator) and their interaction. We
conducted two-way MANOVA in SPSS version 27 (IBM, USA) to determine
whether a significant difference in the CoV of interregional directed
functional connectivity was noted across trials based on skill level,
simulator technology, and their interaction. We conducted a repeated-
measure two-way ANOVA in SPSS version 27 (IBM, USA) to determine
whether there was a significant difference in the FLS score based on the
skill level, simulator technology, and their interaction. We also conducted a
repeated-measure two-way ANOVA in SPSS version 27 (IBM, USA) to
determine whether there was a significant difference in the CoV of the FLS
score based on skill level, simulator technology, and their interaction. The
Levene test was used to test the homogeneity of variance. All significance
levels were set at alpha = 0.05. To determine how the dependent variables
(i.e., interregional directed functional connectivity) differed for the
independent variables, the skill level, simulator technology, and their
interaction, i.e., the tests of between-subjects effects, alpha with multiple
comparison correction (false discovery rate), and partial eta squared effect
size were used. Here, partial eta squared effect size measures the
proportion of the total variance in a dependent variable defined by an
independent variable in which the effects of other independent variables
and interactions are parsed out131. Then, correction for a false discovery
rate of 0.05 with Benjamini–Hochberg adjustment was performed using
the MATLAB code in the Supplementary Materials. Then, we conducted
brain–behavior analysis via multiple regression (backward elimination with
a probability of F for removal ≥0.1) in SPSS version 27 (IBM, USA) to assess
the relationship of the interregional directed functional brain connectivity
with the FLS score. Then, in SPSS Amos (IBM, USA), the path analysis was
performed from the skill level (expert, novice) and simulator technology
(physical simulator, VR simulator) to the dependent variables (interregional
directed functional brain connectivity and FLS score). Multiplicity control
for the path analysis was also based on a false discovery rate of 0.05 with
Benjamini–Hochberg adjustment using the MATLAB code in the Supple-
mentary Materials.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Table 3. Subject demographics.

Subject Age Gender Specialization

Physical simulator

Novice

N1 32 years Male General Surgery

N2 31 years Female General Surgery

N3 30 years Male General Surgery

N4 33 years Male General Surgery

N5 32 years Female General Surgery

N6 30 years Male Orthopedic Surgery

Expert

E1 38 years Female General Surgery

E2 49 years Female General Surgery

E3 30 years Male General Surgery

E4 30 years Female General Surgery

E5 37 years Male General Surgery

E6 32 years Female General Surgery

E7 31 years Male General Surgery

VR simulator

Novice

N1 31 years Female General Surgery

N2 30 years Male General Surgery

N3 33 years Male General Surgery

N4 32 years Female General Surgery

N5 30 years Male Orthopedic Surgery

N6 26 years Male General Surgery

Expert

E1 38 years Female General Surgery

E2 49 years Female General Surgery

E3 30 years Male General Surgery

E4 30 years Female General Surgery

E5 37 years Male General Surgery

E6 34 years Male General Surgery
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